WO2009081771A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2009081771A1
WO2009081771A1 PCT/JP2008/072672 JP2008072672W WO2009081771A1 WO 2009081771 A1 WO2009081771 A1 WO 2009081771A1 JP 2008072672 W JP2008072672 W JP 2008072672W WO 2009081771 A1 WO2009081771 A1 WO 2009081771A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
substrate
liquid crystal
light source
type liquid
Prior art date
Application number
PCT/JP2008/072672
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeru Shibazaki
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2009081771A1 publication Critical patent/WO2009081771A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133342Constructional arrangements; Manufacturing methods for double-sided displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133601Illuminating devices for spatial active dimming

Definitions

  • the present invention relates to a display apparatus, and in particular, a light source system capable of performing luminance modulation by an input video signal, and outputting / irradiating its R, G, B output light to pixels constituting a predetermined horizontal scanning line, line-sequential scanning
  • the present invention relates to a display device (display device) for displaying an image.
  • the structure of the display of Patent Document 1 is a light source system for reproducing all pixels for one line in the horizontal scanning line direction, which can perform luminance modulation with an input video signal.
  • a mechanism for outputting light converted into p or s polarized light in the light source system, and displaying the output light of the light source system for reproducing all pixels for one line in the horizontal scanning line direction on the user's viewing side And a device having a function of non-displaying and a function of line-sequentially scanning the output light of the light source system, and a drive circuit (not shown) for operating the function.
  • a mechanism for line-sequentially scanning the output light of the light source system for example, a mechanism for moving the inside of the liquid crystal layer by utilizing the electro-optical characteristics of the light transmissive scattering type liquid crystal and drive control for performing the movement in association with display.
  • a circuit and a circuit may be provided.
  • Patent Document 2 As a technique using a method of bending the light emission direction from the display device by 90 degrees with respect to the incident direction, for example, there is a technique described in Patent Document 2.
  • the optical switch function part of patent document 2 has the light ray direction change member 201, as shown in FIG. 8,
  • This light direction change member has electroconductivity, such as a metal material, a polymeric material, an inorganic material, etc.
  • a bendable film or thin film can be used, for example, a thin film of TiNi is used, and the thin film has a thickness of 4 ⁇ m. At least one surface of the thin film is a mirror surface to be a reflective portion.
  • a thin film of a TiNi alloy is corrosion resistant, soft, and has superelasticity that is resistant to plastic deformation. Since the thin film of the TiNi alloy is a shape memory alloy, it can store the state of curvature and can maintain the previous state even during a power failure.
  • the attracting portions 204 (3, 4) and 205 (5, 6) can attract the light beam direction changing member.
  • two attracting portions 204 (3, 4) and 205 (5, 6) are disposed to face each other, and the light ray redirecting member 201 is disposed in the space between them.
  • the attracting portions 204 (3, 4) and 205 (5, 6) are provided with attracting means (actuators: 3 to 6) for attracting the light beam direction changing member 201.
  • the attracting means may be any means capable of attracting the light beam redirecting member, and for example, means such as an electric field, a magnetic field, air or the like may be used.
  • a plurality of electrodes are arranged side by side along the longitudinal direction of the beam redirecting member at each of the pair of attracting parts. For example, multiple parallel electrodes are mounted side by side along the direction of the incident beam. The density of the number of electrodes determines the minimum travel distance of the bend.
  • a voltage for example 500 V (an example in which the thin film of the TiNi alloy is used and the distance between the attracting portions is 1 mm)
  • electrostatic attractive force is applied to the beam redirecting member.
  • the beam redirecting member can be electrically attracted to the electrode. If an electrode is used, a non-contacting layer is placed between the electrode and the beam redirecting member to insulate between the electrode and the beam redirecting member. Also, if direct contact between the suction means and the beam redirecting member is not desirable, a non-contact layer is disposed between them. When air is used for suction, the light redirecting member can be suctioned to the attracting portion by arranging an aspirator for sucking in the attracting portion.
  • a method of attaching a magnet or other magnetic material to at least one of the beam redirecting member or the attracting portion may be used.
  • a device for generating electromagnetic induction is arranged to attract or release the magnet or other magnetic material.
  • the device for generating the electromagnetic induction may be attached, for example, to the pulling part, but may be attached to the beam redirecting member or both as required.
  • the attraction part provides a transmitting part through which the light beam can be transmitted at the place where the light beam passes.
  • a transparent member such as ITO or glass can be used, and a space through which light can pass can be provided in the attraction part. Thereby, light can be emitted from a desired place.
  • FIG. 9 is a view showing an example of an ideal operation mechanism when the mechanism of the optical switch described in Patent Document 2 is applied to a display of the type described in Patent Document 1.
  • an insulator film provided on the inner surface of the first substrate 8 and the second substrate 11 disposed opposite to each other.
  • the incident light 202 traveling along the substrate surface in the space formed between 9 and 10 is reflected by the thin film mirror electrode 201 disposed between the insulator films 9 and 10, and the display is substantially perpendicular to the substrate surface
  • the light 203 is used.
  • FIG. 10 is a diagram schematically showing the problem of the configuration shown in FIG.
  • the incident light is not a perfect parallel light, but in fact, as shown by the reference numeral 208, the incident light is reflected in the space by being reflected by the insulating films 9 and 10, etc.
  • the component of the reflected light that is not perpendicular to the substrate surface increases (209).
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a display device with good light utilization efficiency which does not depend on the diameter, parallelism, linearity and the like of the light source light flux. Another object of the present invention is to provide a double-sided display function of a display device.
  • a first substrate a second substrate spaced apart from the first substrate by a certain distance, and a second substrate, the first substrate, and the second substrate And a light guide mechanism provided in a space formed between the two substrates
  • the first substrate is a display device that performs display by pixels provided in a matrix in a two-dimensional plane of the substrate, A light transmissive scattering type liquid crystal panel provided on the side opposite to the second substrate, a plurality of transparent first plural electrodes provided on the second substrate side and arranged in the pixel column direction, and the electrodes And a first insulator film provided on the second substrate side, wherein the second substrate is provided on the first substrate side, and is disposed side by side in the pixel column direction.
  • a second plurality of electrodes forming an electrode pair with a plurality of electrodes, and the first group of the second plurality of electrodes A second insulator film provided on the side, and the light guide mechanism is a thin film electrode disposed between the insulator film provided on the first substrate and the second substrate And extend in the same direction as the first and second plural electrodes respectively provided on the first substrate and the second substrate, and by the voltage applied to the first and second plural electrodes Between a first region in surface contact with the first insulator film surface, a second region in surface contact with the second insulator film surface, and the first region and the second region An input image having a strip-like thin film-like electrode having an inclined surface inclined with respect to the substrate surface and having a large number of diffraction gratings formed on the surface on the first substrate side and having a light reflection function
  • a first voltage control mechanism capable of moving the pixel region in the column direction, and applying
  • the first voltage control mechanism is configured to obtain a plurality of electro-optical characteristics in each of a plurality of striped liquid crystal layers defined by the thin film electrode and the light transmission / scattering type liquid crystal substrate. Control the on / off of the voltage applied to the electrode.
  • the light transmission / scattering type liquid crystal material which controls the polarization direction of light introduced from the light source system in the first direction, and controls voltage between electrodes in the light transmission / scattering type liquid crystal panel by turning on / off The light is emitted from a predetermined pixel based on the scattering.
  • the second voltage control mechanism drives the thin film electrode, controls the direction of polarized light introduced from the light source system in the first direction, and inputs the light to a pixel of the light transmission scattering type liquid crystal.
  • the light from the light source is aligned by orienting the polarization axis of the light transmission and scattering liquid crystal of the light transmission and scattering liquid crystal panel parallel to the output light. Propagates between the first substrate and the second substrate.
  • the output light of the light source system is p-polarized light
  • the polarization axis of the light transmission / scattering liquid crystal of the light transmission / scattering liquid crystal panel is oriented perpendicular to the polarization axis of the light from the light source, and the light from the light source is It propagates between the first substrate and the second substrate.
  • the position of the inclined portion of the thin film electrode is determined by inclining the thin film electrode at a predetermined angle and changing the position to which a voltage is applied to the first plurality of electrodes and the second plurality of electrodes. It can be adjusted. It has a mechanism for converting the light flux of the light source into a rectangular and flat, and depolarizing it into p-polarized light or s-polarized light.
  • a display device having a light guide mechanism to be provided and performing display by pixels provided in a matrix on a two-dimensional plane of a substrate, wherein the first substrate is opposite to the second substrate
  • a light transmission / scattering type liquid crystal panel provided on the second substrate side, a plurality of transparent first plurality of electrodes provided on the second substrate side and arranged in the pixel column direction, and provided on the second substrate side of the electrodes
  • a light transmission / scattering type liquid crystal panel provided on the side opposite to the first substrate, and the second substrate provided on the first substrate side.
  • a plurality of second pluralities arranged side by side in the pixel column direction and forming an electrode pair with the first plurality of electrodes; And a second insulator film provided on the first substrate side of the second plurality of electrodes, and the light guide mechanism includes the first substrate and the second substrate.
  • a thin film-like electrode disposed between insulator films provided on the first and second substrates and extending in the same direction as the first and second plural electrodes respectively provided on the first substrate and the second substrate A first region in surface contact with the first insulator film surface by a voltage applied to the first and second plurality of electrodes, and a second region in surface contact with the second insulator film surface
  • a plurality of diffraction gratings formed on both sides of the first and second substrates, and having an inclined surface which is inclined with respect to the substrate surface between the first region and the second region.
  • a strip-like thin film electrode having a light reflection function, and the first and second groups based on an input video signal.
  • a first voltage control mechanism capable of moving the pixel region in the column direction by turning on / off the light transmission / scattering type liquid crystal panel disposed in the second plurality of electrodes and the plurality of second electrodes
  • a second voltage control mechanism capable of moving the inclined portion of the thin film electrode in the column direction by applying a voltage thereto, and the first substrate and the second substrate which are the light guide mechanism.
  • a light source system including a light source for introducing light in a first direction and a second direction disposed at positions where light travels in the column direction and is introduced between insulating films disposed, and polarized light from the light source And the first voltage control mechanism and the first voltage control mechanism so that the scattering region of the light scattering type liquid crystal panel by the first voltage control mechanism and the region forming the inclined portion are formed at the same position. Timing of voltage application with the second voltage control mechanism And a synchronization control unit that synchronizes the display units.
  • a third voltage control mechanism is provided to control on / off of voltages applied to the plurality of electrodes so as to obtain a plurality of electro-optical characteristics in each.
  • the light transmission / scattering type provided on the first substrate side and the second substrate side is controlled by controlling the polarization direction of light introduced from the light source system in the first direction and the second direction.
  • the light is emitted from a predetermined pixel based on the scattering of the light transmission / scattering type liquid crystal material controlled by turning on / off the voltage between the electrodes in the liquid crystal panel. Furthermore, the plurality of thin film electrodes are driven to control the direction of polarized light introduced from the light source system in the first direction and the second direction, and the first substrate side and the second substrate side are controlled. It has a fourth voltage control mechanism to be input to the pixels of each of the provided light transmissive scattering type liquid crystal panels.
  • the display device can realize a very thin display panel.
  • the display structure can be realized with a light transmission / scattering liquid crystal panel thickness (about 2 to 3 mm).
  • the display device according to the present invention has the advantage of being able to display on both sides using a single display panel.
  • FIG. 3 shows the example of a whole structure of the display apparatus by the 1st Embodiment of this invention. It is a transmission perspective view centering on the strip shaped thin film electrode part in this embodiment. It is sectional drawing which shows the structural example of the light guide mechanism part (optical switch function part) in this Embodiment. It is a figure corresponding to FIG. 3, and is a figure which shows the course of light in detail. It is a figure which shows the mode of a drive of a strip shaped thin film electrode part. It is sectional drawing which shows the constructional example of the light guide mechanism part (switch function part) in the double-sided display apparatus in the 2nd Embodiment of this invention. It is a figure corresponding to FIG.
  • FIG. 13 is a figure which shows the diffraction efficiency of the diffraction grating (fine pitch diffraction grating) which has the dimension shown to the FIG. 3 right figure.
  • the horizontal axis is the period T (related to the wavelength ⁇ ), and the vertical axis is the diffraction efficiency.
  • the diffraction efficiency of the diffraction grating with a sufficiently small pitch with respect to the wavelength ⁇ of the incident light is 100%, and it can be seen that light propagation without loss is possible.
  • the inventor has conceived to apply this principle to a display device. In general, it is known that the pitch of the diffraction grating should be ⁇ 0.2 ⁇ .
  • the pitch of the diffraction grating formed on the strip thin film electrode surface disposed in the light guide may be 80 nm or less, and this size is determined by the current nanotechnology technology. It turns out that it is a level that can be produced.
  • the pitch of the diffraction grating formed of the light transmissive scattering type liquid crystal sealed in the second substrate corresponds to the pitch between liquid crystal molecules and is about 2 nm, so it becomes a diffraction grating without reflection loss. Therefore, the incident light shown in FIGS. 9 and 10 propagates without loss while being repeatedly reflected in the light guide formed on the upper and lower surfaces, and is reflected as shown in FIG. It is possible to output efficiently from the scattering type liquid crystal surface.
  • FIG. 1 is a view showing an example of the configuration of a display device according to the present embodiment.
  • the basic configuration of the display apparatus 100 according to the present embodiment is the polarized light source system 102 described above, a first substrate, and is defined by a plurality of optical switch function arrays 106 and internal electrodes. And a light switch function drive system 104 and a second substrate 105.
  • the first substrate 106 and the second substrate 105 are provided.
  • a plurality of electrodes for driving thin film electrodes are disposed on the second substrate 105.
  • FIG. 2 is a transparent perspective view of the display apparatus centering on the thin film thin film electrode 1 in the first embodiment, in which the arrangement direction of the thin film electrode 1 is shown.
  • FIG. 3 is a cross-sectional view showing a configuration example of the light guide mechanism in the first embodiment.
  • the display device (partial view) shows pixel rows 112, 113, 114 (only three rows are shown in the figure) extending along the traveling direction of incident light.
  • the first substrate 8 is the light transmission / scattering type liquid crystal panel 7.
  • Drive transparent electrodes 3 and 4 for driving the thin film electrode 1 are provided on the back surface (inner surface side) of the first substrate 8. The inner surface side is covered with an insulator film 9.
  • the second substrate 11 is transparent, and driving electrodes 5 and 6 for driving the thin film electrode 1 are provided on the upper surface (inner surface side), and these are covered with the insulator film 10.
  • the diffraction grating 2 is formed on the surface on the first substrate 8 side.
  • the thin film electrode 1 on which the is formed is disposed to form a light guide mechanism.
  • transparent plural electrodes 3 and 4 provided on the back surface side (inner surface side) of the first substrate 8 (here, plural electrodes are collectively indicated by reference numerals 3 and 4) and
  • the voltage applied to the transparent electrodes 4 and 5 among the transparent electrodes 5 and 6 provided on the surface of the second substrate 11 (here, a plurality of electrodes are grouped and indicated by reference numerals 5 and 6)
  • the thin film electrode 1 disposed in the space between the first substrate 8 and the second substrate 11 is attracted to the first transparent electrodes 4 and 5.
  • the portion between them is disposed in the space 25 between the first substrate 8 and the second substrate 11, and is inclined at a predetermined angle with respect to the substrate surface in the space 25.
  • FIG. 4 is a diagram showing the operation of the display device according to the present embodiment.
  • the alignment of the liquid crystals forming the pixel sections 12 and 14 of the light transmission / scattering type liquid crystal panel 7 is parallel to the polarization axis of the polarized light source light 21 from the first direction and at the wavelength of the polarized light source light 21.
  • the polarized light source light 21 is reflected between the thin film electrode 1 and the back surface of the light transmission scattering type liquid crystal panel 7
  • the light travels in the space 25 while being reflected by the inclined portion 1a of 1, and is incident on the pixel portion 13 on the region where the inclined portion 1a of the light transmission / scattering type liquid crystal panel 8 is formed, and diffused and emitted as radiation 16 Is configured as.
  • emitted can be controlled by adjusting the formation position of the inclination part 1a.
  • FIG. 5 is a view showing a state of driving of the thin film electrode 1 of the display apparatus according to the present embodiment for one row of FIG. 2 following FIG. 4 and Table 1 shows the position of the thin film electrode in FIG. It is a table
  • the thin film electrode 1 by which the diffraction grating 2 is formed in the upper surface is a figure which shows the state provided in the position A.
  • the thin film electrode 1 is attracted to the on side when it is off and one of the electrodes is on and the other is off, and basically it is not when both are on and when both are off it is floating.
  • the area can be sloped. 5A, the inclined portion A is formed in the pixel portion 13 and the incident light 21-25 becomes the outgoing light 22.
  • the inclined portion B is formed in the pixel portion 16 and the incident light 21- A portion 25 is the emitted light 23
  • a slope C is formed in the pixel section 19, and a voltage is applied to the electrode group so that the incident light 21-25 becomes the emitted light 24.
  • the position of the display pixel is 13, 16, as the area where the inclined portion is formed moves to A, B, C. It is configured to move as shown at 19.
  • radiation light 22, 23, 24 from a predetermined pixel is radiated and scattered from the positions 13, 16, 19 of the transparent electrodes toward the display direction (the upper side of the figure).
  • the orientation of the pixel portions 12, 13 and 14 of the light transmissive scattering type liquid crystal at this time will be described later.
  • insulator films 9 and 10 are disposed between the transparent electrodes 3, 4, 5 and 6 provided on the first substrate 1 and the second substrate 2 and the thin film electrode 1, and are transparent. A short circuit between the electrodes 3, 4, 5, 6 and the thin film electrode 1 is prevented.
  • a suitable insulating film which does not cause short circuit for example, about 1 to 2 ⁇ m is preferable.
  • FIG. 11 is a view showing an alignment example of the light transmission / scattering type liquid crystal in this case, and is a view showing an example in the case where the light source light is s-polarized light.
  • FIG. 11 is a view showing the alignment state of the light transmission scattering type liquid crystal, and the lower view is a cross sectional view along the line AA 'in the upper figure is there. Description will be made with reference to FIG. 5 as appropriate.
  • the input light 21s is oriented as shown by reference numerals 60 and 62 by the voltage applied between the side electrodes 50 disposed on the partition walls of the light transmission and scattering type liquid crystal panel unit 7, and forms the diffraction grating portions 12s and 14s. Do.
  • the diffraction grating sections 12s to 14s are indicated by broken lines.
  • the diffraction grating formed in the light transmission scattering type liquid crystal is obtained by the liquid crystal molecular alignment. It is The diffraction grating on the thin film electrode surface is formed physically.
  • the pitches of the gratings are all equal to or less than the wavelength.
  • the side electrode pairs disposed on the side wall surrounding the light transmission and scattering type liquid crystal are adjacent to each other in a state where they overlap each other by a predetermined width.
  • An insulator is interposed in this overlapping region.
  • the light source system is a second light condensing lens or a second light condensing lens in which a light source capable of luminance modulation by an input video signal, a first light condensing lens, a glass rod, and a polarization conversion element are bonded. And a condenser lens.
  • the surface of the glass rod excluding the entrance and exit surfaces is mirror-processed.
  • the output light of the light source system capable of luminance modulation by the input video signal is reflected by the thin film electrode, and is input to the light transmission and scattering type liquid crystal substrate. Then, the image can be displayed and reproduced by line-sequential scanning by outputting to pixels constituting a predetermined horizontal scanning line.
  • the thin film electrode is arranged to be orthogonally inclined at a position avoiding the incident direction of the outgoing light for each of the R, G and B pixels formed by sealing the light transmission scattering type liquid crystal, and the first substrate and the second A control mechanism is provided to turn on / off each of the substrate and the thin film electrode. With this control mechanism, light can be emitted from a desired pixel based on the scattering of the light transmissive scattering type liquid crystal obtained by controlling the direction of the output polarized light.
  • the input light 21s is totally reflected by the diffraction grating portion 12s, reflected by the inclined portion A of the thin film electrode 1 and travels toward the first substrate 8 side.
  • the user can recognize this scattered light as display light.
  • total reflection position of the input light 21s moves by one pixel in the vertical direction.
  • scattered light can be recognized as display light according to the same principle as the display of the pixel 13s.
  • total reflection position also refers to a diffraction grating surface formed in the light transmission scattering liquid crystal and a diffraction grating surface formed on a thin film electrode surface.
  • the side electrodes 50, 51, 52 are connected by the switches 54, 55, 56, 57, respectively, and a predetermined voltage is applied to the side electrodes. Is further elongated in the vertical direction, and the diffraction grating portion 14s is further shortened. Therefore, the total reflection position of the input light 21s is moved by one more pixel in the vertical direction. At the moved pixel position, scattered light can be recognized as display light according to the same principle as the display of the pixel 13s.
  • the timing of the applied voltage between the side electrodes 50 and the timing of the application of the voltage to the driving transparent electrode are controlled so that the position of the pixel 13s and the position of the reflection portion of the strip thin film electrode portion become the same. Ru.
  • a control circuit for controlling such a drive circuit may be provided.
  • the control circuit applies an alternating voltage between the electrodes 70, 71, 72 as shown in FIG.
  • the even numbered electrodes such as 70 and 72 are made common, the odd numbered electrodes such as 71 and 73 are made common, and the polarities are connected to be different from each other.
  • FIG. 12 is a diagram showing an example of alignment of the light transmissive scattering type liquid crystal when the input light is p-polarized light, and corresponds to FIG.
  • FIG. 15 is a diagram corresponding to FIG.
  • FIG. 12 shows the alignment state of the light transmission / scattering type liquid crystal, and the lower figure is a cross-sectional view along the line BB ′ in the upper figure.
  • the input light 21p is oriented as indicated by reference numerals 74 and 76 by voltages applied between the flat electrodes 70-71 and 72-73 disposed on the back surface of the front substrate of the light transmission scattering type liquid crystal panel section 7,
  • the diffraction grating portion 12p is formed.
  • the input light 21p is totally reflected by the diffraction grating portion 12p, is reflected by the inclined portion of the thin film electrode 1, and is input to the pixel 13p of the light transmission and scattering type panel portion 7 as the input light 80p.
  • the input light 80 p is scattered from the surface of the light transmission / scattering type liquid crystal panel unit 7 because the pixel 13 p is in a non-application and scattering state. The user can recognize this scattered light as the display light 16.
  • FIG. 6 is a view showing an example of the configuration of a display apparatus centering on the light guide mechanism according to the present embodiment.
  • the diffraction grating 2 is provided not only on one side of the thin film electrode 1 but also on both front and back sides.
  • the first substrate 8 but also the second substrate 11 is provided with the same structure as the panel 7 using the light transmission / scattering type liquid crystal.
  • the polarized light source light is formed by the space defined by the first substrate 8 and the second substrate 11 and along the first direction in the light guide portion to be the light introduction portion, and along the substrate surface. It is introduced in both of the second direction which is the opposite direction (26, 28).
  • the inclination angle is preferably about 45 degrees so as to be the same for both.
  • the polarized light source light introduced in this manner is, as shown in FIG. 6, the scattered display pixels of the light transmission / scattering type liquid crystal panel enclosed in the first substrate 8 and the second substrate 11, respectively. It is comprised so that it can carry out radiation diffusion simultaneously from the parts 31 and 34 (display light 27 and 29).
  • the display pixel portions 31 and 34 have the electrode groups 3 and 4 and the electrode groups 5 and 6 based on the voltages applied to a large number of electrode groups insulated by the insulating films 8 and 9. And the on / off of the voltage application.
  • the orientation of the pixel sections 30, 31 and 32 (both sides) of the light transmission / scattering type liquid crystal at this time is the same as that shown in FIG.
  • FIG. 7 is a diagram illustrating in more detail the progress of the incident lights 26 and 28 in the configuration of FIG.
  • the incident lights 26 and 28 are diffracted by the diffraction grating of the thin film electrode 1 and scattered by the scattered light 27 and 29 from the display pixel portion 31 on the first substrate 8 side and the display pixel portion 34 on the second substrate side. It becomes display light, and the same screen can be viewed from both the first substrate 8 side and the second substrate 11 side.
  • the incident light is efficiently condensed on the display pixel portions 31 and 34 by the inclined portion and the diffraction grating, good display can be performed on both sides.
  • the main optical system material in the path from the signal light source to the scattering surface is only the liquid crystal reflection surface and the thin film electrode, It has the advantage of improving. Further, since a light source emitting light of a predetermined wavelength is used as the signal light source, a color filter is not necessary. Also, since the black level can be realized by setting the light emission of the signal light source to 0, it is theoretically possible to make the contrast ratio infinite.
  • the display device is in principle a self-emission type, and the contrast ratio is not limited by the backlight brightness as in TFT-LCD, and the signal light source is independent in RGB pixel units. Therefore, the same speed luminance modulation as that of a CRT or the like is possible.
  • the contrast ratio of each adjacent pixel can be freely set.
  • the contrast ratio between adjacent pixels is significantly improved over TFT-LCD.
  • a very thin display panel can be realized. There is an advantage that the display structure can be realized with a light transmission / scattering liquid crystal panel thickness (about 2 to 3 mm) or so, since a backlight is not necessary.
  • the color reproducibility is good. Since the signal light source is independent for each pixel, the degree of freedom in setting the chromaticity coordinate values of each of the RGB colors is high. For example, color reproducibility of NTSC, HDTV, etc. can be reproduced faithfully.
  • a multi-primary-color display can be realized in which C (cyan), M (magenta), Y (yellow) and the like other than RGB are added in the future of the display evolution. can do.
  • the substrate material is black and reflection of external light is small, a display capable of high contrast display even in a bright room can be realized.
  • the display device according to the present invention has the advantage of being able to display on both sides using a single display panel.
  • the present invention is applicable to a display device and an electronic device using the same.

Abstract

Liquid crystals forming pixel portions (12, 14) of a light transmission scattering type liquid crystal (7) are orientated to be parallel to a polarization axis of a polarization light source (17) from a first direction and form, on a surface of a thin film-shaped electrode (1), a micro grating as compared to the wavelength of a polarization light source light (21). Thus, the polarization light source light (21) is reflected between the rear surfaces of the thin film-shaped electrode (1) and the light transmission scattering type liquid crystal (7) and then reflected by an inclined portion (1a) of the thin film electrode (1) so as to come into a pixel portion (13) in the region where the inclined portion (1a) of a light transmission scattering type liquid crystal panel (8) is formed and is spread/emitted as a radiation light (16). It should be noted that by adjusting the position of the inclined portion (1a), it is possible to control the position of the display pixel portion (13) from which the radiation light (16) is emitted. This enables provision of a display device which can effectively use light.

Description

ディスプレイ装置Display device
 本発明は、ディスプレイ装置に関し、特に、入力映像信号により輝度変調可能な光源システムと、そのR,G,B出力光を所定の水平走査ラインを構成する画素に出力・照射し、線順次走査により画像を表示させるディスプレイ装置(表示装置)に関する。 The present invention relates to a display apparatus, and in particular, a light source system capable of performing luminance modulation by an input video signal, and outputting / irradiating its R, G, B output light to pixels constituting a predetermined horizontal scanning line, line-sequential scanning The present invention relates to a display device (display device) for displaying an image.
 近年、LCD型ディスプレイなどが盛んに用いられている。さらに、次世代のディスプレイ装置として、例えば、光透過散乱型液晶を用いたディスプレイ装置が提案されている(特許文献1参照)。このディスプレイ装置は、その基本原理として、光透過散乱型液晶の入射光の偏光特性と液晶の電気光学的偏光特性との関係を活用し、これら2つの基本原理を融合させたものである。 In recent years, LCD type displays and the like have been widely used. Furthermore, as a next-generation display device, for example, a display device using a light transmission scattering type liquid crystal has been proposed (see Patent Document 1). This display device uses the relationship between the polarization characteristic of the incident light of the light transmission / scattering type liquid crystal and the electro-optical polarization characteristic of the liquid crystal as its basic principle, and combines these two basic principles.
 すなわち、特許文献1のディスプレイの構造は、特許文献1の図1Aに示されるように入力映像信号による輝度変調が可能な水平走査ライン方向の1ライン分の全画素を再生するための光源システムと、該光源システム内でp又はs偏光に変換した光を出力する機構と、水平走査ライン方向の1ライン分の全画素を再生するための前記光源システムの出力光を利用者が見る側に表示、非表示させる機能、且つ、前記光源システムの出力光を線順次走査させる機能を備えた装置及び前記機能を動作させる駆動回路(図示なし)と、を有して構成される。光源システムの出力光を線順次走査させるための機構としては、例えば、光透過散乱型液晶の電気光学特性を活用し液晶層内を移動させる機構と、その移動を表示と関連付けて行わせる駆動制御回路とを設ければ良い。 That is, as shown in FIG. 1A of Patent Document 1, the structure of the display of Patent Document 1 is a light source system for reproducing all pixels for one line in the horizontal scanning line direction, which can perform luminance modulation with an input video signal. A mechanism for outputting light converted into p or s polarized light in the light source system, and displaying the output light of the light source system for reproducing all pixels for one line in the horizontal scanning line direction on the user's viewing side And a device having a function of non-displaying and a function of line-sequentially scanning the output light of the light source system, and a drive circuit (not shown) for operating the function. As a mechanism for line-sequentially scanning the output light of the light source system, for example, a mechanism for moving the inside of the liquid crystal layer by utilizing the electro-optical characteristics of the light transmissive scattering type liquid crystal and drive control for performing the movement in association with display. A circuit and a circuit may be provided.
 また、ディスプレイ装置からの光出射方向を、入射方向に対して90度曲げる方法を用いた技術として、例えば、特許文献2に記載の技術がある。 Further, as a technique using a method of bending the light emission direction from the display device by 90 degrees with respect to the incident direction, for example, there is a technique described in Patent Document 2.
 特許文献2の光スイッチ機能部は、図8に示すように、光線方向変更部材201を有しており、この光線方向変更部材は、金属材料、高分子材料、無機材料などの導電性を有する湾曲可能な膜や薄膜が利用でき、例えばTiNiの薄膜を使用し、薄膜の厚さを4μmとしている。薄膜の少なくとも片面を鏡面にして反射部とする。TiNi合金の薄膜は、耐食性を有し、軟らかく、塑性変形を受け難い超弾性を有する。TiNi合金の薄膜は、形状記憶合金であるので、湾曲の状態を記憶でき、停電時にもそれまでの状態を保持できる。 The optical switch function part of patent document 2 has the light ray direction change member 201, as shown in FIG. 8, This light direction change member has electroconductivity, such as a metal material, a polymeric material, an inorganic material, etc. A bendable film or thin film can be used, for example, a thin film of TiNi is used, and the thin film has a thickness of 4 μm. At least one surface of the thin film is a mirror surface to be a reflective portion. A thin film of a TiNi alloy is corrosion resistant, soft, and has superelasticity that is resistant to plastic deformation. Since the thin film of the TiNi alloy is a shape memory alloy, it can store the state of curvature and can maintain the previous state even during a power failure.
 一方、引付部204(3,4)・205(5,6)は、上記光線方向変更部材を引き付けることができるものである。例えば、2つの引付部204(3,4)・205(5,6)を対向して配置し、その間の空間内に光線方向変更部材201を配置する。引付部204(3,4)・205(5,6)は、光線方向変更部材201を引き付ける引付手段(アクチュエータ:3~6)を備えている。 On the other hand, the attracting portions 204 (3, 4) and 205 (5, 6) can attract the light beam direction changing member. For example, two attracting portions 204 (3, 4) and 205 (5, 6) are disposed to face each other, and the light ray redirecting member 201 is disposed in the space between them. The attracting portions 204 (3, 4) and 205 (5, 6) are provided with attracting means (actuators: 3 to 6) for attracting the light beam direction changing member 201.
 この引付手段は、光線方向変更部材を引き付けることができるものであればよく、例えば電場、磁場、空気などの手段を利用するとよい。引付手段が電場を利用する場合、一対の各引付部に光線方向変更部材の長手方向に沿って多数の電極を並べて配置する。例えば、多数の平行な電極は、入射光線の方向に沿って並べて取り付ける。電極の個数の密度により、湾曲部の最小移動距離が決まる。電極に電圧、例えば500V(上記TiNi合金の薄膜を用い、引付部間の距離1mmとした場合の例)を印加し、光線方向変更部材をアースするにより、光線方向変更部材に静電引力が発生して、光線方向変更部材を電気的に電極に吸引することができる。電極を使用する場合、電極と光線方向変更部材との間を絶縁するために非接触層を電極と光線方向変更部材の間に配置する。また、吸引手段と光線方向変更部材との直接の接触が好ましくない場合も、これらの間に非接触層を配置する。吸引に空気を使用する場合、引付部に吸引する吸引器を配列すれば、光線方向変更部材を引付部に吸引することができる。 The attracting means may be any means capable of attracting the light beam redirecting member, and for example, means such as an electric field, a magnetic field, air or the like may be used. When the attracting means utilizes an electric field, a plurality of electrodes are arranged side by side along the longitudinal direction of the beam redirecting member at each of the pair of attracting parts. For example, multiple parallel electrodes are mounted side by side along the direction of the incident beam. The density of the number of electrodes determines the minimum travel distance of the bend. By applying a voltage, for example 500 V (an example in which the thin film of the TiNi alloy is used and the distance between the attracting portions is 1 mm), to ground the beam redirecting member, electrostatic attractive force is applied to the beam redirecting member. Once generated, the beam redirecting member can be electrically attracted to the electrode. If an electrode is used, a non-contacting layer is placed between the electrode and the beam redirecting member to insulate between the electrode and the beam redirecting member. Also, if direct contact between the suction means and the beam redirecting member is not desirable, a non-contact layer is disposed between them. When air is used for suction, the light redirecting member can be suctioned to the attracting portion by arranging an aspirator for sucking in the attracting portion.
 その他、磁場を利用する場合、例えば光線方向変更部材又は引付部の少なくとも一方に磁石或いは他の磁性体を取り付ける方法を用いても良い。その場合、磁石或いは他の磁性体を吸引する又は離すために電磁誘導を発生する装置を配置する。電磁誘導を発生する装置は、例えば引付部に取り付けると良いが、必要に応じて光線方向変更部材に又は両方に取り付けても良い。少なくとも一方に磁石、他方に磁石或いは他の磁性体を取り付けると、自己保持機能を持たせることができ、例えば通電などの外部エネルギーを与えることなく状態を保持することができる。自己保持機能が不要なら、一方に磁石以外の磁性体を取り付け、他方に電磁誘導を発生する装置を取り付ける。 In addition, when a magnetic field is used, for example, a method of attaching a magnet or other magnetic material to at least one of the beam redirecting member or the attracting portion may be used. In that case, a device for generating electromagnetic induction is arranged to attract or release the magnet or other magnetic material. The device for generating the electromagnetic induction may be attached, for example, to the pulling part, but may be attached to the beam redirecting member or both as required. By attaching a magnet to at least one side and a magnet or other magnetic body to the other side, a self-holding function can be provided, and the state can be maintained without applying external energy such as energization. If the self-holding function is not required, attach a magnetic body other than a magnet to one side and attach a device that generates an electromagnetic induction to the other.
 引付部は、光線が通過する個所に光線が透過できる透過部を設ける。透過部は、例えばITOやガラスなどの透明部材を使用でき、また、引付部に光線が通過できる空間を設けることができる。これにより、所望の箇所から光を出射させることができる。
特開2007-183559号公報 特開2004-240308号公報
The attraction part provides a transmitting part through which the light beam can be transmitted at the place where the light beam passes. For the transmission part, for example, a transparent member such as ITO or glass can be used, and a space through which light can pass can be provided in the attraction part. Thereby, light can be emitted from a desired place.
JP 2007-183559 JP 2004-240308 A
 図9は、特許文献1に記載のタイプのディスプレイに特許文献2に記載の光スイッチのメカニズムを適用した場合の理想的な動作機構例を示す図である。上記のような光スイッチ機能を理想的に動作させる場合に、図9に示すように、対向して配置された第1の基板8及び第2の基板11の内面にそれぞれ設けられた絶縁体膜9・10間に形成される空間内を基板面に沿って進む入射光202を、絶縁体膜9・10間に配置された薄膜状鏡面電極201において反射させて、基板面に略垂直な表示光203とする構成となっている。図10は、図9に示す構成の問題点を模式的に示す図である。実際には、入射光は完全な平行光ではなく、実際には、符号208に示すように、空間内で絶縁膜9・10にあたって反射されるなどにより平行性を失い、薄膜状鏡面電極201で反射された光は基板面に対して垂直ではなくなる成分が増加してしまう(209)。 FIG. 9 is a view showing an example of an ideal operation mechanism when the mechanism of the optical switch described in Patent Document 2 is applied to a display of the type described in Patent Document 1. As shown in FIG. In the case of ideally operating the above-mentioned optical switch function, as shown in FIG. 9, an insulator film provided on the inner surface of the first substrate 8 and the second substrate 11 disposed opposite to each other. The incident light 202 traveling along the substrate surface in the space formed between 9 and 10 is reflected by the thin film mirror electrode 201 disposed between the insulator films 9 and 10, and the display is substantially perpendicular to the substrate surface The light 203 is used. FIG. 10 is a diagram schematically showing the problem of the configuration shown in FIG. In fact, the incident light is not a perfect parallel light, but in fact, as shown by the reference numeral 208, the incident light is reflected in the space by being reflected by the insulating films 9 and 10, etc. The component of the reflected light that is not perpendicular to the substrate surface increases (209).
 従って、上記図9に示す構造では、光スイッチ機能部の軽薄短小化し、実際にディスプレイへの活用に際しては、光源光束の径、平行度、直線性に問題があることがわかる。 Therefore, in the structure shown in FIG. 9, it is understood that there is a problem in the diameter, parallelism, and linearity of the light source luminous flux when the light switch function part is reduced in size and size and actually used in a display.
 本発明は、上記問題点に鑑みてなされたもので、光源光束の径、平行度、直線性などに依存しない光利用効率の良いディスプレイ装置を提供することを目的とする。また、本発明は、ディスプレイ装置の両面表示機能を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a display device with good light utilization efficiency which does not depend on the diameter, parallelism, linearity and the like of the light source light flux. Another object of the present invention is to provide a double-sided display function of a display device.
 本発明の一観点によれば、第1の基板と、該第1の基板とある距離だけ離されて対向配置される第2の基板と、前記第1の基板と前記第2の基板との間に形成される空間に設けられる光ガイド機構と、を有し、基板の2次元平面において行列状に設けられた画素により表示を行うディスプレイ装置であって、前記第1の基板は、前記第2の基板とは反対側に設けられる光透過散乱型液晶パネルと、前記第2の基板側に設けられ画素列方向に並んで配置される透明な第1の複数の電極と、該電極の前記第2の基板側に設けられた第1の絶縁体膜と、を有し、前記第2の基板は、前記第1の基板側に設けられ、画素列方向に並んで配置され前記第1の複数の電極との電極対を形成する第2の複数の電極と、前記第2の複数の電極の前記第1の基板側に設けられた第2の絶縁体膜と、を有し、前記光ガイド機構は、前記第1の基板と前記第2の基板に設けられた絶縁体膜間に配置された薄膜状電極であって、前記第1の基板と前記第2の基板とにそれぞれ設けられた第1及び第2の複数電極と同じ方向に延在し、前記第1及び第2の複数電極に印加する電圧によって前記第1の絶縁体膜面に面接触する第1の領域と、前記第2の絶縁体膜面に面接触する第2の領域と、前記第1の領域と第2の領域との間で前記基板面に対して傾斜する傾斜面を有するとともに、前記第1の基板側の面に形成された多数の回折格子を有するとともに光の反射機能を有する帯状の薄膜状電極を有し、入力映像信号に基づいて前記第1の基板に配置された前記光透過散乱型液晶パネルをオンオフさせることにより、列方向に画素領域を動かすことができる第1の電圧制御機構と、前記第1の複数電極と前記第2の複数電極とに電圧を印加させて前記薄膜状電極の前記傾斜部を列方向移動させることができる第2の電圧制御機構と、前記光ガイド機構である前記第1の基板と前記第2の基板とに配置された絶縁体膜間に前記列方向に進み偏光光を導入する位置に配置された第1の方向に光を導入する光源を含む光源システムと、該光源からの偏光光を、前記第1の電圧制御機構による前記光透過散乱型液晶パネルのうちの散乱領域と、前記傾斜部を形成する領域と、が同じ位置に形成されるように前記第1の電圧制御機構と前記第2の電圧制御機構との電圧印加のタイミングを同期させる同期制御部と、を備えることを特徴とするディスプレイ装置が提供される。前記回折格子は、入射光の波長に対し十分小さいピッチを有していることが好ましい。 According to one aspect of the present invention, a first substrate, a second substrate spaced apart from the first substrate by a certain distance, and a second substrate, the first substrate, and the second substrate And a light guide mechanism provided in a space formed between the two substrates, wherein the first substrate is a display device that performs display by pixels provided in a matrix in a two-dimensional plane of the substrate, A light transmissive scattering type liquid crystal panel provided on the side opposite to the second substrate, a plurality of transparent first plural electrodes provided on the second substrate side and arranged in the pixel column direction, and the electrodes And a first insulator film provided on the second substrate side, wherein the second substrate is provided on the first substrate side, and is disposed side by side in the pixel column direction. A second plurality of electrodes forming an electrode pair with a plurality of electrodes, and the first group of the second plurality of electrodes A second insulator film provided on the side, and the light guide mechanism is a thin film electrode disposed between the insulator film provided on the first substrate and the second substrate And extend in the same direction as the first and second plural electrodes respectively provided on the first substrate and the second substrate, and by the voltage applied to the first and second plural electrodes Between a first region in surface contact with the first insulator film surface, a second region in surface contact with the second insulator film surface, and the first region and the second region An input image having a strip-like thin film-like electrode having an inclined surface inclined with respect to the substrate surface and having a large number of diffraction gratings formed on the surface on the first substrate side and having a light reflection function In turning on / off the light transmission / scattering type liquid crystal panel disposed on the first substrate based on a signal A first voltage control mechanism capable of moving the pixel region in the column direction, and applying a voltage to the first plurality of electrodes and the second plurality of electrodes to line the inclined portion of the thin film electrode A second voltage control mechanism capable of moving in a direction, and introduction of polarized light in the column direction between insulator films disposed on the first substrate and the second substrate which are the light guide mechanism A light source system including a light source for introducing light in a first direction disposed at the same position, and polarized light from the light source, a scattering region of the light transmission / scattering type liquid crystal panel by the first voltage control mechanism And a synchronization control unit that synchronizes the timing of voltage application between the first voltage control mechanism and the second voltage control mechanism so that a region forming the inclined portion is formed at the same position. To provide a display device characterized by Be served. The diffraction grating preferably has a sufficiently small pitch with respect to the wavelength of incident light.
 前記第1の電圧制御機構は、前記薄膜状電極と前記光透過散乱型液晶基板とにより画定される複数のストライプ状の液晶層内のそれぞれにおける複数の電気光学特性を得るように、前記複数の電極に印加される電圧のオン/オフ制御する。前記光源システムから前記第1の方向に導入された光の偏光方向を制御し、前記光透過散乱型液晶パネル内の電極間における電圧をオン/オフにより制御される前記光透過散乱型液晶材の散乱に基づいて所定の画素から前記光を出射させる。前記第2の電圧制御機構は、前記薄膜状電極を駆動し、前記光源システムから前記第1の方向に導入された偏光光の方向を制御し、前記光透過散乱型液晶の画素に入力させる。尚、前記光源システムの出力光がs偏光の場合に、前記光透過散乱型液晶パネルの光透過散乱型液晶の偏光軸を前記出力光に対して平行に配向させることにより、前記光源からの光が前記第1の基板と第2の基板との間を伝搬して行く。前記光源システムの出力光がp偏光の場合に、前記光透過散乱型液晶パネルの光透過散乱型液晶の偏光軸を前記光源からの光の偏光軸に垂直に配向させ、前記光源からの光が前記第1の基板と第2の基板との間を伝搬して行く。 The first voltage control mechanism is configured to obtain a plurality of electro-optical characteristics in each of a plurality of striped liquid crystal layers defined by the thin film electrode and the light transmission / scattering type liquid crystal substrate. Control the on / off of the voltage applied to the electrode. The light transmission / scattering type liquid crystal material which controls the polarization direction of light introduced from the light source system in the first direction, and controls voltage between electrodes in the light transmission / scattering type liquid crystal panel by turning on / off The light is emitted from a predetermined pixel based on the scattering. The second voltage control mechanism drives the thin film electrode, controls the direction of polarized light introduced from the light source system in the first direction, and inputs the light to a pixel of the light transmission scattering type liquid crystal. When the output light of the light source system is s-polarized light, the light from the light source is aligned by orienting the polarization axis of the light transmission and scattering liquid crystal of the light transmission and scattering liquid crystal panel parallel to the output light. Propagates between the first substrate and the second substrate. When the output light of the light source system is p-polarized light, the polarization axis of the light transmission / scattering liquid crystal of the light transmission / scattering liquid crystal panel is oriented perpendicular to the polarization axis of the light from the light source, and the light from the light source is It propagates between the first substrate and the second substrate.
 前記薄膜状電極と前記第1の基板及び前記第2の基板に配置された前記第1の複数電極及び第2の複数電極の間のそれぞれの絶縁体膜を介してのそれぞれの印加電圧により、前記薄膜状電極を所定の角度で傾斜させ、かつ、それぞれ前記第1の複数電極及び第2の複数電極に対する電圧を印加する位置を可変することにより、前記薄膜状電極の前記傾斜部の位置を調整することができる。前記光源の光束を、矩形かつ扁平に変換し、p偏光又はs偏光に片偏光化する機構を有するものである。 By respective applied voltages through respective insulator films between the thin film electrode, the first substrate, and the first and second electrodes disposed on the second substrate, The position of the inclined portion of the thin film electrode is determined by inclining the thin film electrode at a predetermined angle and changing the position to which a voltage is applied to the first plurality of electrodes and the second plurality of electrodes. It can be adjusted. It has a mechanism for converting the light flux of the light source into a rectangular and flat, and depolarizing it into p-polarized light or s-polarized light.
 また、第1の基板と、該第1の基板とある距離だけ離されて対向配置される第2の基板と、前記第1の基板と前記第2の基板との間に形成される空間に設けられる光ガイド機構と、を有し、基板の2次元平面において行列状に設けられた画素により表示を行うディスプレイ装置であって、前記第1の基板は、前記第2の基板とは反対側に設けられる光透過散乱型液晶パネルと、前記第2の基板側に設けられ画素列方向に並んで配置される透明な第1の複数の電極と、該電極の前記第2の基板側に設けられた第1の絶縁体膜と、を有し、前記第2の基板は、前記第1の基板とは反対側に設けられる光透過散乱型液晶パネルと、前記第1の基板側に設けられ、画素列方向に並んで配置され前記第1の複数の電極との電極対を形成する第2の複数の電極と、前記第2の複数の電極の前記第1の基板側に設けられた第2の絶縁体膜と、を有し、前記光ガイド機構は、前記第1の基板と前記第2の基板に設けられた絶縁体膜間に配置された薄膜状電極であって、前記第1の基板と前記第2の基板とにそれぞれ設けられた第1及び第2の複数電極と同じ方向に延在し、前記第1及び第2の複数電極に印加する電圧によって前記第1の絶縁体膜面に面接触する第1の領域と、前記第2の絶縁体膜面に面接触する第2の領域と、前記第1の領域と第2の領域との間で前記基板面に対して傾斜する傾斜面を有するとともに、前記第1及び第2の基板側の両面に形成された多数の回折格子を有するとともに光の反射機能を有する帯状の薄膜状電極を有し、入力映像信号に基づいて前記第1及び第2の基板に配置された前記光透過散乱型液晶パネルをオンオフさせることにより、列方向に画素領域を動かすことができる第1の電圧制御機構と、前記第1の複数の電極と前記複数の第2の電極とに電圧を印加させて前記薄膜状電極の前記傾斜部を列方向移動させることができる第2の電圧制御機構と、前記光ガイド機構である前記第1の基板と前記第2の基板とに配置された絶縁体膜間に前記列方向に進み偏光光を導入する位置に配置された第1の方向と第2の方向に光を導入する光源を含む光源システムと、該光源からの偏光光を、前記第1の電圧制御機構による前記光散乱型液晶パネルのうちの散乱領域と、前記傾斜部を形成する領域と、が同じ位置に形成されるように前記第1の電圧制御機構と前記第2の電圧制御機構との電圧印加のタイミングを同期させる同期制御部と、を備えることを特徴とする両面表示ディスプレイ装置が提供される。 Also, in a space formed between the first substrate, a second substrate spaced apart from the first substrate by a distance, and the space formed between the first substrate and the second substrate. A display device having a light guide mechanism to be provided and performing display by pixels provided in a matrix on a two-dimensional plane of a substrate, wherein the first substrate is opposite to the second substrate A light transmission / scattering type liquid crystal panel provided on the second substrate side, a plurality of transparent first plurality of electrodes provided on the second substrate side and arranged in the pixel column direction, and provided on the second substrate side of the electrodes A light transmission / scattering type liquid crystal panel provided on the side opposite to the first substrate, and the second substrate provided on the first substrate side. A plurality of second pluralities arranged side by side in the pixel column direction and forming an electrode pair with the first plurality of electrodes; And a second insulator film provided on the first substrate side of the second plurality of electrodes, and the light guide mechanism includes the first substrate and the second substrate. A thin film-like electrode disposed between insulator films provided on the first and second substrates and extending in the same direction as the first and second plural electrodes respectively provided on the first substrate and the second substrate A first region in surface contact with the first insulator film surface by a voltage applied to the first and second plurality of electrodes, and a second region in surface contact with the second insulator film surface And a plurality of diffraction gratings formed on both sides of the first and second substrates, and having an inclined surface which is inclined with respect to the substrate surface between the first region and the second region. And a strip-like thin film electrode having a light reflection function, and the first and second groups based on an input video signal. A first voltage control mechanism capable of moving the pixel region in the column direction by turning on / off the light transmission / scattering type liquid crystal panel disposed in the second plurality of electrodes and the plurality of second electrodes A second voltage control mechanism capable of moving the inclined portion of the thin film electrode in the column direction by applying a voltage thereto, and the first substrate and the second substrate which are the light guide mechanism. A light source system including a light source for introducing light in a first direction and a second direction disposed at positions where light travels in the column direction and is introduced between insulating films disposed, and polarized light from the light source And the first voltage control mechanism and the first voltage control mechanism so that the scattering region of the light scattering type liquid crystal panel by the first voltage control mechanism and the region forming the inclined portion are formed at the same position. Timing of voltage application with the second voltage control mechanism And a synchronization control unit that synchronizes the display units.
 前記複数の薄膜状電極と前記複数の薄膜状電極と第1の基板側及び第2の基板側に設けられたそれぞれの前記光透過散乱型液晶により画定される複数のストライプ状の液晶層内のそれぞれにおける複数の電気光学特性を得るように、前記複数の電極に印加される電圧のオン/オフ制御する第3の電圧制御機構を有することを特徴とする。また、前記光源システムから前記第1の方向及び第2の方向に導入された光の偏光方向を制御し、第1の基板側及び第2の基板側に設けられたそれぞれの前記光透過散乱型液晶パネル内の電極間における電圧をオン/オフにより制御される前記光透過散乱型液晶材の散乱に基づいて所定の画素から前記光を出射させることを特徴とする。さらに、前記複数の薄膜状電極を駆動し、前記光源システムから前記第1の方向及び第2の方向に導入された偏光光の方向を制御し、第1の基板側及び第2の基板側に設けられたそれぞれの前記光透過散乱型液晶パネルの画素に入力させる第4の電圧制御機構を有することを特徴とする。 Within a plurality of striped liquid crystal layers defined by the plurality of thin film electrodes, the plurality of thin electrodes, and the light transmissive scattering type liquid crystals respectively provided on the first substrate side and the second substrate side A third voltage control mechanism is provided to control on / off of voltages applied to the plurality of electrodes so as to obtain a plurality of electro-optical characteristics in each. In addition, the light transmission / scattering type provided on the first substrate side and the second substrate side is controlled by controlling the polarization direction of light introduced from the light source system in the first direction and the second direction. It is characterized in that the light is emitted from a predetermined pixel based on the scattering of the light transmission / scattering type liquid crystal material controlled by turning on / off the voltage between the electrodes in the liquid crystal panel. Furthermore, the plurality of thin film electrodes are driven to control the direction of polarized light introduced from the light source system in the first direction and the second direction, and the first substrate side and the second substrate side are controlled. It has a fourth voltage control mechanism to be input to the pixels of each of the provided light transmissive scattering type liquid crystal panels.
 本発明によるディスプレイ装置は、非常に薄い表示パネルを実現することができる。また、バックライトが不要のため、表示構造物としては光透過散乱型液晶パネル厚(約2~3mm)程度で実現可能である。 The display device according to the present invention can realize a very thin display panel. In addition, since a backlight is unnecessary, the display structure can be realized with a light transmission / scattering liquid crystal panel thickness (about 2 to 3 mm).
 また、本発明によるディスプレイ装置は、1枚の表示パネルを用いて、両面に表示させることができるという利点がある。 In addition, the display device according to the present invention has the advantage of being able to display on both sides using a single display panel.
本発明の第1の実施の形態によるディスプレイ装置の全体構成例を示す図である。It is a figure which shows the example of a whole structure of the display apparatus by the 1st Embodiment of this invention. 本実施の形態における帯状薄膜電極部を中心とする透過斜視図である。It is a transmission perspective view centering on the strip shaped thin film electrode part in this embodiment. 本実施の形態における光ガイド機構部(光スイッチ機能部)の構造例を示す断面図である。It is sectional drawing which shows the structural example of the light guide mechanism part (optical switch function part) in this Embodiment. 図3に対応する図であり、光の進路を詳細に示す図である。It is a figure corresponding to FIG. 3, and is a figure which shows the course of light in detail. 帯状薄膜電極部の駆動の様子を示す図である。It is a figure which shows the mode of a drive of a strip shaped thin film electrode part. 本発明の第2の実施の形態における両面表示ディスプレイ装置における光ガイド機構部(スイッチ機能部)の構造例を示す断面図である。It is sectional drawing which shows the constructional example of the light guide mechanism part (switch function part) in the double-sided display apparatus in the 2nd Embodiment of this invention. 図6に対応する図であり、光の進路を詳細に示す図である。It is a figure corresponding to FIG. 6, and is a figure which shows the course of light in detail. 従来の光スイッチ機能の原理を示す図である。It is a figure which shows the principle of the conventional optical switch function. 帯状薄膜電極を用いた従来の光スイッチ機能部の構造を示す断面図である。It is sectional drawing which shows the structure of the conventional optical switch function part using a strip shaped thin film electrode. 図9に示す構造の動作例を示す図である。It is a figure which shows the operation example of the structure shown in FIG. 図9・10に示す構造の問題点を示す図である。It is a figure which shows the problem of the structure shown to FIG. 本実施の形態による光透過散乱型液晶の配向例(光源光がp偏光の場合)を示す図である。It is a figure which shows the orientation example (when light source light is p polarization | polarized-light) of the light transmissive scattering type liquid crystal by this Embodiment. 本実施の形態による微小ピッチ回折格子の回折効率を説明する図である。It is a figure explaining the diffraction efficiency of the fine pitch diffraction grating by this embodiment. 入力光(21s)に適合した光透過散乱型液晶パネルの電極構造の例を示す図である。It is a figure which shows the example of the electrode structure of the light transmissive scattering type liquid crystal panel adapted to input light (21s). 入力光(21p)に適合した光透過散乱型液晶パネルの電極構造の例を示す図である。It is a figure which shows the example of the electrode structure of the light transmissive scattering type liquid crystal panel adapted to input light (21p).
符号の説明Explanation of sign
 1…薄膜状電極、2…回折格子、3、4…駆動用透明電極、5、6…駆動用電極、7…光透過散乱型液晶パネル、8…第1の基板、9…絶縁体膜、10…絶縁体膜、11…第2の基板、17…空間。 DESCRIPTION OF SYMBOLS 1 thin film-like electrode 2. diffraction grating 3 4 drive transparent electrode 5 6 drive electrode 7 light transmissive scattering type liquid crystal panel 8 1st board | substrate 9 insulator film 10: insulator film, 11: second substrate, 17: space.
 以下、本発明の実施の形態によるディスプレイ装置について、図面を参照しながら説明を行う。図13左図は、図3右図に示す寸法を有する回折格子(微小ピッチ回折格子)の回折効率を示す図である。横軸は周期T(波長λと関係する)、縦軸は回折効率である。図13に示すように、入射光の波長λに対し十分小さいピッチの回折格子の回折効率は100%であり、ロスのない光伝搬が可能であることがわかる。発明者は、この原理をディスプレイ装置に利用することを思いついた。一般的に、回折格子のピッチ≦0.2λにするとよいことが知られている。 Hereinafter, a display device according to an embodiment of the present invention will be described with reference to the drawings. The left figure of FIG. 13 is a figure which shows the diffraction efficiency of the diffraction grating (fine pitch diffraction grating) which has the dimension shown to the FIG. 3 right figure. The horizontal axis is the period T (related to the wavelength λ), and the vertical axis is the diffraction efficiency. As shown in FIG. 13, the diffraction efficiency of the diffraction grating with a sufficiently small pitch with respect to the wavelength λ of the incident light is 100%, and it can be seen that light propagation without loss is possible. The inventor has conceived to apply this principle to a display device. In general, it is known that the pitch of the diffraction grating should be ≦ 0.2λ.
 このことから、入力最小波長を400nmとすると、上記ライトガイド内に配置される帯状薄膜電極面に形成される回折格子のピッチを80nm以下とすればよく、このサイズは、現行のナノテクノロジー技術で制作可能なレベルであることがわかる。第2基板に封止された前記光透過散乱型液晶で形成される回折格子のピッチは液晶分子間ピッチに相当し、約2nmであるから、反射ロスのない回折格子となる。従って、図9、図10に示す入射光は上下面に形成されたライトガイド内で反射を繰り返しながらもロスなく伝搬され、帯状薄膜電極の傾斜部で図9に示すように反射し、光透過散乱型液晶面から効率よく出力させることができる。 From this, assuming that the input minimum wavelength is 400 nm, the pitch of the diffraction grating formed on the strip thin film electrode surface disposed in the light guide may be 80 nm or less, and this size is determined by the current nanotechnology technology. It turns out that it is a level that can be produced. The pitch of the diffraction grating formed of the light transmissive scattering type liquid crystal sealed in the second substrate corresponds to the pitch between liquid crystal molecules and is about 2 nm, so it becomes a diffraction grating without reflection loss. Therefore, the incident light shown in FIGS. 9 and 10 propagates without loss while being repeatedly reflected in the light guide formed on the upper and lower surfaces, and is reflected as shown in FIG. It is possible to output efficiently from the scattering type liquid crystal surface.
 以下、より具体的に、本発明の実施の形態について説明する。まず、片面表示のディスプレイ装置の全体構成例について説明する。両面表示の場合も同様の原理であるため、共有できる図面を省略することとする。 Hereinafter, the embodiments of the present invention will be described more specifically. First, an example of the overall configuration of a single-sided display device will be described. Since the principle is the same in the case of double-sided display, the drawings that can be shared are omitted.
 図1は、本実施の形態によるディスプレイ装置の一構成例を示す図である。図1に示すように、本実施の形態によるディスプレイ装置100の基本構成は、上記の偏光光源システム102と、第1の基板であって、複数の光スイッチ機能列106と、内部電極で画定された画素が設定されている光透過散乱型液晶パネル101と、その駆動システム103と、光スイッチ機能駆動システム104と、第2の基板105と、を有しており、第1の基板106及び第2の基板105には、薄膜電極駆動用の複数の電極が配置される。 FIG. 1 is a view showing an example of the configuration of a display device according to the present embodiment. As shown in FIG. 1, the basic configuration of the display apparatus 100 according to the present embodiment is the polarized light source system 102 described above, a first substrate, and is defined by a plurality of optical switch function arrays 106 and internal electrodes. And a light switch function drive system 104 and a second substrate 105. The first substrate 106 and the second substrate 105 are provided. On the second substrate 105, a plurality of electrodes for driving thin film electrodes are disposed.
 以下に、本実施の形態によるディスプレイ装置について詳細な説明を行う。図2は、第1の実施の形態における帯状薄膜電極1を中心としたディスプレイ装置の透過斜視図であり、薄膜状電極1の配列方向が示されている。図3は、第1の実施の形態における光ガイド機構の一構成例を示す断面図である。図2に示すように、ディスプレイ装置(部分図)は、入射光の進行方向に沿って延在する画素列112・113・114(図では3列のみを示している)を図3に示すように、本実施の形態による光ガイド機構においては、第1の基板8は、光透過散乱型液晶パネル7である。第1の基板8の裏面(内面側)には、薄膜状電極1を駆動するための駆動用透明電極3、4が設けられている。その内面側を絶縁体膜9で被覆されている。 Hereinafter, the display device according to the present embodiment will be described in detail. FIG. 2 is a transparent perspective view of the display apparatus centering on the thin film thin film electrode 1 in the first embodiment, in which the arrangement direction of the thin film electrode 1 is shown. FIG. 3 is a cross-sectional view showing a configuration example of the light guide mechanism in the first embodiment. As shown in FIG. 2, the display device (partial view) shows pixel rows 112, 113, 114 (only three rows are shown in the figure) extending along the traveling direction of incident light. In the light guide mechanism according to the present embodiment, the first substrate 8 is the light transmission / scattering type liquid crystal panel 7. Drive transparent electrodes 3 and 4 for driving the thin film electrode 1 are provided on the back surface (inner surface side) of the first substrate 8. The inner surface side is covered with an insulator film 9.
 第2の基板11は、透明であり、上面(内面側)に薄膜状電極1を駆動するための駆動用電極5、6が設けられ、これらを絶縁体膜10で被覆している。 The second substrate 11 is transparent, and driving electrodes 5 and 6 for driving the thin film electrode 1 are provided on the upper surface (inner surface side), and these are covered with the insulator film 10.
 さらに、第1の基板8側の絶縁体膜9と第2の基板11側の絶縁体膜10との間に形成されている空間17内に、第1の基板8側の表面に回折格子2が形成されている薄膜状電極1が配置され、光ガイド機構を形成している。 Furthermore, in the space 17 formed between the insulator film 9 on the first substrate 8 side and the insulator film 10 on the second substrate 11 side, the diffraction grating 2 is formed on the surface on the first substrate 8 side. The thin film electrode 1 on which the is formed is disposed to form a light guide mechanism.
 次に、図4も参照しながら説明を行う。図4に示すように、第1の基板8の裏面側(内面側)に設けた透明な複数電極3、4(ここでは、複数の電極をまとめて、符号3、4で示している)及び第2の基板11の面に設けた透明電極5、6(ここでは、複数の電極をグループ化して、符号5、6で示している。)のうち、透明電極4、5に印加された電圧により、第1の基板8と第2の基板11との空間に配置された薄膜状電極1は、第1の透明電極4及び5に引き寄せられる。その間の部分は、第1の基板8と第2の基板11との空間25内に配置され、この空間25内で基板面に対して所定の角度で傾斜する。図4は、本実施の形態によるディスプレイ装置動作の様子を示す図である。光透過散乱型液晶パネル7の画素部12、14を形成する液晶の配向は、第1の方向からの偏光光源光21の偏光軸に対し、平行であり、かつ、偏光光源光21の波長に比べ、上述のように極細の格子を薄膜状電極1表面に形成していることから、偏光光源光21は、薄膜状電極1及び光透過散乱型液晶パネル7の裏面間で反射され、薄膜電極1の傾斜部1aにおいて反射されながら空間25内を進行し、光透過散乱型液晶パネル8の傾斜部1aの形成されている領域上の画素部13に入射し、放射光16として拡散放射されるように構成されている。尚、傾斜部1aの形成位置を調整することにより、放射光16が出射される位置に対応する画素部13の位置を制御することができる。 Next, description will be made with reference to FIG. As shown in FIG. 4, transparent plural electrodes 3 and 4 provided on the back surface side (inner surface side) of the first substrate 8 (here, plural electrodes are collectively indicated by reference numerals 3 and 4) and The voltage applied to the transparent electrodes 4 and 5 among the transparent electrodes 5 and 6 provided on the surface of the second substrate 11 (here, a plurality of electrodes are grouped and indicated by reference numerals 5 and 6) Thus, the thin film electrode 1 disposed in the space between the first substrate 8 and the second substrate 11 is attracted to the first transparent electrodes 4 and 5. The portion between them is disposed in the space 25 between the first substrate 8 and the second substrate 11, and is inclined at a predetermined angle with respect to the substrate surface in the space 25. FIG. 4 is a diagram showing the operation of the display device according to the present embodiment. The alignment of the liquid crystals forming the pixel sections 12 and 14 of the light transmission / scattering type liquid crystal panel 7 is parallel to the polarization axis of the polarized light source light 21 from the first direction and at the wavelength of the polarized light source light 21. In comparison, as described above, since an extremely thin grating is formed on the surface of the thin film electrode 1, the polarized light source light 21 is reflected between the thin film electrode 1 and the back surface of the light transmission scattering type liquid crystal panel 7 The light travels in the space 25 while being reflected by the inclined portion 1a of 1, and is incident on the pixel portion 13 on the region where the inclined portion 1a of the light transmission / scattering type liquid crystal panel 8 is formed, and diffused and emitted as radiation 16 Is configured as. In addition, the position of the pixel part 13 corresponding to the position where the emitted light 16 is radiate | emitted can be controlled by adjusting the formation position of the inclination part 1a.
 図5は、図4に続いて、本実施の形態によるディスプレイ装置の薄膜状電極1の駆動の様子を図2の一列について示す図であり、表1は、図5における薄膜状電極の位置と上側駆動電極と下側駆動電極との関係を示す表である。
Figure JPOXMLDOC01-appb-T000001
FIG. 5 is a view showing a state of driving of the thin film electrode 1 of the display apparatus according to the present embodiment for one row of FIG. 2 following FIG. 4 and Table 1 shows the position of the thin film electrode in FIG. It is a table | surface which shows the relationship between an upper side drive electrode and a lower side drive electrode.
Figure JPOXMLDOC01-appb-T000001
 図5(A)に示すように、上面に回折格子2が形成されている薄膜状電極1は、位置Aに設けられている状態を示す図である。この場合には、表示させたい画素を符号13で示した場合に、その上側駆動電極群1=a)はオフ、上側駆動電極群2=b)はオン、上側駆動電極群3=c)はオン、であり、下側駆動電極群4=d)はオン、下側駆動電極群5=e)はオフ、下側駆動電極群6=f)はオフ、下側駆動電極7=g)もオフであり、電極の一方がオン・他方がオフの場合には、オン側に薄膜状電極1が引き寄せられ、両方がオンの場合は基本的になく、両方がオフの場合はフローティングになるため、その領域を傾斜部にすることができる。図5(A)では、画素部13において傾斜部Aが形成され入射光21-25が出射光22になり、図5(B)では、画素部16において傾斜部Bが形成され入射光21-25が出射光23になり、図5(C)では画素部19において傾斜部Cが形成され入射光21-25が出射光24になるように電極群に電圧を印加している。 As shown to FIG. 5 (A), the thin film electrode 1 by which the diffraction grating 2 is formed in the upper surface is a figure which shows the state provided in the position A. FIG. In this case, when the pixel to be displayed is indicated by reference numeral 13, the upper drive electrode group 1 = a) is off, the upper drive electrode group 2 = b) is on, and the upper drive electrode group 3 = c). ON, lower drive electrode group 4 = d) ON, lower drive electrode group 5 = e) OFF, lower drive electrode group 6 = f) OFF, lower drive electrode 7 = g) The thin film electrode 1 is attracted to the on side when it is off and one of the electrodes is on and the other is off, and basically it is not when both are on and when both are off it is floating. , The area can be sloped. 5A, the inclined portion A is formed in the pixel portion 13 and the incident light 21-25 becomes the outgoing light 22. In FIG. 5B, the inclined portion B is formed in the pixel portion 16 and the incident light 21- A portion 25 is the emitted light 23, and in FIG. 5C, a slope C is formed in the pixel section 19, and a voltage is applied to the electrode group so that the incident light 21-25 becomes the emitted light 24.
 これらの動作に同期させて、光透過散乱型液晶パネル7においても、傾斜部が形成されている領域がA、B、Cと移動するに伴って、表示画素の位置が、符号13、16、19で示されるように移動するように構成されている。これらの動作により、所定の画素から放射光22、23、24が透明電極の位置が13、16,19から表示方向(図の上側)に向けて放射散乱する。この時の光透過散乱型液晶の画素部12、13、14の配向については後述する。 In the light transmission / scattering type liquid crystal panel 7 in synchronization with these operations, the position of the display pixel is 13, 16, as the area where the inclined portion is formed moves to A, B, C. It is configured to move as shown at 19. By these operations, radiation light 22, 23, 24 from a predetermined pixel is radiated and scattered from the positions 13, 16, 19 of the transparent electrodes toward the display direction (the upper side of the figure). The orientation of the pixel portions 12, 13 and 14 of the light transmissive scattering type liquid crystal at this time will be described later.
 尚、第1の基板1及び第2の基板2に設けた透明電極3、4、5、6と上記薄膜状電極1との間には、絶縁体膜9、10が配置されており、透明電極3、4、5、6と薄膜状電極1との間の電極間のショート(短絡)を防止している。ショートしないような適切な絶縁膜の例と厚さとしては、例えば、1~2μm程度が好ましい。 In addition, insulator films 9 and 10 are disposed between the transparent electrodes 3, 4, 5 and 6 provided on the first substrate 1 and the second substrate 2 and the thin film electrode 1, and are transparent. A short circuit between the electrodes 3, 4, 5, 6 and the thin film electrode 1 is prevented. As an example and thickness of a suitable insulating film which does not cause short circuit, for example, about 1 to 2 μm is preferable.
 次に、s偏光入力光の場合の、光透過散乱型液晶の構造と動作とについて説明する。図11はこの場合の、光透過散乱型液晶の配向例を示す図であり、光源光がs偏光の場合の例を示す図である。 Next, the structure and operation of the light transmissive scattering type liquid crystal in the case of s-polarized input light will be described. FIG. 11 is a view showing an alignment example of the light transmission / scattering type liquid crystal in this case, and is a view showing an example in the case where the light source light is s-polarized light.
(1)図5の画素13sの表示方法
 図11は、光透過散乱型液晶の配向状態を示す図であり、その下の図は、上の図のA-A’線に沿った断面図である。適宜、図5も参照しながら説明する。入力光21sは、光透過散乱型液晶パネル部7の隔壁に配置された側面電極50間に印加された電圧により、符号60、62で示されるように配向され、回折格子部12s、14sを形成する。尚、回折格子部12sから14sまでを、破線で示している。下記の回折格子部12s、14sと、図4の薄膜状電極1の回折格子2とは、いずれも回折格子であるが、光透過散乱型液晶に形成される回折格子は、液晶分子配向によって得られるものである。薄膜状電極面の回折格子は物理的に形成したものである。格子のピッチはいずれも波長以下である。
(1) Display Method of the Pixel 13s of FIG. 5 FIG. 11 is a view showing the alignment state of the light transmission scattering type liquid crystal, and the lower view is a cross sectional view along the line AA 'in the upper figure is there. Description will be made with reference to FIG. 5 as appropriate. The input light 21s is oriented as shown by reference numerals 60 and 62 by the voltage applied between the side electrodes 50 disposed on the partition walls of the light transmission and scattering type liquid crystal panel unit 7, and forms the diffraction grating portions 12s and 14s. Do. The diffraction grating sections 12s to 14s are indicated by broken lines. Although the following diffraction grating sections 12s and 14s and the diffraction grating 2 of the thin film electrode 1 in FIG. 4 are both diffraction gratings, the diffraction grating formed in the light transmission scattering type liquid crystal is obtained by the liquid crystal molecular alignment. It is The diffraction grating on the thin film electrode surface is formed physically. The pitches of the gratings are all equal to or less than the wavelength.
 また、光透過散乱型液晶を囲む側壁に配置された側面電極対は、互いに所定の幅だけオーバーラップした状態で隣接しているのが一般的である。このオーバーラップした領域に絶縁体が介挿されている。また、光源システムは、入力映像信号により輝度変調可能な光源と第1集光レンズとグラスロッドと偏光変換素子を貼合した第2集光レンズまたは偏光変換素子と波長板を貼合した第2集光レンズとを有している。このグラスロッドの入出射面を除く面をミラー処理している。 In addition, it is general that the side electrode pairs disposed on the side wall surrounding the light transmission and scattering type liquid crystal are adjacent to each other in a state where they overlap each other by a predetermined width. An insulator is interposed in this overlapping region. In addition, the light source system is a second light condensing lens or a second light condensing lens in which a light source capable of luminance modulation by an input video signal, a first light condensing lens, a glass rod, and a polarization conversion element are bonded. And a condenser lens. The surface of the glass rod excluding the entrance and exit surfaces is mirror-processed.
 入力映像信号により輝度変調可能な光源システムの出力光を薄膜状電極で反射させ、光透過散乱型液晶基板に入力させる。そして、所定の水平走査ラインを構成する画素に出力し、線順次走査で画像を表示再生させることができる。薄膜状電極は、光透過散乱型液晶を封止して形成した各R、G、B画素毎に、前記出射光の入射方向を避けた位置に直交傾斜配置され、第1の基板及び第2基板と薄膜状電極とのそれぞれをオン/オフ制御する制御機構が設けられている。この制御機構により、出力偏光光の方向を制御することにより得られた光透過散乱型液晶の散乱に基づいて所望の画素から発光させることができる。 The output light of the light source system capable of luminance modulation by the input video signal is reflected by the thin film electrode, and is input to the light transmission and scattering type liquid crystal substrate. Then, the image can be displayed and reproduced by line-sequential scanning by outputting to pixels constituting a predetermined horizontal scanning line. The thin film electrode is arranged to be orthogonally inclined at a position avoiding the incident direction of the outgoing light for each of the R, G and B pixels formed by sealing the light transmission scattering type liquid crystal, and the first substrate and the second A control mechanism is provided to turn on / off each of the substrate and the thin film electrode. With this control mechanism, light can be emitted from a desired pixel based on the scattering of the light transmissive scattering type liquid crystal obtained by controlling the direction of the output polarized light.
 入力光21sは、図5(A)、図14に示すように、回折格子部12sで全反射し、薄膜状電極1の傾斜部Aで反射し第1の基板8側に進み、光透過散乱型パネル部7の画素13sに対して入力光80sとして入力する。画素13sは、図11の中央の状態で示されるように、電圧が印加されておらず液晶分子が散乱状態であるため、図14に示す入力光80sは光透過散乱型液晶パネル部7の表面から散乱する。 As shown in FIG. 5A and FIG. 14, the input light 21s is totally reflected by the diffraction grating portion 12s, reflected by the inclined portion A of the thin film electrode 1 and travels toward the first substrate 8 side. Input light 80 s to the pixel 13 s of the mold panel unit 7. As the pixel 13s is shown in the center state of FIG. 11, no voltage is applied and the liquid crystal molecules are in the scattering state, so the input light 80s shown in FIG. Scatter from
ユーザーは、この散乱光を表示光として認知することができる。 The user can recognize this scattered light as display light.
(2)次画素の表示方法
 図11に示すように、側面電極対50と51を、それぞれスイッチ54、55で接続して電極に所定の電圧を印加すると、光透過散乱型液晶の回折格子部12sは垂直走査方向に長くなり、回折格子部14sは短くなる。
(2) Display Method of the Next Pixel As shown in FIG. 11, when the side electrode pairs 50 and 51 are connected by the switches 54 and 55 respectively and a predetermined voltage is applied to the electrodes, the diffraction grating portion of the light transmission scattering type liquid crystal 12s becomes longer in the vertical scanning direction, and the diffraction grating portion 14s becomes shorter.
 そこで、入力光21sの全反射位置が、垂直方向に1画素分だけ移動する。移動した画素位置において、上記画素13sの表示と同様の原理で、散乱光を表示光として認知することができる。尚、「全反射位置」という用語も光透過散乱型液晶に形成される回折格子面、薄膜状電極面に構成した回折格子面を指す。 Therefore, the total reflection position of the input light 21s moves by one pixel in the vertical direction. At the moved pixel position, scattered light can be recognized as display light according to the same principle as the display of the pixel 13s. The term "total reflection position" also refers to a diffraction grating surface formed in the light transmission scattering liquid crystal and a diffraction grating surface formed on a thin film electrode surface.
(3)次次画素の表示方法
 側面電極50、51、52をそれぞれスイッチ54、55、56、57で接続し、側面電極に所定の電圧を印加すると、光透過散乱型液晶の回折格子部12sは更に垂直方向に長くなり、回折格子部14sは更に短くなる。そこで、入力光21sの全反射位置が、垂直方向にさらに1画素分だけ移動する。移動した画素位置において、上記画素13sの表示と同様の原理で、散乱光を表示光として認知することができる。
(3) Display Method of the Next Pixel The side electrodes 50, 51, 52 are connected by the switches 54, 55, 56, 57, respectively, and a predetermined voltage is applied to the side electrodes. Is further elongated in the vertical direction, and the diffraction grating portion 14s is further shortened. Therefore, the total reflection position of the input light 21s is moved by one more pixel in the vertical direction. At the moved pixel position, scattered light can be recognized as display light according to the same principle as the display of the pixel 13s.
 上記、画素13sの位置と帯状薄膜電極部の反射部の位置とが、同じになるように、側面電極50間の印加電圧のタイミングと、駆動用透明電極への電圧の印加タイミングとが制御される。このような駆動回路を制御する制御回路を設ければ良い。 The timing of the applied voltage between the side electrodes 50 and the timing of the application of the voltage to the driving transparent electrode are controlled so that the position of the pixel 13s and the position of the reflection portion of the strip thin film electrode portion become the same. Ru. A control circuit for controlling such a drive circuit may be provided.
 p偏光の場合、制御回路は、図15に示す様に、電極70、71、72間に交流電圧を印加する。例えば70と72等偶数番号電極を共通化、71と73等奇数番号電極を共通化し、互いに極性を異なる様に接続する。 In the case of p-polarization, the control circuit applies an alternating voltage between the electrodes 70, 71, 72 as shown in FIG. For example, the even numbered electrodes such as 70 and 72 are made common, the odd numbered electrodes such as 71 and 73 are made common, and the polarities are connected to be different from each other.
 次に、入力光がp偏光光である場合の光透過散乱型液晶の構造と動作について説明を行う。図12は、入力光がp偏光光の場合の光透過散乱型液晶の配向例を示す図であり、図11に対応する図である。図15は図14に対応する図である。 Next, the structure and operation of the light transmissive scattering type liquid crystal when the input light is p-polarized light will be described. FIG. 12 is a diagram showing an example of alignment of the light transmissive scattering type liquid crystal when the input light is p-polarized light, and corresponds to FIG. FIG. 15 is a diagram corresponding to FIG.
(1)画素13pの表示方法
 図12は、光透過散乱型液晶の配向状態を示し、その下の図は、上の図におけるB-B’線に沿った断面図である。
(1) Display Method of Pixel 13p FIG. 12 shows the alignment state of the light transmission / scattering type liquid crystal, and the lower figure is a cross-sectional view along the line BB ′ in the upper figure.
 入力光21pは、光透過散乱型液晶パネル部7の表面基板の裏面に配置された平面電極70-71間、72-73間に印加された電圧により符号74、76で示すように配向され、回折格子部12pを形成する。 The input light 21p is oriented as indicated by reference numerals 74 and 76 by voltages applied between the flat electrodes 70-71 and 72-73 disposed on the back surface of the front substrate of the light transmission scattering type liquid crystal panel section 7, The diffraction grating portion 12p is formed.
 入力光21pは、回折格子部12pで全反射し、薄膜状電極1の傾斜部で反射し、光透過散乱型パネル部7の画素13pに入力光80pとして入力する。画素13pは無印加で散乱状態のため、入力光80pは光透過散乱型液晶パネル部7の表面から散乱する。ユーザーは、この散乱光を表示光16として認知することができる。 The input light 21p is totally reflected by the diffraction grating portion 12p, is reflected by the inclined portion of the thin film electrode 1, and is input to the pixel 13p of the light transmission and scattering type panel portion 7 as the input light 80p. The input light 80 p is scattered from the surface of the light transmission / scattering type liquid crystal panel unit 7 because the pixel 13 p is in a non-application and scattering state. The user can recognize this scattered light as the display light 16.
(2)次の画素表示方法
 側面電極対70-71間、71-72間に所定の電圧を印加すると、光透過散乱型液晶の回折格子部12pは垂直方向に長くなり、回折格子部14pは短くなる。入力光21pの全反射位置が垂直方向に1画素移動する。画素13pの表示と同様であるため説明を省略する。
(2) Next Pixel Display Method When a predetermined voltage is applied between the side electrode pair 70-71 and 71-72, the diffraction grating portion 12p of the light transmission scattering type liquid crystal is elongated in the vertical direction, and the diffraction grating portion 14p is It becomes short. The total reflection position of the input light 21p moves by one pixel in the vertical direction. The display is the same as the display of the pixel 13p, so the description is omitted.
(3)次次の画素表示方法
 側面電極70-71間、71-72間、72-73間に、所定の電圧を印加すると、光透過散乱型液晶の回折格子部12pは更に垂直方向に長くなり、回折格子部14pは更に短くなる。画素13pの表示と同様であるため説明を省略する。
(3) Next-Pixel Display Method When a predetermined voltage is applied between the side electrodes 70-71, 71-72, and 72-73, the diffraction grating portion 12p of the light transmission scattering type liquid crystal is further elongated in the vertical direction. The diffraction grating portion 14p is further shortened. The display is the same as the display of the pixel 13p, so the description is omitted.
 次に、本発明の第2の実施の形態によるディスプレイ装置について説明を行う。本実施の形態によるディスプレイ装置の基本構成及び基本動作は、第1の実施の形態によるディスプレイ装置と同様であるため、相違点を中心に説明を行う。図6は、本実施の形態による光ガイド機構部を中心としたディスプレイ装置の一構成例を示す図である。図6に示すように、薄膜状電極1の片面だけでなく表裏両面に、回折格子2を設けたことを特徴とする。また、第1の基板8のみではなく、第2の基板11にも、光透過散乱型液晶を用いたパネル7と同じ構造を設けている。これにより、偏光光源光は、第1の基板8と第2の基板11とにより画定された空間により形成され光の導入部となる光カイド部における第1の方向と、それと基板面に沿って反対の方向である第2の方向の両方に導入されるようになっている(26・28)。傾斜角は両方で同じになるように45度程度が好ましい。 Next, a display device according to a second embodiment of the present invention will be described. The basic configuration and basic operation of the display device according to the present embodiment are the same as those of the display device according to the first embodiment, and therefore, the differences will be mainly described. FIG. 6 is a view showing an example of the configuration of a display apparatus centering on the light guide mechanism according to the present embodiment. As shown in FIG. 6, the diffraction grating 2 is provided not only on one side of the thin film electrode 1 but also on both front and back sides. Further, not only the first substrate 8 but also the second substrate 11 is provided with the same structure as the panel 7 using the light transmission / scattering type liquid crystal. As a result, the polarized light source light is formed by the space defined by the first substrate 8 and the second substrate 11 and along the first direction in the light guide portion to be the light introduction portion, and along the substrate surface. It is introduced in both of the second direction which is the opposite direction (26, 28). The inclination angle is preferably about 45 degrees so as to be the same for both.
 このようにして導入された偏光光源光は、第6図に示す様に、第1の基板8及び第2の基板11にそれぞれ封入されている光透過散乱型液晶パネルの散乱されている表示画素部31・34から同時に放射拡散することができるように構成されている(表示光27・29)。表示画素部31・34は、絶縁膜8・9により絶縁された多数の電極群への印加電圧に基づいて、第1の実施の形態と同様に、電極群3・4と電極群5・6との電圧印加のオン・オフにより画定することができる。尚、この時の光透過散乱型液晶の画素部30、31、32(両面)の配向については、前述の図11に示す構成と同様である。また、薄膜状電極1の構成も、回折格子2が表裏両面に設けられていること以外は、第1の実施の形態と同様である。図7は、図6の構成における入射光26・28の進行の様子をより詳細に説明した図である。入射光26及び28は、薄膜状電極1の回折格子により回折されて、第1の基板8側の表示画素部31と第2の基板側の表示画素部34から散乱光27・29により散乱されて表示光となり、第1の基板8側と第2の基板11側の両方から同じ画面を見ることができるようになっている。この際、傾斜部と回折格子とにより、入射光は表示画素部31・34に効率よく集光されるようになっているため、両面において良好な表示を行うことができる。 The polarized light source light introduced in this manner is, as shown in FIG. 6, the scattered display pixels of the light transmission / scattering type liquid crystal panel enclosed in the first substrate 8 and the second substrate 11, respectively. It is comprised so that it can carry out radiation diffusion simultaneously from the parts 31 and 34 (display light 27 and 29). Similarly to the first embodiment, the display pixel portions 31 and 34 have the electrode groups 3 and 4 and the electrode groups 5 and 6 based on the voltages applied to a large number of electrode groups insulated by the insulating films 8 and 9. And the on / off of the voltage application. The orientation of the pixel sections 30, 31 and 32 (both sides) of the light transmission / scattering type liquid crystal at this time is the same as that shown in FIG. Further, the configuration of the thin film electrode 1 is also the same as that of the first embodiment except that the diffraction grating 2 is provided on both the front and back sides. FIG. 7 is a diagram illustrating in more detail the progress of the incident lights 26 and 28 in the configuration of FIG. The incident lights 26 and 28 are diffracted by the diffraction grating of the thin film electrode 1 and scattered by the scattered light 27 and 29 from the display pixel portion 31 on the first substrate 8 side and the display pixel portion 34 on the second substrate side. It becomes display light, and the same screen can be viewed from both the first substrate 8 side and the second substrate 11 side. At this time, since the incident light is efficiently condensed on the display pixel portions 31 and 34 by the inclined portion and the diffraction grating, good display can be performed on both sides.
 以上に説明した本実施の形態によるディスプレイ装置においても、信号光源から散乱面(表示面)までの経路において主な光学系材料は液晶反射面と薄膜状電極とのみとなるため、光線透過率が向上するという利点がある。また、信号光源に所定の波長を発光する光源を用いるため、カラーフィルタが不要となる。また、黒レベルは、信号光源の発光を0にすれば実現できるため、理論的にはコントラスト比を無限大にすることが可能である。 Also in the display device according to the present embodiment described above, the main optical system material in the path from the signal light source to the scattering surface (display surface) is only the liquid crystal reflection surface and the thin film electrode, It has the advantage of improving. Further, since a light source emitting light of a predetermined wavelength is used as the signal light source, a color filter is not necessary. Also, since the black level can be realized by setting the light emission of the signal light source to 0, it is theoretically possible to make the contrast ratio infinite.
 本実施の形態によるディスプレイ装置は、原理的には自発光型であり、TFT-LCDのようにバックライト輝度によりコントラスト比が制限されることがなく、かつ、信号光源がRGB画素単位に独立して対応しているため、CRTなどと同様な速度輝度変調が可能である。 The display device according to the present embodiment is in principle a self-emission type, and the contrast ratio is not limited by the backlight brightness as in TFT-LCD, and the signal light source is independent in RGB pixel units. Therefore, the same speed luminance modulation as that of a CRT or the like is possible.
 従って、隣接画素の各々のコントラスト比を自由に設定できるという利点がある。隣接画素間のコントラスト比がTFT-LCDより大幅に向上する。 Therefore, there is an advantage that the contrast ratio of each adjacent pixel can be freely set. The contrast ratio between adjacent pixels is significantly improved over TFT-LCD.
 非常に薄い表示パネルを実現することができる。バックライトが不要のため、表示構造物としては光透過散乱型液晶パネル厚(約2~3mm)程度で実現可能であるという利点がある。 A very thin display panel can be realized. There is an advantage that the display structure can be realized with a light transmission / scattering liquid crystal panel thickness (about 2 to 3 mm) or so, since a backlight is not necessary.
 また、色再現性が良好であるという利点がある。信号光源が画素単位に独立しているため、RGB各色の色度座標値設定の自由度が高い。例えば、NTSC,HDTV等の色再現性が忠実に再生できる。 There is also an advantage that the color reproducibility is good. Since the signal light source is independent for each pixel, the degree of freedom in setting the chromaticity coordinate values of each of the RGB colors is high. For example, color reproducibility of NTSC, HDTV, etc. can be reproduced faithfully.
 また、信号光源が画素単位に独立して対応しているため、将来ディスプレイの進化の過程でRGB以外のC(シアン),M(マゼンタ),Y(イエロー)等を加えた多原色ディスプレイを実現することができる。 In addition, since the signal light source independently corresponds to the pixel unit, a multi-primary-color display can be realized in which C (cyan), M (magenta), Y (yellow) and the like other than RGB are added in the future of the display evolution. can do.
 また、基板材が黒色で外光反射が少ないため、明室でも高コントラスト表示が可能なディスプレイが実現できる。 Further, since the substrate material is black and reflection of external light is small, a display capable of high contrast display even in a bright room can be realized.
 また、本発明によるディスプレイ装置は、1枚の表示パネルを用いて、両面に表示させることができるという利点がある。 In addition, the display device according to the present invention has the advantage of being able to display on both sides using a single display panel.
 本発明は、ディスプレイ装置及びそれを用いた電子機器に利用可能である。 The present invention is applicable to a display device and an electronic device using the same.

Claims (54)

  1.  第1の基板と、該第1の基板とある距離だけ離されて対向配置される第2の基板と、前記第1の基板と前記第2の基板との間に形成される空間に設けられる光ガイド機構と、を有し、基板の2次元平面において行列状に設けられた画素により表示を行うディスプレイ装置であって、
     前記第1の基板は、前記第2の基板とは反対側に設けられる光透過散乱型液晶パネルと、前記第2の基板側に設けられ画素列方向に並んで配置される透明な第1の複数の電極と、該電極の前記第2の基板側に設けられた第1の絶縁体膜と、を有し、
     前記第2の基板は、前記第1の基板側に設けられ、画素列方向に並んで配置され前記第1の複数の電極との電極対を形成する第2の複数の電極と、前記第2の複数の電極の前記第1の基板側に設けられた第2の絶縁体膜と、を有し、
     前記光ガイド機構は、前記第1の基板と前記第2の基板に設けられた絶縁体膜間に配置された薄膜状電極であって、前記第1の基板と前記第2の基板とにそれぞれ設けられた第1及び第2の複数電極と同じ方向に延在し、前記第1及び第2の複数電極に印加する電圧によって前記第1の絶縁体膜面に面接触する第1の領域と、前記第2の絶縁体膜面に面接触する第2の領域と、前記第1の領域と第2の領域との間で前記基板面に対して傾斜する傾斜面を有するとともに、前記第1の基板側の面に形成された多数の回折格子を有するとともに光の反射機能を有する帯状の薄膜状電極を有し、
     入力映像信号に基づいて前記第1の基板に配置された前記光透過散乱型液晶パネルをオンオフさせることにより、列方向に画素領域を動かすことができる第1の電圧制御機構と、
     前記第1の複数電極と前記第2の複数電極とに電圧を印加させて前記薄膜状電極の前記傾斜部を列方向移動させることができる第2の電圧制御機構と、
     前記光ガイド機構である前記第1の基板と前記第2の基板とに配置された絶縁体膜間に前記列方向に進み偏光光を導入する位置に配置された第1の方向に光を導入する光源を含む光源システムと、
     該光源からの偏光光を、前記第1の電圧制御機構による前記光透過散乱型液晶パネルのうちの散乱領域と、前記傾斜部を形成する領域と、が同じ位置に形成されるように前記第1の電圧制御機構と前記第2の電圧制御機構との電圧印加のタイミングを同期させる同期制御部と、を備えることを特徴とするディスプレイ装置。
    A first substrate, a second substrate spaced apart from the first substrate by a distance, and a space formed between the first substrate and the second substrate A display device having a light guide mechanism and performing display by pixels provided in a matrix on a two-dimensional plane of a substrate,
    The first substrate is a light transmission / scattering type liquid crystal panel provided on the opposite side to the second substrate, and a transparent first substrate provided on the second substrate side and arranged in the pixel column direction. A plurality of electrodes, and a first insulator film provided on the second substrate side of the electrodes;
    The second substrate is provided on the first substrate side, arranged in the pixel column direction, and forming a pair of electrodes with the first plurality of electrodes; and the second substrate A second insulator film provided on the first substrate side of the plurality of electrodes;
    The light guide mechanism is a thin film-like electrode disposed between the first substrate and an insulator film provided on the second substrate, and the light guide mechanism is provided for each of the first substrate and the second substrate. A first region extending in the same direction as the provided first and second plural electrodes, and in surface contact with the first insulator film surface by a voltage applied to the first and second plural electrodes; A second region in surface contact with the second insulator film surface, and an inclined surface inclined with respect to the substrate surface between the first region and the second region; A strip-like thin film electrode having a large number of diffraction gratings formed on the surface of the substrate side of the
    A first voltage control mechanism capable of moving a pixel region in a column direction by turning on / off the light transmission / scattering type liquid crystal panel disposed on the first substrate based on an input video signal;
    A second voltage control mechanism capable of moving the inclined portion of the thin film electrode in the column direction by applying a voltage to the first plurality of electrodes and the second plurality of electrodes;
    The light is introduced between the insulator films disposed on the first substrate and the second substrate, which are the light guide mechanism, in the column direction, and light is introduced in a first direction disposed at a position for introducing polarized light. A light source system including a light source
    The polarized light from the light source is formed so that the scattering area of the light transmission / scattering type liquid crystal panel by the first voltage control mechanism and the area forming the inclined portion are formed at the same position. A display device comprising: a synchronization control unit that synchronizes voltage application timings of the first voltage control mechanism and the second voltage control mechanism.
  2.  前記回折格子は、入射光の波長に対し十分小さいピッチを有していることを特徴とする請求項1に記載のディスプレイ装置。 The display device according to claim 1, wherein the diffraction grating has a sufficiently small pitch with respect to the wavelength of incident light.
  3.  前記第1の電圧制御機構は、前記薄膜状電極と前記光透過散乱型液晶パネルとにより画定される複数のストライプ状の液晶層内のそれぞれにおける複数の電気光学特性を得るように、前記複数の電極に印加される電圧のオン/オフ制御することを特徴とする請求項1又は2に記載のディスプレイ装置。 The first voltage control mechanism is configured to obtain a plurality of electro-optical characteristics in each of a plurality of striped liquid crystal layers defined by the thin film electrode and the light transmissive scattering type liquid crystal panel. The display apparatus according to claim 1, wherein on / off control of a voltage applied to the electrode is performed.
  4.  前記光源システムから前記第1の方向に導入された光の偏光方向を制御し、前記光透過散乱型液晶パネル内の電極間における電圧をオン/オフにより制御される前記光透過散乱型液晶材の散乱に基づいて所定の画素から前記光を出射させることを特徴とする請求項1から3までのいずれか1項に記載のディスプレイ装置。 The light transmission / scattering type liquid crystal material which controls the polarization direction of light introduced from the light source system in the first direction, and controls voltage between electrodes in the light transmission / scattering type liquid crystal panel by turning on / off The display apparatus according to any one of claims 1 to 3, wherein the light is emitted from a predetermined pixel based on scattering.
  5.  前記第2の電圧制御機構は、前記薄膜状電極を駆動し、前記光源システムから前記第1の方向に導入された偏光光の方向を制御し、前記光透過散乱型液晶の画素に入力させることを特徴とする請求項1から4までのいずれか1項に記載のディスプレイ装置。 The second voltage control mechanism drives the thin film electrode, controls the direction of polarized light introduced from the light source system in the first direction, and causes the light transmission scattering liquid crystal pixel to input the light. The display device according to any one of claims 1 to 4, characterized in that.
  6.  前記光源システムの出力光がs偏光の場合に、前記光透過散乱型液晶パネルの光透過散乱型液晶の偏光軸を前記出力光に対して平行に配向させることにより、前記光源からの光が前記第1の基板と第2の基板との間を伝搬して行くことを特徴とする請求項1から5までのいずれか1項に記載のディスプレイ装置。 When the output light of the light source system is s-polarized light, the light from the light source is the light from the light source by orienting the polarization axis of the light transmission and scattering liquid crystal of the light transmission and scattering liquid crystal panel parallel to the output light. The display apparatus according to any one of claims 1 to 5, wherein the display apparatus propagates between the first substrate and the second substrate.
  7.  前記光源システムの出力光がp偏光の場合に、前記光透過散乱型液晶パネルの光透過散乱型液晶の偏光軸を前記光源からの光の偏光軸に垂直に配向させ、前記光源からの光が前記第1の基板と第2の基板との間を伝搬して行くことを特徴とする請求項1から5までのいずれか1項に記載のディスプレイ装置。 When the output light of the light source system is p-polarized light, the polarization axis of the light transmission / scattering liquid crystal of the light transmission / scattering liquid crystal panel is oriented perpendicular to the polarization axis of the light from the light source, and the light from the light source is The display apparatus according to any one of claims 1 to 5, wherein the display apparatus propagates between the first substrate and the second substrate.
  8.  前記薄膜状電極と前記第1の基板及び前記第2の基板に配置された前記第1の複数電極及び第2の複数電極の間のそれぞれの絶縁体膜を介してのそれぞれの印加電圧により、前記薄膜状電極を所定の角度で傾斜させ、かつ、それぞれ前記第1の複数電極及び第2の複数電極に対する電圧を印加する位置を可変することにより、前記薄膜状電極の前記傾斜部の位置を調整することを特徴とする請求項1から7までのいずれか1項に記載のディスプレイ装置。 By respective applied voltages through respective insulator films between the thin film electrode, the first substrate, and the first and second electrodes disposed on the second substrate, The position of the inclined portion of the thin film electrode is determined by inclining the thin film electrode at a predetermined angle and changing the position to which a voltage is applied to the first plurality of electrodes and the second plurality of electrodes. A display device according to any of the preceding claims, characterized in that it is adjusted.
  9.  前記光源の光束を、矩形かつ扁平に変換し、p偏光又はs偏光に片偏光化する機構を有することを特徴とする請求項1から8までのいずれか1項に記載のディスプレイ装置。 The display apparatus according to any one of claims 1 to 8, further comprising a mechanism for converting the light flux of the light source into a rectangular and flat light and depolarizing the light into p-polarized light or s-polarized light.
  10.  前記光源からの出力光を前記第1の基板と前記第2の基板と間に形成される前記薄膜状電極の傾斜電極面に導入する貫通孔を有する封止材が前記光ガイド部に形成されていることを特徴とする請求項1から9までのいずれか1項に記載のディスプレイ装置。 A sealing material having a through hole for introducing output light from the light source to the inclined electrode surface of the thin film electrode formed between the first substrate and the second substrate is formed in the light guide portion. 10. A display device according to any one of the preceding claims, characterized in that
  11.  前記光透過散乱型液晶を囲む側壁に配置された側面電極対は、互いに所定の幅だけオーバーラップした状態で隣接し、該オーバーラップした領域に絶縁体が介挿されていることを特徴とする請求項1から9までのいずれか1項に記載のディスプレイ装置。 The side electrode pairs disposed on the side wall surrounding the light transmission / scattering type liquid crystal are adjacent to each other in a state of overlapping each other by a predetermined width, and an insulator is interposed in the overlapping region. A display device according to any one of the preceding claims.
  12.  前記光源システムは入力映像信号により輝度変調可能な光源と第1集光レンズとグラスロッドと偏光変換素子を貼合した第2集光レンズまたは偏光変換素子と波長板を貼合した第2集光レンズとを有していることを特徴とする請求項1から11までのいずれか1項に記載のディスプレイ装置。 The light source system is a second light collecting lens in which a light source capable of luminance modulation by an input video signal, a first light collecting lens, a glass rod, and a polarization converting element are bonded. A display device according to any one of the preceding claims, characterized in that it comprises a lens.
  13.  前記グラスロッドの入出射面を除く面をミラー処理したことを特徴とする請求項12に記載のディスプレイ装置。 The display device according to claim 12, wherein a surface of the glass rod excluding an incident / exit surface is mirror-processed.
  14.  前記光透過散乱型液晶を囲む側面電極の印加電圧により、前記散乱状態の領域と前記反射状態領域とを切り替えることを特徴とする請求項1から13までのいずれか1項に記載のディスプレイ装置。 The display device according to any one of claims 1 to 13, wherein a region of the scattering state and the reflection state region are switched by an applied voltage of a side electrode surrounding the light transmissive scattering type liquid crystal.
  15.  請求項1から14までのいずれか1項に記載のディスプレイ装置を備え、入力映像信号により輝度変調可能な光源システムと、該光源システムの出力光を前記薄膜状電極で反射させ、前記光透過散乱型液晶基板に入力し、所定の水平走査ラインを構成する画素に出力し、線順次走査で画像を表示再生させるシステムであって、
     光透過散乱型液晶を封止して形成した各R、G、B画素毎に、前記出射光の入射方向を避けた位置に直交傾斜配置された前記薄膜状電極と、
     該第1の基板及び第2基板と前記薄膜電極とのそれぞれをオン/オフ制御する制御機構と、を有し、
     該制御機構により前記出力偏光光の方向を制御することにより得られた前記光透過散乱型液晶の散乱に基づいて所望の画素から発光させることを特徴とするディスプレイシステム。
    A light source system comprising the display device according to any one of claims 1 to 14 and capable of performing luminance modulation by an input video signal, and reflecting light output from the light source system by the thin film electrode, the light transmission scattering A system for inputting to a liquid crystal substrate, outputting to pixels constituting a predetermined horizontal scanning line, and displaying and reproducing an image by line sequential scanning,
    The thin film-like electrodes disposed orthogonally inclined at positions avoiding the incident direction of the emitted light for each of R, G and B pixels formed by sealing the light transmission scattering type liquid crystal;
    A control mechanism for controlling on / off of each of the first and second substrates and the thin film electrode;
    A display system characterized in that light is emitted from a desired pixel based on the scattering of the light transmission / scattering type liquid crystal obtained by controlling the direction of the output polarized light by the control mechanism.
  16.  第1の基板と、該第1の基板とある距離だけ離されて対向配置される第2の基板と、前記第1の基板と前記第2の基板との間に形成される空間に設けられる光ガイド機構と、を有し、基板の2次元平面において行列状に設けられた画素により表示を行うディスプレイ装置であって、
     前記第1の基板は、前記第2の基板とは反対側に設けられる光透過散乱型液晶パネルと、前記第2の基板側に設けられ画素列方向に並んで配置される透明な第1の複数の電極と、該電極の前記第2の基板側に設けられた第1の絶縁体膜と、を有し、
     前記第2の基板は、前記第1の基板とは反対側に設けられる光透過散乱型液晶パネルと、前記第1の基板側に設けられ、画素列方向に並んで配置され前記第1の複数の電極との電極対を形成する第2の複数の電極と、前記第2の複数の電極の前記第1の基板側に設けられた第2の絶縁体膜と、を有し、
     前記光ガイド機構は、前記第1の基板と前記第2の基板に設けられた絶縁体膜間に配置された薄膜状電極であって、前記第1の基板と前記第2の基板とにそれぞれ設けられた第1及び第2の複数電極と同じ方向に延在し、前記第1及び第2の複数電極に印加する電圧によって前記第1の絶縁体膜面に面接触する第1の領域と、前記第2の絶縁体膜面に面接触する第2の領域と、前記第1の領域と第2の領域との間で前記基板面に対して傾斜する傾斜面を有するとともに、前記第1及び第2の基板側の両面に形成された多数の回折格子を有するとともに光の反射機能を有する帯状の薄膜状電極を有し、
     入力映像信号に基づいて前記第1及び第2の基板に配置された前記光透過散乱型液晶パネルをオンオフさせることにより、列方向に画素領域を動かすことができる第1の電圧制御機構と、
     前記第1の複数電極と前記第2の複数電極とに電圧を印加させて前記薄膜状電極の前記傾斜部を列方向移動させることができる第2の電圧制御機構と、
     前記光ガイド機構である前記第1の基板と前記第2の基板とに配置された絶縁体膜間に前記列方向に進み偏光光を導入する位置に配置された第1の方向と第2の方向とに光を導入する光源を含む光源システムと、
     該光源からの偏光光を、前記第1の電圧制御機構による前記光透過散乱型液晶パネルのうちの散乱領域と、前記傾斜部を形成する領域と、が同じ位置に形成されるように前記第1の電圧制御機構と前記第2の電圧制御機構との電圧印加のタイミングを同期させる同期制御部と、を備えることを特徴とする両面表示ディスプレイ装置。
    A first substrate, a second substrate spaced apart from the first substrate by a distance, and a space formed between the first substrate and the second substrate A display device having a light guide mechanism and performing display by pixels provided in a matrix on a two-dimensional plane of a substrate,
    The first substrate is a light transmission / scattering type liquid crystal panel provided on the opposite side to the second substrate, and a transparent first substrate provided on the second substrate side and arranged in the pixel column direction. A plurality of electrodes, and a first insulator film provided on the second substrate side of the electrodes;
    The second substrate is provided on the light transmission / scattering type liquid crystal panel provided on the side opposite to the first substrate, and on the side of the first substrate, and arranged in parallel in the pixel column direction. And a second insulator film provided on the first substrate side of the second plurality of electrodes to form an electrode pair with the electrode of
    The light guide mechanism is a thin film-like electrode disposed between the first substrate and an insulator film provided on the second substrate, and the light guide mechanism is provided for each of the first substrate and the second substrate. A first region extending in the same direction as the provided first and second plural electrodes, and in surface contact with the first insulator film surface by a voltage applied to the first and second plural electrodes; A second region in surface contact with the second insulator film surface, and an inclined surface inclined with respect to the substrate surface between the first region and the second region; And a strip-like thin film electrode having a large number of diffraction gratings formed on both sides of the second substrate and having a light reflection function,
    A first voltage control mechanism capable of moving a pixel region in a column direction by turning on and off the light transmission / scattering type liquid crystal panel disposed on the first and second substrates based on an input video signal;
    A second voltage control mechanism capable of moving the inclined portion of the thin film electrode in the column direction by applying a voltage to the first plurality of electrodes and the second plurality of electrodes;
    A first direction and a second direction disposed at positions where the polarized light is introduced to advance in the column direction between the insulator films disposed on the first substrate and the second substrate which are the light guide mechanism. A light source system comprising a light source for introducing light in a direction and
    The polarized light from the light source is formed so that the scattering area of the light transmission / scattering type liquid crystal panel by the first voltage control mechanism and the area forming the inclined portion are formed at the same position. And a synchronization control unit for synchronizing timings of voltage application between the first voltage control mechanism and the second voltage control mechanism.
  17.  前記回折格子は、入射光の波長に対し十分小さいピッチを有していることを特徴とする請求項16に記載の両面表示ディスプレイ装置。 17. The dual display display device according to claim 16, wherein the diffraction grating has a sufficiently small pitch with respect to the wavelength of incident light.
  18.  前記複数の薄膜状電極と前記複数の薄膜状電極と第1の基板側及び第2の基板側に設けられたそれぞれの前記光透過散乱型液晶により画定される複数のストライプ状の液晶層内のそれぞれにおける複数の電気光学特性を得るように、前記複数の電極に印加される電圧のオン/オフ制御する第3の電圧制御機構を有することを特徴とする請求項16に記載の両面表示ディスプレイ装置。 Within a plurality of striped liquid crystal layers defined by the plurality of thin film electrodes, the plurality of thin electrodes, and the light transmissive scattering type liquid crystals respectively provided on the first substrate side and the second substrate side The double-sided display device according to claim 16, further comprising: a third voltage control mechanism that performs on / off control of voltages applied to the plurality of electrodes so as to obtain a plurality of electro-optical characteristics in each. .
  19.  前記光源システムから前記第1の方向及び第2の方向に導入された光の偏光方向を制御し、第1の基板側及び第2の基板側に設けられたそれぞれの前記光透過散乱型液晶パネル内の電極間における電圧をオン/オフにより制御される前記光透過散乱型液晶材の散乱に基づいて所定の画素から前記光を出射させることを特徴とする請求項16又17に記載の両面表示ディスプレイ装置。 The light transmission / scattering type liquid crystal panel provided on the first substrate side and the second substrate side by controlling the polarization direction of light introduced from the light source system in the first direction and the second direction. The double-sided display according to claim 16 or 17, wherein the light is emitted from a predetermined pixel based on scattering of the light transmission / scattering type liquid crystal material controlled by turning on / off a voltage between the electrodes in the inner side. Display device.
  20.  前記複数の薄膜状電極を駆動し、前記光源システムから前記第1の方向及び第2の方向に導入された偏光光の方向を制御し、第1の基板側及び第2の基板側に設けられたそれぞれの前記光透過散乱型液晶パネルの画素に入力させる第4の電圧制御機構を有することを特徴とする請求項17から19までのいずれか1項に記載の両面表示ディスプレイ装置。 Driving the plurality of thin film electrodes to control the direction of polarized light introduced from the light source system in the first direction and the second direction, and provided on the first substrate side and the second substrate side 20. The double-sided display device according to claim 17, further comprising: a fourth voltage control mechanism to be input to a pixel of each of the light transmission / scattering type liquid crystal panels.
  21.  前記光源システムの出力光がs偏光の場合に、前記第1の基板側及び第2の基板側に設けられたそれぞれの前記光透過散乱型液晶の前記電極対への印加電圧により、前記光透過散乱型液晶の偏光軸を第1の基板面及び第2の基板面に対して水平に配向させ、前記第1の方向と前記第2の方向から、それぞれ前記光源システムの出力光が前記第1の基板と第2の基板間を伝搬して行くことを特徴とする請求項16から20までのいずれか1項に記載の両面表示ディスプレイ装置。 When the output light of the light source system is s-polarized light, the light transmission is caused by the voltage applied to the electrode pair of the light transmission / scattering type liquid crystal provided on the first substrate side and the second substrate side. The polarization axis of the scattering liquid crystal is aligned horizontally to the first substrate surface and the second substrate surface, and the output light of the light source system is the first from the first direction and the second direction, respectively. 21. A dual-sided display device according to any one of claims 16 to 20, which propagates between the second substrate and the second substrate.
  22.  前記光源システムの出力光がp偏光の場合に、前記第1の基板側及び第2の基板側に設けられたそれぞれの前記光透過散乱型液晶の前記電極対への印加電圧により、前記光透過散乱型液晶の偏光軸を第1及び第2の方向からの前記出力光p偏光に対して平行にさせ、前記第1の方向と前記第2の方向から、それぞれ前記光源システムの出力光が前記第1の基板と第2の基板間を伝搬して行くことを特徴とする請求項16から20までのいずれか1項に記載の両面表示ディスプレイ装置。 When the output light of the light source system is p-polarized light, the light transmission is caused by the voltage applied to the electrode pair of the light transmissive scattering type liquid crystal provided on the first substrate side and the second substrate side. The polarization axis of the scattering type liquid crystal is made parallel to the output light p polarization from the first and second directions, and the output light of the light source system is respectively from the first direction and the second direction. 21. A dual-sided display as claimed in any one of claims 16 to 20, propagating between a first substrate and a second substrate.
  23.  前記第1及び第2の方向に伝搬させるそれぞれの前記光源システムからの光源の光束を矩形かつ扁平に変換し、p偏光またはs偏光に片偏光化する機構を有することを特徴とする請求項16から22までのいずれか1項に記載の両面表示ディスプレイ装置。 The light source system according to the present invention has a mechanism for converting the light flux of the light source from each of the light source systems propagating in the first and second directions into a rectangular and flat, and depolarizing it into p polarized light or s polarized light. 22. A double sided display device as claimed in any one of the preceding claims.
  24.  前記封止材に形成され前記光源システムからの出力光を前記第1の基板と前記第2の基板間に設けた第1及び第2の方向から入力させる前記出力光の貫通孔を有することを特徴とする請求項16から23までのいずれか1項に記載の両面表示ディスプレイ装置。 Having a through-hole of the output light formed on the sealing material and inputting the output light from the light source system from the first and second directions provided between the first substrate and the second substrate 24. A dual sided display device as claimed in any one of claims 16 to 23, characterized in that.
  25.  前記第1の基板と前記第2の基板側のそれぞれの前記光透過散乱型液晶パネルの側壁に配置された側面電極対は、互いに所定の幅だけオーバーラップした状態で隣接し、該オーバーラップした領域に絶縁体が介挿されていることを特徴とする請求項16から23までのいずれか1項に記載の両面表示ディスプレイ装置。 The side electrode pairs disposed on the side walls of the light transmission / scattering type liquid crystal panel on the side of the first substrate and the side of the second substrate are adjacent to each other in a state where they overlap each other by a predetermined width. The double-sided display device according to any one of claims 16 to 23, wherein an insulator is inserted in the area.
  26.  前記光源システムは、それぞれ第1の方向の出力光及び第2の方向の出力光を入力映像信号により輝度変調可能な光源と第1集光レンズとグラスロッドと偏光変換素子を貼合した第2集光レンズまたは偏光変換素子と波長板を貼合した第2集光レンズとを有していることを特徴とする請求項16から23までのいずれか1項に記載のディスプレイ装置。 The light source system is a second light source in which output light in a first direction and output light in a second direction can be intensity-modulated by an input video signal, a first condenser lens, a glass rod, and a polarization conversion element The display apparatus according to any one of claims 16 to 23, further comprising a second condensing lens in which a condensing lens or a polarization conversion element and a wavelength plate are bonded.
  27.  前記グラスロッドの入出射面を除く面をミラー処理したことを特徴とする請求項26に記載の両面表示ディスプレイ装置。 The double-sided display apparatus according to claim 26, wherein a surface of the glass rod excluding the incident / exit surface is mirror-processed.
  28.  前記第1の基板及び前記第2の基板に封入されたそれぞれの前記光透過散乱型液晶を囲む側壁に配置された側面電極対は、互いに所定の幅だけオーバーラップした状態で隣接し、該オーバーラップした領域に絶縁体が介挿されていることを特徴とする請求項16から27までのいずれか1項に記載の両面表示ディスプレイ装置。 The side electrode pairs disposed on the side wall surrounding the light transmission / scattering type liquid crystal enclosed in the first substrate and the second substrate are adjacent to each other in a state in which they overlap each other by a predetermined width. 28. A dual sided display device as claimed in any of claims 16 to 27, characterized in that an insulator is interposed in the wrapped area.
  29.  前記第1及び第2の方向からのそれぞれの前記光源システムは入力映像信号により輝度変調可能な光源と第1集光レンズとグラスロッドと偏光変換素子を貼合した第2集光レンズまたは偏光変換素子と波長板を貼合した第2集光レンズとを有していることを特徴とする請求項16から28までのいずれか1項に記載の両面表示ディスプレイ装置。 In each of the light source systems from the first and second directions, a second light collecting lens or a polarization conversion obtained by bonding a light source capable of performing luminance modulation with an input video signal, a first light collecting lens, a glass rod, and a polarization conversion element 29. A double-sided display as claimed in any one of claims 16 to 28, characterized in that it comprises a second condenser lens in which the element and the wave plate are bonded.
  30.  前記グラスロッドの入出射面を除く面をミラー処理したことを特徴とする請求項29に記載の両面表示ディスプレイ装置。 30. The double-sided display as claimed in claim 29, wherein a surface of the glass rod excluding an incident / exit surface is mirror-processed.
  31.  光透過散乱型液晶を封止して形成した各R、G、B画素毎に、前記出射光の入射方向を避けた位置に直交傾斜配置された前記薄膜状電極と、
     該第1の基板及び第2基板と前記薄膜電極とのそれぞれをオン/オフ制御する制御機構と、を有し、
     該制御機構により前記出力偏光光の方向を制御することにより得られた前記光透過散乱型液晶の散乱に基づいて所望の画素から発光させることを特徴とする請求項16から28までのいずれか1項に記載の両面表示ディスプレイ装置。
    The thin film-like electrodes disposed orthogonally inclined at positions avoiding the incident direction of the emitted light for each of R, G and B pixels formed by sealing the light transmission scattering type liquid crystal;
    A control mechanism for controlling on / off of each of the first and second substrates and the thin film electrode;
    29. The light is emitted from a desired pixel based on the scattering of the light transmission / scattering type liquid crystal obtained by controlling the direction of the output polarized light by the control mechanism. The double-sided display device according to claim 1.
  32.  前記入力映像信号の入力と前記電圧制御機構とを連動させることにより、第1及び第2の方向から出力されるそれぞれの前記光源光を前記第1の基板面及び/又は前記第2の基板面から1画素単位で出力する制御を行う制御部を有することを特徴とする請求項16から29までのいずれか1項に記載の両面表示ディスプレイ装置。 By interlocking the input of the input video signal and the voltage control mechanism, each of the light source light outputted from the first and second directions is the first substrate surface and / or the second substrate surface. The double-sided display device according to any one of claims 16 to 29, further comprising: a control unit that performs control to output in units of one pixel.
  33.  前記制御部は、前記入力映像信号に応じ、前記第1基板面と前記第2基板面とに挟まれる同じ位置にある画素から前記光源光を交互または同時に出力制御可能な制御を行うことを特徴とする請求項32に記載の両面表示ディスプレイ装置。 The control unit performs control capable of controlling output of the light source light alternately or simultaneously from pixels located at the same position between the first substrate surface and the second substrate surface according to the input video signal. 33. A dual sided display device as claimed in claim 32.
  34.  前記光源システムの光源光をpまたはs偏光に制御した出力光を垂直走査の方向に導入し、前記第1の基板の絶縁帯膜と前記第2の基板の絶縁帯膜に挟まれた空間を伝搬し、所定の傾斜を有する薄膜状電極の両面にて反射し、前記第1の基板側及び第2の基板側に配置された前記光透過分散型液晶層に出射させ、前記対向電極対の印加電圧をオン/オフにより制御される前記光透過散乱型液晶材の電気光学的特性に基づき、前記光源光を第1の基板面及び第2の基板面から出射させることを特徴とする請求項16から27までのいずれか1項に記載の両面表示ディスプレイ装置。 Output light in which light source light of the light source system is controlled to p or s polarized light is introduced in the direction of vertical scanning, and a space sandwiched between the insulating band film of the first substrate and the insulating band film of the second substrate is The light propagates and is reflected on both sides of the thin film electrode having a predetermined inclination, and is emitted to the light transmission dispersion type liquid crystal layer disposed on the first substrate side and the second substrate side. The invention is characterized in that the light source light is emitted from the first substrate surface and the second substrate surface based on the electro-optical characteristics of the light transmission / scattering type liquid crystal material controlled by turning on / off an applied voltage. The double-sided display device according to any one of 16 to 27.
  35.  表示画素数分に相当する複数の前記光源システムの光源光をpまたはs偏光に制御した出力光を垂直走査の方向に導入し、2組の前記対向電極対における電圧をオン/オフにより制御される前記光透過散乱型液晶材の電気光学的特性に基づき、線順次走査により、前記偏光光源光を第1の基板面及び第2の基板面から出射させ、画面形成することを特徴とする請求項16から28までのいずれか1項に記載の両面表示ディスプレイ装置。 Output light in which source light of a plurality of light source systems corresponding to the number of display pixels is controlled to p or s polarization is introduced in the direction of vertical scanning, and voltages at two pairs of opposite electrode pairs are controlled by on / off The screen is formed by emitting the polarized light source light from the first substrate surface and the second substrate surface by line sequential scanning based on the electro-optical characteristics of the light transmission / scattering type liquid crystal material. The double-sided display device according to any one of Items 16 to 28.
  36.  前記光源システムから前記第1の方向に導入された偏光光の方向を制御し、2組の前記対向電極対における電圧をオン/オフにより制御される前記光透過散乱型液晶材の散乱に基づいて所定の画素から前記第1の基板面及び/又は前記第2の基板面から前記光を出射させることを特徴とする請求項16から31までのいずれか1項に記載の両面表示ディスプレイ装置。 Based on the scattering of the light transmission / scattering type liquid crystal material, which controls the direction of polarized light introduced from the light source system in the first direction, and controls the voltage at two pairs of opposite electrode pairs by on / off The double-sided display device according to any one of claims 16 to 31, wherein the light is emitted from a predetermined pixel and / or the first substrate surface and / or the second substrate surface.
  37.  前記光源システムからの出力光がs偏光の場合に、前記第1及び第2の対向電極対に印加する電圧により前記光透過散乱型液晶の偏光軸を前記第1の基板面に対して水平に配向させ前記電極間を前記光源システムの出力光が前記第1の基板の絶縁帯膜と前記第2の基板の絶縁帯膜に挟まれた空間を伝搬し、所定の傾斜を有する薄膜状電極の両面において反射し、前記第1の基板側及び第2の基板側に配置された前記光透過分散型液晶層に出射させる電圧印加機構を有することを特徴とする請求項16から32のいずれか1項に記載の両面表示ディスプレイ装置。 When the output light from the light source system is s-polarized light, the polarization axis of the light transmission / scattering type liquid crystal is made horizontal to the first substrate surface by a voltage applied to the first and second counter electrodes. The light output from the light source system is directed between the electrodes and propagates through the space sandwiched between the insulating band film of the first substrate and the insulating band film of the second substrate, and a thin film electrode having a predetermined inclination 33. The voltage application mechanism according to claim 16, further comprising: a voltage application mechanism that reflects light on both sides and emits the light to the light transmission dispersion type liquid crystal layer disposed on the first substrate side and the second substrate side. The double-sided display device according to claim 1.
  38.  前記光源システムからの出力光がp偏光の場合に、前記第1及び第2の対向電極対に印加する電圧により前記光透過散乱型液晶の偏光軸を前記第1及び第2の方向に出力する偏光光源光に対して垂直に配向させ、前記電極間を前記光源システムの出力光が前記第1の基板の絶縁帯膜と前記第2の基板の絶縁帯膜に挟まれた空間を伝搬し、所定の傾斜を有する薄膜状電極の両面にて反射し、前記第1の基板側及び第2の基板側に配置された前記光透過分散型液晶層に出射させる電圧印加機構を有することを特徴とする請求項16から33までのいずれか1項に記載の両面表示ディスプレイ装置。 When the output light from the light source system is p-polarized light, the polarization axis of the light transmissive scattering type liquid crystal is output in the first and second directions by a voltage applied to the first and second counter electrodes. The light source system is oriented vertically to polarized light source light, and the output light of the light source system propagates in the space between the insulating band film of the first substrate and the insulating band film of the second substrate between the electrodes, It has a voltage application mechanism which reflects light from both sides of a thin film electrode having a predetermined inclination and causes the light transmission dispersion type liquid crystal layer disposed on the first substrate side and the second substrate side to emit light. 34. A dual display display device according to any one of claims 16 to 33.
  39.  前記光源システムのp偏光又はs偏光である出力光が、前記画素への入射経路を経て前記画素の出射面から出力されるように、前記第1及び第2の対向電極対に印加する電圧を共にオフにする電圧制御機構を有することを特徴とする請求項20から34までのいずれか1項に記載の両面表示ディスプレイ装置。 A voltage is applied to the first and second counter electrode pairs so that output light, which is p-polarized light or s-polarized light of the light source system, is output from the emission surface of the pixel through the incident path to the pixel. 35. A dual sided display as claimed in any one of claims 20 to 34, characterized in that it has a voltage control mechanism which turns off together.
  40.  前記光源システムからの光源の光束を矩形かつ扁平に変換し、p偏光またはs偏光に片偏光化する片偏光化機構を有することを特徴とする請求項20から35までのいずれか1項に記載の両面表示ディスプレイ装置。 36. The device according to any one of claims 20 to 35, characterized in that it has a one-polarization mechanism for converting the light flux of the light source from the light source system into a rectangle and a flat and depolarizing it into p-polarization or s-polarization. Double-sided display device.
  41.  前記液晶を封止する封止材に形成され、前記光源システムからの出力光を前記第1の基板の絶縁帯膜と前記第2の基板の絶縁帯膜に挟まれた空間に導入する貫通孔を有することを特徴とする請求項20から36までのいずれか1項に記載の両面表示ディスプレイ装置。 A through hole formed in a sealing material for sealing the liquid crystal and introducing the output light from the light source system into the space sandwiched between the insulating band film of the first substrate and the insulating band film of the second substrate 37. A dual sided display device according to any of claims 20 to 36, characterized in that
  42.  前記第1及び前記第2の基板に配置されたそれぞれの光透過散乱型液晶の側壁に配置された電極は、互いに所定の幅だけオーバーラップした状態で隣接して配置され、該オーバーラップした領域に絶縁体が介挿されていることを特徴とする請求項16から37までのいずれか1項に記載の両面表示ディスプレイ装置。 The electrodes disposed on the side walls of the respective light transmissive scattering type liquid crystals disposed on the first and second substrates are disposed adjacent to each other in a state of overlapping each other by a predetermined width, and the overlapping regions An apparatus according to any one of claims 16 to 37, characterized in that an insulator is inserted in the.
  43.  前記光源システムは、入力映像信号により輝度変調可能な光源と、第1集光レンズとグラスロッドと、偏光変換素子を貼合した第2集光レンズ又は偏光変換素子と波長板とを貼合した第2集光レンズと、を有していることを特徴とする請求項16から38までのいずれか1項に記載の両面表示ディスプレイ装置。 The light source system includes a light source capable of luminance modulation by an input video signal, a first condensing lens and a glass rod, and a second condensing lens or polarization converting element laminated with a polarization conversion element and a wavelength plate The double-sided display apparatus according to any one of claims 16 to 38, further comprising a second condenser lens.
  44.  前記グラスロッドを形成する画面のうち入出射面を除く面をミラー処理したことを特徴とする請求項43に記載のディスプレイ装置。 The display device according to claim 43, wherein a surface of the screen forming the glass rod excluding an incident / exit surface is mirror-processed.
  45.  前記第1の基板面の表示内容と同じ内容を前記第2の基板面に表示させるか又は互いに異なる表示内容を表示させることを1枚の表示パネルで可能ならしめる信号処理システム及び前記信号システムを有することを特徴とする請求項16から43までのいずれか1項に記載の両面表示ディスプレイ装置。 A signal processing system and a signal system for enabling display of the same content as the display content of the first substrate surface on the second substrate surface or display of different display content with a single display panel 44. A dual sided display device according to any one of the claims 16 to 43, characterized in that it comprises.
  46.   前記第1の基板の表示面と前記第2の基板の表示面各々の水平走査方向を任意に設定可能な走査方向制御手段を有することを特徴とする請求項16から44のいずれか1項に記載の両面表示ディスプレイを備えた情報処理装置。 45. A scanning direction control means capable of arbitrarily setting a horizontal scanning direction of each of the display surface of the first substrate and the display surface of the second substrate. An information processing apparatus comprising the double-sided display according to the above.
  47.  前記第1及び第2の光透過散乱型液晶の側面電極の印加電圧により、前記散乱状態の領域と前記反射状態領域とを切り替えることを特徴とする請求項1から15記載のいずれか1項に記載のディスプレイ装置及び請求項16から46のいずれか1項に記載の両面表示ディスプレイ装置。 The region in the scattering state and the region in the reflection state are switched according to an applied voltage of the side electrodes of the first and second light transmission / scattering type liquid crystals, according to any one of claims 1 to 15. 47. A display as claimed in any one of claims 16 to 46 and a dual display as claimed in any one of claims 16 to 46.
  48.  前記光源を隣接する光源で異なる色配置にすることを特徴とする請求項1から16までのいずれか1項に記載のディスプレイ装置。 17. A display device according to any one of the preceding claims, characterized in that the light sources are arranged in different colors with adjacent light sources.
  49.  前記光源を隣接する光源で異なる色配置にすることを特徴とする請求項17から47までのいずれか1項に記載の両面表示ディスプレイ装置。 48. A dual display display device as claimed in any of claims 17 to 47, wherein the light sources are arranged in different colors with adjacent light sources.
  50.  前記光源を隣接する光源からの前記基板の一方側に出射される光を前記第2の方向に沿って同じ色配置にするとともに、前記基板の反対側に出射される光を前記第2の方向に沿って異なる色配置にすることを特徴とする請求項17から46、48までのいずれか1項に記載の両面表示ディスプレイ装置。 Light emitted to one side of the substrate from an adjacent light source is arranged in the same color along the second direction, and light emitted to the opposite side of the substrate is directed to the second direction 49. A dual sided display device according to any one of claims 17 to 46, 48, wherein different color arrangements are provided along the.
  51.  前記隣接する光源からの前記基板のいずれか一方側と他方側に出射される光を前記第2の方向に沿って交互に出射させることを特徴とする請求項17から46、48、49までのいずれか1項に記載の両面表示ディスプレイ装置。 50. The light according to claim 17, wherein the light emitted from one of the adjacent light sources to one side and the other side of the substrate is alternately emitted along the second direction. The double-sided display device according to any one of the above.
  52.  入力映像信号により輝度変調可能な光源システムと、該光源システムの出力光を前記薄膜状電極で反射させ、前記光透過散乱型液晶パネルに入力し、所定の水平走査ラインを構成する画素に出力し、線順次走査で画像を表示再生させるシステムであって、
     光透過散乱型液晶を封止して形成した各R、G、B画素毎に、前記出射光の入射方向を避けた位置に直交傾斜配置された前記薄膜状電極と、
     該第1の基板及び第2基板と前記薄膜電極とのそれぞれをオン/オフ制御する制御機構と、を有し、
     該制御機構により前記出力偏光光の第1及び第2の方向を制御することにより得られた前記光透過散乱型液晶の散乱に基づいて所望の画素から発光させることを特徴とする両面表示ディスプレイシステム。
    A light source system capable of performing luminance modulation by an input video signal, and the output light of the light source system is reflected by the thin film electrode, input to the light transmission and scattering type liquid crystal panel, and output to pixels constituting a predetermined horizontal scanning line. A system for displaying and reproducing an image by line sequential scanning,
    The thin film-like electrodes disposed orthogonally inclined at positions avoiding the incident direction of the emitted light for each of R, G and B pixels formed by sealing the light transmission scattering type liquid crystal;
    A control mechanism for controlling on / off of each of the first and second substrates and the thin film electrode;
    A double-sided display system characterized in that light is emitted from a desired pixel based on the scattering of the light transmission / scattering type liquid crystal obtained by controlling the first and second directions of the output polarized light by the control mechanism. .
  53.  入力映像信号により輝度変調可能な光源システムと、該光源システムの出力光を前記薄膜状電極で反射させ、前記光透過散乱型液晶パネルに入力し、所定の水平走査ラインを構成する画素に出力し、線順次走査で画像を表示再生させるシステムであって、
     光透過散乱型液晶を封止して形成した各R、G、B画素毎に、前記出射光の入射方向を避けた位置に直交傾斜配置された前記薄膜状電極と、
     該第1の基板及び第2基板と前記薄膜電極とのそれぞれをオン/オフ制御する制御機構と、を有し、
     該制御機構により前記出力偏光光の第1及び第2の方向を制御することにより得られた前記光透過散乱型液晶の散乱に基づいて所望の画素から発光させることが可能なシステムにおいて、前記光透過散乱型液晶の配向を前記出力偏光光源光の偏光軸に対して水平または垂直に切換可能な構成を特徴とする請求項1から14までのいずれか1項に記載のディスプレイ装置。
    A light source system capable of performing luminance modulation by an input video signal, and the output light of the light source system is reflected by the thin film electrode, input to the light transmission and scattering type liquid crystal panel, and output to pixels constituting a predetermined horizontal scanning line. A system for displaying and reproducing an image by line sequential scanning,
    The thin film-like electrodes disposed orthogonally inclined at positions avoiding the incident direction of the emitted light for each of R, G and B pixels formed by sealing the light transmission scattering type liquid crystal;
    A control mechanism for controlling on / off of each of the first and second substrates and the thin film electrode;
    In a system capable of causing light emission from a desired pixel based on the scattering of the light transmissive scattering type liquid crystal obtained by controlling the first and second directions of the output polarized light by the control mechanism, the light The display device according to any one of claims 1 to 14, characterized in that the orientation of the transmissive scattering type liquid crystal can be switched horizontally or vertically to the polarization axis of the output polarized light source light.
  54.  入力映像信号により輝度変調可能な光源システムと、該光源システムの出力光を前記薄膜状電極で反射させ、前記光透過散乱型液晶基板に入力し、所定の水平走査ラインを構成する画素に出力し、線順次走査で画像を表示再生させるシステムであって、
     光透過散乱型液晶を封止して形成した各R、G、B画素毎に、前記出射光の入射方向を避けた位置に直交傾斜配置された前記薄膜状電極と、
     該第1の基板及び第2基板と前記薄膜電極とのそれぞれをオン/オフ制御する制御機構と、を有し、
     該制御機構により前記出力偏光光の第1及び第2の方向を制御することにより得られた前記光透過散乱型液晶の散乱に基づいて所望の画素から発光させることが可能なシステムにおいて、前記光透過散乱型液晶の配向を前記出力偏光光源光の偏光軸に対して水平または垂直に切換可能な構成を特長とする請求項15から46、48、49までのいずれか1項に記載の両面表示ディスプレイ装置。
    A light source system capable of performing luminance modulation by an input video signal, and the output light of the light source system is reflected by the thin film electrode, input to the light transmissive scattering type liquid crystal substrate, and output to pixels constituting a predetermined horizontal scanning line. A system for displaying and reproducing an image by line sequential scanning,
    The thin film-like electrodes disposed orthogonally inclined at positions avoiding the incident direction of the emitted light for each of R, G and B pixels formed by sealing the light transmission scattering type liquid crystal;
    A control mechanism for controlling on / off of each of the first and second substrates and the thin film electrode;
    In a system capable of causing light emission from a desired pixel based on the scattering of the light transmissive scattering type liquid crystal obtained by controlling the first and second directions of the output polarized light by the control mechanism, the light The double-sided display according to any one of claims 15 to 46, 48, 49, characterized in that the orientation of the transmission / scattering type liquid crystal can be switched horizontally or vertically to the polarization axis of the output polarized light source light. Display device.
PCT/JP2008/072672 2007-12-21 2008-12-12 Display device WO2009081771A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007330740A JP4452741B2 (en) 2007-12-21 2007-12-21 Display device
JP2007-330740 2007-12-21

Publications (1)

Publication Number Publication Date
WO2009081771A1 true WO2009081771A1 (en) 2009-07-02

Family

ID=40801077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072672 WO2009081771A1 (en) 2007-12-21 2008-12-12 Display device

Country Status (2)

Country Link
JP (1) JP4452741B2 (en)
WO (1) WO2009081771A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109739040A (en) * 2019-02-25 2019-05-10 京东方科技集团股份有限公司 A kind of light modulation piece, backlight module, display device and its driving method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4980272B2 (en) * 2008-03-13 2012-07-18 シャープ株式会社 Backlight device and display device using the same
JP2012220575A (en) * 2011-04-05 2012-11-12 Japan Display East Co Ltd Liquid crystal display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004240308A (en) * 2003-02-07 2004-08-26 Rikogaku Shinkokai Light direction change device, optical switch and optical head
WO2006088096A1 (en) * 2005-02-17 2006-08-24 Sharp Kabushiki Kaisha Display device
JP2007183559A (en) * 2005-12-06 2007-07-19 Sharp Corp Display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004240308A (en) * 2003-02-07 2004-08-26 Rikogaku Shinkokai Light direction change device, optical switch and optical head
WO2006088096A1 (en) * 2005-02-17 2006-08-24 Sharp Kabushiki Kaisha Display device
JP2007183559A (en) * 2005-12-06 2007-07-19 Sharp Corp Display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109739040A (en) * 2019-02-25 2019-05-10 京东方科技集团股份有限公司 A kind of light modulation piece, backlight module, display device and its driving method
US11215863B2 (en) 2019-02-25 2022-01-04 Beijing Boe Optoelectronics Technology Co., Ltd. Light modulating element, backlight module, display device and method for driving the same

Also Published As

Publication number Publication date
JP4452741B2 (en) 2010-04-21
JP2009151209A (en) 2009-07-09

Similar Documents

Publication Publication Date Title
JP4054825B2 (en) Display element and display device using the same
JP4087681B2 (en) LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME
JP4655465B2 (en) Surface light source and liquid crystal display device
JP2007155783A (en) Liquid crystal display device
JP2005532583A (en) Foil display with two light guides
JP2013083674A5 (en)
TW201640201A (en) Display device with directional control of the output, and a backlight for such a display device and a light direction method
JP3810788B2 (en) Display device
WO2009081771A1 (en) Display device
JP4483233B2 (en) Surface light source and liquid crystal display device
JP4600219B2 (en) Driving method of liquid crystal display device
JP2007183559A (en) Display device
JP2004118001A (en) Display device
JP5034590B2 (en) Display device
JP2010266543A (en) Liquid crystal display
JP2006337840A (en) Double-sided display device
JP4792805B2 (en) Display device
JP4980272B2 (en) Backlight device and display device using the same
JP5263230B2 (en) Liquid crystal display
JP4421575B2 (en) Display device
JP2009150956A (en) Electrical engineering device
JP2014077910A (en) Display device and operation method of display device
JP5397334B2 (en) Driving method of display device
JP5263228B2 (en) Driving method of display device
WO2023151087A1 (en) Backlight assembly and display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08863805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08863805

Country of ref document: EP

Kind code of ref document: A1