WO2009081858A1 - Micro scanner and method for controlling micro scanner - Google Patents

Micro scanner and method for controlling micro scanner Download PDF

Info

Publication number
WO2009081858A1
WO2009081858A1 PCT/JP2008/073181 JP2008073181W WO2009081858A1 WO 2009081858 A1 WO2009081858 A1 WO 2009081858A1 JP 2008073181 W JP2008073181 W JP 2008073181W WO 2009081858 A1 WO2009081858 A1 WO 2009081858A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
shaft portion
mirror
movable frame
holding
Prior art date
Application number
PCT/JP2008/073181
Other languages
French (fr)
Japanese (ja)
Inventor
Utako Takahashi
Original Assignee
Konica Minolta Opto, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto, Inc. filed Critical Konica Minolta Opto, Inc.
Publication of WO2009081858A1 publication Critical patent/WO2009081858A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0841Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means

Definitions

  • the present invention relates to a micro scanner device equipped with a micro scanner such as an optical scanner, and a control method of the micro scanner device.
  • the optical scanner ls of Patent Document 1 as shown in FIG. 12A includes a fixed frame ff, a double-line beam 140 extending inward of the fixed frame ff, a mirror shaft ma connected to the beam 140, and a mirror.
  • the mirror part (variation part) mr clamped by the axial part ma is included.
  • piezoelectric bodies (drive units) pe1 to pe4 are attached to the beam pieces 141 to 144 in the beam unit 140, thereby forming a unimorph.
  • the vibrating body 150 including the mirror part mr, the mirror shaft part ma, and the beam part 140 shown in FIG. 12B, which is a partially enlarged view of FIG. 12A, resonates and uses the resonance.
  • the mirror part mr swings at a larger angle. JP 2005-181477 A
  • the phase that the mirror part mr vibrates and the phase that the beam part 140 vibrates are the same (as indicated by arrows 1 and 2).
  • the mirror part mr and the beam part 140 are displaced in the same direction).
  • the frequency causing such in-phase resonance is usually relatively low. Therefore, the oscillation speed of the mirror part mr depending on this frequency is also relatively slow.
  • a micro-scanner device equipped with such an optical scanner ls, such as a projector cannot project a high-resolution image.
  • An object of the present invention is to provide a micro-scanner device having a micro-scanner including a mirror unit that can operate at high speed.
  • the micro scanner device includes a micro scanner and a drive circuit.
  • the microscanner is connected to the fixed frame that is an outer frame, the first shaft portion, the movable frame portion that is sandwiched between the first shaft portion and swingable with respect to the first shaft portion, A second shaft portion that intersects the one shaft portion, a variation portion that is held by the second shaft portion, is held in the movable frame portion, and can swing with respect to the second shaft portion, and one end is A holding portion having a cantilever structure connected to one shaft portion and having the other end fixed to a fixed frame; and a driving portion that deforms the holding portion by applying a force generated according to an applied voltage to the holding portion, Including.
  • the drive circuit includes a vibration phase when the movable frame portion swings with respect to the second shaft portion relative to the drive portion of the micro scanner, and a vibration when the variable portion swings with respect to the second shaft portion.
  • a voltage having a frequency that causes the microscanner to resonate is applied so that the phase of the microscanner is reversed.
  • the microscanner when the microscanner resonates according to the frequency of the applied voltage of the drive unit, for example, the operation of the variable unit and the movable frame unit is regarded as a two-degree-of-freedom non-damped vibration system. Therefore, when the microscanner resonates according to the frequency of the applied voltage, the frequency causing the resonance is the phase of vibration when the movable frame portion swings with respect to the second shaft portion and the fluctuation portion is the second axis. A vibration mode is generated in which the phase of vibration when swinging with respect to the section is opposite to the phase.
  • the frequency of the applied voltage is usually relatively high (in contrast, in the case of the same phase, the frequency is relatively low).
  • a drive part drives with the applied voltage of such a frequency, a holding
  • variable portion swings with respect to the second shaft portion due to the inclination of the movable frame portion (that is, when the frequency of the applied voltage that causes resonance swings the variable portion with reference to the second shaft portion).
  • the movement of the variable part becomes faster. Therefore, this micro scanner swings the variable part at high speed.
  • the frequency of the applied voltage causing resonance causes a vibration mode in which the phase of the movable frame portion vibrates and the phase of the system including the holding portion and the drive portion (for example, unimorph) vibrate.
  • the displacement between the movable frame portion and the system including the holding portion and the drive portion is relatively small. Therefore, a member located between the movable frame portion and the system including the holding portion and the drive portion, for example, the second shaft portion, is subjected to relatively little stress due to the displacement. Therefore, the second shaft portion and the like are not easily damaged.
  • the frequency of the applied voltage that causes resonance vibrates the movable frame unit It is desirable to generate a vibration mode in which the phase and the phase in which the holding portion vibrates are the same. If it becomes like this, the 2nd axial part etc. which are the members located between a movable frame part and a holding
  • the method for controlling the micro scanner device as described above is based on the phase of vibration when the movable frame portion swings with reference to the second shaft portion, and when the fluctuation portion swings with reference to the second shaft portion.
  • a voltage having a frequency for causing the microscanner to resonate is applied to the driving unit by the driving circuit so that the phase of the vibration is reversed.
  • the micro scanner control method generates a vibration mode in which the frequency of the applied voltage causing resonance is the same as the phase of the movable frame and the phase of the system including the holding unit and the drive unit. A frequency is desirable.
  • control method of the microscanner is preferably such that the frequency of the applied voltage that causes resonance is a frequency that generates a vibration mode in which the phase of vibration of the movable frame portion and the phase of vibration of the holding portion are in phase.
  • the microscanner resonates due to a relatively high frequency applied voltage to the drive unit, and the fluctuation of the variable part in the microscanner becomes high speed corresponding to the frequency of the applied voltage. .
  • FIG. 3 is a plan view of the optical scanner.
  • FIG. 2 is a partially enlarged view of the optical scanner shown in FIG. 1.
  • FIG. 1 is a cross-sectional view taken along the line A-A ′ of FIG.
  • FIG. 3 is a cross-sectional view taken along the line B-B ′ of FIG.
  • FIG. 3 is a cross-sectional view taken along the line A-A ′ of FIG.
  • FIG. 3 is a cross-sectional view taken along the line B-B ′ of FIG.
  • FIG. 3 is a model diagram of a non-damped vibration system having two degrees of freedom.
  • FIG. 2 is a cross-sectional view taken along the line A-A ′ in FIG.
  • FIG. 2 is a cross-sectional view taken along the line A-A ′ of FIG.
  • FIG. 8 is a perspective view of an optical scanner different from those in FIGS. 6 and 7. These are the top views of the optical scanner which employ
  • FIG. 3 is a block diagram showing a projector.
  • FIG. 3 is a perspective view of a conventional optical scanner.
  • FIG. 12B is a partially enlarged view of FIG. 12A.
  • a mirror part is taken as an example of a member (fluctuating part) that fluctuates
  • an optical scanner is taken as an example of a micro scanner that performs a scanning operation by reflecting light by changing the mirror part.
  • FIG. 1 is a plan view of the optical scanner LS
  • FIG. 2 is a partially enlarged view of FIG.
  • the optical scanner LS includes a mirror part MR, a mirror shaft part MA, a movable frame part FM, a frame shaft part FA, a holding part HD, a piezoelectric element PE, a torsion bar TB, and a fixed frame FF. These members are formed by etching a deformable silicon substrate or the like that becomes the base BS.
  • Mirror portion (variable portion, reflecting portion) MR reflects light from a light source or the like, and is formed by attaching a reflective film such as gold or aluminum to a part of the base BS.
  • a reflective film such as gold or aluminum
  • the opening H the first opening H1 and the second opening H2 including a semicircular constricted portion and a sandwiching portion that sandwiches the semicircular constricted portion from both ends face each other.
  • the remainder of the base BS including a circle is generated.
  • the mirror part MR is completed by affixing a reflecting film on a part of this remaining part.
  • the direction in which the first opening H1 and the second opening H2 are arranged is referred to as the X direction
  • the X direction on the second opening H2 side is the plus X of the X direction ⁇ X (+) ⁇ , and the direction opposite to the + direction. Is minus X in the X direction ⁇ X ( ⁇ ) ⁇ .
  • a direction extending in the X direction from the center of the mirror part MR is referred to as an X axis.
  • the mirror shaft portion (second shaft portion) MA is an axis generated so as to be connected to one end and the other end of the mirror portion MR when the sandwiching portion of the first opening H1 and the sandwiching portion of the second opening H2 face each other. It is a shaped part.
  • One of the mirror shaft portions MA connected to one end of the mirror portion MR (first mirror shaft portion MA1) and the other of the mirror shaft portions MA connected to the other end of the mirror portion MR (second mirror shaft portion MA2) are:
  • the mirror portion MR extends in different directions (however, the first mirror shaft portion MA1 and the second mirror shaft portion MA2 are parallel).
  • the extending direction of the mirror shaft part MA is orthogonal to (crosses) the X direction. Therefore, the direction in which the mirror shaft portion MA extends is referred to as the Y direction, the Y direction on the first mirror shaft portion MA1 side is plus Y direction (Y (+)), and the opposite direction to the + direction is minus direction in the Y direction. Let ⁇ Y (-) ⁇ . Further, a direction extending in the Y direction from the center of the mirror part MR is referred to as a Y axis.
  • the direction orthogonal to the X direction and the Y direction is defined as the Z direction (deflection direction).
  • the direction is minus Z direction (Z ( ⁇ )).
  • Z ( ⁇ ) the direction extending in the Z direction from the intersection of the X axis and the Y axis.
  • the movable frame portion FM is a frame surrounding the mirror portion MR and the mirror shaft portion MA.
  • the third opening H3 that is one opening H is formed so as to surround the first mirror shaft portion MA1, and is the other opening H.
  • the fourth aperture H4 is formed so as to surround the second mirror shaft portion MA2
  • the remaining portion of the base BS sandwiched between the third aperture H3 and the first aperture H1 and the second aperture H2 is generated.
  • both remaining parts become a part of the frame-shaped base body BS surrounding the mirror part MR and the mirror shaft part MA, that is, the movable frame part FM.
  • the frame shaft portion (first shaft portion) FA extends outward from one end and the other end that overlap and face the X axis at the outer edge of the movable frame portion FM, thereby sandwiching the movable frame portion FM.
  • first shaft portion first shaft portion
  • one of the frame shaft portions FA extending toward the X ( ⁇ ) side is referred to as a first frame shaft portion FA1
  • the other of the frame shaft portions extending toward the X (+) side is referred to as a second frame shaft portion FA2.
  • the holding portion HD holds the movable frame portion FM by holding the frame shaft portion FA (connected to the frame shaft portion FA).
  • the holding portion HD is formed by the remaining portion of the base BS generated between the opening H (the fifth opening H5 and the sixth opening H6) extending in the Y direction and the third opening H3 and the fourth opening H4. Is done.
  • the fifth opening H5 and the sixth opening H6 are arranged along the X direction and sandwich the third opening H3 and the fourth opening H4. Then, the remaining portion of the base BS extending in the Y direction located between the fifth opening H5 and the third opening H3 / fourth opening H4 becomes the first holding portion HD1, and the sixth opening H6 and the third opening are formed. The remaining portion of the base body BS extending in the Y direction located between the hole H3 and the fourth opening H4 becomes the second holding part HD2.
  • the holding part HD having such a shape (linear shape) extending in the Y direction is easily bent.
  • the piezoelectric elements PE are elements that convert voltage into force.
  • the piezoelectric body PB (PBa to PBd) subjected to the polarization process and the electrodes EE1 and EE2 (EE1a to EE1d EE2a to EE2d) (see FIGS. 3 and 8 to be described later).
  • the piezoelectric element (driving unit) PE is affixed on the surface of the holding unit HD to form a unimorph unit (actuator) YM. More specifically, the unimorph part YM (YMa to YMd) is formed by bonding one electrode (first electrode) EE1 of the piezoelectric element PE and one surface of the holding part HD.
  • a ⁇ voltage (AC voltage) is applied between the first electrode EE1 and the second electrode EE2 within a range that does not cause polarization reversal, so that the piezoelectric body PB expands and contracts, and the unimorph portion according to the expansion and contraction YM bends.
  • the piezoelectric elements PEa and PEb are attached to the first holding portion HD1 so as to sandwich the first frame shaft portion FA1, and the piezoelectric elements PEc and PEd are sandwiched between the second frame shaft portion FA2.
  • the second holding part HD2 is attached. Therefore, the holding portion HD is also deformed (flexible deformation / bending deformation) in accordance with the expansion and contraction of the piezoelectric bodies PB (PBa to PBd) in the piezoelectric elements PEa and PEb and the piezoelectric elements PEc and PEd.
  • one piece of the first holding portion HD1 to which the piezoelectric element PEa is attached is referred to as a holding piece HD1a
  • one piece of the first holding portion HD1 to which the piezoelectric element PEb is attached is referred to as a holding piece HD1b
  • a piece of the second holding portion HD2 attached is referred to as a holding piece HD2c
  • a piece of the second holding portion HD2 attached with the piezoelectric element PEd is referred to as a holding piece HD2d.
  • the torsion bar TB is a member that changes the deformation (bending deformation, etc.) of the holding portion HD into a torsional deformation (rotational torque) and transmits it to the frame shaft portion FA (see the dotted line portions in FIGS. 1 and 2).
  • Such a torsion bar TB is formed in the holding portion HD.
  • the third slit ST3 connected to the fifth hole H5, more specifically, between the second slit ST2 and the third slit ST3 extending in the X direction and aligned with the first slit ST1 along the X direction.
  • a part of the base body BS located becomes a torsion bar TB.
  • the presence of the torsion bar TB generated by the slit ST in the holding portion HD causes a gap in the holding portion HD. Therefore, the strength of the holding portion HD decreases due to the presence of this gap. As a result, the holding portion HD is easily bent.
  • these torsion bars TB extend in a direction (for example, X direction) intersecting the extending direction (Y direction) of the holding portion HD. In this case, the torsion bar TB is easily twisted when the holding portion HD is bent.
  • a portion BS1 of the base BS positioned between the first slits ST1 and ST1 is connected to the frame shaft portion FA, and a portion BS3 of the base BS positioned between the third slits ST3 and ST3 is connected to the frame shaft portion FA.
  • these two parts BS1 ⁇ BS3 may be referred to as a frame shaft portion FA including a portion BS M of the substrate BS located between the two parts BS1 ⁇ BS3.
  • a part of the base body BS positioned between the portion BSM and the second slit ST2 connects the torsion bar TB and the frame shaft portion MA. Therefore, this portion is referred to as a coupling portion CB.
  • the fixed frame FF is an outer frame of the optical scanner LS. That is, the fixed frame FF is a frame-like member that surrounds the mirror part MR, the mirror axis MA, the movable frame part FM, the frame axis part FA, the holding part HD, the piezoelectric element PE, and the torsion bar TB.
  • FIGS. 3A to 3D are cross-sectional views taken along line A-A 'in FIG. 1
  • FIGS. 3B and 3D are cross-sectional views taken along line B-B' in FIG.
  • FIGS. 3C and 3D show the mirror part MR reversely rotating.
  • maintenance part HD2 in the case of doing is shown.
  • a voltage for extending the piezoelectric bodies PBa and PBb in the piezoelectric elements PEa and PEb is applied to the first holding part HD1.
  • the holding piece HD1a of the first holding portion HD1 to which the first electrode EE1a is attached and the first electrode EE1b to which the first electrode EE1b is attached are attached by the extending piezoelectric bodies PBa and PBb.
  • Both the holding piece HD1b of the holding portion HD1 bends with the Z (+) side protruding.
  • the first frame shaft portion FA1 side of the holding piece HD1a and the holding piece HD1b hangs down to Z ( ⁇ ), and the first frame shaft portion FA1 is also displaced toward Z ( ⁇ ).
  • the second holding unit HD2 a voltage for contracting the piezoelectric bodies PBc and PBd in the piezoelectric elements PEc and PEd is applied.
  • the holding piece HD2c of the second holding portion HD2 to which the first electrode EE1c is attached and the second electrode to which the first electrode EE1d is attached are contracted by the contracting piezoelectric bodies PBc and PBd.
  • Both the holding piece HD2d of the holding portion HD2 bends with the Z ( ⁇ ) side convex.
  • the second frame shaft portion FA2 side of the holding piece HD2c and the holding piece HD2d jumps up to Z (+), and the second frame shaft portion FA2 is also displaced toward Z (+).
  • the first holding portion HD1 displaces the first frame shaft portion FA1 toward Z ( ⁇ ) and the second holding portion HD2 displaces the second frame shaft portion FA2 toward Z (+).
  • the movable frame FM sandwiched between the first frame shaft portion FA1 and the second frame shaft portion FA2 is inclined.
  • the mirror portion MR included in the movable frame FM is also tilted with respect to the mirror shaft portion MA.
  • This inclination is an inclination generated by the displacement of the first frame axis part FA1 and the second frame axis part FA2 that are separated from the mirror axis part MA at substantially equal intervals. Therefore, considering the mirror shaft portion MA as a reference, the mirror portion MR rotates forward with respect to the mirror shaft portion MA.
  • a voltage for extending the piezoelectric bodies PBc and PBd of the piezoelectric elements PEc and PEd is applied.
  • the holding pieces HD2c and the holding pieces HD2d in the second holding portion HD2 bend with the Z (+) side projecting by the extending piezoelectric bodies PBc and PBd.
  • the second frame shaft portion FA2 side of the holding piece HD2c and the holding piece HD2d hangs down to Z ( ⁇ ), and the second frame shaft portion FA2 is also displaced toward Z ( ⁇ ).
  • the movable frame portion FM is inclined, and as a result, the mirror portion MR rotates reversely with respect to the mirror shaft portion MA.
  • the rotation angle ⁇ (deflection angle ⁇ ) of forward / reverse rotation of the mirror MR with respect to the mirror shaft MA that is the Y axis as described above is relatively small. Therefore, in the optical scanner LS, the frequency of the voltage applied to the piezoelectric elements PE (PEa to PEd) used to tilt the movable frame FM is close to the resonance frequency of the rotational vibration of the mirror MR with respect to the mirror shaft MA. It becomes the frequency of. This is because, even if the tilt amount of the movable frame FM is relatively small, the mirror MR resonates with the frequency of the voltage applied to the piezoelectric element PE and swings relatively large.
  • the resonance frequency of the optical scanner LS can be obtained as long as the Young's modulus, Poisson's ratio, density in the base BS, the shape of the mirror part MR, the fixing conditions, the piezoelectric constant of the piezoelectric element PE, etc. are known. It can be calculated by simulation software.
  • the frequency of the voltage applied to the piezoelectric element PE that also causes the optical scanner LS to resonate will be described.
  • the vibration mode at resonance will be described.
  • the unimorph part YM, the torsion bar TB, the first frame shaft part FA1, the movable frame part FM, the first mirror shaft part MA1, the mirror part MR, and the second mirror shaft part MA2 in the optical scanner LS are shown in FIG.
  • a vibration mode of the mirror part MR and the movable frame part FM will be described by comparing with a model system as shown in FIG.
  • the relationship among YM, torsion bar TB, first frame shaft portion FA1, movable frame portion FM, first mirror shaft portion MA1, mirror portion MR, and second mirror shaft portion MA2 is as follows.
  • 1st wall WL1 Unimorph part YM
  • 1st spring SPG1 torsion bar TB and 1st frame axial part FA1
  • 1st weight OM1 movable frame part FM
  • the second frame shaft portion FA2, the torsion bar TB and the unimorph portion YM close to the second frame shaft portion are omitted.
  • the natural angular frequency ⁇ 1 and the natural angular frequency ⁇ 2 satisfy the relationship “ ⁇ 1 ⁇ 2 ”.
  • the natural angular frequency ⁇ 1 is called a primary natural frequency
  • the natural angular frequency ⁇ 2 is called a secondary natural frequency.
  • the eigenmode is an expression of the amplitude ratio at the time of harmonic vibration in a vector format, and can be expressed by the following equations (13) and (14).
  • the following matrix (15) in equation (13) and the following matrix (16) in equation (14) are the eigenvectors of the natural angular frequency ⁇ 1 and the natural angular frequency ⁇ 2 .
  • the natural vector of the natural angular frequency ⁇ 1 and the natural vector of the natural angular frequency ⁇ 2 are as shown in the following matrix (28) and matrix (29).
  • FIG. 5 shows a vibration mode (primary vibration mode) based on the natural angular frequency ⁇ 1 and a vibration mode (secondary vibration mode) based on the natural angular frequency ⁇ 2 from the obtained eigenvector. Shown in The natural angular frequency ⁇ 2 is higher than the natural angular frequency ⁇ 1 ( ⁇ 2 > ⁇ 1 ).
  • the tip of the arrow in FIG. 5 shows the position of the weight OM1 and the weight OM2 in each vibration mode, and the numerical value means an eigenvector.
  • the phase of vibration of the mirror part MR and the phase of vibration of the movable frame part FM are opposite in phase.
  • the natural angular frequency ⁇ 2 that causes the vibration mode to be generated is greater than the natural angular frequency ⁇ 1 that generates the vibration mode in which the phase of the vibration of the mirror portion MR and the phase of the vibration of the movable frame portion FM are the same. It becomes clear that it becomes a high frequency.
  • the optical scanner LS shown in FIG 1, the natural frequency corresponding to 2 natural frequency (or resonance frequency) 4.8 kHz, natural angular frequency ⁇ corresponding to the natural angular frequency .omega.1 29.
  • the mirror part MR and the movable frame part FM were made to resonate at 4 KHz.
  • the natural angular frequency omega 1 as shown in the perspective view of FIG. 6, the mirror MR and the movable frame section FM becomes clear that vibrates in the same direction, the natural angular frequency omega 2
  • the mirror part MR and the movable frame part FM vibrate in different directions.
  • a part of the mirror part MR and a part of the movable frame part FM adjacent to the first opening H1 (a part of the mirror part MR adjacent to the second opening H2 and a part of the movable frame part FM). It has become clear that they vibrate in the same direction or in different directions.
  • the rotation angle of the mirror MR is ⁇ 1.7 ° in resonance at the natural angular frequency ⁇ 1 in proportion to the natural frequency, and the resonance of the mirror MR in resonance at the natural angular frequency ⁇ 2 .
  • the deflection angle was ⁇ 4.1 °.
  • the rotation angle ⁇ is an angle generated between the mirror portion MR that is in an immobile state without being affected by the unimorph portion YM and the mirror portion MR that fluctuates.
  • an optical scanner LS that can support a model system as shown in FIG. 4, for example, a fixed frame FF, a frame shaft part FA, a movable frame part FM, a mirror shaft part MA, a mirror part MR, a holding part HD, And an optical scanner LS including the piezoelectric element PE (that is, the unimorph part YM including the holding part HD and the piezoelectric element PE).
  • the mirror portion MR is swung with respect to the mirror shaft portion MA.
  • the present invention is not limited to this, and the optical scanner LS can also swing the mirror part MR with respect to the frame shaft part FA. That is, the optical scanner LS shown in FIG. 1 can be a one-dimensional optical scanner or a two-dimensional optical scanner.
  • the optical scanner LS of FIG. 1 will be described as a two-dimensional optical scanner.
  • the swing of the mirror part MR with respect to the mirror axis MA is the same as that described in the first embodiment, it will be omitted, and the swing of the mirror part MR with respect to the frame shaft part FA will be described.
  • FIG. 8A shows the deformation of the first holding unit HD1 when forwardly rotating
  • FIG. 8B shows the deformation of the first holding unit HD1 when the mirror MR is reversely rotated
  • first holding unit HD1 which is one of the two holding units HD will be described, but when the one first holding unit HD1 attempts to rotate the mirror unit MR forward or backward, The remaining second holding portion HD2 is similarly modified, and the mirror portion MR is rotated forward or backward.
  • the piezoelectric body PBa When such a voltage is applied, the piezoelectric body PBa extends, so that the holding piece HD1a of the first holding portion HD1 to which the first electrode EE1a is attached is bent with the Z (+) side convex. As a result, the first frame shaft portion FA1 side of the holding piece HD1a hangs down to Z ( ⁇ ).
  • the piezoelectric body PBb contracts, the holding piece HD1b of the first holding portion HD1 to which the first electrode EE1b is attached is bent with the Z ( ⁇ ) side convex. As a result, the first frame shaft portion FA1 side of the holding piece HD1b jumps up to Z (+).
  • the Y (+) side of the first frame shaft portion FA1 is pushed down via the torsion bar TB (TBa) and also via the torsion bar TB (TBb).
  • the Y ( ⁇ ) side of the first frame shaft portion FA1 is pushed up.
  • the torsion bars TBa and TBb are simply twisted with reference to their own axial directions (bar axis directions), and the first frame shaft portion FA1 is displaced.
  • the mirror part MR rotates forward with respect to the frame shaft part FA.
  • the piezoelectric body PBa contracts, so that the holding piece HD1a attached with the first electrode EE1a bends with the Z ( ⁇ ) side convex. As a result, the first frame shaft portion FA1 side of the holding piece HD1a jumps up to Z (+).
  • the piezoelectric body PBb extends, the holding piece HD1b to which the first electrode EE1b is attached is bent with the Z (+) side convex. As a result, the first frame shaft portion FA1 side of the holding piece HD1b hangs down to Z ( ⁇ ).
  • the Y (+) side of the first frame shaft portion FA1 is pushed up via the torsion bar TBa, and the Y of the first frame shaft portion FA1 is pushed through the torsion bar TBb.
  • the ( ⁇ ) side is pushed down, and the first frame shaft portion FA1 is displaced in reverse to the displacement in the case of forward rotation. Therefore, the mirror part MR rotates reversely with respect to the frame shaft part FA.
  • the mirror portion MR is swung (forward rotation / reverse rotation) and the torsional deformation of the torsion bar TB that easily swings the frame shaft portion FA and the holding pieces HD1a and HD1b (that is, the holding portion HD) Bending is used. Therefore, the swing amount of the frame shaft portion FA (forward rotation angle ⁇ or reverse rotation angle ⁇ ) is larger than the swing amount when the frame shaft portion FA is swung only by the bending of the holding portion HD. (In other words, the amount of rocking of the frame shaft FA can be efficiently secured).
  • Embodiment 3 A third embodiment will be described. Note that members having the same functions as those used in Embodiments 1 and 2 are denoted by the same reference numerals, and description thereof is omitted.
  • the frequency of the voltage applied to the piezoelectric element PE matches the natural frequency of the optical scanner LS, and the mirror MR and the movable frame FM vibrate in different phases or the same phase. explained.
  • the optical scanner LS resonates, another member different from the mirror part MR and the movable frame FM also vibrates.
  • the vibration phase of the movable frame portion FM and the vibration phase of the holding portion HD (and hence the unimorph YM).
  • the movable frame portion FM and the unimorph YM are connected via a frame shaft portion FA. Therefore, it is inconvenient that a large displacement occurs between the movable frame portion FM and the unimorph YM due to the swing of the mirror portion MR. This is because a stress corresponding to a large displacement is applied between the movable frame portion FM and the unimorph YM, and the frame shaft portion FA, the torsion bar TB, and the like may be damaged.
  • the frequency applied to the piezoelectric element PE causes the mirror MR and the movable frame FM to vibrate in different directions, and further causes the movable frame FM and the unimorph YM to vibrate in different directions.
  • excessive stress is applied to the frame shaft part FA, the torsion bar TB, etc., and they may be damaged.
  • a vibration mode is generated in which the movable frame FM and the unimorph YM are vibrated in the same direction while vibrating the mirror portion MR and the movable frame portion FM in different directions.
  • the frequency of the voltage applied to the piezoelectric element PE matches or approximates the natural frequency of the optical scanner LS that causes such a vibration mode.
  • the mirror part MR and the movable frame part FM vibrate in different directions.
  • the mirror part MR performs an extremely high-speed scanning operation.
  • the mirror MR swings with reference to the frame shaft FA without using the resonance of the optical scanner LS.
  • the present invention is not limited to this, and the mirror portion MR may swing with respect to the frame shaft portion FA using the resonance of the optical scanner LS.
  • the member (drive unit) for deforming the holding unit HD is not limited to the piezoelectric element PE.
  • an electromagnetic unit 33 including an electromagnetic coil 31 and a permanent magnet 32 may be a drive unit (or an electromagnetic drive unit).
  • the electromagnetic coil 31 is positioned on one surface (front surface) of the holding portion HD
  • the permanent magnet 32 is positioned on the back side of the holding portion HD (separated from the back surface of the holding portion HD).
  • the holding portion HD is bent by an electromagnetic force generated by the coil 31 and the permanent magnet 32.
  • the piezoelectric drive unit is not limited to a unimorph but may be a bimorph.
  • the electrostatic unit including two electrodes may be a driving unit (an electrostatic driving unit may be used).
  • an electrostatic driving unit may be used.
  • one electrode is positioned on the back surface of the holding unit HD, and the other electrode is positioned away from the back surface of the holding unit HD (on the back side of the holding unit HD).
  • the holding portion HD is bent by an electrostatic force.
  • any of an electromagnetic method, an electrostatic method, a piezoelectric method, and the like may be used.
  • a vibration mode is generated in which the movable frame FM and the holding unit HD are vibrated in the same direction while vibrating the mirror unit MR and the movable frame unit FM in different directions.
  • the frequency of the voltage applied to the electrode is made to match or approximate the natural frequency of the optical scanner LS that causes such a vibration mode.
  • micro scanner devices optical devices
  • a drive circuit for applying a voltage to the piezoelectric element PE for example, a projector (image projection apparatus) as shown in the block diagram of FIG.
  • the projector 10 shown in FIG. 11 includes an input image processing unit 11, a drive control unit 12, and an optical mechanism unit 15.
  • the input image processing unit 11 receives an image signal (NTSC signal or the like) transmitted from a personal computer (PC) or the like.
  • the input image processing unit 11 performs correction processing ( ⁇ correction, image distortion correction, etc.) as appropriate on the received image signal, and transmits the corrected image signal to the drive control unit 12.
  • the drive control unit 12 is composed of a dedicated electronic circuit, and includes an optical scanner drive circuit (drive circuit) 13 and a light source drive circuit 14.
  • the optical scanner driving circuit 13 generates a control signal for controlling the driving timing of the optical scanner LS in correspondence with the vertical synchronizing signal and horizontal synchronizing signal of the transmitted image signal. Then, the optical scanner drive circuit 13 transmits a drive signal having a potential corresponding to the control signal to the optical scanner LS included in the optical mechanism unit 15.
  • the optical scanner drive circuit 13 has a phase of vibration when the movable frame portion FM swings with respect to the mirror shaft portion MA with respect to the piezoelectric element PE of the optical scanner LS, and the mirror portion MR is the mirror shaft portion MA.
  • a voltage having a frequency for causing the optical scanner LS to resonate is applied so that the phase of vibration when oscillating with respect to is reversed.
  • the light source drive circuit 14 controls light emission of a light source unit 16 (described in detail, a light emitting element included in the light source unit 16) included in the optical mechanism unit 15. More specifically, the light source driving circuit 14 causes the light source 16 to emit light having a color and luminance corresponding to the gradation of the transmitted image signal. The timing at which the light source 16 is illuminated corresponds to the vertical synchronization signal and horizontal synchronization signal of the image signal.
  • the optical mechanism unit 15 includes a light source unit 16, an optical scanner LS, and a projection optical system 17, and projects light onto a screen SC (projection surface).
  • the light source unit 16 includes, for example, a light emitting element group in which light emitting elements such as lasers are gathered, and a collimator lens group in which collimator lenses that make the light from the light emitting elements a substantially parallel light flux.
  • the light emitting element group includes a red light emitting element, a green light emitting element, and a blue light emitting element
  • the collimator lens group includes three collimator lenses corresponding to the light emitting elements of each color.
  • Each light emitting element generates and emits laser light having a luminance corresponding to the pixel value of the pixel signal from the light source driving circuit 14.
  • the optical scanner LS is the optical scanner LS itself described above.
  • the optical scanner LS has a mirror part MR that reflects light traveling from the light source unit 16, and the mirror part MR has two axes that are substantially orthogonal (mirror axis part MA and frame axis part FA). ), The light is reflected two-dimensionally and deflected (scanned).
  • the projection optical system 17 appropriately guides the light deflected by the optical scanner LS onto the screen SC that is the projection surface, and projects a moving image on the screen SC.
  • light (laser light) from the light source unit 16 through the optical scanner LS and further through the projection optical system 17 to the screen SC is indicated by a dotted arrow.
  • An example of a micro scanner device other than the projector 10 as shown in FIG. 11 is an image forming apparatus such as a copier or a printer. With such a micro scanner device, high-speed scanning and high-resolution image provision can be realized.
  • micro scanners other than the optical scanner include those equipped with a lens (bending optical system) instead of the mirror part MR, and those equipped with a light source (light emitting element).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

A light scanner (LS) includes a fixed frame (FF), a frame axis portion (FA), a movable frame portion (FM), a mirror axis portion (MA), a mirror portion (MR), a holding portion (HD), and a piezoelectric element (PE). When the light scanner (LS) resonates, the frequency of a voltage applied to the piezoelectric element (PE) generates a vibration mode in which a phase of vibration at the time when the movable frame portion (FM) swings relative to the mirror axis portion (MA) and a phase of vibration at the time when the mirror portion (MR) swings relative to the mirror axis portion (MA) are made opposite to each other.

Description

マイクロスキャナ装置、およびマイクロスキャナ装置の制御方法Micro scanner device and control method of micro scanner device
 本発明は、光スキャナ等のマイクロスキャナを搭載するマイクロスキャナ装置、およびマイクロスキャナ装置の制御方法に関する。 The present invention relates to a micro scanner device equipped with a micro scanner such as an optical scanner, and a control method of the micro scanner device.
 従来から、MEMS(Micro Electro Mechanical Systems)技術を用いた小型の光スキャナ(マイクロスキャナ)は種々開発されている。例えば、図12Aに示すような特許文献1の光スキャナlsは、固定枠ff、固定枠ffの内側に向かって延びる複線型の梁部140、梁部140につながるミラー軸部ma、および、ミラー軸部maに挟持されるミラー部(変動部)mrを含む。そして、この光スキャナlsでは、梁部140内の各梁片141~144に、圧電体(駆動部)pe1~pe4が貼り付けられ、ユニモルフが形成される。 Conventionally, various compact optical scanners (micro scanners) using MEMS (Micro Electro Mechanical Systems) technology have been developed. For example, the optical scanner ls of Patent Document 1 as shown in FIG. 12A includes a fixed frame ff, a double-line beam 140 extending inward of the fixed frame ff, a mirror shaft ma connected to the beam 140, and a mirror. The mirror part (variation part) mr clamped by the axial part ma is included. In the optical scanner ls, piezoelectric bodies (drive units) pe1 to pe4 are attached to the beam pieces 141 to 144 in the beam unit 140, thereby forming a unimorph.
 そして、この光スキャナlsでは、圧電体pe1と圧電体pe2とに相違する位相の電圧が印加されることで、これら圧電体pe1・pe2が相反する方向に撓み、その撓みに起因してミラー軸部maの一方がねじれる。その結果、ミラー部mrがミラー軸部maを基準に揺動(回動)する。 In this optical scanner ls, when voltages having different phases are applied to the piezoelectric bodies pe1 and pe2, the piezoelectric bodies pe1 and pe2 bend in opposite directions, and the mirror shaft is caused by the bending. One of the parts ma is twisted. As a result, the mirror part mr swings (rotates) with respect to the mirror shaft part ma.
 さらに、この光スキャナlsでは、図12Aの部分拡大図である図12Bにて示されるミラー部mr、ミラー軸部ma、および梁部140から成る振動体150が共振し、その共振を利用して、ミラー部mrがより大きな角度で揺動する。
特開2005-181477号公報
Furthermore, in this optical scanner ls, the vibrating body 150 including the mirror part mr, the mirror shaft part ma, and the beam part 140 shown in FIG. 12B, which is a partially enlarged view of FIG. 12A, resonates and uses the resonance. The mirror part mr swings at a larger angle.
JP 2005-181477 A
 しかしながら、図12Bに示すように、この光スキャナlsにおける振動体150では、ミラー部mrの振動する位相と梁部140の振動する位相とが同位相になっている(矢印1・2に示すように、ミラー部mrと梁部140とが同方向に変位する)。そして、このような同位相の共振を引き起こす周波数は、通常、比較的低い。そのため、この周波数に依存するミラー部mrの揺動速度も比較的遅いことになる。すると、このような光スキャナlsを搭載するマイクロスキャナ装置、例えばプロジェクタでは、高解像度の画像が投影できないことになる。 However, as shown in FIG. 12B, in the vibrating body 150 in the optical scanner ls, the phase that the mirror part mr vibrates and the phase that the beam part 140 vibrates are the same (as indicated by arrows 1 and 2). In addition, the mirror part mr and the beam part 140 are displaced in the same direction). The frequency causing such in-phase resonance is usually relatively low. Therefore, the oscillation speed of the mirror part mr depending on this frequency is also relatively slow. Then, a micro-scanner device equipped with such an optical scanner ls, such as a projector, cannot project a high-resolution image.
 本発明は、上記の状況を鑑みてなされたものである。そして、本発明の目的は、高速動作可能なミラー部等を含むマイクロスキャナを有するマイクロスキャナ装置等を提供することにある。 The present invention has been made in view of the above situation. An object of the present invention is to provide a micro-scanner device having a micro-scanner including a mirror unit that can operate at high speed.
 マイクロスキャナ装置は、マイクロスキャナと駆動回路とを含む。 The micro scanner device includes a micro scanner and a drive circuit.
 マイクロスキャナは、外枠となる固定枠と、第1軸部と、第1軸部によって挟持され、その第1軸部を基準に揺動可能な可動枠部と、可動枠部内につながり、第1軸部と交差する第2軸部と、第2軸部によって挟持されることで、可動枠部内に保持されるとともに、第2軸部を基準に揺動可能な変動部と、一端を第1軸部に接続し、他端を固定枠に固定した片持ち梁構造の保持部と、印加電圧に応じて生じる力を保持部に加えることで、その保持部を変形させる駆動部と、を含む。 The microscanner is connected to the fixed frame that is an outer frame, the first shaft portion, the movable frame portion that is sandwiched between the first shaft portion and swingable with respect to the first shaft portion, A second shaft portion that intersects the one shaft portion, a variation portion that is held by the second shaft portion, is held in the movable frame portion, and can swing with respect to the second shaft portion, and one end is A holding portion having a cantilever structure connected to one shaft portion and having the other end fixed to a fixed frame; and a driving portion that deforms the holding portion by applying a force generated according to an applied voltage to the holding portion, Including.
 駆動回路は、マイクロスキャナの駆動部に対して、可動枠部が第2軸部を基準に揺動するときの振動の位相と、変動部が第2軸部を基準に揺動するときの振動の位相とを逆位相にするように、マイクロスキャナを共振させる周波数を有する電圧を印加する。 The drive circuit includes a vibration phase when the movable frame portion swings with respect to the second shaft portion relative to the drive portion of the micro scanner, and a vibration when the variable portion swings with respect to the second shaft portion. A voltage having a frequency that causes the microscanner to resonate is applied so that the phase of the microscanner is reversed.
 このようになっていると、マイクロスキャナが駆動部の印加電圧の周波数によって共振する場合、例えば、変動部と可動枠部との動作は、2自由度の非減衰振動系の動作と捉えられる。そこで、このマイクロスキャナが印加電圧の周波数に応じて共振する場合、その共振を引き起こす周波数は、可動枠部が第2軸部を基準に揺動するときの振動の位相と変動部が第2軸部を基準に揺動するときの振動の位相とを逆位相にする振動モードを生じさせる。 In this case, when the microscanner resonates according to the frequency of the applied voltage of the drive unit, for example, the operation of the variable unit and the movable frame unit is regarded as a two-degree-of-freedom non-damped vibration system. Therefore, when the microscanner resonates according to the frequency of the applied voltage, the frequency causing the resonance is the phase of vibration when the movable frame portion swings with respect to the second shaft portion and the fluctuation portion is the second axis. A vibration mode is generated in which the phase of vibration when swinging with respect to the section is opposite to the phase.
 このような振動モードの場合、通常、印加電圧の周波数は比較的高い(逆に、同位相の場合、周波数は比較的低い)。そして、このような周波数の印加電圧で駆動部が駆動すれば、保持部は高速で変形し、その変形する保持部に第1軸部を介して挟持される可動枠部も高速で傾く。 In such a vibration mode, the frequency of the applied voltage is usually relatively high (in contrast, in the case of the same phase, the frequency is relatively low). And if a drive part drives with the applied voltage of such a frequency, a holding | maintenance part will deform | transform at high speed, and the movable frame part clamped by the deformation | transformation holding | maintenance part via a 1st axial part will also incline at high speed.
 さらに、この可動枠部の傾きによって、変動部が第2軸部を基準に揺動する場合(すなわち、共振を引き起こす印加電圧の周波数が第2軸部を基準に変動部を揺動させる場合)、その変動部の動きも高速になる。そのため、このマイクロスキャナは、変動部を高速で揺動させる。 Further, when the variable portion swings with respect to the second shaft portion due to the inclination of the movable frame portion (that is, when the frequency of the applied voltage that causes resonance swings the variable portion with reference to the second shaft portion). , The movement of the variable part becomes faster. Therefore, this micro scanner swings the variable part at high speed.
 また、共振を引き起こす印加電圧の周波数が、可動枠部の振動する位相と保持部および駆動部を含む系(例えばユニモルフ等)の振動する位相とを同位相にする振動モードを生じさせると望ましい。 Further, it is desirable that the frequency of the applied voltage causing resonance causes a vibration mode in which the phase of the movable frame portion vibrates and the phase of the system including the holding portion and the drive portion (for example, unimorph) vibrate.
 このようになっていると、可動枠部と保持部および駆動部を含む系との間での変位は比較的小さくなる。そのため、可動枠部と保持部および駆動部を含む系との間に位置する部材、例えば第2軸部には、変位に起因する応力が比較的少ししかかからない。そのため、第2軸部等が破損しにくい。 If this is the case, the displacement between the movable frame portion and the system including the holding portion and the drive portion is relatively small. Therefore, a member located between the movable frame portion and the system including the holding portion and the drive portion, for example, the second shaft portion, is subjected to relatively little stress due to the displacement. Therefore, the second shaft portion and the like are not easily damaged.
 なお、保持部と駆動部とが乖離しているような場合、例えば駆動部が2個の電極から成る静電ユニットのような場合、共振を引き起こす印加電圧の周波数は、可動枠部の振動する位相と保持部の振動する位相とを同位相にする振動モードを生じさせると望ましい。このようになっていれば、上記同様、可動枠部と保持部との間に位置する部材である第2軸部等は、破損しにくい。 When the holding unit and the driving unit are separated from each other, for example, when the driving unit is an electrostatic unit composed of two electrodes, the frequency of the applied voltage that causes resonance vibrates the movable frame unit. It is desirable to generate a vibration mode in which the phase and the phase in which the holding portion vibrates are the same. If it becomes like this, the 2nd axial part etc. which are the members located between a movable frame part and a holding | maintenance part will be hard to damage like the above.
 また、以上のようなマイクロスキャナ装置を制御する方法は、可動枠部が第2軸部を基準に揺動するときの振動の位相と、変動部が第2軸部を基準に揺動するときの振動の位相とを逆位相にするように、マイクロスキャナを共振させる周波数を有する電圧を、駆動回路によって、駆動部に印加する。 In addition, the method for controlling the micro scanner device as described above is based on the phase of vibration when the movable frame portion swings with reference to the second shaft portion, and when the fluctuation portion swings with reference to the second shaft portion. A voltage having a frequency for causing the microscanner to resonate is applied to the driving unit by the driving circuit so that the phase of the vibration is reversed.
 また、そのマイクロスキャナの制御方法は、共振を引き起こす印加電圧の周波数を、可動枠部の振動する位相と保持部および駆動部を含む系の振動する位相とを同位相にする振動モードを生じさせる周波数にすると望ましい。 Further, the micro scanner control method generates a vibration mode in which the frequency of the applied voltage causing resonance is the same as the phase of the movable frame and the phase of the system including the holding unit and the drive unit. A frequency is desirable.
 また、そのマイクロスキャナの制御方法は、共振を引き起こす印加電圧の周波数を、可動枠部の振動する位相と保持部の振動する位相とを同位相にする振動モードを生じさせる周波数にすると望ましい。 Also, the control method of the microscanner is preferably such that the frequency of the applied voltage that causes resonance is a frequency that generates a vibration mode in which the phase of vibration of the movable frame portion and the phase of vibration of the holding portion are in phase.
 本発明のマイクロスキャナ装置によれば、マイクロスキャナは、駆動部への比較的高い周波数の印加電圧によって共振し、そのマイクロスキャナにおける変動部の揺動が印加電圧の周波数に対応して高速になる。 According to the microscanner apparatus of the present invention, the microscanner resonates due to a relatively high frequency applied voltage to the drive unit, and the fluctuation of the variable part in the microscanner becomes high speed corresponding to the frequency of the applied voltage. .
は、光スキャナの平面図である。FIG. 3 is a plan view of the optical scanner. は、図1に示される光スキャナの部分拡大図である。FIG. 2 is a partially enlarged view of the optical scanner shown in FIG. 1. は、図1のA-A’線矢視断面図を示し、ミラー軸部を基準とする正回転の動作を示す。FIG. 1 is a cross-sectional view taken along the line A-A ′ of FIG. は、図1のB-B’線矢視断面図を示し、ミラー軸部を基準とする正回転の動作を示す。FIG. 3 is a cross-sectional view taken along the line B-B ′ of FIG. は、図1のA-A’線矢視断面図を示し、ミラー軸部を基準とする逆回転の動作を示す。FIG. 3 is a cross-sectional view taken along the line A-A ′ of FIG. は、図1のB-B’線矢視断面図を示し、ミラー軸部を基準とする逆回転の動作を示す。FIG. 3 is a cross-sectional view taken along the line B-B ′ of FIG. は、2自由度の非減衰振動系のモデル図である。FIG. 3 is a model diagram of a non-damped vibration system having two degrees of freedom. は、第1次振動モードと第2次振動モードとを示す説明図である。These are explanatory drawings showing a primary vibration mode and a secondary vibration mode. は、ミラー部と可動枠部とが同じ位相で振動している状態を示す光スキャナの斜視図である。These are the perspective views of the optical scanner which show the state which the mirror part and the movable frame part vibrate with the same phase. は、ミラー部と可動枠部とが異なる位相で振動している状態を示す光スキャナの斜視図である。These are the perspective views of the optical scanner which show the state which the mirror part and the movable frame part are vibrating with a different phase. は、図1のA-A’線矢視断面図であり、枠軸部を基準に正回転する状態を示す。FIG. 2 is a cross-sectional view taken along the line A-A ′ in FIG. は、図1のA-A’線矢視断面図であり、枠軸部を基準に逆回転する状態を示す。FIG. 2 is a cross-sectional view taken along the line A-A ′ of FIG. は、図6および図7とは異なる光スキャナの斜視図である。FIG. 8 is a perspective view of an optical scanner different from those in FIGS. 6 and 7. は、電磁方式を採用した光スキャナの平面図である。These are the top views of the optical scanner which employ | adopted the electromagnetic system. は、プロジェクタを示すブロック図である。FIG. 3 is a block diagram showing a projector. は、従来の光スキャナの斜視図である。FIG. 3 is a perspective view of a conventional optical scanner. は、図12Aの部分拡大図である。FIG. 12B is a partially enlarged view of FIG. 12A.
符号の説明Explanation of symbols
   MR  ミラー部(変動部)
   MA  ミラー軸部(第2軸部)
   FM  可動枠部
   FA  枠軸部(第1軸部)
   HD  保持部
   HD1 第1保持部
   HD2 第2保持部
   PE  圧電素子(駆動部)
   TB  トーションバー
   ST  スリット
   FF  固定枠
   LS  光スキャナ(マイクロスキャナ)
   10  プロジェクタ(マイクロスキャナ装置)
   11  入力画像処理部
   12  駆動制御部
   13  光スキャナ駆動回路(駆動回路)
   14  光源駆動回路
   15  光学機構部
   16  光源ユニット
   17  投影光学系
MR mirror part (fluctuating part)
MA mirror shaft (second shaft)
FM Movable frame part FA Frame shaft part (first shaft part)
HD holding unit HD1 first holding unit HD2 second holding unit PE piezoelectric element (drive unit)
TB torsion bar ST slit FF fixed frame LS optical scanner (micro scanner)
10 Projector (micro scanner device)
DESCRIPTION OF SYMBOLS 11 Input image processing part 12 Drive control part 13 Optical scanner drive circuit (drive circuit)
DESCRIPTION OF SYMBOLS 14 Light source drive circuit 15 Optical mechanism part 16 Light source unit 17 Projection optical system
 [実施の形態1]
 実施の一形態について、図面に基づいて説明すれば、以下の通りである。ここでは、変動する部材(変動部)としてミラー部を例に挙げるとともに、このミラー部を変動させることで光を反射させスキャン動作を行うマイクロスキャナとして光スキャナを例に挙げる。
[Embodiment 1]
The following describes one embodiment with reference to the drawings. Here, a mirror part is taken as an example of a member (fluctuating part) that fluctuates, and an optical scanner is taken as an example of a micro scanner that performs a scanning operation by reflecting light by changing the mirror part.
 なお、理解を容易にすべく、平面図であってもハッチングを付している。また、便宜上、部材符号・ハッチングを省略する場合もあるが、かかる場合、他の図面を参照するものとする。また、図面上での黒丸は紙面に対し垂直方向を意味する。 In order to facilitate understanding, even plan views are hatched. In addition, for convenience, member codes and hatching may be omitted. In such a case, other drawings are referred to. Moreover, the black circle on the drawing means a direction perpendicular to the paper surface.
 図1は光スキャナLSの平面図であり、図2は図1の部分拡大図である。光スキャナLSは、図1に示すように、ミラー部MR、ミラー軸部MA、可動枠部FM、枠軸部FA、保持部HD、圧電素子PE、トーションバーTB、および固定枠FFを含む。なお、これらの部材は、基体BSとなる変形可能なシリコン基板等をエッチングすることにより形成される。 FIG. 1 is a plan view of the optical scanner LS, and FIG. 2 is a partially enlarged view of FIG. As shown in FIG. 1, the optical scanner LS includes a mirror part MR, a mirror shaft part MA, a movable frame part FM, a frame shaft part FA, a holding part HD, a piezoelectric element PE, a torsion bar TB, and a fixed frame FF. These members are formed by etching a deformable silicon substrate or the like that becomes the base BS.
 ミラー部(変動部、反射部)MRは、光源等からの光を反射させるものであり、基体BSの一部分に、金やアルミニウム等の反射膜を貼り付けることで形成される。例えば、図1に示すように、半円状のくびれ部分およびその半円状のくびれ部分を両端から挟む挟持部分を含む開孔H(第1開孔H1・第2開孔H2)が向かい合うことで、円を含む基体BSの残部が生じる。そして、この残部の一部分に反射膜が貼り付けられることで、ミラー部MRは完成する。 Mirror portion (variable portion, reflecting portion) MR reflects light from a light source or the like, and is formed by attaching a reflective film such as gold or aluminum to a part of the base BS. For example, as shown in FIG. 1, the opening H (the first opening H1 and the second opening H2) including a semicircular constricted portion and a sandwiching portion that sandwiches the semicircular constricted portion from both ends face each other. Thus, the remainder of the base BS including a circle is generated. And the mirror part MR is completed by affixing a reflecting film on a part of this remaining part.
 なお、第1開孔H1と第2開孔H2とが並ぶ方向をX方向と称し、第2開孔H2側のX方向をX方向のプラス{X(+)}、この+方向に対する逆方向をX方向のマイナス{X(-)}とする。さらに、ミラー部MRの中心からX方向に延びる方向をX軸と称する。 The direction in which the first opening H1 and the second opening H2 are arranged is referred to as the X direction, the X direction on the second opening H2 side is the plus X of the X direction {X (+)}, and the direction opposite to the + direction. Is minus X in the X direction {X (−)}. Further, a direction extending in the X direction from the center of the mirror part MR is referred to as an X axis.
 ミラー軸部(第2軸部)MAは、第1開孔H1の挟持部分と第2開孔H2の挟持部分とが向かい合うことで、ミラー部MRの一端と他端とにつながるように生じる軸状部分である。なお、ミラー部MRの一端につながるミラー軸部MAの一方(第1ミラー軸部MA1)と、ミラー部MRの他端につながるミラー軸部MAの他方(第2ミラー軸部MA2)とは、ミラー部MRから互いに異なる向きに延び出る(ただし、第1ミラー軸部MA1および第2ミラー軸部MA2は平行である)。 The mirror shaft portion (second shaft portion) MA is an axis generated so as to be connected to one end and the other end of the mirror portion MR when the sandwiching portion of the first opening H1 and the sandwiching portion of the second opening H2 face each other. It is a shaped part. One of the mirror shaft portions MA connected to one end of the mirror portion MR (first mirror shaft portion MA1) and the other of the mirror shaft portions MA connected to the other end of the mirror portion MR (second mirror shaft portion MA2) are: The mirror portion MR extends in different directions (however, the first mirror shaft portion MA1 and the second mirror shaft portion MA2 are parallel).
 また、このミラー軸部MAの延び出る方向は、X方向に対して直交する(交差する)。そこで、このミラー軸部MAの延び出る方向をY方向と称し、第1ミラー軸部MA1側のY方向をY方向のプラス{Y(+)}、この+方向に対する逆方向をY方向のマイナス{Y(-)}とする。さらに、ミラー部MRの中心からY方向に延びる方向をY軸と称する。 Further, the extending direction of the mirror shaft part MA is orthogonal to (crosses) the X direction. Therefore, the direction in which the mirror shaft portion MA extends is referred to as the Y direction, the Y direction on the first mirror shaft portion MA1 side is plus Y direction (Y (+)), and the opposite direction to the + direction is minus direction in the Y direction. Let {Y (-)}. Further, a direction extending in the Y direction from the center of the mirror part MR is referred to as a Y axis.
 また、X方向およびY方向に対して直交する方向をZ方向(撓み方向)として、便宜上、光を受光するミラー部MRの側をZ方向のプラス{Z(+)}、この+方向に対する逆方向をZ方向のマイナス{Z(-)}とする。さらに、X軸とY軸との交点からZ方向に延びる方向をZ軸と称する。 Further, the direction orthogonal to the X direction and the Y direction is defined as the Z direction (deflection direction). The direction is minus Z direction (Z (−)). Furthermore, the direction extending in the Z direction from the intersection of the X axis and the Y axis is referred to as the Z axis.
 可動枠部FMは、ミラー部MRおよびミラー軸部MAを囲む枠である。例えば、括弧状( ]状)の2つの開孔Hのうち、一方の開孔Hである第3開孔H3が第1ミラー軸部MA1を囲むように形成され、他方の開孔Hである第4開孔H4が第2ミラー軸部MA2を囲むように形成されると、第3開孔H3と第1開孔H1・第2開孔H2とに挟まれる基体BSの残部、および、第4開孔H4と第1開孔H1・第2開孔H2とに挟まれる基体BSの残部が生じる。すると、この両方の残部が、ミラー部MRおよびミラー軸部MAを囲む枠状の基体BSの一部、すなわち可動枠部FMとなる。 The movable frame portion FM is a frame surrounding the mirror portion MR and the mirror shaft portion MA. For example, of the two openings H in a bracket shape (] shape), the third opening H3 that is one opening H is formed so as to surround the first mirror shaft portion MA1, and is the other opening H. When the fourth aperture H4 is formed so as to surround the second mirror shaft portion MA2, the remaining portion of the base BS sandwiched between the third aperture H3 and the first aperture H1 and the second aperture H2, The remaining part of the base BS sandwiched between the four openings H4 and the first openings H1 and the second openings H2 is generated. Then, both remaining parts become a part of the frame-shaped base body BS surrounding the mirror part MR and the mirror shaft part MA, that is, the movable frame part FM.
 枠軸部(第1軸部)FAは、可動枠部FMの外縁にて、X軸に重なりかつ対向する一端と他端とから外側に延びることで、その可動枠部FMを挟持する。例えば、括弧状の第3開孔H3および第4開孔H4が向かい合い、第3開孔H3の両端および第4開孔H4の両端が向かい合うと、それら両端に挟まれる基体BSの一部分が棒状になり、その棒状部分が枠軸部FAになる。なお、以降では、X(-)側に向かって延びる枠軸部FAの一方を第1枠軸部FA1、X(+)側に向かって延びる枠軸部の他方を第2枠軸部FA2とする。 The frame shaft portion (first shaft portion) FA extends outward from one end and the other end that overlap and face the X axis at the outer edge of the movable frame portion FM, thereby sandwiching the movable frame portion FM. For example, when the third opening H3 and the fourth opening H4 in a bracket shape face each other and both ends of the third opening H3 and both ends of the fourth opening H4 face each other, a part of the base BS sandwiched between the both ends becomes a rod shape The rod-shaped part becomes the frame shaft part FA. In the following, one of the frame shaft portions FA extending toward the X (−) side is referred to as a first frame shaft portion FA1, and the other of the frame shaft portions extending toward the X (+) side is referred to as a second frame shaft portion FA2. To do.
 保持部HDは、枠軸部FAを保持すること(枠軸部FAにつながること)によって可動枠部FMを保持する。かかる保持部HDは、Y方向に延びた開孔H(第5開孔H5・第6開孔H6)と第3開孔H3・第4開孔H4との間に生じる基体BSの残部で形成される。 The holding portion HD holds the movable frame portion FM by holding the frame shaft portion FA (connected to the frame shaft portion FA). The holding portion HD is formed by the remaining portion of the base BS generated between the opening H (the fifth opening H5 and the sixth opening H6) extending in the Y direction and the third opening H3 and the fourth opening H4. Is done.
 詳説すると、第5開孔H5と第6開孔H6とがX方向に沿って並び、かつ第3開孔H3および第4開孔H4を挟む。すると、第5開孔H5と第3開孔H3・第4開孔H4との間に位置するY方向に延びる基体BSの残部が第1保持部HD1となり、第6開孔H6と第3開孔H3・第4開孔H4との間に位置するY方向に延びる基体BSの残部が第2保持部HD2となる。なお、このようなY方向に延びる形状(線状)の保持部HDは撓みやすい。 More specifically, the fifth opening H5 and the sixth opening H6 are arranged along the X direction and sandwich the third opening H3 and the fourth opening H4. Then, the remaining portion of the base BS extending in the Y direction located between the fifth opening H5 and the third opening H3 / fourth opening H4 becomes the first holding portion HD1, and the sixth opening H6 and the third opening are formed. The remaining portion of the base body BS extending in the Y direction located between the hole H3 and the fourth opening H4 becomes the second holding part HD2. In addition, the holding part HD having such a shape (linear shape) extending in the Y direction is easily bent.
 圧電素子PE(PEa~PEd)は、電圧を力に変換する素子であり、分極処理された圧電体PB(PBa~PBd)と、この圧電体PBを挟持する電極EE1・EE2(EE1a~EE1d・EE2a~EE2d)とを含む(後述の図3・図8参照)。そして、この圧電素子(駆動部)PEが保持部HDの面上に貼り付けられることで、ユニモルフ部(アクチュエータ)YMが形成される。詳説すると、圧電素子PEにおける一方の電極(第1電極)EE1と、保持部HDの一面とが貼り合うことで、ユニモルフ部YM(YMa~YMd)が形成される。 The piezoelectric elements PE (PEa to PEd) are elements that convert voltage into force. The piezoelectric body PB (PBa to PBd) subjected to the polarization process and the electrodes EE1 and EE2 (EE1a to EE1d EE2a to EE2d) (see FIGS. 3 and 8 to be described later). The piezoelectric element (driving unit) PE is affixed on the surface of the holding unit HD to form a unimorph unit (actuator) YM. More specifically, the unimorph part YM (YMa to YMd) is formed by bonding one electrode (first electrode) EE1 of the piezoelectric element PE and one surface of the holding part HD.
 そして、第1電極EE1および第2電極EE2との間に、分極反転を起こさせない範囲で±の電圧(交流電圧)が印加されることで圧電体PBが伸縮し、その伸縮に応じてユニモルフ部YMが撓む。 Then, a ± voltage (AC voltage) is applied between the first electrode EE1 and the second electrode EE2 within a range that does not cause polarization reversal, so that the piezoelectric body PB expands and contracts, and the unimorph portion according to the expansion and contraction YM bends.
 なお、圧電素子PEa・PEbは、第1枠軸部FA1を挟持するようにして、第1保持部HD1に貼られ、圧電素子PEc・PEdは、第2枠軸部FA2を挟持するようにして、第2保持部HD2に貼られる。そのため、圧電素子PEa・PEbおよび圧電素子PEc・PEdにおける圧電体PB(PBa~PBd)の伸縮変形に応じて、保持部HDも変形(撓み変形/曲げ変形)する。 The piezoelectric elements PEa and PEb are attached to the first holding portion HD1 so as to sandwich the first frame shaft portion FA1, and the piezoelectric elements PEc and PEd are sandwiched between the second frame shaft portion FA2. The second holding part HD2 is attached. Therefore, the holding portion HD is also deformed (flexible deformation / bending deformation) in accordance with the expansion and contraction of the piezoelectric bodies PB (PBa to PBd) in the piezoelectric elements PEa and PEb and the piezoelectric elements PEc and PEd.
 そして、以降では、圧電素子PEaの貼られた第1保持部HD1の一片を保持片HD1a、圧電素子PEbの貼られた第1保持部HD1の一片を保持片HD1bとするとともに、圧電素子PEcの貼られた第2保持部HD2の一片を保持片HD2c、圧電素子PEdの貼られた第2保持部HD2の一片を保持片HD2dとする。 In the following, one piece of the first holding portion HD1 to which the piezoelectric element PEa is attached is referred to as a holding piece HD1a, and one piece of the first holding portion HD1 to which the piezoelectric element PEb is attached is referred to as a holding piece HD1b. A piece of the second holding portion HD2 attached is referred to as a holding piece HD2c, and a piece of the second holding portion HD2 attached with the piezoelectric element PEd is referred to as a holding piece HD2d.
 トーションバーTBは、保持部HDの変形(撓み変形等)をねじれ変形(回転トルク)に変化させて枠軸部FAに伝達させる部材である(図1および図2の点線部分を参照)。かかるトーションバーTBは、保持部HDに形成される。 The torsion bar TB is a member that changes the deformation (bending deformation, etc.) of the holding portion HD into a torsional deformation (rotational torque) and transmits it to the frame shaft portion FA (see the dotted line portions in FIGS. 1 and 2). Such a torsion bar TB is formed in the holding portion HD.
 一例を挙げると、図2に示すように、第3開孔H3・第4開孔H4の端からX方向に延びる第1スリットST1・ST1と、この第1スリットST1・ST1と同方向(X方向)に延びるとともにY方向に沿って並列する第2スリットST2・ST2との間に位置する基体BSの一部分がトーションバーTBとなる。 For example, as shown in FIG. 2, the first slits ST1 and ST1 extending in the X direction from the ends of the third opening H3 and the fourth opening H4, and the same direction as the first slits ST1 and ST1 (X A portion of the base body BS located between the second slits ST2 and ST2 extending in the direction (Y direction) and juxtaposed along the Y direction becomes the torsion bar TB.
 また、第5開孔H5につながっている第3スリットST3、詳説すると、X方向に延びるとともにそのX方向に沿って第1スリットST1と並ぶ第3スリットST3と、第2スリットST2との間に位置する基体BSの一部分がトーションバーTBとなる。 The third slit ST3 connected to the fifth hole H5, more specifically, between the second slit ST2 and the third slit ST3 extending in the X direction and aligned with the first slit ST1 along the X direction. A part of the base body BS located becomes a torsion bar TB.
 なお、スリットSTによって生じるトーションバーTBが保持部HDに存在するということは、保持部HD内に間隙が生じることになる。そのため、この間隙の存在によって、保持部HDの強度が低下する。その結果、かかる保持部HDは撓みやすくなる。 Note that the presence of the torsion bar TB generated by the slit ST in the holding portion HD causes a gap in the holding portion HD. Therefore, the strength of the holding portion HD decreases due to the presence of this gap. As a result, the holding portion HD is easily bent.
 また、特に、これらのトーションバーTBは、保持部HDの延び方向(Y方向)に対して交差する方向(例えばX方向)に延びている。このようになっていると、保持部HDが撓んだ場合に、トーションバーTBがねじれやすい。 In particular, these torsion bars TB extend in a direction (for example, X direction) intersecting the extending direction (Y direction) of the holding portion HD. In this case, the torsion bar TB is easily twisted when the holding portion HD is bent.
 なお、第1スリットST1・ST1同士の間に位置する基体BSの一部分BS1は枠軸部FAにつながり、第3スリットST3・ST3同士の間に位置する基体BSの一部分BS3は、枠軸部FAの軸方向に沿って並ぶ。そこで、これら両部分BS1・BS3と、両部分BS1・BS3の間に位置する基体BSの一部分BSとを含めて枠軸部FAと称してもよい。また、部分BSMと第2スリットST2との間に位置する基体BSの一部分は、トーションバーTBと枠軸部MAとをつなげている。そこで、この部分を結合部CBと称する。 A portion BS1 of the base BS positioned between the first slits ST1 and ST1 is connected to the frame shaft portion FA, and a portion BS3 of the base BS positioned between the third slits ST3 and ST3 is connected to the frame shaft portion FA. Line up along the axial direction. Therefore, these two parts BS1 · BS3, may be referred to as a frame shaft portion FA including a portion BS M of the substrate BS located between the two parts BS1 · BS3. Further, a part of the base body BS positioned between the portion BSM and the second slit ST2 connects the torsion bar TB and the frame shaft portion MA. Therefore, this portion is referred to as a coupling portion CB.
 固定枠FFは、光スキャナLSの外枠である。すなわち、固定枠FFは、ミラー部MR、ミラー軸MA、可動枠部FM、枠軸部FA、保持部HD、圧電素子PE、およびトーションバーTBを囲む枠状部材である。 The fixed frame FF is an outer frame of the optical scanner LS. That is, the fixed frame FF is a frame-like member that surrounds the mirror part MR, the mirror axis MA, the movable frame part FM, the frame axis part FA, the holding part HD, the piezoelectric element PE, and the torsion bar TB.
 ここで、以上の光スキャナLSにおけるミラー部MRの偏向動作について、図1および図3A~図3Dを用いながら説明する。図3Aおよび図3Cは、図1におけるA-A’線矢視断面図であり、図3Bおよび図3Dは、図1におけるB-B’線矢視断面図である。 Here, the deflection operation of the mirror part MR in the above optical scanner LS will be described with reference to FIG. 1 and FIGS. 3A to 3D. 3A and 3C are cross-sectional views taken along line A-A 'in FIG. 1, and FIGS. 3B and 3D are cross-sectional views taken along line B-B' in FIG.
 図1の光スキャナLSは、ミラー軸部MA(Y軸)を基準にミラー部MRを揺動させる(回動)させる。そこで、ミラー軸部MAの軸回りの一方向{Y(+)からY(-)に向いて時計回りの回転}を正回転P、正回転に対して逆方向の回転(反時計回りの回転)を逆回転Rとし、図3Aおよび図3Bにミラー部MRが正回転する場合の第1保持部HD1および第2保持部HD2の変形を示し、図3Cおよび図3Dにミラー部MRが逆回転する場合の第1保持部HD1および第2保持部HD2の変形を示す。 1 oscillates (rotates) the mirror portion MR with reference to the mirror shaft portion MA (Y-axis). Therefore, one direction around the axis of the mirror shaft portion MA {clockwise rotation from Y (+) to Y (-)} is forward rotation P, and rotation in the opposite direction to the normal rotation (counterclockwise rotation). 3A and 3B show the deformation of the first holding part HD1 and the second holding part HD2 when the mirror part MR rotates forward, and FIGS. 3C and 3D show the mirror part MR reversely rotating. The deformation | transformation of 1st holding | maintenance part HD1 and 2nd holding | maintenance part HD2 in the case of doing is shown.
 ミラー部MRがミラー軸部MAを基準に正回転する場合、図3Aに示すように、第1保持部HD1では、圧電素子PEa・PEbにおける圧電体PBa・PBbを伸ばす電圧が印加される。このような電圧が印加されると、伸長する圧電体PBa・PBbによって、第1電極EE1aを貼り付けられた第1保持部HD1の保持片HD1aと、第1電極EE1bを貼り付けられた第1保持部HD1の保持片HD1bとがともに、Z(+)側を凸にして撓む。その結果、保持片HD1aおよび保持片HD1bの第1枠軸部FA1側はZ(-)に垂れ下がり、第1枠軸部FA1もZ(-)に向かって変位する。 When the mirror part MR rotates forward with respect to the mirror shaft part MA, as shown in FIG. 3A, a voltage for extending the piezoelectric bodies PBa and PBb in the piezoelectric elements PEa and PEb is applied to the first holding part HD1. When such a voltage is applied, the holding piece HD1a of the first holding portion HD1 to which the first electrode EE1a is attached and the first electrode EE1b to which the first electrode EE1b is attached are attached by the extending piezoelectric bodies PBa and PBb. Both the holding piece HD1b of the holding portion HD1 bends with the Z (+) side protruding. As a result, the first frame shaft portion FA1 side of the holding piece HD1a and the holding piece HD1b hangs down to Z (−), and the first frame shaft portion FA1 is also displaced toward Z (−).
 一方、図3Bに示すように、第2保持部HD2では、圧電素子PEc・PEdにおける圧電体PBc・PBdを縮ませる電圧が印加される。このような電圧が印加されると、収縮する圧電体PBc・PBdによって、第1電極EE1cを貼り付けられた第2保持部HD2の保持片HD2cと、第1電極EE1dを貼り付けられた第2保持部HD2の保持片HD2dとがともに、Z(-)側を凸にして撓む。その結果、保持片HD2cおよび保持片HD2dの第2枠軸部FA2側はZ(+)に跳ね上がり、第2枠軸部FA2もZ(+)に向かって変位する。 On the other hand, as shown in FIG. 3B, in the second holding unit HD2, a voltage for contracting the piezoelectric bodies PBc and PBd in the piezoelectric elements PEc and PEd is applied. When such a voltage is applied, the holding piece HD2c of the second holding portion HD2 to which the first electrode EE1c is attached and the second electrode to which the first electrode EE1d is attached are contracted by the contracting piezoelectric bodies PBc and PBd. Both the holding piece HD2d of the holding portion HD2 bends with the Z (−) side convex. As a result, the second frame shaft portion FA2 side of the holding piece HD2c and the holding piece HD2d jumps up to Z (+), and the second frame shaft portion FA2 is also displaced toward Z (+).
 かかるように、第1保持部HD1が第1枠軸部FA1をZ(-)に向かって変位させ、第2保持部HD2が第2枠軸部FA2をZ(+)に向かって変位させると、第1枠軸部FA1および第2枠軸部FA2によって挟持されている可動枠FMは傾く。このように可動枠FMが傾くと、この可動枠FMに含まれるミラー部MRもミラー軸部MAを基準に傾く。そして、この傾きはミラー軸部MAからほぼ等間隔で乖離している第1枠軸部FA1および第2枠軸部FA2の変位で生じる傾きである。そのため、ミラー軸部MAを基準にして考えると、ミラー部MRはミラー軸部MAを基準にして正回転することになる。 As described above, when the first holding portion HD1 displaces the first frame shaft portion FA1 toward Z (−) and the second holding portion HD2 displaces the second frame shaft portion FA2 toward Z (+). The movable frame FM sandwiched between the first frame shaft portion FA1 and the second frame shaft portion FA2 is inclined. When the movable frame FM is tilted in this way, the mirror portion MR included in the movable frame FM is also tilted with respect to the mirror shaft portion MA. This inclination is an inclination generated by the displacement of the first frame axis part FA1 and the second frame axis part FA2 that are separated from the mirror axis part MA at substantially equal intervals. Therefore, considering the mirror shaft portion MA as a reference, the mirror portion MR rotates forward with respect to the mirror shaft portion MA.
 次に、ミラー部MRがミラー軸部MAを基準に逆回転する場合、図3Cに示すように、圧電素子PEa・PEbの圧電体PBa・PBbを縮ませる電圧が印加される。このような電圧が印加されると、収縮する圧電体PBa・PBbによって、第1保持部HD1における保持片HD1aと保持片HD1bとが、Z(-)側を凸にして撓む。その結果、保持片HD1aおよび保持片HD1bの第1枠軸部FA1側はZ(+)に跳ね上がり、第1枠軸部FA1もZ(+)に向かって変位する。 Next, when the mirror part MR rotates in reverse with respect to the mirror shaft part MA, as shown in FIG. 3C, a voltage for contracting the piezoelectric bodies PBa and PBb of the piezoelectric elements PEa and PEb is applied. When such a voltage is applied, the contracting piezoelectric bodies PBa and PBb cause the holding piece HD1a and the holding piece HD1b in the first holding portion HD1 to bend with the Z (−) side convex. As a result, the first frame shaft portion FA1 side of the holding piece HD1a and the holding piece HD1b jumps up to Z (+), and the first frame shaft portion FA1 is also displaced toward Z (+).
 一方、図3Dに示すように、圧電素子PEc・PEdの圧電体PBc・PBdを伸ばす電圧が印加される。このような電圧が印加されると、伸長する圧電体PBc・PBdによって、第2保持部HD2における保持片HD2cと保持片HD2dとが、Z(+)側を凸にして撓む。その結果、保持片HD2cおよび保持片HD2dの第2枠軸部FA2側はZ(-)に垂れ下がり、第2枠軸部FA2もZ(-)に向かって変位する。 On the other hand, as shown in FIG. 3D, a voltage for extending the piezoelectric bodies PBc and PBd of the piezoelectric elements PEc and PEd is applied. When such a voltage is applied, the holding pieces HD2c and the holding pieces HD2d in the second holding portion HD2 bend with the Z (+) side projecting by the extending piezoelectric bodies PBc and PBd. As a result, the second frame shaft portion FA2 side of the holding piece HD2c and the holding piece HD2d hangs down to Z (−), and the second frame shaft portion FA2 is also displaced toward Z (−).
 かかるように、第1保持部HD1が第1枠軸部FA1をZ(+)に向かって変位させ、第2保持部HD2が第2枠軸部FA2をZ(-)に向かって変位させると、正回転同様に、可動枠部FMが傾き、ひいては、ミラー部MRがミラー軸部MAを基準にして逆回転する。 As described above, when the first holding portion HD1 displaces the first frame shaft portion FA1 toward Z (+) and the second holding portion HD2 displaces the second frame shaft portion FA2 toward Z (−). Similarly to the forward rotation, the movable frame portion FM is inclined, and as a result, the mirror portion MR rotates reversely with respect to the mirror shaft portion MA.
 ただし、以上のような、Y軸であるミラー軸部MAを基準とするミラー部MRの正逆回転の回転角θ(偏向角θ)は、比較的小さい。そこで、光スキャナLSでは、可動枠FMを傾かせるために用いる圧電素子PE(PEa~PEd)への印加電圧の周波数が、ミラー軸部MAを基準とするミラー部MRの回転振動の共振周波数近傍の周波数となっている。このようになっていると、可動枠FMの傾き量が比較的小さかったとしても、ミラー部MRが圧電素子PEに印加される電圧の周波数によって共振し、比較的大きく揺動するためである。 However, the rotation angle θ (deflection angle θ) of forward / reverse rotation of the mirror MR with respect to the mirror shaft MA that is the Y axis as described above is relatively small. Therefore, in the optical scanner LS, the frequency of the voltage applied to the piezoelectric elements PE (PEa to PEd) used to tilt the movable frame FM is close to the resonance frequency of the rotational vibration of the mirror MR with respect to the mirror shaft MA. It becomes the frequency of. This is because, even if the tilt amount of the movable frame FM is relatively small, the mirror MR resonates with the frequency of the voltage applied to the piezoelectric element PE and swings relatively large.
 なお、光スキャナLSの共振周波数は、基体BSにおけるヤング率、ポアソン比、密度、さらには、ミラー部MRの形状、固定条件、圧電素子PEの圧電定数等が明らかになっていれば、市販のシミュレーションソフトによって算出可能である。 Note that the resonance frequency of the optical scanner LS can be obtained as long as the Young's modulus, Poisson's ratio, density in the base BS, the shape of the mirror part MR, the fixing conditions, the piezoelectric constant of the piezoelectric element PE, etc. are known. It can be calculated by simulation software.
 ここで、光スキャナLSを共振させることにもなる圧電素子PEへの印加電圧の周波数について説明する。特に、共振での振動モードについて説明する。この説明では、光スキャナLSにおけるユニモルフ部YM、トーションバーTB、第1枠軸部FA1、可動枠部FM、第1ミラー軸部MA1、ミラー部MR、および第2ミラー軸部MA2を、図4に示されるようなモデル系に例え、ミラー部MRと可動枠部FMとの振動モードについて説明する。 Here, the frequency of the voltage applied to the piezoelectric element PE that also causes the optical scanner LS to resonate will be described. In particular, the vibration mode at resonance will be described. In this description, the unimorph part YM, the torsion bar TB, the first frame shaft part FA1, the movable frame part FM, the first mirror shaft part MA1, the mirror part MR, and the second mirror shaft part MA2 in the optical scanner LS are shown in FIG. A vibration mode of the mirror part MR and the movable frame part FM will be described by comparing with a model system as shown in FIG.
 なお、図4のモデル系における第1壁WL1、第1バネSPG1、第1おもりOM1、第2バネSPG2、第2おもりOM2、第3バネSPG3、第2壁WL2と、光スキャナLSにおけるユニモルフ部YM、トーションバーTB、第1枠軸部FA1、可動枠部FM、第1ミラー軸部MA1、ミラー部MR、および第2ミラー軸部MA2との関係は以下のようになる。
   第1壁WL1   = ユニモルフ部YM、
   第1バネSPG1 = トーションバーTBおよび第1枠軸部FA1
   第1おもりOM1 = 可動枠部FM
   第2バネSPG2 = 第1ミラー軸部MA1
   第2おもりOM2 = ミラー部MR
   第3バネSPG3 = 第2ミラー軸部MA2
   第2壁WL2   = 可動枠部FM
 なお、便宜上、第2枠軸部FA2と、第2枠軸部に近いトーションバーTBおよびユニモルフ部YMとを省略したが、モデル化する場合には、第2壁WL2に含ませるとよい。
The first wall WL1, the first spring SPG1, the first weight OM1, the second spring SPG2, the second weight OM2, the third spring SPG3, the second wall WL2 and the unimorph portion in the optical scanner LS in the model system of FIG. The relationship among YM, torsion bar TB, first frame shaft portion FA1, movable frame portion FM, first mirror shaft portion MA1, mirror portion MR, and second mirror shaft portion MA2 is as follows.
1st wall WL1 = Unimorph part YM,
1st spring SPG1 = torsion bar TB and 1st frame axial part FA1
1st weight OM1 = movable frame part FM
Second spring SPG2 = first mirror shaft portion MA1
2nd weight OM2 = mirror part MR
Third spring SPG3 = second mirror shaft part MA2
2nd wall WL2 = movable frame part FM
For convenience, the second frame shaft portion FA2, the torsion bar TB and the unimorph portion YM close to the second frame shaft portion are omitted. However, in the case of modeling, it is preferable to include the second frame shaft portion FA2 in the second wall WL2.
 その前にまず、おもりの質量m、バネ定数k、おもりの移動距離x、とすると、2自由度の非減衰振動系の運動方程式は、以下の式(1)および式(2)となる。なお、変数の頭の上のドットの個数は時間の微分の階数を意味する。 Before that, first, assuming that the mass m of the weight, the spring constant k, and the moving distance x of the weight, the equation of motion of the two-degree-of-freedom non-damped vibration system is expressed by the following equations (1) and (2). Note that the number of dots above the head of the variable means the rank of time differentiation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、バネ定数を式(3)~式(5)のように置き換える。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Here, the spring constant is replaced as shown in equations (3) to (5).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 そして、周期運動を仮定すれば、解を次の式(6)のように置くことができる。なお、xは変位、uは振幅、ωは角振動数、tは時間、φは初期位相を意味する。
Figure JPOXMLDOC01-appb-M000006
And if a periodic motion is assumed, a solution can be put like the following formula (6). Note that x is displacement, u is amplitude, ω is angular frequency, t is time, and φ is initial phase.
Figure JPOXMLDOC01-appb-M000006
 この式(6)を式(1)および式(2)に代入すれば、以下の式(7)および式(8)のようになる。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
If this equation (6) is substituted into equations (1) and (2), the following equations (7) and (8) are obtained.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 有効な解をもつためには、係数行列式が“0”になる必要がある。そこで、以下の式(9)のようにする。
Figure JPOXMLDOC01-appb-M000009
In order to have an effective solution, the coefficient determinant needs to be “0”. Therefore, the following equation (9) is used.
Figure JPOXMLDOC01-appb-M000009
 そして、この式(9)を解くことにより、固有角振動数ωおよび固有角振動数ωが求められる{式(10)参照}。
Figure JPOXMLDOC01-appb-M000010
Then, by solving the equation (9), the natural angular frequency ω 1 and the natural angular frequency ω 2 are obtained {see formula (10)}.
Figure JPOXMLDOC01-appb-M000010
 なお、固有角振動数ωおよび固有角振動数ωは“ω<ω”の関係が成立する。そして、固有角振動数ωは1次の固有振動数、固有角振動数ωは2次の固有振動数と呼ばれる。 The natural angular frequency ω 1 and the natural angular frequency ω 2 satisfy the relationship “ω 12 ”. The natural angular frequency ω 1 is called a primary natural frequency, and the natural angular frequency ω 2 is called a secondary natural frequency.
 次に、固有ベクトルを求める。固有角振動数ωおよび固有角振動数ωが定まったところで、上記の式(7)および式(8)からuとuとの比が定まる。そして、この比をr(i=1,2;iは1次、2次の次数を意味する)とすると、以下の式(11)および式(12)が求められ、rおよびrは係数の関数として確定する。 Next, an eigenvector is obtained. When the natural angular frequency ω 1 and the natural angular frequency ω 2 are determined, the ratio between u 1 and u 2 is determined from the above equations (7) and (8). When this ratio is r i (i = 1, 2; i means the first order and second order), the following expressions (11) and (12) are obtained, and r 1 and r 2 Is determined as a function of the coefficients.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 そして、固有モードとは、調和振動するときの振幅比をベクトル形式で表現したものであるから、以下の式(13)および式(14)のように示せる。
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
The eigenmode is an expression of the amplitude ratio at the time of harmonic vibration in a vector format, and can be expressed by the following equations (13) and (14).
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
 なお、式(13)における以下の行列(15)および式(14)における以下の行列(16)が、固有角振動数ωおよび固有角振動数ωの固有ベクトルとなる。
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
The following matrix (15) in equation (13) and the following matrix (16) in equation (14) are the eigenvectors of the natural angular frequency ω 1 and the natural angular frequency ω 2 .
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
 以上を踏まえて、図4のモデル系でのバネ定数kおよびkをk(k=k=k)とし、第1おもりOM1の質量mをm(m=m)、第2おもりOM2の質量mを2m(m=m)として、固有振動数と固有モードとを求めようとすると、運動方程式は以下の式(17)および式(18)のようになる。
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
Based on the above, the spring constants k 1 and k 2 in the model system of FIG. 4 are k (k 1 = k 2 = k), the mass m 1 of the first weight OM1 is m (m 1 = m), If the mass m 1 of the two weights OM2 is 2 m (m 2 = m) and the natural frequency and the natural mode are to be obtained, the equations of motion are as shown in the following equations (17) and (18).
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
 ここで、以下の式(19)を用いて、マトリクス表現にする。
Figure JPOXMLDOC01-appb-M000019
Here, matrix expression is made using the following equation (19).
Figure JPOXMLDOC01-appb-M000019
 すると、以下の式(20)のようになる。
Figure JPOXMLDOC01-appb-M000020
Then, the following equation (20) is obtained.
Figure JPOXMLDOC01-appb-M000020
 ここで、以下の式(21)を、式(20)に代入する。
Figure JPOXMLDOC01-appb-M000021
Here, the following equation (21) is substituted into equation (20).
Figure JPOXMLDOC01-appb-M000021
 すると、以下の式(22)が求められる。
Figure JPOXMLDOC01-appb-M000022
Then, the following equation (22) is obtained.
Figure JPOXMLDOC01-appb-M000022
 そして、この式(22)から固有振動方程式を求めると以下の式(23)が求められ、その式(23)を解く。
Figure JPOXMLDOC01-appb-M000023
Then, when the natural vibration equation is obtained from this equation (22), the following equation (23) is obtained, and the equation (23) is solved.
Figure JPOXMLDOC01-appb-M000023
 すると、固有角振動数ωおよび固有角振動数ωは、以下の式(24)および式(25)のようになる。
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000025
Then, the natural angular frequency ω 1 and the natural angular frequency ω 2 are expressed by the following equations (24) and (25).
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000025
 これにより、比rおよび比rを求めると、以下の式(26)および式(27)のようになる。
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
Thus, when the ratio r 1 and the ratio r 2 are obtained, the following expressions (26) and (27) are obtained.
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
 したがって、固有角振動数ωの固有ベクトルおよび固有角振動数ωの固有ベクトルは、以下の行列(28)および行列(29)のようになる。
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000029
Therefore, the natural vector of the natural angular frequency ω 1 and the natural vector of the natural angular frequency ω 2 are as shown in the following matrix (28) and matrix (29).
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000029
 そして、求められた固有ベクトルから固有角振動数ωに基づく振動モード(1次振動モード)と、固有角振動数ωに基づく振動モード(2次振動モード)と、を図示すると図5のように示される。また、固有角振動数ωは固有角振動数ωよりも高い(ω>ω)。なお、図5での矢印の先は各振動モードでの重りOM1および重りOM2の位置を示し、数値は固有ベクトルを意味する。 FIG. 5 shows a vibration mode (primary vibration mode) based on the natural angular frequency ω 1 and a vibration mode (secondary vibration mode) based on the natural angular frequency ω 2 from the obtained eigenvector. Shown in The natural angular frequency ω 2 is higher than the natural angular frequency ω 12 > ω 1 ). In addition, the tip of the arrow in FIG. 5 shows the position of the weight OM1 and the weight OM2 in each vibration mode, and the numerical value means an eigenvector.
 これらを踏まえ、ミラー部MRが第2おもりOM2、可動枠部FMが第1おもりOM1に対応するものとして考えると、ミラー部MRの振動の位相と可動枠部FMの振動の位相とが逆位相にする振動モードを生じさせる固有角振動数ωは、ミラー部MRの振動の位相と可動枠部FMの振動の位相とを同位相にする振動モードを生じさせる固有角振動数ωよりも高い周波数になることが明らかとなる。 Considering these, assuming that the mirror part MR corresponds to the second weight OM2 and the movable frame part FM corresponds to the first weight OM1, the phase of vibration of the mirror part MR and the phase of vibration of the movable frame part FM are opposite in phase. The natural angular frequency ω 2 that causes the vibration mode to be generated is greater than the natural angular frequency ω 1 that generates the vibration mode in which the phase of the vibration of the mirror portion MR and the phase of the vibration of the movable frame portion FM are the same. It becomes clear that it becomes a high frequency.
 また、検証のために、図1に示す光スキャナLSにおいて、固有角振動数ω1に相当する固有振動数(または共振周波数)4.8KHz、固有角振動数ωに相当する固有振動数29.4KHzで、ミラー部MRと可動枠部FMとを共振させた。すると、固有角振動数ωの場合、図6の斜視図に示されるように、ミラー部MRと可動枠部FMとが同じ方向に振動することが明らかになり、固有角振動数ωの場合、図7の斜視図に示されるように、ミラー部MRと可動枠部FMとが相違する方向に振動することが明らかになった。 Further, for verification, the optical scanner LS shown in FIG 1, the natural frequency corresponding to 2 natural frequency (or resonance frequency) 4.8 kHz, natural angular frequency ω corresponding to the natural angular frequency .omega.1 29. The mirror part MR and the movable frame part FM were made to resonate at 4 KHz. Then, if the natural angular frequency omega 1, as shown in the perspective view of FIG. 6, the mirror MR and the movable frame section FM becomes clear that vibrates in the same direction, the natural angular frequency omega 2 In this case, as shown in the perspective view of FIG. 7, it became clear that the mirror part MR and the movable frame part FM vibrate in different directions.
 詳説すると、第1開孔H1を境に隣り合うミラー部MR一部と可動枠部FMの一部(第2開孔H2を境に隣り合うミラー部MRの一部と可動枠部FMの一部)とが、同じ方向または相違する方向に振動することが明らかになった。 More specifically, a part of the mirror part MR and a part of the movable frame part FM adjacent to the first opening H1 (a part of the mirror part MR adjacent to the second opening H2 and a part of the movable frame part FM). It has become clear that they vibrate in the same direction or in different directions.
 その上、固有振動数に比例して、固有角振動数ωでの共振ではミラー部MRの回転角は±1.7°になり、固有角振動数ωでの共振ではミラー部MRの偏向角は±4.1°になった。なお、回転角θとは、ユニモルフ部YMの影響を受けることなく不動状態にあるミラー部MRと、変動するミラー部MRとの間に生じる角度のことである。 In addition, the rotation angle of the mirror MR is ± 1.7 ° in resonance at the natural angular frequency ω 1 in proportion to the natural frequency, and the resonance of the mirror MR in resonance at the natural angular frequency ω 2 . The deflection angle was ± 4.1 °. Note that the rotation angle θ is an angle generated between the mirror portion MR that is in an immobile state without being affected by the unimorph portion YM and the mirror portion MR that fluctuates.
 以上をまとめると、図4に示すようなモデル系に対応可能な光スキャナLS、例えば、固定枠FF、枠軸部FA、可動枠部FM、ミラー軸部MA、ミラー部MR、保持部HD、および圧電素子PE(すなわち保持部HDおよび圧電素子PEから成るユニモルフ部YM)、を含む光スキャナLSであれば望ましいといえる。 To summarize the above, an optical scanner LS that can support a model system as shown in FIG. 4, for example, a fixed frame FF, a frame shaft part FA, a movable frame part FM, a mirror shaft part MA, a mirror part MR, a holding part HD, And an optical scanner LS including the piezoelectric element PE (that is, the unimorph part YM including the holding part HD and the piezoelectric element PE).
 なぜなら、このような光スキャナLSが圧電素子PEの印加電圧の周波数に応じて共振する場合、可動枠部FMがミラー軸部MAを基準に揺動するときの振動の位相と、ミラー部MRがミラー軸部MAを基準に揺動するときの振動の位相とを逆位相にする振動モードが必ず生じ、その振動モードを引き起こす周波数は極めて高くなるためである。そして、このような高い周波数であれば、ミラー部MRは極めて高速なスキャン動作を実現する。 This is because when such an optical scanner LS resonates according to the frequency of the voltage applied to the piezoelectric element PE, the phase of vibration when the movable frame portion FM swings with respect to the mirror shaft portion MA, and the mirror portion MR This is because a vibration mode in which the phase of the vibration when swinging with respect to the mirror shaft MA is an opposite phase always occurs, and the frequency causing the vibration mode is extremely high. With such a high frequency, the mirror part MR realizes an extremely high-speed scanning operation.
 [実施の形態2]
 実施の形態2について説明する。なお、実施の形態1で用いた部材と同様の機能を有する部材については同一の符号を付記し、その説明を省略する。
[Embodiment 2]
A second embodiment will be described. In addition, about the member which has the same function as the member used in Embodiment 1, the same code | symbol is attached and the description is abbreviate | omitted.
 実施の形態1での光スキャナLSは、ミラー軸部MAを基準にミラー部MRを揺動させていた。しかし、これに限定されることなく、この光スキャナLSは、枠軸部FAを基準にミラー部MRを揺動させることもできる。すなわち、図1に示される光スキャナLSは1次元光スキャナにもなり得るし、2次元光スキャナにもなり得る。 In the optical scanner LS in the first embodiment, the mirror portion MR is swung with respect to the mirror shaft portion MA. However, the present invention is not limited to this, and the optical scanner LS can also swing the mirror part MR with respect to the frame shaft part FA. That is, the optical scanner LS shown in FIG. 1 can be a one-dimensional optical scanner or a two-dimensional optical scanner.
 そこで、この実施の形態2では、2次元光スキャナとして、図1の光スキャナLSを説明する。ただし、ミラー軸MAを基準にしたミラー部MRの揺動は実施の形態1で述べた内容なので割愛し、枠軸部FAを基準にしたミラー部MRの揺動について説明する。 Therefore, in the second embodiment, the optical scanner LS of FIG. 1 will be described as a two-dimensional optical scanner. However, since the swing of the mirror part MR with respect to the mirror axis MA is the same as that described in the first embodiment, it will be omitted, and the swing of the mirror part MR with respect to the frame shaft part FA will be described.
 なお、枠軸部FAの軸回りの一方向{X(+)からX(-)に向いて時計回りの回転}を正回転P、正回転に対して逆方向の回転(反時計回りの回転)を逆回転Rとし、図8Aに正回転する場合の第1保持部HD1の変形を示し、図8Bにミラー部MRが逆回転する場合の第1保持部HD1の変形を示す(なお、図8Aおよび図8Bは図1におけるA-A’線矢視断面図である)。 It should be noted that one direction around the axis of the frame shaft part FA {clockwise rotation from X (+) to X (-)} is forward rotation P, rotation in the opposite direction to the normal rotation (counterclockwise rotation). ) Is the reverse rotation R, FIG. 8A shows the deformation of the first holding unit HD1 when forwardly rotating, and FIG. 8B shows the deformation of the first holding unit HD1 when the mirror MR is reversely rotated (note that FIG. 8A and FIG. 8B are cross-sectional views taken along line AA ′ in FIG.
 また、以降では、2つ有る保持部HDの一方である第1保持部HD1のみについて説明するが、この一方の第1保持部HD1がミラー部MRを正回転または逆回転させようとしている場合、残りの第2保持部HD2も同じような変形で、ミラー部MRを正回転または逆回転させる。 Hereinafter, only the first holding unit HD1 which is one of the two holding units HD will be described, but when the one first holding unit HD1 attempts to rotate the mirror unit MR forward or backward, The remaining second holding portion HD2 is similarly modified, and the mirror portion MR is rotated forward or backward.
 図8Aに示すように、枠軸部FAを基準にしてミラー部MRが正回転する場合、圧電体PBaを伸ばす電圧が印加されるとともに、圧電体PBbを縮ませる電圧(圧電体PBaに印加される電圧とは逆位相の電圧)が印加される。 As shown in FIG. 8A, when the mirror portion MR rotates forward with respect to the frame shaft portion FA, a voltage for extending the piezoelectric body PBa is applied and a voltage for contracting the piezoelectric body PBb (applied to the piezoelectric body PBa). Applied).
 このような電圧が印加されると、圧電体PBaが延びることで第1電極EE1aを貼り付けられた第1保持部HD1の保持片HD1aが、Z(+)側を凸にして撓む。その結果、保持片HD1aの第1枠軸部FA1側はZ(-)に垂れ下がる。一方、圧電体PBbが縮むことで第1電極EE1bを貼り付けられた第1保持部HD1の保持片HD1bが、Z(-)側を凸にして撓む。その結果、保持片HD1bの第1枠軸部FA1側はZ(+)に跳ね上がる。 When such a voltage is applied, the piezoelectric body PBa extends, so that the holding piece HD1a of the first holding portion HD1 to which the first electrode EE1a is attached is bent with the Z (+) side convex. As a result, the first frame shaft portion FA1 side of the holding piece HD1a hangs down to Z (−). On the other hand, when the piezoelectric body PBb contracts, the holding piece HD1b of the first holding portion HD1 to which the first electrode EE1b is attached is bent with the Z (−) side convex. As a result, the first frame shaft portion FA1 side of the holding piece HD1b jumps up to Z (+).
 このような保持片HD1aおよび保持片HD1bの撓みが生じると、トーションバーTB(TBa)を介して第1枠軸部FA1のY(+)側が押し下げられるとともに、トーションバーTB(TBb)を介して第1枠軸部FA1のY(-)側が押し上げられる。かかる場合、トーションバーTBa・TBbは、自身の軸方向(バー軸方向)を基準に簡単にねじれ、第1枠軸部FA1が変位する。その結果、ミラー部MRが枠軸部FAを基準に正回転する。 When such bending of the holding piece HD1a and the holding piece HD1b occurs, the Y (+) side of the first frame shaft portion FA1 is pushed down via the torsion bar TB (TBa) and also via the torsion bar TB (TBb). The Y (−) side of the first frame shaft portion FA1 is pushed up. In such a case, the torsion bars TBa and TBb are simply twisted with reference to their own axial directions (bar axis directions), and the first frame shaft portion FA1 is displaced. As a result, the mirror part MR rotates forward with respect to the frame shaft part FA.
 一方、ミラー部MRが逆回転する場合、図8Bに示すように、圧電体PBaを縮ませる電圧が印加されるとともに、圧電体PBbを伸ばす電圧が印加される。 On the other hand, when the mirror part MR rotates in the reverse direction, as shown in FIG. 8B, a voltage for contracting the piezoelectric body PBa and a voltage for extending the piezoelectric body PBb are applied.
 このような電圧が印加されると、圧電体PBaが縮むことで第1電極EE1aを貼り付けられた保持片HD1aが、Z(-)側を凸にして撓む。その結果、保持片HD1aの第1枠軸部FA1側はZ(+)に跳ね上がる。一方、圧電体PBbが延びることで第1電極EE1bを貼り付けられた保持片HD1bが、Z(+)側を凸にして撓む。その結果、保持片HD1bの第1枠軸部FA1側はZ(-)に垂れ下がる。 When such a voltage is applied, the piezoelectric body PBa contracts, so that the holding piece HD1a attached with the first electrode EE1a bends with the Z (−) side convex. As a result, the first frame shaft portion FA1 side of the holding piece HD1a jumps up to Z (+). On the other hand, when the piezoelectric body PBb extends, the holding piece HD1b to which the first electrode EE1b is attached is bent with the Z (+) side convex. As a result, the first frame shaft portion FA1 side of the holding piece HD1b hangs down to Z (−).
 このような保持片HD1a・HD1bの撓みが生じると、トーションバーTBaを介して第1枠軸部FA1のY(+)側が押し上げられるとともに、トーションバーTBbを介して第1枠軸部FA1のY(-)側が押し下げられ、第1枠軸部FA1は正回転の場合の変位に対して逆に変位する。そのため、ミラー部MRが枠軸部FAを基準に逆回転する。 When such bending of the holding pieces HD1a and HD1b occurs, the Y (+) side of the first frame shaft portion FA1 is pushed up via the torsion bar TBa, and the Y of the first frame shaft portion FA1 is pushed through the torsion bar TBb. The (−) side is pushed down, and the first frame shaft portion FA1 is displaced in reverse to the displacement in the case of forward rotation. Therefore, the mirror part MR rotates reversely with respect to the frame shaft part FA.
 以上のように、ミラー部MRの揺動(正回転・逆回転)には、枠軸部FAを揺動させやすいトーションバーTBのねじれ変形と、保持片HD1a・HD1b(すなわち保持部HD)の撓みとが利用される。そのため、このような枠軸部FAの揺動量(正回転の回転角θまたは逆回転の回転角θ)は、保持部HDの撓みのみで枠軸部FAを揺動させる場合の揺動量に比べて大きくなる(別表現すると、枠軸部FAの揺動量が効率よく確保できる)。 As described above, the mirror portion MR is swung (forward rotation / reverse rotation) and the torsional deformation of the torsion bar TB that easily swings the frame shaft portion FA and the holding pieces HD1a and HD1b (that is, the holding portion HD) Bending is used. Therefore, the swing amount of the frame shaft portion FA (forward rotation angle θ or reverse rotation angle θ) is larger than the swing amount when the frame shaft portion FA is swung only by the bending of the holding portion HD. (In other words, the amount of rocking of the frame shaft FA can be efficiently secured).
 [実施の形態3]
 実施の形態3について説明する。なお、実施の形態1および2で用いた部材と同様の機能を有する部材については同一の符号を付記し、その説明を省略する。
[Embodiment 3]
A third embodiment will be described. Note that members having the same functions as those used in Embodiments 1 and 2 are denoted by the same reference numerals, and description thereof is omitted.
 実施の形態1にて、圧電素子PEへの印加電圧の周波数が光スキャナLSの有する固有振動数に一致し、ミラー部MRと可動枠部FMとが相違する位相または同じ位相で振動することを説明した。ところで、このような光スキャナLSの有する固有振動数は、数多く存在する。そして、光スキャナLSが共振する場合、ミラー部MRおよび可動枠FMとは異なる別部材も振動する。 In the first embodiment, the frequency of the voltage applied to the piezoelectric element PE matches the natural frequency of the optical scanner LS, and the mirror MR and the movable frame FM vibrate in different phases or the same phase. explained. By the way, there are many natural frequencies of such an optical scanner LS. When the optical scanner LS resonates, another member different from the mirror part MR and the movable frame FM also vibrates.
 そこで、可動枠部FMの振動の位相と保持部HD(ひいてはユニモルフYM)の振動の位相とに着目する。図1に示すように、可動枠部FMとユニモルフYMとは、枠軸部FAを介してつながる。そのため、ミラー部MRが揺動することで、可動枠部FMとユニモルフYMとの間に大きな変位が生じることは不都合である。なぜなら、大きな変位に応じた応力が可動枠部FMとユニモルフYMとの間にかかり、枠軸部FA、トーションバーTB等が破損しかねないためである。 Therefore, attention is paid to the vibration phase of the movable frame portion FM and the vibration phase of the holding portion HD (and hence the unimorph YM). As shown in FIG. 1, the movable frame portion FM and the unimorph YM are connected via a frame shaft portion FA. Therefore, it is inconvenient that a large displacement occurs between the movable frame portion FM and the unimorph YM due to the swing of the mirror portion MR. This is because a stress corresponding to a large displacement is applied between the movable frame portion FM and the unimorph YM, and the frame shaft portion FA, the torsion bar TB, and the like may be damaged.
 つまり、圧電素子PEに印加される周波数が、ミラー部MRと可動枠部FMとを相違する方向に振動させ、さらに、可動枠FMとユニモルフYMとを相違する方向に振動させていると、図9に示すように、枠軸部FA、トーションバーTB等に過大な応力がかかり、それらが破損しかねない。 That is, the frequency applied to the piezoelectric element PE causes the mirror MR and the movable frame FM to vibrate in different directions, and further causes the movable frame FM and the unimorph YM to vibrate in different directions. As shown in FIG. 9, excessive stress is applied to the frame shaft part FA, the torsion bar TB, etc., and they may be damaged.
 そこで、図7に示すように、ミラー部MRと可動枠部FMとを相違する方向に振動させつつ、可動枠FMとユニモルフYMとを同じ方向に振動させるような振動モードが生じるようにする。具体的には、このような振動モードを生じさせるような光スキャナLSの固有振動数に対して、圧電素子PEに印加される電圧の周波数が一致または近似するようにする。 Therefore, as shown in FIG. 7, a vibration mode is generated in which the movable frame FM and the unimorph YM are vibrated in the same direction while vibrating the mirror portion MR and the movable frame portion FM in different directions. Specifically, the frequency of the voltage applied to the piezoelectric element PE matches or approximates the natural frequency of the optical scanner LS that causes such a vibration mode.
 このようになっていると、第1枠軸部FA1を境に隣り合う可動枠FMの一部とユニモルフYMの一部(第2枠軸部FA2を境に隣り合う可動枠FMの一部とユニモルフYMの一部とが、図7に示すように、同じ方向に振動する。すると、図7と図9との比較からも明らかなように、応力が、可動枠部FMとユニモルフYMとの間にかかりにくくなり、枠軸部FAおよびトーションバーTB等が破損しない。 In this case, a part of the movable frame FM adjacent to the first frame shaft part FA1 and a part of the unimorph YM (a part of the movable frame FM adjacent to the second frame shaft part FA2) A part of the unimorph YM vibrates in the same direction as shown in Fig. 7. Then, as is clear from the comparison between Fig. 7 and Fig. 9, the stress is generated between the movable frame portion FM and the unimorph YM. The frame shaft FA and the torsion bar TB are not damaged.
 なお、このような振動モードでは、可動枠FMとユニモルフYMとが同じ方向に振動するものの、ミラー部MRと可動枠部FMとが相違する方向に振動しているので、実施の形態1で説明したように、ミラー部MRは極めて高速なスキャン動作を行う。 In such a vibration mode, although the movable frame FM and the unimorph YM vibrate in the same direction, the mirror part MR and the movable frame part FM vibrate in different directions. As described above, the mirror part MR performs an extremely high-speed scanning operation.
 [その他の実施の形態]
 なお、本発明は上記の実施の形態に限定されず、本発明の趣旨を逸脱しない範囲で、種々の変更が可能である。
[Other embodiments]
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
 例えば、実施の形態2は、光スキャナLSの共振を用いることなく、枠軸部FAを基準にしてミラー部MRが揺動する例を挙げていた。しかし、これに限定されることなく、光スキャナLSの共振を用いて、ミラー部MRが枠軸部FAを基準に揺動しても構わない。 For example, in the second embodiment, an example is given in which the mirror MR swings with reference to the frame shaft FA without using the resonance of the optical scanner LS. However, the present invention is not limited to this, and the mirror portion MR may swing with respect to the frame shaft portion FA using the resonance of the optical scanner LS.
 また、保持部HDを変形させる部材(駆動部)は、圧電素子PEに限定されるものではない。例えば、図10に示すように、電磁コイル31と永久磁石32とから成る電磁ユニット33が駆動部であってもよい(電磁方式の駆動部でもよい)。このような電磁ユニット33は、保持部HDの一面(表面)に電磁コイル31を位置させるとともに、保持部HDの裏側に(保持部HDの裏面から乖離して)永久磁石32を位置させ、電磁コイル31と永久磁石32とによって生じる電磁力で、保持部HDを撓ませる。 Further, the member (drive unit) for deforming the holding unit HD is not limited to the piezoelectric element PE. For example, as shown in FIG. 10, an electromagnetic unit 33 including an electromagnetic coil 31 and a permanent magnet 32 may be a drive unit (or an electromagnetic drive unit). In such an electromagnetic unit 33, the electromagnetic coil 31 is positioned on one surface (front surface) of the holding portion HD, and the permanent magnet 32 is positioned on the back side of the holding portion HD (separated from the back surface of the holding portion HD). The holding portion HD is bent by an electromagnetic force generated by the coil 31 and the permanent magnet 32.
 また、圧電方式の駆動部は、ユニモルフに限らず、バイモルフであってもかまわない。また、2個の電極から成る静電ユニットが駆動部であってもよい(静電方式の駆動部でもよい)。このような静電ユニットは、保持部HDの裏面に一方の電極を位置させるとともに、保持部HDの裏面から乖離して(保持部HDの裏側に)他方の電極を位置させ、両電極によって生じる静電力で、保持部HDを撓ませる。要は、保持部HDを変形可能な駆動部であれば、電磁方式、静電方式、圧電方式等のいずれであってもかまわない。 Also, the piezoelectric drive unit is not limited to a unimorph but may be a bimorph. In addition, the electrostatic unit including two electrodes may be a driving unit (an electrostatic driving unit may be used). In such an electrostatic unit, one electrode is positioned on the back surface of the holding unit HD, and the other electrode is positioned away from the back surface of the holding unit HD (on the back side of the holding unit HD). The holding portion HD is bent by an electrostatic force. In short, as long as the driving unit can deform the holding unit HD, any of an electromagnetic method, an electrostatic method, a piezoelectric method, and the like may be used.
 なお、例えば静電方式の駆動部の場合、ミラー部MRと可動枠部FMとを相違する方向に振動させつつ、可動枠FMと保持部HDとを同じ方向に振動させるような振動モードが生じるようにする。具体的には、このような振動モードを生じさせるような光スキャナLSの固有振動数に対して、電極に印加される電圧の周波数が一致または近似するようにする。 For example, in the case of an electrostatic drive unit, a vibration mode is generated in which the movable frame FM and the holding unit HD are vibrated in the same direction while vibrating the mirror unit MR and the movable frame unit FM in different directions. Like that. Specifically, the frequency of the voltage applied to the electrode is made to match or approximate the natural frequency of the optical scanner LS that causes such a vibration mode.
 このようになっていると、実施の形態3同様に、応力が、可動枠部FMと保持部HDとの間にかかりにくくなり、枠軸部FAおよびトーションバーTB等が破損しない。 If this is the case, as in the third embodiment, stress is less likely to be applied between the movable frame portion FM and the holding portion HD, and the frame shaft portion FA and the torsion bar TB are not damaged.
 ところで、説明してきた光スキャナLSを搭載するマイクロスキャナ装置(光学機器)は、種々想定される(なお、このようなマイクロスキャナ装置には、圧電素子PEに対して電圧を印加する駆動回路が含まれる)。例えば、図11のブロック図に示すようなプロジェクタ(画像投影装置)がマイクロスキャナ装置として挙げられる。 By the way, various micro scanner devices (optical devices) on which the optical scanner LS described above is mounted are assumed (including a drive circuit for applying a voltage to the piezoelectric element PE. ) For example, a projector (image projection apparatus) as shown in the block diagram of FIG.
 図11に示されるプロジェクタ10は、入力画像処理部11、駆動制御部12、および光学機構部15を含む。 The projector 10 shown in FIG. 11 includes an input image processing unit 11, a drive control unit 12, and an optical mechanism unit 15.
 入力画像処理部11は、パーソナルコンピュータ(PC)等から送信される画像信号(NTSC信号等)を受信する。そして、入力画像処理部11は、受信した画像信号に対して適宜、補正処理(γ補正、画像の歪み補正等)を施し、補正後の画像信号を駆動制御部12に送信する。 The input image processing unit 11 receives an image signal (NTSC signal or the like) transmitted from a personal computer (PC) or the like. The input image processing unit 11 performs correction processing (γ correction, image distortion correction, etc.) as appropriate on the received image signal, and transmits the corrected image signal to the drive control unit 12.
 駆動制御部12は、専用の電子回路で構成されており、光スキャナ駆動回路(駆動回路)13および光源駆動回路14を含む。 The drive control unit 12 is composed of a dedicated electronic circuit, and includes an optical scanner drive circuit (drive circuit) 13 and a light source drive circuit 14.
 光スキャナ駆動回路13は、送信されてきた画像信号の垂直同期信号および水平同期信号に対応させて、光スキャナLSの駆動タイミングを制御する制御信号を生成する。そして、光スキャナ駆動回路13は、制御信号に応じた電位の駆動信号を、光学機構部15に含まれる光スキャナLSに送信する。 The optical scanner driving circuit 13 generates a control signal for controlling the driving timing of the optical scanner LS in correspondence with the vertical synchronizing signal and horizontal synchronizing signal of the transmitted image signal. Then, the optical scanner drive circuit 13 transmits a drive signal having a potential corresponding to the control signal to the optical scanner LS included in the optical mechanism unit 15.
 なお、光スキャナ駆動回路13は、光スキャナLSの圧電素子PEに対して、可動枠部FMがミラー軸部MAを基準に揺動するときの振動の位相と、ミラー部MRがミラー軸部MAを基準に揺動するときの振動の位相とを逆位相にするように、光スキャナLSを共振させる周波数を有する電圧を印加する。 Note that the optical scanner drive circuit 13 has a phase of vibration when the movable frame portion FM swings with respect to the mirror shaft portion MA with respect to the piezoelectric element PE of the optical scanner LS, and the mirror portion MR is the mirror shaft portion MA. A voltage having a frequency for causing the optical scanner LS to resonate is applied so that the phase of vibration when oscillating with respect to is reversed.
 光源駆動回路14は、光学機構部15に含まれる後述の光源ユニット16(詳説すると、光源ユニット16に含まれる発光素子)の発光を制御する。詳説すると、光源駆動回路14は、送信されてくる画像信号の階調に応じた色・輝度を有する光を、光源16から出射させる。なお、光源16を光らせるタイミングは、画像信号の垂直同期信号および水平同期信号に対応する。 The light source drive circuit 14 controls light emission of a light source unit 16 (described in detail, a light emitting element included in the light source unit 16) included in the optical mechanism unit 15. More specifically, the light source driving circuit 14 causes the light source 16 to emit light having a color and luminance corresponding to the gradation of the transmitted image signal. The timing at which the light source 16 is illuminated corresponds to the vertical synchronization signal and horizontal synchronization signal of the image signal.
 光学機構部15は、光源ユニット16、光スキャナLS、および投影光学系17を含み、スクリーンSC(被投影面)に対して光を投影させる。 The optical mechanism unit 15 includes a light source unit 16, an optical scanner LS, and a projection optical system 17, and projects light onto a screen SC (projection surface).
 光源ユニット16は、例えば、レーザーのような発光素子の集まった発光素子群と、発光素子からの光をほぼ平行な光束にするコリメータレンズの集まったコリメータレンズ群と、を含む。なお、発光素子群は、赤色発光素子、緑色発光素子、青色発光素子を含み、コリメータレンズ群は、各色の発光素子に対応して3個のコリメータレンズを含む。また、各発光素子は、光源駆動回路14からの画素信号の画素値に応じた輝度のレーザー光を発生および出射する。 The light source unit 16 includes, for example, a light emitting element group in which light emitting elements such as lasers are gathered, and a collimator lens group in which collimator lenses that make the light from the light emitting elements a substantially parallel light flux. The light emitting element group includes a red light emitting element, a green light emitting element, and a blue light emitting element, and the collimator lens group includes three collimator lenses corresponding to the light emitting elements of each color. Each light emitting element generates and emits laser light having a luminance corresponding to the pixel value of the pixel signal from the light source driving circuit 14.
 光スキャナLSは、上述してきた光スキャナLSそのものである。簡略して説明すると、光スキャナLSは、光源ユニット16から進行してくる光を反射させるミラー部MRを有し、そのミラー部MRを略直交する2軸(ミラー軸部MA・枠軸部FA)を中心にそれぞれ回動させることで、光を2次元的に反射させ、偏向(走査)させる。 The optical scanner LS is the optical scanner LS itself described above. In brief, the optical scanner LS has a mirror part MR that reflects light traveling from the light source unit 16, and the mirror part MR has two axes that are substantially orthogonal (mirror axis part MA and frame axis part FA). ), The light is reflected two-dimensionally and deflected (scanned).
 投影光学系17は、適宜、光スキャナLSによって偏向された光を、被投影面であるスクリーンSC上に導き、そのスクリーンSC上に動画像を投影する。なお、図11では、光源ユニット16から光スキャナLS、さらには投影光学系17を経てスクリーンSCに至る光(レーザ光)を点線矢印で示す。 The projection optical system 17 appropriately guides the light deflected by the optical scanner LS onto the screen SC that is the projection surface, and projects a moving image on the screen SC. In FIG. 11, light (laser light) from the light source unit 16 through the optical scanner LS and further through the projection optical system 17 to the screen SC is indicated by a dotted arrow.
 なお、図11に示されるようなプロジェクタ10以外のマイクロスキャナ装置としては、コピー機やプリンタ等の画像形成装置が一例として挙げられる。そして、このようなマイクロスキャナ装置であれば、高速スキャンや高解像度の画像提供を実現できる。 An example of a micro scanner device other than the projector 10 as shown in FIG. 11 is an image forming apparatus such as a copier or a printer. With such a micro scanner device, high-speed scanning and high-resolution image provision can be realized.
 また、光スキャナ以外のマイクロスキャナとしては、ミラー部MRに代えてレンズ(屈曲光学系)が搭載されたものや、光源(発光素子)が搭載されたものが挙げられる。 In addition, examples of micro scanners other than the optical scanner include those equipped with a lens (bending optical system) instead of the mirror part MR, and those equipped with a light source (light emitting element).

Claims (6)

  1. マイクロスキャナと駆動回路とを含むマイクロスキャナ装置にあって、
      上記マイクロスキャナは、
        外枠となる固定枠と、
        第1軸部と、
        上記第1軸部によって挟持され、その第1軸部を基準に揺動可能な可動枠部
       と、
        上記可動枠部内につながり、上記第1軸部と交差する第2軸部と、
        上記第2軸部によって挟持されることで、上記可動枠部内に保持されるとともに
       、上記第2軸部を基準に揺動可能な変動部と、
        一端を上記第1軸部に接続し、他端を固定枠に固定した片持ち梁構造の保持
       部と、
        印加電圧に応じて生じる力を上記保持部に加えることで、その保持部を変形さ
       せる駆動部と、
     を含み、
      上記駆動回路が、上記駆動部に対して、上記可動枠部が上記第2軸部を基準に
     揺動するときの振動の位相と、上記変動部が上記第2軸部を基準に揺動するときの
     振動の位相とを逆位相にするように、上記マイクロスキャナを共振させる周波数を有
     する電圧を印加する、
    マイクロスキャナ装置。
    In a micro scanner device including a micro scanner and a drive circuit,
    The micro scanner is
    A fixed frame as an outer frame;
    A first shaft portion;
    A movable frame portion sandwiched between the first shaft portions and swingable with reference to the first shaft portion;
    A second shaft portion connected to the movable frame portion and intersecting the first shaft portion;
    By being clamped by the second shaft portion, the variation portion is held in the movable frame portion and swingable with respect to the second shaft portion;
    A cantilever structure holding portion having one end connected to the first shaft portion and the other end fixed to a fixed frame;
    A driving unit that deforms the holding unit by applying a force generated according to an applied voltage to the holding unit;
    Including
    The drive circuit is oscillated with respect to the drive unit with respect to the phase of vibration when the movable frame unit swings with respect to the second shaft portion, and the variable portion swings with reference to the second shaft portion. Applying a voltage having a frequency that causes the microscanner to resonate so that the phase of the vibration is in an opposite phase.
    Micro scanner device.
  2.  上記の共振を引き起こす印加電圧の周波数が、上記可動枠部の振動する位相と上記保持部および上記駆動部を含む系の振動する位相とを同位相にする振動モードを生じさせる請求項1に記載のマイクロスキャナ装置。 The frequency of the applied voltage that causes the resonance causes a vibration mode in which a phase in which the movable frame portion vibrates and a phase in which a system including the holding portion and the driving portion vibrates are in phase. Micro scanner device.
  3.  上記の共振を引き起こす印加電圧の周波数が、上記可動枠部の振動する位相と上記保持部の振動する位相とを同位相にする振動モードを生じさせる請求項1に記載のマイクロスキャナ装置。 2. The micro scanner device according to claim 1, wherein the frequency of the applied voltage causing the resonance generates a vibration mode in which a phase in which the movable frame portion vibrates and a phase in which the holding portion vibrates are in phase.
  4. マイクロスキャナと駆動回路とを含むマイクロスキャナ装置の制御方法にあって、
     上記マイクロスキャナは、
       外枠となる固定枠と、
       第1軸部と、
       上記第1軸部によって挟持され、その第1軸部を基準に揺動可能な可動枠部と
      、
       上記可動枠部内につながり、上記第1軸部と交差する第2軸部と、
       上記第2軸部によって挟持されることで、上記可動枠部内に保持されるとともに、
      上記第2軸部を基準に揺動可能な変動部と、
       一端を上記第1軸部に接続し、他端を固定枠に固定した片持ち梁構造の保持
      部と、
       印加電圧に応じて生じる力を上記保持部に加えることで、その保持部を変形さ
      せる駆動部と、
     を含み、
     上記第2軸部を基準に揺動するときの振動の位相と、上記変動部が上記第2軸部を基準に揺動するときの振動の位相とを逆位相にするように、上記マイクロスキャナを共振させる周波数を有する電圧を、上記駆動回路によって、上記駆動部に印加させるマイクロスキャナ装置の制御方法。
    In a control method of a micro scanner device including a micro scanner and a drive circuit,
    The micro scanner is
    A fixed frame as an outer frame;
    A first shaft portion;
    A movable frame portion sandwiched between the first shaft portions and swingable with reference to the first shaft portions;
    A second shaft portion connected to the movable frame portion and intersecting the first shaft portion;
    While being held by the second shaft portion, it is held in the movable frame portion,
    A variable portion swingable with respect to the second shaft portion;
    A cantilever structure holding portion having one end connected to the first shaft portion and the other end fixed to a fixed frame;
    A driving unit that deforms the holding unit by applying a force generated according to an applied voltage to the holding unit;
    Including
    The microscanner so that the phase of vibration when swinging with respect to the second shaft portion and the phase of vibration when swinging with respect to the second shaft portion are reversed from each other. A method for controlling a micro scanner device, wherein a voltage having a frequency for resonating is applied to the drive unit by the drive circuit.
  5.  上記の共振を引き起こす印加電圧の周波数を、上記可動枠部の振動する位相と上記保持部および上記駆動部を含む系の振動する位相とを同位相にする振動モードを生じさせる周波数にする請求項4に記載のマイクロスキャナ装置の制御方法。 The frequency of the applied voltage that causes the resonance is set to a frequency that generates a vibration mode in which the phase in which the movable frame portion vibrates and the phase in which the system including the holding unit and the drive unit vibrate are in phase. 5. A method for controlling the micro scanner device according to 4.
  6.  上記の共振を引き起こす印加電圧の周波数を、上記可動枠部の振動する位相と上記保持部の振動する位相とを同位相にする振動モードを生じさせる周波数にする請求項4に記載のマイクロスキャナ装置の制御方法。 5. The micro scanner device according to claim 4, wherein the frequency of the applied voltage that causes the resonance is set to a frequency that generates a vibration mode in which a phase in which the movable frame portion vibrates and a phase in which the holding portion vibrates are in phase. Control method.
PCT/JP2008/073181 2007-12-20 2008-12-19 Micro scanner and method for controlling micro scanner WO2009081858A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-328864 2007-12-20
JP2007328864 2007-12-20

Publications (1)

Publication Number Publication Date
WO2009081858A1 true WO2009081858A1 (en) 2009-07-02

Family

ID=40801159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073181 WO2009081858A1 (en) 2007-12-20 2008-12-19 Micro scanner and method for controlling micro scanner

Country Status (1)

Country Link
WO (1) WO2009081858A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009050340A1 (en) * 2009-10-23 2011-05-05 Leica Microsystems Cms Gmbh Device and method for deflecting a light beam in two different directions and scanning microscope
JP2014238581A (en) * 2014-06-24 2014-12-18 ミツミ電機株式会社 Optical scanner
JP2014240911A (en) * 2013-06-12 2014-12-25 セイコーエプソン株式会社 Optical device, optical scanner, and image display apparatus
US9219219B2 (en) 2012-07-30 2015-12-22 Opus Microsystems Corporation Oscillation structure of micro actuator
JP2019174792A (en) * 2018-02-06 2019-10-10 株式会社村田製作所 Mems reflector system equipped with trajectory control
EP4312070A1 (en) * 2022-07-25 2024-01-31 Ricoh Company, Ltd. Movable device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007199682A (en) * 2005-12-27 2007-08-09 Konica Minolta Holdings Inc Optical deflector and light beam scanning apparatus
JP2007310196A (en) * 2006-05-19 2007-11-29 Konica Minolta Holdings Inc Optical scanner and scanning type projector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007199682A (en) * 2005-12-27 2007-08-09 Konica Minolta Holdings Inc Optical deflector and light beam scanning apparatus
JP2007310196A (en) * 2006-05-19 2007-11-29 Konica Minolta Holdings Inc Optical scanner and scanning type projector

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009050340A1 (en) * 2009-10-23 2011-05-05 Leica Microsystems Cms Gmbh Device and method for deflecting a light beam in two different directions and scanning microscope
US8879135B2 (en) 2009-10-23 2014-11-04 Leica Microsystems Cms Gmbh Device and method for deflecting a light beam in two different directions and scanning microscope
DE102009050340B4 (en) * 2009-10-23 2017-08-10 Leica Microsystems Cms Gmbh Device for deflecting a light beam in two different directions and scanning microscope
US9219219B2 (en) 2012-07-30 2015-12-22 Opus Microsystems Corporation Oscillation structure of micro actuator
JP2014240911A (en) * 2013-06-12 2014-12-25 セイコーエプソン株式会社 Optical device, optical scanner, and image display apparatus
JP2014238581A (en) * 2014-06-24 2014-12-18 ミツミ電機株式会社 Optical scanner
JP2019174792A (en) * 2018-02-06 2019-10-10 株式会社村田製作所 Mems reflector system equipped with trajectory control
EP3521894A3 (en) * 2018-02-06 2019-11-27 Murata Manufacturing Co., Ltd. Mems reflector system with trajectory control
US11067793B2 (en) 2018-02-06 2021-07-20 Murata Manufacturing Co., Ltd. Mems reflector system with trajectory control
EP4312070A1 (en) * 2022-07-25 2024-01-31 Ricoh Company, Ltd. Movable device

Similar Documents

Publication Publication Date Title
JP5310566B2 (en) Micro scanner device and control method of micro scanner device
JP5151065B2 (en) Optical scanner and scanning projector
US8395834B2 (en) Deflecting mirror for deflecting and scanning light beam
JP4161971B2 (en) Optical scanning device and image display device
JP4574396B2 (en) Optical deflector
US8174750B2 (en) Optical deflector, optical scanner, image forming apparatus, and image projector
JP5167634B2 (en) Laser projection device
JP6459422B2 (en) Optical deflector, optical scanning device, image forming device, image projection device, head-up display, and laser radar
JP5614167B2 (en) Optical deflector, optical scanning device, image forming apparatus, and image projecting apparatus
WO2009081858A1 (en) Micro scanner and method for controlling micro scanner
JP2012198298A (en) Optical deflection device, and optical scanning device, image projection device, image reading device and image forming device provided with the same
JP2008026849A (en) Scanner
JP2012198314A (en) Actuator device, optical deflector, optical scanner, image forming device and image projection device
EP2980626B1 (en) Light deflector, and apparatus having light deflector
JP2011232589A (en) Optical scanner
JP2007010823A (en) Driven mirror, light scanning optical apparatus and picture display apparatus
WO2013005527A1 (en) Optical scanning apparatus, image display apparatus, and optical scanning method
JP2009251596A (en) Light scanning unit, image forming apparatus employing the same, and light scanning method
JP2008058752A (en) Light deflector and image forming apparatus using same
JP5554895B2 (en) Oscillator structure and oscillator device using the oscillator structure
JP2013020124A (en) Optical deflector, optical scanner, image forming device, and image projection device
JP2009122293A (en) Oscillating body apparatus, optical deflector, and optical equipment using the same
JP2006313216A (en) Oscillator device and optical deflector using the same
JP2011013621A (en) Light deflector, image forming apparatus and image projector
JP6648443B2 (en) Optical deflector, two-dimensional image display device, optical scanning device, and image forming device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08864823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08864823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP