WO2009081674A1 - Display apparatus - Google Patents

Display apparatus Download PDF

Info

Publication number
WO2009081674A1
WO2009081674A1 PCT/JP2008/071132 JP2008071132W WO2009081674A1 WO 2009081674 A1 WO2009081674 A1 WO 2009081674A1 JP 2008071132 W JP2008071132 W JP 2008071132W WO 2009081674 A1 WO2009081674 A1 WO 2009081674A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
image
light source
display device
ellipse
Prior art date
Application number
PCT/JP2008/071132
Other languages
French (fr)
Japanese (ja)
Inventor
Akinori Hayashi
Hiroshi Ito
Tomohiro Kometani
Original Assignee
Eizo Nanao Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007331911A external-priority patent/JP4767938B2/en
Priority claimed from JP2008126135A external-priority patent/JP4767994B2/en
Application filed by Eizo Nanao Corporation filed Critical Eizo Nanao Corporation
Publication of WO2009081674A1 publication Critical patent/WO2009081674A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/10Mirrors with curved faces
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/322Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using varifocal lenses or mirrors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0237Switching ON and OFF the backlight within one frame
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/024Scrolling of light from the illumination source over the display in combination with the scanning of the display screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/028Improving the quality of display appearance by changing the viewing angle properties, e.g. widening the viewing angle, adapting the viewing angle to the view direction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/068Adjustment of display parameters for control of viewing angle adjustment
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N2013/40Privacy aspects, i.e. devices showing different images to different viewers, the images not being viewpoints of the same scene
    • H04N2013/403Privacy aspects, i.e. devices showing different images to different viewers, the images not being viewpoints of the same scene the images being monoscopic

Definitions

  • the present invention relates to a display device that displays an image, and more particularly to a technique for limiting a viewing angle so that an image can be observed only at a specific position.
  • This apparatus includes a liquid crystal display panel, a diffusion plate, a Fresnel lens having a focal length that forms an image at a predetermined distance from the liquid crystal display panel, and a light source. These are arranged linearly in the housing of the display device. With such a configuration, only an observer at a predetermined position can see the image, and the viewing angle can be limited.
  • Japanese Patent No. 2620516 (FIG. 18)
  • the conventional example having such a configuration has the following problems. That is, in the conventional apparatus, since it is necessary to arrange each member linearly, there is a problem that the depth of the apparatus becomes long and the size cannot be reduced.
  • the present invention has been made in view of such circumstances, and the viewing angle can be limited by using a light guide having a reflecting surface formed of a part of an elliptical arc.
  • An object of the present invention is to provide a display device that can shorten the depth of the device and is advantageous for downsizing.
  • Another object of the present invention is to reduce the viewing angle by devising the way of capturing light, and to reduce the depth of the apparatus, which is advantageous for downsizing, but uneven brightness.
  • Another object of the present invention is to provide an image display device that can suppress the width of the device even when the field of view of a two-dimensional image is widened.
  • the present invention has the following configuration. That is, the invention according to claim 1 is configured by a transmissive liquid crystal display panel for displaying an image, a plate-like appearance, and one end surface being a part of an elliptical arc when viewed from the surface direction. Formed on the end surface of the main body corresponding to one focal side of the ellipse, and formed on the other end surface of the main body when viewed from the surface direction. And formed on the end surface of the main body, and a part of the circular arc of the ellipse when viewed from the surface direction. A light guide having a reflecting surface and a light source disposed on one focal side of the ellipse are provided.
  • the light emitted from the light source arranged on one focal side is incident from the incident surface of the light guide, reflected by the elliptical reflecting surface, and emitted from the emitting surface. Then, the light passes through the transmissive liquid crystal display panel and is condensed at the other focal position. Therefore, the viewing angle can be limited only to the other focal direction.
  • a light source may be arranged on the side of the light guide, so that the depth of the device can be shortened and the size can be reduced. Can be planned.
  • the invention described in claim 2 is a transmissive liquid crystal display panel for displaying an image, and has a plate-like appearance shape, and one end surface is constituted by a part of an elliptical arc when viewed from the surface direction. Formed on the end surface of the main body corresponding to one focal side of the ellipse, and formed on the other end surface of the main body when viewed from the surface direction. And formed on the end surface of the main body, and a part of the circular arc of the ellipse when viewed from the surface direction.
  • a light guide having a reflective surface comprising a plurality of the light guides, the light guide having the incident surface directed to one side, and the light guide having the incident surface directed to the other side, and being laminated with the surfaces facing each other, A pair comprising a first light source disposed in the vicinity of the incident surface of the light guide directed toward the side and a second light source disposed in the vicinity of the incident surface of the light guide directed toward the other side. And a light source.
  • emitted from the 1st light source and 2nd light source which are arrange
  • the light is reflected from the reflecting surface and emitted from the emitting surface, is transmitted through the transmissive liquid crystal display panel, and is condensed on the other different focal points. Therefore, the viewing angle can be limited to only two directions.
  • a light source may be arranged on the side of the light guide, so that the depth of the device can be shortened and the size can be reduced. Can be planned.
  • image output means for alternately outputting different first images and second images to the transmissive liquid crystal display panel, and the image output means from the first image to the second image
  • first light source is output when the first image is output
  • first light source is output when the second image is output.
  • a light source control means for turning on the second light source.
  • the image output means alternately outputs the first image and the second image
  • the light source control means turns on the first light source and the second light source alternately so that one liquid crystal display panel is provided. Can be observed at different positions, the first image and the second image can be observed. Therefore, a so-called “dual view” display device can be realized.
  • image output means for alternately outputting a right eye image and a left eye image to the transmissive liquid crystal display panel, and the image output means changes from a right eye image to a left eye image, or
  • the first light source is output when the right-eye image is output
  • the second light source is output when the left-eye image is output.
  • a light source control means for turning on the light source.
  • the image output means alternately outputs the image for the right eye and the image for the left eye
  • the light source control means switches the first light source and the second light source and turns them on so that the image for the right eye is turned on. And a stereoscopic image based on the parallax of the left-eye image can be observed.
  • the light-reflecting surface of the light guide has a layer of a light-reflecting material that reflects light on the outer surface of the main body (Claim 5).
  • a black coating is applied to a surface of the main body excluding the exit surface and the incident surface so as to overlap with a white coating, and a black paint is applied to an end surface side excluding the exit surface and the entrance surface.
  • Light-transmitting resin can efficiently transmit light from the light source, incident light can be reflected by the light-reflecting material on the reflecting surface, and incident light can be efficiently reflected by white paint and black paint. Can be guided to the exit surface.
  • the reflective material on the reflective surface is protected by the light-transmitting resin, deterioration with time of the reflective material (such as clouding of the reflective surface) can be suppressed. Further, it is more cost effective than providing a reflective layer on the entire surface.
  • an air layer is formed between the main bodies when the main bodies are laminated (claim 7).
  • an air layer can be formed therebetween. Since light has a characteristic of traveling through a medium having a high refractive index, it is possible to prevent light from leaking from each light guide to an adjacent light guide, and coating of the laminated surface can be omitted.
  • the main body is formed such that one end surface close to the incident surface along the major axis of the ellipse is formed as a sub-reflection surface, and light incident from the incident surface passes through the sub-reflection surface and the reflection surface. It is preferable that the light is emitted outward from the other focal side.
  • the image In a stereoscopic image display device that collects light at the position of the observer's eye, the image usually becomes invisible when the observer's eye deviates from the focusing position, but the sub-reflecting surface and the reflecting surface move outside the focal position. Since the three-dimensional image cannot be seen, it can be seen as a two-dimensional image by only the right-eye image or the left-eye image. Therefore, it is possible to know the outline of the image stereoscopically viewed by the observer even around the observer viewing stereoscopically.
  • the incident surface has a thickness greater than that of the reflecting surface. By increasing the thickness of the incident surface, light from the light source can be efficiently incident.
  • a transmissive liquid crystal display panel for displaying an image and a plate-like appearance shape are formed, and one end surface is elliptical when viewed from the surface direction.
  • the main body is formed of a part of the arc and is formed of a member that transmits light, and is separated from one focal point of the ellipse and the major axis of the ellipse, and is formed on the main body along the major axis of the ellipse.
  • An incident surface on which light is incident, an intermediate reflecting surface that is disposed at a position surrounding one focal point of the ellipse when viewed from the surface direction, and reflects light incident from the incident surface, and an ellipse of the main body Are formed on the other end surface of the main body and reflected by the elliptical reflecting surface.
  • a light guide having an emission surface for emitting the light, and the light guide And it is characterized in that it comprises a light source disposed in the intermediate reflecting surface side.
  • the light emitted from the light source disposed on one focal side enters from the incident surface of the light guide and is reflected by the elliptical reflecting surface via the intermediate reflecting surface.
  • the light is emitted from the emission surface, passes through the transmissive liquid crystal display panel, and is condensed on the other focal side of the ellipse. Therefore, the viewing angle can be limited to the other focal direction.
  • the incident surface of the main body is formed apart from one focal point of the ellipse and the major axis of the ellipse, and light from the light source is incident through the intermediate reflecting surface, so one of the ellipses out of the light from the light source The amount of light passing through the focal point can be increased.
  • the incident surface of the main body is formed along the long axis of the ellipse, even if the light source is lengthened to widen the field of view of the two-dimensional image, the light source does not become long in the width direction. Therefore, it can suppress that the width
  • a display device for displaying an image, a transmissive liquid crystal display panel for displaying an image, and a rear side of the transmissive liquid crystal display panel as viewed from the display surface.
  • an elliptical reflecting surface that is configured by a part of an elliptical arc in plan view and reflects light from one focal point of the ellipse to the other focal side of the ellipse, and the transmissive liquid crystal display
  • a light source disposed on the side of the panel and spaced apart from one focal point of the ellipse and the major axis of the ellipse, and disposed along the major axis of the ellipse; the light source and the elliptical reflecting surface; And an intermediate reflecting surface disposed at a position surrounding one focal point of the ellipse and reflecting light from the light source to the ellipsoidal reflecting surface.
  • the light emitted from the light source disposed on one focal side is reflected from the elliptical reflecting surface through the intermediate reflecting surface, and is transmitted through the transmissive liquid crystal display panel.
  • the viewing angle can be limited to the other focal direction.
  • the light source is disposed apart from one focus of the ellipse and the major axis of the ellipse, and the light from the light source is incident through the intermediate reflection surface, one focus of the ellipse out of the light from the light source The amount of light passing through can be increased.
  • the light source is disposed along the long axis of the ellipse, the light source does not become longer in the width direction even if the light source is lengthened to widen the field of view of the two-dimensional image. Therefore, it can suppress that the width
  • “along the long axis” as used herein includes parallelism, but does not need to be parallel and does not leave a distance. Therefore, it includes a state in which it is inclined with respect to the long axis.
  • a transmissive liquid crystal display panel for displaying an image and a plate-like external shape are formed, and one end surface is elliptical when viewed from the surface direction.
  • the main body is made up of a part of the arc and is made of a light transmitting member, and is separated from one focal point of the ellipse and extends downward along the vertical direction from the major axis side of the ellipse.
  • the incident surface is formed and disposed at a position off the one focal point of the ellipse when viewed from the surface direction, and is incident from the incident surface on the surface opposite to the one focal point of the ellipse.
  • a light guide comprising: an intermediate reflection surface that reflects the reflected light; and an elliptical reflection surface that forms part of an arc of the main body and reflects light from the intermediate reflection surface toward the other focal side of the ellipse And a light source disposed on the intermediate reflection surface side of the light guide. And it is characterized in Rukoto.
  • the light emitted from the light source disposed on one focal side is incident from the incident surface of the light guide, and is reflected by the elliptical reflecting surface through the intermediate reflecting surface.
  • the light is emitted from the emission surface, passes through the transmissive liquid crystal display panel, and is condensed on the other focal side of the ellipse. Therefore, the viewing angle can be limited to the other focal direction.
  • the incident surface of the main body is formed away from one focal point of the ellipse, and the light from the light source enters through the intermediate reflection surface, so the amount of light passing through one focal point of the ellipse among the light from the light source Can be increased.
  • the incident surface of the main body is formed to extend downward along the vertical direction from the major axis side of the ellipse, even if the light source is lengthened to widen the field of view of the two-dimensional image, the light source remains in the width direction. It will not be long. Therefore, it can suppress that the width
  • the intermediate reflecting surface is disposed at a position deviated from one focal point of the ellipse when viewed from the surface direction, and is configured to reflect light incident from the incident surface on a surface opposite to the one focal point of the ellipse. Therefore, the light source can be arranged close to one apparent focal point. Therefore, the width of the device can be narrowed, and the size can be further reduced.
  • a transmissive liquid crystal display panel for displaying an image
  • a rear side of the transmissive liquid crystal display panel as viewed from the display surface.
  • an elliptical reflecting surface that is configured by a part of an elliptical arc in plan view and reflects light from one focal point of the ellipse to the other focal side of the ellipse
  • the transmissive liquid crystal display A light source disposed on the side of the panel and spaced from one focal point of the ellipse and extending downward along the vertical direction from the long axis side of the ellipse; Located between the ellipsoidal reflecting surface and disposed at a position deviating from one focal point of the ellipse, the light from the light source is reflected by the ellipsoidal reflecting surface on the surface opposite to the one focal point of the ellipse.
  • An intermediate reflective surface that That.
  • the light emitted from the light source disposed on one focal side is reflected from the elliptical reflecting surface through the intermediate reflecting surface and is transmitted through the transmissive liquid crystal display panel.
  • the viewing angle can be limited to the other focal direction.
  • the light source is disposed away from one focal point of the ellipse and the light from the light source enters through the intermediate reflection surface, the amount of light passing through one focal point of the ellipse among the light from the light source is increased. be able to. Therefore, it is possible to suppress the luminance unevenness of the transmissive liquid crystal display panel viewed from the viewpoint corresponding to the other focus.
  • the light source is arranged extending downward along the vertical direction from the long axis side of the ellipse, the light source does not become longer in the width direction even if the light source is lengthened to widen the field of view of the two-dimensional image. . Therefore, it can suppress that the width
  • the intermediate reflecting surface is disposed at a position deviated from one focal point of the ellipse when viewed from the surface direction, and is configured to reflect light incident from the incident surface on a surface opposite to the one focal point of the ellipse. Therefore, the light source can be arranged close to one apparent focal point. Therefore, the width of the device can be narrowed, and the size can be further reduced.
  • the intermediate reflection surface includes a parabolic reflection surface using a part of a parabola (claim 14).
  • Light from the light source incident in parallel to the parabolic reflecting surface can be collected so as to pass through one focal point.
  • the light from the light source incident in parallel to the parabolic reflecting surface can be apparently collected at one apparent focal point.
  • the elliptical reflecting surface reflects light only in the other focal direction of the ellipse.
  • An image display apparatus with a very limited viewing angle can be obtained.
  • the light guide is a reflection formed by laminating a plurality of light guides having an incident surface directed to one side and a light guide having the incident surface directed to the other side.
  • the light source is configured as a unit, and the light source includes a first light source disposed on the light guide whose incident surface is directed to one side, and a first light source disposed on the light guide whose incident surface is directed to the other side.
  • An image output unit configured as a pair of light sources including two light sources and alternately outputting different first and second images to the transmissive liquid crystal display panel; and When sequentially switching from the first image to the second image, or from the second image to the first image, if the first image is output, the first light source is switched to the second image.
  • a light source control means for turning on the second light source when it is output. (Claim 16).
  • the light emitted from the first light source and the second light source arranged on one focal side enters from the entrance surface of each light guide of the reflection unit, is reflected by the elliptical reflection surface, and exits from the exit surface. Then, the light is transmitted through the transmissive liquid crystal display panel and condensed on the other different focal points. Therefore, the viewing angle can be limited to two directions.
  • the light source control means alternately turns on the first light source and the second light source, thereby When the transmissive liquid crystal display panel is observed at different positions, the first image and the second image can be observed. Therefore, a so-called “dual view” image display apparatus can be realized.
  • the reflection unit is formed by laminating a plurality of the elliptical reflection surfaces, and is configured such that one focal point of the adjacent elliptical reflection surfaces is directed to the opposite side on one side and the other side.
  • the light source includes a first light source disposed on an intermediate reflecting surface of an elliptic reflecting surface in which one focus of the ellipse is directed to one side, and one focus of the ellipse is directed to the other side.
  • a second light source disposed on the intermediate reflection surface of the elliptical reflection surface, and the transmissive liquid crystal display panel alternately displays different first images and second images.
  • the image output means for outputting and the first image is output when the image output means sequentially switches from the first image to the second image or from the second image to the first image.
  • the second image is output to the first light source
  • Light emitted from the first light source and the second light source arranged on one focal side is incident on the intermediate reflection surface of the reflection unit, reflected by the intermediate reflection surface, reflected by the elliptical reflection surface, and transmitted. Is transmitted through a liquid crystal display panel of a type and condensed on the other different focal points. Therefore, the viewing angle can be limited to two directions.
  • the light source control means alternately turns on the first light source and the second light source, thereby When the transmissive liquid crystal display panel is observed at different positions, the first image and the second image can be observed.
  • the first image and the second image are a left-eye image and a right-eye image having parallax with each other (claim 18).
  • a stereoscopic image can be displayed by alternately outputting a left-eye image and a right-eye image.
  • the first image and the second image are different two-dimensional images. Different images can be observed depending on the viewing direction, and a so-called “dual view” image display apparatus can be realized.
  • the intermediate reflecting surface is configured such that a focal point of the parabola coincides with one focal point of the ellipse.
  • Light incident on the parabolic reflecting surface can be collected at one focal point of the ellipse.
  • the light incident on the parabolic reflection surface can be apparently collected at one focal point of the ellipse.
  • the intermediate reflection surface is configured such that a portion corresponding to the crosstalk range is linearly configured, and that portion is configured as a reflection surface or an absorption surface.
  • Light incident on the crosstalk range is reflected from the ellipsoidal reflecting surface in a direction deviating from the other focal point. Therefore, when displaying a two-dimensional image, the reflecting surface may be used.
  • the stereoscopic image becomes unclear due to light incident on the crosstalk range. Therefore, the stereoscopic image can be made clear by using an absorbing surface.
  • the light emitted from the light source arranged on one focal side is incident from the incident surface of the light guide, reflected by the elliptical reflecting surface, and emitted from the emitting surface,
  • the light passes through the transmissive liquid crystal display panel and is condensed at the other focal position. Therefore, the viewing angle can be limited only to the other focal direction.
  • a light source may be arranged on the side of the light guide, so that the depth of the device can be shortened and the size can be reduced. Can be planned.
  • FIG. 1 is a cross-sectional view illustrating a schematic configuration of a stereoscopic display device according to Embodiment 1.
  • FIG. It is a schematic diagram explaining the ellipse which comprises an ellipse mirror. It is a figure which shows the partial cross section of an elliptical mirror, (a) is a front view of an elliptical mirror, (b) is a side view. It is an external appearance perspective view of an elliptical mirror. It is the external appearance perspective view of a reflection unit, (a) is the figure seen from the output surface side, (b) is the figure seen from the opposite side. It is a front view of a reflection unit.
  • (A)-(e) is a schematic block diagram which shows the various structures of an incident part.
  • FIG. 6 is a cross-sectional view illustrating a schematic configuration of a stereoscopic image display device according to Embodiment 2.
  • FIG. 6 is a cross-sectional view illustrating a schematic configuration of a stereoscopic image display device according to Embodiment 2.
  • FIG. 1 is a transverse cross-sectional view illustrating a schematic configuration of a stereoscopic display device according to the first embodiment
  • FIG. 2 is a schematic diagram illustrating an ellipse constituting an elliptic mirror.
  • 3A and 3B are diagrams showing a partial cross section of the elliptical mirror.
  • FIG. 3A is a front view of the elliptical mirror
  • FIG. 3B is a side view
  • FIG. 4 is an external perspective view of the elliptical mirror.
  • FIG. 5 is an external perspective view of the reflection unit
  • (a) is a view seen from the exit surface side
  • (b) is a view seen from the opposite side
  • FIG. 6 is a front view of the reflection unit. It is.
  • the stereoscopic image display device includes a housing 3 having a U-shaped cross section.
  • a transmissive liquid crystal display panel 5 is attached to the front surface 4 of the housing 3 via a support portion 7 including a front bezel.
  • a diffusion member 11 is attached to the back side of the support portion 7 corresponding to both ends of the liquid crystal display panel 5 via a support frame 9.
  • the diffusing member 11 has a function of diffusing light in the vertical direction (paper surface direction).
  • a light source 15 for the right eye is attached to one back side of the support frame 9 (left side when viewed from the front surface 4) via a heat dissipation mechanism 13, and the other back side of the support frame 9 (viewed from the front surface 4).
  • a light source 16 for the left eye is attached to the right back) via a heat dissipation mechanism 14.
  • the light sources 15 and 16 (corresponding to the first light source and the second light source in the present invention) have a rod-like appearance, and are arranged so that the longitudinal direction is positioned in the paper surface direction in FIG.
  • a reflection unit 19 configured by alternately stacking elliptical mirrors 17 having the same shape is disposed (see FIGS. 1 and 5).
  • the elliptical mirror 17 has a thin plate-like appearance, and one end surface thereof constitutes a part of an elliptical arc when viewed from the surface direction (paper surface direction). Since the elliptical mirror 17 has the same configuration except for the left eye and the right eye, only the right eye is taken as an example and will be described with reference to FIG.
  • the above-described elliptic mirror 17 corresponds to the light guide in the present invention.
  • the elliptical mirror 17 is provided with a blade 18 (corresponding to the main body in the present invention) whose outer shape is a blade shape.
  • the blade 18 is constituted by a part of an arc of an ellipse 21.
  • the angle formed by the surface 23 along the major axis a of the elliptical mirror 17 and the incident surface 25 along the minor axis b is located at the position of one focal point f1. That is, an incident portion 26 including a surface 23 and an incident surface 25 is provided on one focal point f1 side.
  • the blade 18 of the elliptical mirror 17 is configured on the inner peripheral side of the arc on the one focal point f1 side.
  • an emission surface 27 is provided on the other end surface that is linear when viewed from the surface direction (paper surface direction).
  • the arc portion 28 having a band shape when viewed from the end face side of the elliptical mirror 17 is formed so that the light emitted from the emission surface 27 is condensed on the other focal point f2 side.
  • the light emitted from the emission surface 27 is collected at a focal point f closer to the center c side of the ellipse 21 than the other focal point f2.
  • the position of the focal point f corresponds to the position of the observer's right eye ER.
  • the position of the focal point f corresponds to the position of the left eye EL of the observer.
  • the distance between the right eye ER and the left eye EL, that is, the distance between the focal point f and the focal point (f) is about 64 mm on average and about 80 mm at the maximum.
  • the reflection unit 19 having practical strength can be obtained simply by superimposing the surfaces of the blades 18.
  • the blade 18 of the elliptical mirror 17 is made of a light-transmitting resin that transmits light from the light sources 15 and 16, for example, acrylic resin, and has a thickness of about several millimeters (for example, 2 mm).
  • a light reflecting material for example, an aluminum film 31 is deposited on the outer surface of the acrylic resin 29.
  • a black paint 35 is applied to the white paint 33.
  • the end surface of the circular arc portion 28 is covered with the aluminum film 31, the white coating 33, and the black coating 35, and the innermost surface forms the reflecting surface 36.
  • an end surface on the side close to the incident surface 25 side of the elliptical mirror 17 along the major axis b of the ellipse 21 is formed as a sub-reflecting portion 37. Similar to the arc portion 28, the sub-reflecting portion 37 is subjected to triple coating composed of an aluminum film 31, a white coating 33, and a black coating 35.
  • the aluminum film 31 of the sub reflective portion 37 constitutes a sub reflective surface 39.
  • the tip part 41 and the surface 23 corresponding to the opposite side of the incident part 26 are not covered with the aluminum film 31 and the white coating 33 and do not constitute the reflecting surface 36.
  • the entrance surface 25 and the exit surface 27 of the entrance portion 26 are not painted at all, but the both surfaces of the acrylic resin 29 are simply coated with the black paint 35 on the white paint 33.
  • the arc portion 28 may be formed with a light-reflective material, and a film may be formed by attaching a metal foil. May be.
  • a film made of, for example, a silver alloy may be formed.
  • a coating made of the above-described light reflecting material may be formed not only on the white coating 33 but on the innermost surface in addition to the white coating 33.
  • the elliptical mirror 17 is configured as described above, and can efficiently transmit the light of the light sources 15 and 16 by the light-transmitting acrylic resin, and the incident light is reflected by the light reflecting material of the reflecting surface 36. In addition, the light incident by the white paint 33 and the black paint 35 can be efficiently guided to the emission surface 27. In addition, since the aluminum film 31 on the reflective surface 36 is protected by the acrylic resin 29, it is possible to suppress deterioration over time such that the reflectance is lowered due to the aluminum film 31 being clouded or corroded.
  • the light emitted from one focus f1 side of the ellipse 21 is collected at the focus f instead of the other focus f2 of the ellipse 21 because the elliptic mirror 17 is made of the acrylic resin 29. Therefore, the light is refracted at the emission surface 27.
  • the image usually becomes invisible when the observer's eyes deviate from the condensing position.
  • the image is emitted outward from the focal position f by the sub-reflecting surface 39 and the reflecting surface 36. Therefore, although the stereoscopic image cannot be seen, it can be seen as a two-dimensional image only by the right eye image or the left eye image. Therefore, it is possible to know the outline of the image stereoscopically viewed by the observer even around the observer viewing stereoscopically.
  • the reflection unit 19 has the elliptical mirror 17 with the emission surface 27 facing the transmission-type liquid crystal display panel 5 and the incident portions 26 facing the opposite sides. It is configured by laminating surfaces in a direction orthogonal to a line connecting the pair of light sources 15 and 16 (paper surface direction in FIG. 1, vertical direction in FIG. 5) and in the longitudinal direction of the pair of light sources 15 and 16. . At this time, since the emission surface 27 is laminated so as to constitute one plane, the diffusion plate 11 can be easily disposed.
  • the light emitted from the light source 15 for the right eye corresponding to one focal side f1 is incident from the incident portion 26 of the elliptical mirror 17 of the reflection unit 19 and is reflected on the reflection surface 36.
  • the right-eye image is formed at the focal point f corresponding to the other focal position f2 through the transmissive liquid crystal display panel 5.
  • the light emitted from the light source 16 for the left eye is symmetrical to the right eye, and the other focal side f2 by the elliptical mirror 17 having the same shape with the incident portion 26 directed to the opposite side.
  • An image for the left eye is formed at a position corresponding to this.
  • the reflection unit 19 is configured by laminating surfaces in the vertical direction when viewed from the front of the stereoscopic image display device, it is possible to improve brightness uniformity in the horizontal direction of the image. Therefore, since it is not necessary to diffuse light in the left-right direction, crosstalk is not deteriorated.
  • the diffusion direction is the stacking direction of the elliptical mirrors 17, so that the vertical and vertical brightness uniformity of the image by the elliptical mirrors 17 is reduced without deteriorating the crosstalk. Can be improved.
  • FIG. 7A to 7E are schematic configuration diagrams showing various configurations of the incident portion.
  • the light source 15 (16) is composed of a plurality of light emitting diodes 43.
  • the utilization efficiency of the light of the light emitting diode 43 can be improved.
  • FIG. 7A A diffusion member 45 that diffuses light in the stacking direction of the elliptical mirror 17 is provided between the incident surface 25 of the elliptical mirror 17 and the light source 15 (16). As a result, even if the light emitting diode 43 is misaligned, the light can be reliably incident on the incident surface 25.
  • FIG. 7B The thickness of the incident surface 25 is set to about twice the thickness of the reflecting surface 36 of the elliptical mirror 17.
  • the inclined surface 46 is formed so that the thickness increases toward the incident surface 25 side. If the angle of the inclined surface 46 is formed so that the incident light is totally reflected, a reflector for the inclined surface 46 can be eliminated.
  • FIG. 7 (c) A reflector 47 is arranged at a position between the elliptical mirrors 17 and coincident with the incident surface 25. Thereby, the light irradiated between the elliptical mirrors 17 is reflected to the light emitting diode 43 side, and is reflected by the diffusing member 45 so that the light can be directed to the incident surface 25.
  • FIG. 7 (d) The elliptical mirror 17 and the light emitting diode 43 are arranged in a one-to-one correspondence. In this case, the diffusing member 45 can be omitted, and the configuration can be simplified.
  • FIG. 7 (e) This is a modification of (3) described above, in which the reflector 47 is arranged closer to the arc portion 28 than the incident surface 25.
  • the outer peripheral surface of the elliptical mirror 17 on the incident surface 25 side is not painted, and the acrylic resin 29 is left exposed.
  • the light emitted between the elliptical mirrors 17 by the reflecting plate 47 can be reflected by the reflecting plate 47 and incident on the acrylic resin 29.
  • the reflecting plate 47 may be inclined.
  • the present invention is not limited to the above embodiment, and can be modified as follows.
  • the white coating 33 and the black coating 35 are applied to the surface of the elliptical mirror 17 excluding the exit surface 27 and the incident portion 26. You may comprise so that the surfaces of the elliptical mirror 17 may not contact
  • the acrylic resin 29 has a higher refractive index than the acrylic resin 29 and the minute space (air), the leakage of light to the adjacent elliptical mirror 17 can be suppressed.
  • a sheet for preventing light leakage may be sandwiched between the elliptical mirrors 17 and laminated.
  • the diffusing member 11 is provided to diffuse the light in the stacking direction of the elliptical mirror 17, but the diffusing member can be obtained by devising the exit surface 27 of the elliptical mirror 17. 11 can be omitted to simplify the structure and reduce the cost.
  • an etching process for roughening the surface may be performed so that light is diffused on the emission surface 27, or a concave lens with a concave surface may be formed.
  • FIG. 8 is a schematic configuration diagram showing a modification of the elliptical mirror.
  • the reflecting surface 36 is formed of a part of an elliptical arc similar to the elliptical mirror 17 described above, but the blade 50 of the elliptical mirror 17A exists on the outer peripheral side of the arc from one focal point f1. . That is, the light travels in the air and is reflected by the reflecting surface 36. Even if the reflection unit 19A is configured by stacking the elliptical mirrors 17A having such a structure, the same effect as the configuration by the reflection unit 19 described above can be obtained. However, a blocking member 51 for preventing light leakage between adjacent elliptical mirrors 17A needs to be arranged between the elliptical mirrors 17A.
  • FIG. 9 is a block diagram illustrating a schematic configuration of the stereoscopic display device.
  • each of the light sources 15A and 16A includes a plurality of light emitting diodes 61.
  • the elliptical mirror 17 constituting the reflection unit 19 ⁇ / b> A preferably has a thickness that matches the pitch of the display lines of the liquid crystal display panel 5.
  • Each light emitting diode 61 is disposed for each elliptical mirror 17 and is controlled to be lit independently.
  • the control unit 63 receives the video signal VD and outputs the right-eye image and the left-eye image to the liquid crystal display panel 5 alternately, and the image signal output unit 65 outputs the right-eye image and the left-eye image.
  • the light source control unit 67 turns on only the light emitting diodes 61 of the light sources 15A and 16A on the side corresponding to the image according to the display position of the image according to the vertical synchronization signal VS. And.
  • the image signal output unit 65 corresponds to the image output unit in the present invention
  • the light source control unit 67 corresponds to the light source control unit in the present invention.
  • FIGS. 10A to 10D are schematic diagrams showing examples of light source control.
  • FIG. 10A in the state where only the image for the left eye is displayed on the liquid crystal display panel 5, all the light emitting diodes 61 of the light source 16A for the left eye are turned on. Next, the image is switched to the right-eye image. As shown in FIGS. 10B and 10C, at the first stage, the upper part of the liquid crystal display panel 5 is simply rewritten to the right-eye image. . In this state, only the light emitting diode 61 corresponding to the display position of the left-eye image is emitted from the left-eye light source 16A on the side corresponding to the left-eye image, and the right side on the side corresponding to the right-eye image is displayed.
  • Only the light emitting diode 61 corresponding to the display position of the right-eye image in the eye light source 15A is caused to emit light.
  • a plurality of right-eye light sources 15A and left-eye light sources 16A are formed until the image on the liquid crystal display panel 5 is only the right-eye image.
  • the lighting of the light emitting diode 61 is controlled independently.
  • the light source control unit 67 turns on only the light emitting diode 61 corresponding to the image among the plurality of light emitting diodes 61 constituting the pair of light sources 15A and 16A according to the display position of the image. Go (scan).
  • the left-eye image is incident on the left eye and the right-eye image is incident on the right eye, so that even if both images are simultaneously displayed on the liquid crystal display panel 5, a stereoscopic view can be normally performed. Further, since it is not necessary to turn off one light source during a period in which both images are displayed and cannot be normally stereoscopically viewed, the luminance of the image does not decrease.
  • each light emitting diode 61 is arranged for each elliptical mirror 17, but one light emitting diode 61 may be provided for every several elliptical mirrors 17. In this case, since the number of the light emitting diodes 61 can be reduced, the cost can be suppressed.
  • the lighting control may be performed by dividing into four blocks including blocks BL1 to BL4. As a result, it is possible to perform lighting control relatively easily while performing stereoscopic viewing normally.
  • FIGS. 11A to 11D are schematic diagrams showing other control examples of the light source.
  • a black belt BS is displayed at the boundary (adjacent region) between the left-eye image and the right-eye image.
  • the above-described image signal output unit 65 outputs the right-eye image and the left-eye image to the liquid crystal display panel 5, the video signal related to the black band BS is inserted and output between the images. To do.
  • both the right-eye and left-eye light sources 15A and 16A may be lit in the black belt BS, lighting control can be facilitated. Therefore, it is suitable for controlling the blocks BL1 to BL4 of the light emitting diode 61 described above.
  • the boundary between the left-eye image and the right-eye image is unclear due to the memory effect of the liquid crystal element, such as when the state of the image is not fixed, for example, the transition state from the previous image to the next image is displayed. It becomes a correct image. Therefore, by displaying the black belt BS at this boundary, it is possible to suppress the influence of the indeterminate image and display the stereoscopic image clearly.
  • ⁇ Viewing angle restriction> The embodiment described above is an example of a display device related to a stereoscopic image, but an example of viewing angle restriction is shown below.
  • FIG. 12 is a schematic diagram for explaining that the viewing angle is limited.
  • This device is configured using only one elliptical mirror 17.
  • the sub-reflection surface 39 of the sub-reflection part 37 is not necessary.
  • the light emitted from the emission surface 27 of the elliptical mirror 17 is collected at the focal point f. Therefore, a visible region VR1 (hatched region in FIG. 12) and an invisible region IVR1 are generated. Therefore, an image can be observed at the position L1 corresponding to the visible region VR1, whereas an image cannot be observed at the position L2 corresponding to the invisible region IVR1. That is, by using only one of the elliptical mirrors 17, it is possible to limit to the focal point f direction.
  • the visible region VR1 also expands to the invisible region IVR1 side (position L2 side in FIG. 12) (a fan-shaped region including the visible region VR1). Even in this case, the viewing angle can be limited only to the observer's right eye ER side in FIG.
  • the positions of the observer's right eye ER and left eye EL in FIG. A visible trapezoidal area formed by connecting the panel 5 and the inverted trapezoidal area in which the trapezoidal area is arranged symmetrically by a line connecting the right eye ER and the left eye EL is the visible area VR1.
  • This is a region in which the visible region VR1 in FIG. 12 is also arranged at the focal point f near the left eye EL in FIG.
  • the light emitted from the light source arranged on the one side of the focal point f1 is incident from the incident surface 25 of the elliptical mirror 17, reflected by the elliptical reflective surface 36, and emitted from the output surface 27.
  • the light passes through the transmissive liquid crystal display panel 5 and is focused on the focal point f on the other focal point f2. Therefore, the viewing angle can be limited only to the other focus f direction.
  • the light sources 15 and 16 may be arranged on the side of the elliptical mirror 17, so that the depth of the apparatus can be shortened. And can be reduced in size.
  • FIG. 13 is a perspective view showing a modification of the elliptical mirror.
  • the elliptical mirror 17 has a thin plate shape.
  • the elliptical mirror 17 may have a thick plate shape.
  • FIG. 14 is a schematic diagram illustrating the concept of a dual view display device.
  • a dual view For example, a navigation image can be displayed on the driver's seat side and a television image can be displayed on the passenger's seat side by deploying in the center console of an automobile.
  • an area where the two-dimensional image obtained by the sub-reflecting unit 39 of the elliptical mirror 17 can be observed may be used. That is, the visible regions VR1 and VR2 in FIG. 14 are used.
  • the first image for example, navigation image
  • the second image for example, television image
  • the first image and the second image are image signals. What is necessary is just to make it alternately output from the output part 65 (FIG. 9), and to light the light sources 15 and 16 according to each alternately.
  • the light sources 15 and 16 In order to increase the amount of light in the visible regions VR1 and VR2, it is preferable to use not only the light sources 15 and 16 but also the sub-reflecting surface 39 as an incident surface, and a light source similar to the light sources 15 and 16 is added here. .
  • the incident surface 25 of the elliptical mirror 17 is opposed to the reflecting surface formed of a part of the elliptical arc, with one focal point f1 of the elliptical as an end point. It is comprised by the inclined surface which leaves
  • the light source 15 is attached to a plane whose end point is one of the focal points f1.
  • the apparatus according to the first embodiment increases the screen brightness of the liquid crystal display panel 5 as viewed from the viewpoint corresponding to the other focal point f2 because the amount of light emitted from the light source 15 passes through one focal point f1 is small. Is difficult.
  • the luminance distribution of the liquid surface display panel 5 depends on the light distribution (angular intensity distribution) of the light source, there is a problem that large luminance unevenness occurs in the liquid crystal display panel 5.
  • the viewing angle can be limited, and the depth of the apparatus can be shortened, which is advantageous for downsizing, but also suppresses uneven brightness. It is possible to suppress the width of the apparatus even when the field of view of the two-dimensional image is widened.
  • FIG. 15 is a cross-sectional view illustrating a schematic configuration of the stereoscopic image display apparatus according to the second embodiment
  • FIG. 16 is a schematic diagram illustrating an ellipse constituting an elliptic mirror
  • 17 is a diagram showing a partial cross section of the elliptical mirror, where (a) is a front view of the elliptical mirror, (b) is a side view of the elliptical mirror, and FIG. 18 is an external perspective view of the elliptical mirror.
  • FIG. 19 is a front view of the reflection unit.
  • the stereoscopic image display apparatus (“image display apparatus” in the present invention) includes a housing 3 having a U-shaped cross section.
  • a transmissive liquid crystal display panel 5 is attached to the front surface 4 of the housing 3 via a support portion 7 including a front bezel.
  • the transmissive liquid crystal display panel 5 is appropriately referred to as a liquid crystal display panel 5.
  • a diffusion member 11 is attached to the back side of the support portion 7 corresponding to both ends of the liquid crystal display panel 5 via a support frame 9.
  • the diffusing member 11 has a function of diffusing light in the vertical direction (paper surface direction).
  • a light source 15 for the right eye is attached to one back side of the support frame 9 (left side back when viewed from the front surface 4), and the other back side (right side back when viewed from the front surface 4) of the support frame 9 is A light source 16 for the left eye is attached.
  • the light sources 15 and 16 (corresponding to the first light source and the second light source in the present invention) have, for example, a rod-like appearance and are attached so that the longitudinal direction is positioned in the paper surface direction in FIG.
  • a reflection unit 19 configured by laminating the elliptical mirrors 17 having the same shape in different directions is arranged (see FIGS. 15 and 19).
  • the elliptical mirror 17 has a thin plate-like appearance, and one end surface thereof constitutes a part of an elliptical arc when viewed from the surface direction (paper surface direction). Since the elliptical mirror 17 is the same for the left eye and the right eye only in different directions, the configuration of the elliptical mirror 17 for the right eye will be described as an example with reference to FIG.
  • the light sources 15 and 16 described above correspond to the “first light source” and the “second light source” in the present invention
  • the elliptic mirror 17 described above corresponds to the “light guide” in the present invention.
  • the elliptical mirror 17 includes a blade 20 (corresponding to a “main body” in the present invention) whose outer shape is a blade shape.
  • the blade 20 is constituted by a part of an arc having an ellipse 21 as viewed from the surface direction.
  • the incident surface 22 is formed over a parabolic projection 24 that is on the upper right side of the blade 20.
  • the term “along” here includes parallel but does not need to be parallel, and does not attach to the long axis a on the lower side of the ellipse 21 and keeps a distance.
  • the blade 20 is configured on the inner peripheral side of the arc of the ellipse 21 on the one focal point f1 side.
  • An emission surface 27 is formed on the other end surface that is linear when viewed from the surface direction (paper surface direction) of the blade 20.
  • the circular arc portion 28 having a narrow band shape when viewed from the end surface side of the elliptical mirror 17 is formed so that the light emitted from the emission surface 27 is condensed on the other focal point f2 side.
  • the light emitted from the emission surface 27 is more elliptical than the other focal point f2 due to the configuration of the elliptic mirror 17 described later (refraction when emitted from the acrylic resin 29).
  • the light is condensed at a position close to the center c side.
  • the other focal point f2 corresponds to the position of the right eye ER of the observer. If the left and right sides of the elliptical mirror 17 are reversed, the other focal point f2 corresponds to the position of the left eye EL of the observer.
  • the distance between the right eye ER and the left eye EL that is, the distance between the focal point f2 and the focal point (f2) is about 64 mm on average and about 80 mm at the maximum.
  • An intermediate reflecting surface 53 is formed in the blade 20 at a position surrounding one focal point f1 when viewed from the surface direction.
  • the intermediate reflecting surface 53 reflects the light from the light source 15 for the right eye that has entered from the incident surface 22 toward the arc portion 28 (more precisely, a reflecting surface 36 described later). Details of the intermediate reflecting surface 53 will be described later.
  • the reflection unit 19 having a practical strength can be obtained by simply overlapping the surfaces of the blades 20. Can be configured.
  • the elliptical mirror 17 is preferably configured as follows.
  • the blade 20 of the elliptical mirror 17 is made of a light-transmitting resin that transmits light from the light sources 15 and 16, specifically, an acrylic resin, for example, and has a thickness of about several millimeters (for example, 2 mm).
  • the arc portion 25 and the intermediate reflecting surface 53 of the elliptical mirror 17 are formed by depositing a light reflecting material, for example, an aluminum film 31 on the outer surface of the acrylic resin 29.
  • a black paint 35 is applied to the white paint 33.
  • the end surface of the acrylic resin 29 in the circular arc portion 28 is covered in that order by the aluminum film 31, the white coating 33, and the black coating 35, and the innermost side surface is the reflecting surface 36 (“elliptical reflecting surface in the present invention”). Is equivalent).
  • the entrance surface 22 and the exit surface 27 are not painted at all on the end surfaces, but the both surfaces of the acrylic resin 29 are coated with the white coating 33 and the black coating 35.
  • a film may be formed on the arc portion 28 by applying a light reflecting material, and further, a film is formed by attaching a metal foil. You may do it.
  • a film made of, for example, a silver alloy may be formed.
  • a coating made of the above-described light reflecting material may be formed not only on the white coating 33 but on the innermost surface in addition to the white coating 33.
  • the elliptical mirror 17 is configured as described above, and can efficiently transmit the light from the light sources 15 and 16 by the light-transmitting acrylic resin 29.
  • the incident light is reflected by the light reflecting material of the reflecting surface 36.
  • the white paint 33 and the black paint 35 can efficiently guide the incident light to the emission surface 27.
  • the aluminum film 31 on the reflective surface 36 is protected from the external atmosphere by the acrylic resin 29, the aluminum film 31 is protected from deterioration with time such that the reflectance is lowered by the clouding or corrosion of the aluminum film 31. Can be suppressed.
  • the image is usually invisible when the observer's eyes deviate from the condensing position.
  • the light is emitted outward (leftward in FIG. 16) from the focal position f2 (a two-dot chain line with an arrow in FIG. 16). Therefore, although a stereoscopic image cannot be observed, it can be observed as a two-dimensional image using only the right-eye image or the left-eye image. Therefore, it is possible to know the outline of the image stereoscopically viewed by the observer even from around the stereoscopic observer.
  • the reflection unit 19 directs the exit surface 27 of the elliptical mirror 17 to the back surface of the transmissive liquid crystal display panel 5 and directs the entrance surface 22 to opposite sides (left and right).
  • the surfaces are stacked in a direction perpendicular to the line connecting the pair of light sources 15 and 16 (the paper surface direction in FIG. 15 and the vertical direction in FIG. 19) and in the longitudinal direction of the pair of light sources 15 and 16. Configured.
  • the emission surface 27 is laminated so as to constitute one plane, the diffusion plate 11 can be easily disposed.
  • FIG. 20 is a partially enlarged view of the blade showing the intermediate reflecting surface.
  • the intermediate reflecting surface 53 has a horizontal parabolic shape, and the horizontal central axis PC is located slightly above the emission surface 27.
  • An intermediate reflecting surface 53 is formed so that the parabola has the focal point coincident with one focal point f 1 of the ellipse 21.
  • the following configuration is preferable.
  • the intersection of the straight line passing through the right end of the liquid crystal display panel 5 from the other focal point f2 of the ellipse 21 and the arc portion 28 is denoted by p, and the left end of the liquid crystal display panel 5 from the other focal point f2.
  • the intersection of the straight line passing through and the arc portion 28 is denoted by q.
  • the intersection point with the light source 15 when a straight line is drawn from the intersection point p to one focus f1 is denoted by R1
  • the intersection point with the light source 15 when a straight line is drawn from the intersection point q to one focus f1 is denoted by R2.
  • the intersection R1 is preferably on the uppermost part of the light source 15 or on the parabola.
  • the light that passes through one focal point f1 and illuminates the entire surface of the liquid crystal display panel 5 is light that is parallel to the central axis PC of the parabola, and the screen luminance distribution and each surface point of the light source 15 can be associated one-to-one. it can. For this reason, when the light source 15 is a uniform light source over the entire surface of the liquid crystal display panel 5, the intensities of the light beams passing through one focal point f1 are all equal, and a uniform luminance distribution can be obtained.
  • the luminance adjustment at each point on the screen is made uniform by adjusting the luminous flux at each point of the light source 15. If the light source 15 is provided with a light emitting diode, and the light source 15 is provided with a light emitting diode, the brightness of the screen is compared by adjusting the driving current of each light emitting diode and adjusting the pitch of the light emitting diode. Can be easily achieved.
  • the intersection R1 is the uppermost part for displaying a three-dimensional image in the light source 15, and the light source 15 is extended below the intersection R1 by a necessary amount. If the point extended below this is R3, this point R3 must be above the intersection R2. When the point R3 is above the intersection R2, the necessary light quantity can be secured by setting the range of the light source 15 for displaying a three-dimensional image from the intersection R1 to the intersection R2. When the point R3 is below the intersection point R2, it is necessary to move the light source 15 further outward (right side in FIG. 20) and set the intersection point R1 above. By doing so, the full width of the stereoscopic image display device is widened. Therefore, if the full width of the stereoscopic image display device is within an allowable range, it is preferable to design by the above-described method.
  • the crosstalk limit line LC is indicated by a dotted line on the left side of one focal point f1.
  • the crosstalk limit line LC indicates a light beam that comes to the center of the observer's face (the center of the right eye and the left eye). For example, when collecting light rays in the right eye of the observer, if there is light traveling from the liquid crystal display panel 5 side that exceeds the crosstalk limit line LC toward the elliptical mirror 17 without passing through one focus f1, the elliptical mirror The light beam reflected by 17 is directed to the left side of the center of the observer's face.
  • the intersection PE between the crosstalk limit line LC and the central axis PC of the parabola constituting the intermediate reflection surface 53 is set as the end of the parabola of the intermediate reflection surface 53, so that all the rays are not crosstalked. It can be used for imaging.
  • a range (crosstalk range) from the intersection point CP to the crosstalk limit line LC in the parabola of one focal point f1, the intersection q, and the intermediate reflecting surface 53 is formed as a linear surface LS.
  • the light ray incident here enters the reflecting surface 36 on the left side of the intersection point q. Therefore, this light beam is directed further to the right side (the observer's right arm side) than the observer's right eye ER of the stereoscopic image display device at the stereoscopic viewing distance.
  • the use efficiency of the light source 15 can be expected to be improved.
  • what is necessary is just to comprise the surface LS with the absorption surface which absorbs light, when the object for two-dimensional images is not required.
  • the light emitted from the light source 15 for the right eye disposed on the one focus f1 side is incident from the incident surface 22 of the blade 20, and the intermediate reflecting surface.
  • the light is reflected by the elliptical reflection surface 36 through 53 and emitted from the emission surface 27, passes through the transmissive liquid crystal display panel 5, and is condensed on the other focal side f ⁇ b> 2 of the ellipse 21. Therefore, the viewing angle can be limited to the other focus f2 direction.
  • the incident surface 22 of the blade 20 is formed apart from one focal point f1 of the ellipse 21 and the long axis a of the ellipse 21, and light from the light source 15 for the right eye is incident through the intermediate reflecting surface 53. Therefore, the amount of light passing through one focal point f1 of the ellipse 21 among the light from the light source 15 for the right eye can be increased. Therefore, the luminance unevenness of the transmissive liquid crystal display panel 5 viewed from the viewpoint corresponding to the other focal point f2 can be suppressed.
  • the incident surface 22 of the blade 20 is formed along the long axis a of the ellipse 21, even if the right-eye light source 15 is lengthened to widen the field of view of the two-dimensional image, the right-eye light source 15 does not become longer in the width direction of the apparatus. Therefore, it can suppress that the width
  • the diffusion direction is the stacking direction of the elliptical mirrors 17, so that the vertical and vertical brightness uniformity of the image by the elliptical mirror 17 is reduced without deteriorating the crosstalk. Can be improved.
  • the configuration in which the blade 20 includes the incident surface 22, the output surface 27, the intermediate reflecting surface 53, and the reflecting surface 36 has been described as an example.
  • the blade 20 does not exist. Even if the configuration includes only the elliptical reflection surface 36 and the parabolic intermediate reflection surface 53, the same effect as the above configuration can be obtained.
  • focal point of the parabola that constitutes the intermediate reflecting surface 53 and one focal point f1 of the elliptical mirror 17 do not have to coincide with each other, and the same effect as described above can be obtained even if there is a slight deviation.
  • FIG. 21 is a partially enlarged view of the blade showing the intermediate reflecting surface according to the first modification.
  • the intermediate reflecting surface 53A formed on the protrusion 24A is common to the above-described intermediate reflecting surface 53 in a parabolic shape, but the shape is different. Specifically, when the total width is outside the allowable range in the first design method described above, the right eye light source 15 is brought closer to the one focus f1 side within the allowable range, and the necessary light amount from the intersection R1. A point where the light source 15 for the right eye is extended upward by an amount corresponding to the top of the light source 15 for the three-dimensional image is obtained, and a parabola passing through the top is obtained.
  • the intersection R2 is obtained, and the lower intersection (intersection R1 in this example) of the intersection R1 and the intersection R2 becomes the lowermost end of the light source 15 for the three-dimensional image.
  • the field of view for a two-dimensional image can be expanded.
  • the light beam for the three-dimensional image is once reflected on the parabola and directed toward the reflecting surface 36, and directly toward the reflecting surface 36. Since the light rays directly directed to the reflecting surface 36 have different emission angles from the light source 15, the luminance is reduced near the position corresponding to the boundary between the parabola and the light source 15. For this reason, it is preferable to configure by the first design method as much as possible.
  • the crosstalk can be reduced by setting the portion corresponding to the crosstalk range in the intermediate reflecting surface 53A as the linear surface LS.
  • FIG. 22 is a partially enlarged view of the blade showing the intermediate reflecting surface according to the second modification.
  • the intermediate reflecting surfaces 53 and 53A formed on the two protrusions 24 and 24A described above are disposed at positions where the parabolas both surround one focal point f1, but in this modification, the intermediate reflecting surfaces 53 and 53A deviate from one focal point f1.
  • the upper end surface of the projecting portion 24B is formed in a parabolic shape to form an intermediate reflecting surface 53B.
  • the focal point and one focal point f1 are matched. Then, the light from the light source 15 is reflected on the reflecting surface 36 by the intermediate reflecting surface 53B on the side opposite to the one focal point f1.
  • the light source 15 can be disposed closer to the liquid crystal display panel 5 side. Therefore, the width of the device can be narrowed, and the size can be further reduced.
  • the blade 20 does not exist, and simply includes an elliptical reflecting surface 36 and parabolic intermediate reflecting surfaces 27A and 27B. Also has the same effect as the above configuration.
  • the lighting control of the light sources 15 and 16 may be performed in the same manner as in the first embodiment.
  • FIG. 23 is a schematic diagram for explaining that the viewing angle is limited.
  • This device is configured using only one elliptical mirror 17.
  • the light emitted from the emission surface 27 of the elliptical mirror 17 is collected at the focal point f2. Therefore, a visible region VR1 (hatched region in FIG. 23) and an invisible region IVR1 are generated. Therefore, an image can be observed at the position L1 corresponding to the visible region VR1. An image cannot be observed at a position L2 corresponding to the invisible region IVR1. That is, by using only one elliptical mirror 17, the observable region can be limited only to the focus f2 direction.
  • FIG. 24 is a schematic diagram illustrating the concept of a dual view image display device.
  • an apparatus capable of viewing different images depending on the viewing direction. can be realized.
  • a device is called a dual view display device.
  • a navigation image can be displayed on the driver's seat side and a television image can be displayed on the passenger's seat side by deploying in the center console of an automobile.
  • the light sources 15 and 16 of the elliptical mirror 17 may be elongated along the incident surface 22 and an area where a two-dimensional image can be observed may be used. That is, the visible regions VR1 and VR2 in FIG. 24 are used. Note that, by setting the focal points f and (f) to the above-described interval, it is possible to minimize the region where both images are observed in an overlapping manner.
  • the first image for example, navigation image
  • the second image for example, television image
  • the first image and the second image are image signals. What is necessary is just to make it alternately output from the output part 65 (FIG. 9), and to light the light sources 15 and 16 according to each alternately.
  • the present invention is suitable for a display device such as a monitor for displaying an image.

Abstract

Disclosed is a display apparatus wherein light emitted from a light source arranged on the side of one focal point (f1) enters from an incoming surface (25) of an elliptical mirror (17), reflects on an elliptical reflection surface (27), passes through a transmissive liquid crystal display panel (5) and is collected to a focal point (f) on the side of the other focal point (f2). Thus, a view angle can be limited only in the direction to the other focal point (f). Furthermore, the light source is arranged on the side of the elliptical mirror (17) so as to collect light from the one focal point (f1) of the ellipse to the side of the other focal point (f2). Thus, the depth of the apparatus is reduced, and the size of the apparatus is reduced.

Description

表示装置Display device
 本発明は、画像を表示する表示装置に係り、特に、特定の位置においてのみ画像を観察することができるように視野角を制限する技術に関する。 The present invention relates to a display device that displays an image, and more particularly to a technique for limiting a viewing angle so that an image can be observed only at a specific position.
 従来、この種の装置として、次のようなものが挙げられる(例えば、特許文献1参照)。
 この装置は、液晶表示パネルと、拡散板と、液晶表示パネルから所定距離に結像させる焦点距離を有するフレネルレンズと、光源とを有する。これらは表示装置の筐体内において直線的に配置されている。このような構成により、所定位置にいる観察者だけが画像を見ることができ、視野角を制限することができる。
特許第2620516号(図18)
Conventionally, as this type of apparatus, the following can be cited (for example, see Patent Document 1).
This apparatus includes a liquid crystal display panel, a diffusion plate, a Fresnel lens having a focal length that forms an image at a predetermined distance from the liquid crystal display panel, and a light source. These are arranged linearly in the housing of the display device. With such a configuration, only an observer at a predetermined position can see the image, and the viewing angle can be limited.
Japanese Patent No. 2620516 (FIG. 18)
 しかしながら、このような構成を有する従来例の場合には、次のような問題がある。
 すなわち、従来の装置は、各部材を直線的に配置する必要があるので、装置の奥行きが長くなり、小型化を図ることができないという問題がある。
However, the conventional example having such a configuration has the following problems.
That is, in the conventional apparatus, since it is necessary to arrange each member linearly, there is a problem that the depth of the apparatus becomes long and the size cannot be reduced.
 本発明は、このような事情に鑑みてなされたものであって、楕円の円弧の一部からなる反射面を備えた導光体を利用することにより、視野角を制限することができつつも装置の奥行きを短くすることができて、小型化に有利な表示装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and the viewing angle can be limited by using a light guide having a reflecting surface formed of a part of an elliptical arc. An object of the present invention is to provide a display device that can shorten the depth of the device and is advantageous for downsizing.
 また、本発明の他の目的は、光の取り込み方を工夫することにより、視野角を制限することができ、装置の奥行きを短くすることができて小型化に有利でありながらも、輝度ムラを抑制することができ、かつ二次元画像の視野を広げても装置幅を抑制することができる画像表示装置を提供することにある。 Another object of the present invention is to reduce the viewing angle by devising the way of capturing light, and to reduce the depth of the apparatus, which is advantageous for downsizing, but uneven brightness. Another object of the present invention is to provide an image display device that can suppress the width of the device even when the field of view of a two-dimensional image is widened.
 本発明は、このような目的を達成するために、次のような構成をとる。
 すなわち、請求項1に記載の発明は、画像を表示するための透過型の液晶表示パネルと、板状の外観形状を呈し、面方向から見て一端面が楕円の円弧の一部で構成され、光を透過する部材で構成された本体と、前記楕円の一方の焦点側にあたる前記本体の端面に形成され、光が入射される入射面と、面方向から見て前記本体の他端面に形成され、前記入射面から前記本体に入射された光を前記楕円の他方の焦点側に出射する出射面と、前記本体の端面に形成され、面方向から見て前記楕円の円弧の一部からなる反射面とを備えている導光体と、前記楕円の一方の焦点側に配設された光源と、を備えていることを特徴とするものである。
In order to achieve such an object, the present invention has the following configuration.
That is, the invention according to claim 1 is configured by a transmissive liquid crystal display panel for displaying an image, a plate-like appearance, and one end surface being a part of an elliptical arc when viewed from the surface direction. Formed on the end surface of the main body corresponding to one focal side of the ellipse, and formed on the other end surface of the main body when viewed from the surface direction. And formed on the end surface of the main body, and a part of the circular arc of the ellipse when viewed from the surface direction. A light guide having a reflecting surface and a light source disposed on one focal side of the ellipse are provided.
 請求項1に記載の発明によれば、一方の焦点側に配置された光源から放射された光は、導光体の入射面から入射し、楕円の反射面で反射して出射面から出射され、透過型の液晶表示パネルを透過して他方の焦点位置に集光する。したがって、視野角を他方の焦点方向だけに限定することができる。また、楕円の一方の焦点からの光を他方の焦点に集光させるには、導光体の側方に光源を配置すればよいので、装置の奥行きを短くすることができて、小型化を図ることができる。 According to the first aspect of the present invention, the light emitted from the light source arranged on one focal side is incident from the incident surface of the light guide, reflected by the elliptical reflecting surface, and emitted from the emitting surface. Then, the light passes through the transmissive liquid crystal display panel and is condensed at the other focal position. Therefore, the viewing angle can be limited only to the other focal direction. In addition, in order to condense light from one focal point of the ellipse to the other focal point, a light source may be arranged on the side of the light guide, so that the depth of the device can be shortened and the size can be reduced. Can be planned.
 また、請求項2に記載の発明は、画像を表示するための透過型の液晶表示パネルと、板状の外観形状を呈し、面方向から見て一端面が楕円の円弧の一部で構成され、光を透過する部材で構成された本体と、前記楕円の一方の焦点側にあたる前記本体の端面に形成され、光が入射される入射面と、面方向から見て前記本体の他端面に形成され、前記入射面から前記本体に入射された光を前記楕円の他方の焦点側に出射する出射面と、前記本体の端面に形成され、面方向から見て前記楕円の円弧の一部からなる反射面とを備えている導光体と、
 前記導光体を複数備え、入射面を一方側に向けた導光体と、入射面を他方側へ向けた導光体とを面同士を合わせて積層して構成された反射ユニットと、一方側へ向けられた前記導光体の入射面付近に配置された第1の光源と、他方側へ向けられた前記導光体の入射面付近に配置された第2の光源とを備えた一対の光源と、を備えていることを特徴とするものである。
The invention described in claim 2 is a transmissive liquid crystal display panel for displaying an image, and has a plate-like appearance shape, and one end surface is constituted by a part of an elliptical arc when viewed from the surface direction. Formed on the end surface of the main body corresponding to one focal side of the ellipse, and formed on the other end surface of the main body when viewed from the surface direction. And formed on the end surface of the main body, and a part of the circular arc of the ellipse when viewed from the surface direction. A light guide having a reflective surface;
A reflection unit comprising a plurality of the light guides, the light guide having the incident surface directed to one side, and the light guide having the incident surface directed to the other side, and being laminated with the surfaces facing each other, A pair comprising a first light source disposed in the vicinity of the incident surface of the light guide directed toward the side and a second light source disposed in the vicinity of the incident surface of the light guide directed toward the other side. And a light source.
 請求項2に記載の発明によれば、一方の焦点側に配置された第1の光源及び第2の光源から放射された光は、反射ユニットの各導光体の入射面から入射し、楕円の反射面で反射して出射面から出射され、透過型の液晶表示パネルを透過してそれぞれ異なる他方の焦点に集光する。したがって、視野角を二箇所の方向だけに限定することができる。また、楕円の一方の焦点からの光を他方の焦点に集光させるには、導光体の側方に光源を配置すればよいので、装置の奥行きを短くすることができて、小型化を図ることができる。 According to invention of Claim 2, the light radiated | emitted from the 1st light source and 2nd light source which are arrange | positioned at one focus side injects from the entrance plane of each light guide of a reflection unit, and is elliptical. The light is reflected from the reflecting surface and emitted from the emitting surface, is transmitted through the transmissive liquid crystal display panel, and is condensed on the other different focal points. Therefore, the viewing angle can be limited to only two directions. In addition, in order to condense light from one focal point of the ellipse to the other focal point, a light source may be arranged on the side of the light guide, so that the depth of the device can be shortened and the size can be reduced. Can be planned.
 また、本発明において、前記透過型の液晶表示パネルに異なる第1の画像と第2の画像を交互に出力する画像出力手段と、前記画像出力手段が第1の画像から第2の画像に、または第2の画像から第1の画像に順次に切り換える際に、第1の画像が出力されている場合には前記第1の光源を、第2の画像が出力されている場合には前記第2の光源を点灯させる光源制御手段と、を備えていることが好ましい(請求項3)。画像出力手段が第1の画像と第2の画像とを交互に出力するのに合わせて、光源制御手段が第1の光源及び第2の光源を交互に点灯させることにより、一つの液晶表示パネルを異なる位置で観察すると、第1の画像と第2の画像を観察することができる。したがって、いわゆる「デュアルビュー」の表示装置を実現することができる。 Further, in the present invention, image output means for alternately outputting different first images and second images to the transmissive liquid crystal display panel, and the image output means from the first image to the second image, Alternatively, when sequentially switching from the second image to the first image, the first light source is output when the first image is output, and the first light source is output when the second image is output. And a light source control means for turning on the second light source. As the image output means alternately outputs the first image and the second image, the light source control means turns on the first light source and the second light source alternately so that one liquid crystal display panel is provided. Can be observed at different positions, the first image and the second image can be observed. Therefore, a so-called “dual view” display device can be realized.
 また、本発明において、前記透過型の液晶表示パネルに右眼用画像と左眼用画像を交互に出力する画像出力手段と、前記画像出力手段が右眼用画像から左眼用画像に、または左眼用画像から右眼用画像に順次に切り換える際に、右眼用画像が出力されている場合には前記第1の光源を、左眼用画像が出力されている場合には前記第2の光源を点灯させる光源制御手段と、を備えていることが好ましい(請求項4)。画像出力手段が右眼用画像と左眼用画像とを交互に出力するのに合わせて、光源制御手段が第1の光源と第2の光源とを切り換えて点灯させることにより、右眼用画像と左眼用画像の視差に基づく立体画像を観察することができる。 Further, in the present invention, image output means for alternately outputting a right eye image and a left eye image to the transmissive liquid crystal display panel, and the image output means changes from a right eye image to a left eye image, or When sequentially switching from the left-eye image to the right-eye image, the first light source is output when the right-eye image is output, and the second light source is output when the left-eye image is output. And a light source control means for turning on the light source. As the image output means alternately outputs the image for the right eye and the image for the left eye, the light source control means switches the first light source and the second light source and turns them on so that the image for the right eye is turned on. And a stereoscopic image based on the parallax of the left-eye image can be observed.
 また、本発明において、前記導光体の反射面は、光を反射する光反射材料が、前記本体の外側にあたる周面に層を構成していることが好ましい(請求項5)。 In the present invention, it is preferable that the light-reflecting surface of the light guide has a layer of a light-reflecting material that reflects light on the outer surface of the main body (Claim 5).
 また、本発明において、前記本体のうち、前記出射面と前記入射面を除く面側に白色塗装に重ねて黒色塗装が施され、前記出射面と前記入射面を除く端面側に黒色塗装が施されていることが好ましい(請求項6)。光透過性の樹脂により光源の光を効率的に透過させることができ、入射した光を反射面の光反射材料で反射させることができるとともに、白色塗装及び黒色塗装により入射した光を漏れなく効率的に出射面に導くことができる。また、反射面の反射材料が光透過性の樹脂で保護されることになるので、反射材料の経時劣化(反射面の曇りなど)を抑制することができる。また、全面に反射層を設けるよりはコスト的に有利である。 Further, in the present invention, a black coating is applied to a surface of the main body excluding the exit surface and the incident surface so as to overlap with a white coating, and a black paint is applied to an end surface side excluding the exit surface and the entrance surface. (Claim 6). Light-transmitting resin can efficiently transmit light from the light source, incident light can be reflected by the light-reflecting material on the reflecting surface, and incident light can be efficiently reflected by white paint and black paint. Can be guided to the exit surface. In addition, since the reflective material on the reflective surface is protected by the light-transmitting resin, deterioration with time of the reflective material (such as clouding of the reflective surface) can be suppressed. Further, it is more cost effective than providing a reflective layer on the entire surface.
 また、本発明において、前記本体が積層されたときに本体間に空気層が形成されていることが好ましい(請求項7)。導光体を積層した際に、間に空気層を形成することができる。光は屈折率が高い媒体を進む特性を有するので、各導光体から隣接する導光体に光が漏れることを防止することができ、積層面の塗装を省略することができる。 In the present invention, it is preferable that an air layer is formed between the main bodies when the main bodies are laminated (claim 7). When the light guides are stacked, an air layer can be formed therebetween. Since light has a characteristic of traveling through a medium having a high refractive index, it is possible to prevent light from leaking from each light guide to an adjacent light guide, and coating of the laminated surface can be omitted.
 また、本発明において、前記本体は、楕円の長軸に沿う、前記入射面に近い側の一端面が副反射面として形成され、前記入射面から入射した光が副反射面及び反射面を介して他方の焦点側よりも外側に向かって出射するように構成されていることが好ましい(請求項8)。観察者の眼の位置に光を集光させる立体画像表示装置では、通常、観察者の眼が集光位置からずれると画像が見えなくなるが、副反射面及び反射面により焦点位置よりも外側に向かって出射するようにしているので、立体画像は見ることができないものの、右眼用画像または左眼用画像だけによる二次元画像として見ることができる。したがって、立体視している観察者の周囲であっても観察者が立体視している画像の概略を知ることができる。 Further, in the present invention, the main body is formed such that one end surface close to the incident surface along the major axis of the ellipse is formed as a sub-reflection surface, and light incident from the incident surface passes through the sub-reflection surface and the reflection surface. It is preferable that the light is emitted outward from the other focal side. In a stereoscopic image display device that collects light at the position of the observer's eye, the image usually becomes invisible when the observer's eye deviates from the focusing position, but the sub-reflecting surface and the reflecting surface move outside the focal position. Since the three-dimensional image cannot be seen, it can be seen as a two-dimensional image by only the right-eye image or the left-eye image. Therefore, it is possible to know the outline of the image stereoscopically viewed by the observer even around the observer viewing stereoscopically.
 また、本発明において、前記入射面は、その厚みが、前記反射面の厚みよりも厚く構成されていることが好ましい(請求項9)。入射面の厚みを厚くすることにより、光源の光を効率的に入射させることができる。 In the present invention, it is preferable that the incident surface has a thickness greater than that of the reflecting surface. By increasing the thickness of the incident surface, light from the light source can be efficiently incident.
 請求項10に記載の発明は、画像を表示するための表示装置において、画像を表示するための透過型の液晶表示パネルと、板状の外観形状を呈し、面方向から見て一端面が楕円の円弧の一部で構成され、光を透過する部材で構成された本体と、前記楕円の一方の焦点及び前記楕円の長軸から離間するとともに、前記楕円の長軸に沿って前記本体に形成され、光が入射される入射面と、面方向から見て前記楕円の一方の焦点を囲う位置に配設され、前記入射面から入射された光を反射する中間反射面と、前記本体の楕円の円弧の一部を構成し、前記中間反射面からの光を前記楕円の他方の焦点側に対して反射する楕円反射面と、前記本体の他端面に形成され、前記楕円反射面で反射された光を出射する出射面とを備えた導光体と、前記導光体の中間反射面側に配設された光源と、を備えていることを特徴とするものである。 According to a tenth aspect of the present invention, in a display device for displaying an image, a transmissive liquid crystal display panel for displaying an image and a plate-like appearance shape are formed, and one end surface is elliptical when viewed from the surface direction. The main body is formed of a part of the arc and is formed of a member that transmits light, and is separated from one focal point of the ellipse and the major axis of the ellipse, and is formed on the main body along the major axis of the ellipse. An incident surface on which light is incident, an intermediate reflecting surface that is disposed at a position surrounding one focal point of the ellipse when viewed from the surface direction, and reflects light incident from the incident surface, and an ellipse of the main body Are formed on the other end surface of the main body and reflected by the elliptical reflecting surface. A light guide having an emission surface for emitting the light, and the light guide And it is characterized in that it comprises a light source disposed in the intermediate reflecting surface side.
 請求項10に記載の発明によれば、一方の焦点側に配設された光源から出射された光は、導光体の入射面から入射し、中間反射面を介して楕円反射面で反射して出射面から出射され、透過型の液晶表示パネルを透過して楕円の他方の焦点側に集光する。したがって、他方の焦点方向に視野角を限定することができる。また、本体の入射面が楕円の一方の焦点及び楕円の長軸から離間して形成されており、光源からの光が中間反射面を介して入射するので、光源からの光のうち楕円の一方の焦点を通る光量を増やすことができる。したがって、他方の焦点にあたる視点から見た透過型の液晶表示パネルの輝度ムラを抑制することができる。さらに、本体の入射面が楕円の長軸に沿って形成されているので、二次元画像の視野を広げるために光源を長くしても、光源が幅方向に長くならない。したがって、装置の幅が広がることを抑制できる。 According to the tenth aspect of the present invention, the light emitted from the light source disposed on one focal side enters from the incident surface of the light guide and is reflected by the elliptical reflecting surface via the intermediate reflecting surface. The light is emitted from the emission surface, passes through the transmissive liquid crystal display panel, and is condensed on the other focal side of the ellipse. Therefore, the viewing angle can be limited to the other focal direction. In addition, the incident surface of the main body is formed apart from one focal point of the ellipse and the major axis of the ellipse, and light from the light source is incident through the intermediate reflecting surface, so one of the ellipses out of the light from the light source The amount of light passing through the focal point can be increased. Therefore, it is possible to suppress the luminance unevenness of the transmissive liquid crystal display panel viewed from the viewpoint corresponding to the other focus. Furthermore, since the incident surface of the main body is formed along the long axis of the ellipse, even if the light source is lengthened to widen the field of view of the two-dimensional image, the light source does not become long in the width direction. Therefore, it can suppress that the width | variety of an apparatus spreads.
 なお、ここでいう「長軸に沿って」とは、平行も含むものの、平行である必要はなく、距離を保って離れずにという意である。 Note that “along the long axis” as used herein includes parallelism, but does not need to be parallel and does not leave a distance.
 請求項11に記載の発明は、画像を表示するための表示装置において、画像を表示するための透過型の液晶表示パネルと、表示面から見て前記透過型の液晶表示パネルの背後に配設され、かつ、平面視で楕円の円弧の一部で構成され、前記楕円の一方の焦点からの光を前記楕円の他方の焦点側に対して反射する楕円反射面と、前記透過型の液晶表示パネルの側方であって、かつ、前記楕円の一方の焦点及び前記楕円の長軸から離間するとともに、前記楕円の長軸に沿って配設された光源と、前記光源と前記楕円反射面との間に位置し、前記楕円の一方の焦点を囲う位置に配設され、前記光源からの光を前記楕円反射面に反射する中間反射面と、を備えていることを特徴とするものである。 According to an eleventh aspect of the present invention, there is provided a display device for displaying an image, a transmissive liquid crystal display panel for displaying an image, and a rear side of the transmissive liquid crystal display panel as viewed from the display surface. And an elliptical reflecting surface that is configured by a part of an elliptical arc in plan view and reflects light from one focal point of the ellipse to the other focal side of the ellipse, and the transmissive liquid crystal display A light source disposed on the side of the panel and spaced apart from one focal point of the ellipse and the major axis of the ellipse, and disposed along the major axis of the ellipse; the light source and the elliptical reflecting surface; And an intermediate reflecting surface disposed at a position surrounding one focal point of the ellipse and reflecting light from the light source to the ellipsoidal reflecting surface. .
 請求項11に記載の発明によれば、一方の焦点側に配設された光源から出射された光は、中間反射面を介して楕円反射面から反射し、透過型の液晶表示パネルを透過して楕円の他方の焦点側に集光する。したがって、他方の焦点方向に視野角を限定することができる。また、光源が楕円の一方の焦点及び楕円の長軸から離間して配設されており、光源からの光が中間反射面を介して入射するので、光源からの光のうち楕円の一方の焦点を通る光量を増やすことができる。したがって、他方の焦点にあたる視点から見た透過型の液晶表示パネルの輝度ムラを抑制することができる。さらに、光源が楕円の長軸に沿って配設されているので、二次元画像の視野を広げるために光源を長くしても、光源が幅方向に長くならない。したがって、装置の幅が広がることを抑制できる。 According to the eleventh aspect of the invention, the light emitted from the light source disposed on one focal side is reflected from the elliptical reflecting surface through the intermediate reflecting surface, and is transmitted through the transmissive liquid crystal display panel. To focus on the other focal side of the ellipse. Therefore, the viewing angle can be limited to the other focal direction. In addition, since the light source is disposed apart from one focus of the ellipse and the major axis of the ellipse, and the light from the light source is incident through the intermediate reflection surface, one focus of the ellipse out of the light from the light source The amount of light passing through can be increased. Therefore, it is possible to suppress the luminance unevenness of the transmissive liquid crystal display panel viewed from the viewpoint corresponding to the other focus. Furthermore, since the light source is disposed along the long axis of the ellipse, the light source does not become longer in the width direction even if the light source is lengthened to widen the field of view of the two-dimensional image. Therefore, it can suppress that the width | variety of an apparatus spreads.
 なお、ここでいう「長軸に沿って」とは、平行も含むものの、平行である必要はなく、距離を保って離れずにという意である。したがって、長軸に対して傾斜している状態も含むものである。 Note that “along the long axis” as used herein includes parallelism, but does not need to be parallel and does not leave a distance. Therefore, it includes a state in which it is inclined with respect to the long axis.
 請求項12に記載の発明は、画像を表示するための表示装置において、画像を表示するための透過型の液晶表示パネルと、板状の外観形状を呈し、面方向から見て一端面が楕円の円弧の一部で構成され、光を透過する部材で構成された本体と、前記楕円の一方の焦点から離間するとともに、前記楕円の長軸側から鉛直方向に沿って下方に延出されて形成され、光が入射される入射面と、面方向から見て前記楕円の一方の焦点から外れた位置に配設され、前記楕円の一方の焦点とは反対側の面で前記入射面から入射した光を反射する中間反射面と、前記本体の円弧の一部を構成し、前記中間反射面からの光を前記楕円の他方の焦点側に対して反射する楕円反射面とを備えた導光体と、前記導光体の中間反射面側に配設された光源と、を備えていることを特徴とするものである。 According to a twelfth aspect of the present invention, in a display device for displaying an image, a transmissive liquid crystal display panel for displaying an image and a plate-like external shape are formed, and one end surface is elliptical when viewed from the surface direction. The main body is made up of a part of the arc and is made of a light transmitting member, and is separated from one focal point of the ellipse and extends downward along the vertical direction from the major axis side of the ellipse. The incident surface is formed and disposed at a position off the one focal point of the ellipse when viewed from the surface direction, and is incident from the incident surface on the surface opposite to the one focal point of the ellipse. A light guide comprising: an intermediate reflection surface that reflects the reflected light; and an elliptical reflection surface that forms part of an arc of the main body and reflects light from the intermediate reflection surface toward the other focal side of the ellipse And a light source disposed on the intermediate reflection surface side of the light guide. And it is characterized in Rukoto.
 請求項12に記載の発明によれば、一方の焦点側に配設された光源から出射された光は、導光体の入射面から入射し、中間反射面を介して楕円反射面で反射して出射面から出射され、透過型の液晶表示パネルを透過して楕円の他方の焦点側に集光する。したがって、他方の焦点方向に視野角を限定することができる。また、本体の入射面が楕円の一方の焦点から離間して形成されており、光源からの光が中間反射面を介して入射するので、光源からの光のうち楕円の一方の焦点を通る光量を増やすことができる。したがって、他方の焦点にあたる視点から見た透過型の液晶表示パネルの輝度ムラを抑制することができる。さらに、本体の入射面が楕円の長軸側から鉛直方向に沿って下方に延出されて形成されているので、二次元画像の視野を広げるために光源を長くしても、光源が幅方向に長くならない。したがって、装置の幅が広がることを抑制できる。また、中間反射面が、面方向から見て楕円の一方の焦点から外れた位置に配設され、楕円の一方の焦点とは反対側の面で入射面から入射した光を反射するように構成されているので、見かけ上の一方の焦点に対して光源を近づけて配置することができる。したがって、装置の幅を狭くすることができて、より小型化することができる。 According to the invention described in claim 12, the light emitted from the light source disposed on one focal side is incident from the incident surface of the light guide, and is reflected by the elliptical reflecting surface through the intermediate reflecting surface. The light is emitted from the emission surface, passes through the transmissive liquid crystal display panel, and is condensed on the other focal side of the ellipse. Therefore, the viewing angle can be limited to the other focal direction. In addition, the incident surface of the main body is formed away from one focal point of the ellipse, and the light from the light source enters through the intermediate reflection surface, so the amount of light passing through one focal point of the ellipse among the light from the light source Can be increased. Therefore, it is possible to suppress the luminance unevenness of the transmissive liquid crystal display panel viewed from the viewpoint corresponding to the other focus. Furthermore, since the incident surface of the main body is formed to extend downward along the vertical direction from the major axis side of the ellipse, even if the light source is lengthened to widen the field of view of the two-dimensional image, the light source remains in the width direction. It will not be long. Therefore, it can suppress that the width | variety of an apparatus spreads. Further, the intermediate reflecting surface is disposed at a position deviated from one focal point of the ellipse when viewed from the surface direction, and is configured to reflect light incident from the incident surface on a surface opposite to the one focal point of the ellipse. Therefore, the light source can be arranged close to one apparent focal point. Therefore, the width of the device can be narrowed, and the size can be further reduced.
 請求項13に記載の発明は、画像を表示するための表示装置において、画像を表示するための透過型の液晶表示パネルと、表示面から見て前記透過型の液晶表示パネルの背後に配設され、かつ、平面視で楕円の円弧の一部で構成され、前記楕円の一方の焦点からの光を前記楕円の他方の焦点側に対して反射する楕円反射面と、前記透過型の液晶表示パネルの側方であって、かつ、前記楕円の一方の焦点から離間するとともに、前記楕円の長軸側から鉛直方向に沿って下方に延出されて配設された光源と、前記光源と前記楕円反射面との間に位置し、前記楕円の一方の焦点から外れた位置に配設され、前記楕円の一方の焦点とは反対側の面で前記光源からの光を前記楕円反射面に反射する中間反射面と、を備えていることを特徴とするものである。 According to a thirteenth aspect of the present invention, in a display device for displaying an image, a transmissive liquid crystal display panel for displaying an image, and a rear side of the transmissive liquid crystal display panel as viewed from the display surface. And an elliptical reflecting surface that is configured by a part of an elliptical arc in plan view and reflects light from one focal point of the ellipse to the other focal side of the ellipse, and the transmissive liquid crystal display A light source disposed on the side of the panel and spaced from one focal point of the ellipse and extending downward along the vertical direction from the long axis side of the ellipse; Located between the ellipsoidal reflecting surface and disposed at a position deviating from one focal point of the ellipse, the light from the light source is reflected by the ellipsoidal reflecting surface on the surface opposite to the one focal point of the ellipse. An intermediate reflective surface that That.
 請求項13に記載の発明によれば、一方の焦点側に配設された光源から出射された光は、中間反射面を介して楕円反射面から反射し、透過型の液晶表示パネルを透過して楕円の他方の焦点側に集光する。したがって、他方の焦点方向に視野角を限定することができる。また、光源が楕円の一方の焦点から離間して配設されており、光源からの光が中間反射面を介して入射するので、光源からの光のうち楕円の一方の焦点を通る光量を増やすことができる。したがって、他方の焦点にあたる視点から見た透過型の液晶表示パネルの輝度ムラを抑制することができる。さらに、光源が楕円の長軸側から鉛直方向に沿って下方に延出されて配設されているので、二次元画像の視野を広げるために光源を長くしても光源が幅方向に長くならない。したがって、装置の幅が広がることを抑制できる。また、中間反射面が、面方向から見て楕円の一方の焦点から外れた位置に配設され、楕円の一方の焦点とは反対側の面で入射面から入射した光を反射するように構成されているので、見かけ上の一方の焦点に対して光源を近づけて配置することができる。したがって、装置の幅を狭くすることができて、より小型化することができる。 According to the thirteenth aspect of the present invention, the light emitted from the light source disposed on one focal side is reflected from the elliptical reflecting surface through the intermediate reflecting surface and is transmitted through the transmissive liquid crystal display panel. To focus on the other focal side of the ellipse. Therefore, the viewing angle can be limited to the other focal direction. In addition, since the light source is disposed away from one focal point of the ellipse and the light from the light source enters through the intermediate reflection surface, the amount of light passing through one focal point of the ellipse among the light from the light source is increased. be able to. Therefore, it is possible to suppress the luminance unevenness of the transmissive liquid crystal display panel viewed from the viewpoint corresponding to the other focus. Furthermore, since the light source is arranged extending downward along the vertical direction from the long axis side of the ellipse, the light source does not become longer in the width direction even if the light source is lengthened to widen the field of view of the two-dimensional image. . Therefore, it can suppress that the width | variety of an apparatus spreads. Further, the intermediate reflecting surface is disposed at a position deviated from one focal point of the ellipse when viewed from the surface direction, and is configured to reflect light incident from the incident surface on a surface opposite to the one focal point of the ellipse. Therefore, the light source can be arranged close to one apparent focal point. Therefore, the width of the device can be narrowed, and the size can be further reduced.
 また、本発明において、前記中間反射面は、放物線の一部を用いた放物反射面を備えていることが好ましい(請求項14)。放物反射面に平行に入射した光源からの光を、一方の焦点を通るように集光することができる。あるいは、放物反射面に平行に入射した光源からの光を、見かけ上の一方の焦点に見かけ上集光することができる。 In the present invention, it is preferable that the intermediate reflection surface includes a parabolic reflection surface using a part of a parabola (claim 14). Light from the light source incident in parallel to the parabolic reflecting surface can be collected so as to pass through one focal point. Alternatively, the light from the light source incident in parallel to the parabolic reflecting surface can be apparently collected at one apparent focal point.
 また、本発明において、前記楕円反射面は、前記楕円の他方の焦点方向にのみ光を反射させることが好ましい(請求項15)。視野角を極めて制限した画像表示装置とすることができる。 In the present invention, it is preferable that the elliptical reflecting surface reflects light only in the other focal direction of the ellipse. An image display apparatus with a very limited viewing angle can be obtained.
 また、本発明において、前記導光体は、入射面を一方側へ向けた導光体と、入射面を他方側へ向けた導光体とを面同士を合わせて複数枚積層してなる反射ユニットとして構成され、前記光源は、入射面が一方側へ向けられた導光体に配設された第1の光源と、入射面が他方側へ向けられた導光体に配設された第2の光源とを備えた一対の光源として構成され、前記透過型の液晶表示パネルに異なる第1の画像と第2の画像とを交互に出力する画像出力手段と、前記画像出力手段が第1の画像から第2の画像に、または第2の画像から第1の画像に順次に切り換える際に、第1の画像が出力されている場合には前記第1の光源を、第2の画像が出力されている場合には前記第2の光源を点灯させる光源制御手段と、を備えていることが好ましい(請求項16)。一方の焦点側に配置された第1の光源及び第2の光源から放射された光は、反射ユニットの各導光体の入射面から入射し、楕円反射面で反射されて出射面から出射され、透過型の液晶表示パネルを透過して、それぞれ異なる他方の焦点に集光する。したがって、視野角を二方向に限定することができる。また、画像出力手段が第1の画像と第2の画像とを交互に出力するのに同期して、光源制御手段が第1の光源及び第2の光源を交互に点灯させることにより、一つの透過型の液晶表示パネルを異なる位置で観察すると、第1の画像と第2の画像を観察することができる。したがって、いわゆる「デュアルビュー」の画像表示装置を実現することができる。 In the present invention, the light guide is a reflection formed by laminating a plurality of light guides having an incident surface directed to one side and a light guide having the incident surface directed to the other side. The light source is configured as a unit, and the light source includes a first light source disposed on the light guide whose incident surface is directed to one side, and a first light source disposed on the light guide whose incident surface is directed to the other side. An image output unit configured as a pair of light sources including two light sources and alternately outputting different first and second images to the transmissive liquid crystal display panel; and When sequentially switching from the first image to the second image, or from the second image to the first image, if the first image is output, the first light source is switched to the second image. A light source control means for turning on the second light source when it is output. (Claim 16). The light emitted from the first light source and the second light source arranged on one focal side enters from the entrance surface of each light guide of the reflection unit, is reflected by the elliptical reflection surface, and exits from the exit surface. Then, the light is transmitted through the transmissive liquid crystal display panel and condensed on the other different focal points. Therefore, the viewing angle can be limited to two directions. Further, in synchronization with the image output means alternately outputting the first image and the second image, the light source control means alternately turns on the first light source and the second light source, thereby When the transmissive liquid crystal display panel is observed at different positions, the first image and the second image can be observed. Therefore, a so-called “dual view” image display apparatus can be realized.
 また、本発明において、前記楕円反射面を複数枚積層して構成され、かつ、隣接する前記楕円反射面同士の一方の焦点を一方側と他方側とで反対側に向けて構成された反射ユニットを備え、前記光源は、前記楕円の一方の焦点が一方側へ向けられた楕円反射面の中間反射面に配設された第1の光源と、前記楕円の一方の焦点が他方側へ向けられた楕円反射面の中間反射面に配設された第2の光源とを備えた一対の光源として構成され、前記透過型の液晶表示パネルに異なる第1の画像と第2の画像とを交互に出力する画像出力手段と、前記画像出力手段が第1の画像から第2の画像に、または第2の画像から第1の画像に順次に切り換える際に、第1の画像が出力されている場合には前記第1の光源を、第2の画像が出力されている場合には前記第2の光源を点灯させる光源制御手段と、を備えていることが好ましい(請求項17)。一方の焦点側に配置された第1の光源及び第2の光源から放射された光は、反射ユニットの中間反射面に入射し、中間反射面で反射されるとともに楕円反射面で反射され、透過型の液晶表示パネルを透過して、それぞれ異なる他方の焦点に集光する。したがって、視野角を二方向に限定することができる。また、画像出力手段が第1の画像と第2の画像とを交互に出力するのに同期して、光源制御手段が第1の光源及び第2の光源を交互に点灯させることにより、一つの透過型の液晶表示パネルを異なる位置で観察すると、第1の画像と第2の画像を観察することができる。 Further, in the present invention, the reflection unit is formed by laminating a plurality of the elliptical reflection surfaces, and is configured such that one focal point of the adjacent elliptical reflection surfaces is directed to the opposite side on one side and the other side. The light source includes a first light source disposed on an intermediate reflecting surface of an elliptic reflecting surface in which one focus of the ellipse is directed to one side, and one focus of the ellipse is directed to the other side. And a second light source disposed on the intermediate reflection surface of the elliptical reflection surface, and the transmissive liquid crystal display panel alternately displays different first images and second images. The image output means for outputting and the first image is output when the image output means sequentially switches from the first image to the second image or from the second image to the first image. When the second image is output to the first light source Preferably comprises a light source control means for lighting the second light source (claim 17). Light emitted from the first light source and the second light source arranged on one focal side is incident on the intermediate reflection surface of the reflection unit, reflected by the intermediate reflection surface, reflected by the elliptical reflection surface, and transmitted. Is transmitted through a liquid crystal display panel of a type and condensed on the other different focal points. Therefore, the viewing angle can be limited to two directions. Further, in synchronization with the image output means alternately outputting the first image and the second image, the light source control means alternately turns on the first light source and the second light source, thereby When the transmissive liquid crystal display panel is observed at different positions, the first image and the second image can be observed.
 また、本発明において、前記第1の画像と前記第2の画像は、互いに視差を有する左眼用画像と右眼用画像であることが好ましい(請求項18)。左眼用画像と右眼用画像を交互に出力することにより、立体画像を表示することができる。 In the present invention, it is preferable that the first image and the second image are a left-eye image and a right-eye image having parallax with each other (claim 18). A stereoscopic image can be displayed by alternately outputting a left-eye image and a right-eye image.
 また、本発明において、前記第1の画像と前記第2の画像とは、互いに異なる二次元画像であることが好ましい(請求項19)。観察方向によって異なる画像を観察することができ、いわゆる「デュアルビュー」の画像表示装置を実現することができる。 In the present invention, it is preferable that the first image and the second image are different two-dimensional images. Different images can be observed depending on the viewing direction, and a so-called “dual view” image display apparatus can be realized.
 また、本発明において、前記中間反射面は、前記放物線の焦点が前記楕円の一方の焦点に一致するように構成されていることが好ましい(請求項20)。放物反射面に入射した光を楕円の一方の焦点に集光することができる。あるいは、放物反射面に入射した光を、見かけ上、楕円の一方の焦点に集光することができる。 In the present invention, it is preferable that the intermediate reflecting surface is configured such that a focal point of the parabola coincides with one focal point of the ellipse. Light incident on the parabolic reflecting surface can be collected at one focal point of the ellipse. Alternatively, the light incident on the parabolic reflection surface can be apparently collected at one focal point of the ellipse.
 また、本発明において、前記中間反射面は、クロストーク範囲にあたる部分が直線的に構成され、その部分が反射面または吸収面として構成されていることが好ましい(請求項21)。クロストーク範囲に入射した光は、他方の焦点からはずれた方向に楕円反射面から反射されるので、二次元画像の表示を行う場合には反射面とすればよい。一方、立体画像の表示を行う場合には、クロストーク範囲に入射した光に起因して立体画像が不鮮明になるので、吸収面とすることにより、立体画像を鮮明にすることができる。 In the present invention, it is preferable that the intermediate reflection surface is configured such that a portion corresponding to the crosstalk range is linearly configured, and that portion is configured as a reflection surface or an absorption surface. Light incident on the crosstalk range is reflected from the ellipsoidal reflecting surface in a direction deviating from the other focal point. Therefore, when displaying a two-dimensional image, the reflecting surface may be used. On the other hand, when a stereoscopic image is displayed, the stereoscopic image becomes unclear due to light incident on the crosstalk range. Therefore, the stereoscopic image can be made clear by using an absorbing surface.
 本発明に係る表示装置によれば、一方の焦点側に配置された光源から放射された光は、導光体の入射面から入射し、楕円の反射面で反射して出射面から出射され、透過型の液晶表示パネルを透過して他方の焦点位置に集光する。したがって、視野角を他方の焦点方向だけに限定することができる。また、楕円の一方の焦点からの光を他方の焦点に集光させるには、導光体の側方に光源を配置すればよいので、装置の奥行きを短くすることができて、小型化を図ることができる。 According to the display device according to the present invention, the light emitted from the light source arranged on one focal side is incident from the incident surface of the light guide, reflected by the elliptical reflecting surface, and emitted from the emitting surface, The light passes through the transmissive liquid crystal display panel and is condensed at the other focal position. Therefore, the viewing angle can be limited only to the other focal direction. In addition, in order to condense light from one focal point of the ellipse to the other focal point, a light source may be arranged on the side of the light guide, so that the depth of the device can be shortened and the size can be reduced. Can be planned.
実施例1に係る立体表示装置の概略構成を示す横断面図である。1 is a cross-sectional view illustrating a schematic configuration of a stereoscopic display device according to Embodiment 1. FIG. 楕円ミラーを構成する楕円を説明する模式図である。It is a schematic diagram explaining the ellipse which comprises an ellipse mirror. 楕円ミラーの一部断面を示す図であり、(a)は楕円ミラーの正面図、(b)は側面図である。It is a figure which shows the partial cross section of an elliptical mirror, (a) is a front view of an elliptical mirror, (b) is a side view. 楕円ミラーの外観斜視図である。It is an external appearance perspective view of an elliptical mirror. 反射ユニットの外観斜視図であり、(a)は出射面側から見た図であり、(b)はその反対側から見た図である。It is the external appearance perspective view of a reflection unit, (a) is the figure seen from the output surface side, (b) is the figure seen from the opposite side. 反射ユニットの正面図である。It is a front view of a reflection unit. (a)~(e)は入射部の各種構成を示す概略構成図である。(A)-(e) is a schematic block diagram which shows the various structures of an incident part. 楕円ミラーの変形例を示す概略構成図である。It is a schematic block diagram which shows the modification of an elliptical mirror. 立体表示装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of a three-dimensional display apparatus. (a)~(d)は光源の制御例を示す模式図である。(A)-(d) is a schematic diagram which shows the example of control of a light source. (a)~(d)は光源の他の制御例を示す模式図である。(A)-(d) is a schematic diagram which shows the other example of control of a light source. 視野角が制限されていることの説明に供する模式図である。It is a schematic diagram with which it uses for description that the viewing angle is restrict | limited. 楕円ミラーの変形例を示す斜視図である。It is a perspective view which shows the modification of an elliptical mirror. デュアルビューの表示装置の概念を説明する模式図である。It is a schematic diagram explaining the concept of the display apparatus of a dual view. 実施例2に係る立体画像表示装置の概略構成を示す横断面図である。6 is a cross-sectional view illustrating a schematic configuration of a stereoscopic image display device according to Embodiment 2. FIG. 楕円ミラーを構成する楕円を説明する模式図である。It is a schematic diagram explaining the ellipse which comprises an ellipse mirror. 楕円ミラーの一部断面を示す図であり、(a)は楕円ミラーの正面図、(b)は楕円ミラーの側面図である。It is a figure which shows the partial cross section of an elliptical mirror, (a) is a front view of an elliptical mirror, (b) is a side view of an elliptical mirror. 楕円ミラーの外観斜視図である。It is an external appearance perspective view of an elliptical mirror. 反射ユニットの正面図である。It is a front view of a reflection unit. 中間反射面を示すブレードの一部拡大図である。It is a partial enlarged view of a blade showing an intermediate reflecting surface. 第1の変形例に係る中間反射面を示すブレードの一部拡大図である。It is a partial enlarged view of a blade showing an intermediate reflecting surface according to a first modification. 第2の変形例に係る中間反射面を示すブレードの一部拡大図である。It is a partial enlarged view of a blade showing an intermediate reflecting surface according to a second modification. 視野角が制限されていることの説明に供する模式図である。It is a schematic diagram with which it uses for description that the viewing angle is restrict | limited. デュアルビューの画像表示装置の概念を説明する模式図である。It is a schematic diagram explaining the concept of the image display apparatus of a dual view.
符号の説明Explanation of symbols
 3 … 筐体
 5 … 液晶表示パネル
 11 … 拡散部材
 15 … 右眼用の光源
 16 … 左眼用の光源
 17 … 楕円ミラー
 18,20 … ブレード
 19 … 反射ユニット
 21 … 楕円
 24,24A,24B … 突起部
 26 … 入射部
 27 … 出射面
 29 … アクリル樹脂
 31 … アルミニウム膜
 36 … 反射面
 53,53A,53B … 中間反射面
 63 … 制御部
 65 … 画像信号出力部
 67 … 光源制御部
DESCRIPTION OF SYMBOLS 3 ... Housing 5 ... Liquid crystal display panel 11 ... Diffusing member 15 ... Light source for right eye 16 ... Light source for left eye 17 ... Elliptical mirror 18, 20 ... Blade 19 ... Reflection unit 21 ... Ellipse 24, 24A, 24B ... Projection Unit 26 ... Incident unit 27 ... Outgoing surface 29 ... Acrylic resin 31 ... Aluminum film 36 ... Reflecting surface 53, 53A, 53B ... Intermediate reflecting surface 63 ... Control unit 65 ... Image signal output unit 67 ... Light source control unit
 以下、図面を参照して本発明の実施例1について説明する。
 図1は、実施例1に係る立体表示装置の概略構成を示す横断面図であり、図2は、楕円ミラーを構成する楕円を説明する模式図である。図3は、楕円ミラーの一部断面を示す図であり、(a)は楕円ミラーの正面図、(b)は側面図であり、図4は、楕円ミラーの外観斜視図である。図5は、反射ユニットの外観斜視図であり、(a)は出射面側から見た図であり、(b)はその反対側から見た図であり、図6は、反射ユニットの正面図である。
Embodiment 1 of the present invention will be described below with reference to the drawings.
FIG. 1 is a transverse cross-sectional view illustrating a schematic configuration of a stereoscopic display device according to the first embodiment, and FIG. 2 is a schematic diagram illustrating an ellipse constituting an elliptic mirror. 3A and 3B are diagrams showing a partial cross section of the elliptical mirror. FIG. 3A is a front view of the elliptical mirror, FIG. 3B is a side view, and FIG. 4 is an external perspective view of the elliptical mirror. FIG. 5 is an external perspective view of the reflection unit, (a) is a view seen from the exit surface side, (b) is a view seen from the opposite side, and FIG. 6 is a front view of the reflection unit. It is.
 本実施例に係る立体画像表示装置(本発明における表示装置)は、横断面がコの字状を呈する筐体3を備えている。この筐体3の前面4には、透過型の液晶表示パネル5がフロントベゼルを含む支持部7を介して取り付けられている。液晶表示パネル5の両端側にあたる支持部7の奥側には、支持枠9を介して拡散部材11が取り付けられている。この拡散部材11は、光を縦方向(紙面方向)に拡散させる機能を備えている。支持枠9の一方の奥側(前面4から見て左側奥)には、放熱機構13を介して右眼用の光源15が取り付けられ、支持枠9の他方の奥側(前面4から見て右側奥)には、放熱機構14を介して左眼用の光源16が取り付けられている。光源15,16(本発明における第1の光源及び第2の光源に相当)は外観が棒状を呈し、図1において、紙面方向に長手方向が位置するように配置されている。 The stereoscopic image display device according to the present embodiment (the display device in the present invention) includes a housing 3 having a U-shaped cross section. A transmissive liquid crystal display panel 5 is attached to the front surface 4 of the housing 3 via a support portion 7 including a front bezel. A diffusion member 11 is attached to the back side of the support portion 7 corresponding to both ends of the liquid crystal display panel 5 via a support frame 9. The diffusing member 11 has a function of diffusing light in the vertical direction (paper surface direction). A light source 15 for the right eye is attached to one back side of the support frame 9 (left side when viewed from the front surface 4) via a heat dissipation mechanism 13, and the other back side of the support frame 9 (viewed from the front surface 4). A light source 16 for the left eye is attached to the right back) via a heat dissipation mechanism 14. The light sources 15 and 16 (corresponding to the first light source and the second light source in the present invention) have a rod-like appearance, and are arranged so that the longitudinal direction is positioned in the paper surface direction in FIG.
 一対の光源15,16の奥側には、同形状の楕円ミラー17を互い違いに積層して構成された反射ユニット19が配設されている(図1及び図5参照)。楕円ミラー17は、薄板状の外観を呈しており、面方向(紙面方向)からみて一端面が楕円の円弧の一部を構成している。楕円ミラー17は、左眼用も右眼用も向きが異なるだけで同じ構成であるので、ここでは右眼用を例に採って図2を参照しながら説明する。 On the back side of the pair of light sources 15 and 16, a reflection unit 19 configured by alternately stacking elliptical mirrors 17 having the same shape is disposed (see FIGS. 1 and 5). The elliptical mirror 17 has a thin plate-like appearance, and one end surface thereof constitutes a part of an elliptical arc when viewed from the surface direction (paper surface direction). Since the elliptical mirror 17 has the same configuration except for the left eye and the right eye, only the right eye is taken as an example and will be described with reference to FIG.
 なお、上述した楕円ミラー17が本発明における導光体に相当する。 The above-described elliptic mirror 17 corresponds to the light guide in the present invention.
 楕円ミラー17は、外観形状が刃状を呈するブレード18(本発明における本体に相当)を備えている。このブレード18は、楕円21の円弧の一部から構成されている。一方の焦点f1の位置には、楕円ミラー17の長軸aに沿う面23と、短軸bに沿う入射面25とが形成する角が位置する。つまり、一方の焦点f1側に面23と入射面25とからなる入射部26を備えている。換言すると、楕円ミラー17のブレード18は、一方の焦点f1側の円弧の内周側で構成されている。また、面方向(紙面方向)からみて直線状を呈する他端面には、出射面27を備えている。楕円ミラー17の端面側から見て帯状を呈する円弧部28は、出射面27から出射した光が他方の焦点f2側に集光するように形成されている。但し、後述する楕円ミラー17の構成により、出射面27から出射した光は、他方の焦点f2よりも楕円21の中心c側に寄った焦点fに集光する。この焦点fの位置は、観察者の右眼ERの位置にあたる。なお、楕円ミラー17を左右反転させると、焦点fの位置は観察者の左眼ELの位置にあたる。右眼ERと左眼ELとの間隔、つまり焦点fと焦点(f)との間隔は、平均的に64mm程度、最大でも80mm程度である。 The elliptical mirror 17 is provided with a blade 18 (corresponding to the main body in the present invention) whose outer shape is a blade shape. The blade 18 is constituted by a part of an arc of an ellipse 21. The angle formed by the surface 23 along the major axis a of the elliptical mirror 17 and the incident surface 25 along the minor axis b is located at the position of one focal point f1. That is, an incident portion 26 including a surface 23 and an incident surface 25 is provided on one focal point f1 side. In other words, the blade 18 of the elliptical mirror 17 is configured on the inner peripheral side of the arc on the one focal point f1 side. In addition, an emission surface 27 is provided on the other end surface that is linear when viewed from the surface direction (paper surface direction). The arc portion 28 having a band shape when viewed from the end face side of the elliptical mirror 17 is formed so that the light emitted from the emission surface 27 is condensed on the other focal point f2 side. However, due to the configuration of the elliptical mirror 17 described later, the light emitted from the emission surface 27 is collected at a focal point f closer to the center c side of the ellipse 21 than the other focal point f2. The position of the focal point f corresponds to the position of the observer's right eye ER. When the elliptical mirror 17 is reversed left and right, the position of the focal point f corresponds to the position of the left eye EL of the observer. The distance between the right eye ER and the left eye EL, that is, the distance between the focal point f and the focal point (f) is about 64 mm on average and about 80 mm at the maximum.
 上述したように楕円ミラー17のブレード18が一方の焦点f1側の円弧の内周側で構成されているので、ブレード18の面同士を重ね合わせるだけで実用的な強度を備えた反射ユニット19を構成することができる。なお、ブレード18間での光の漏れを抑制できるように以下のように構成することが好ましい。 As described above, since the blade 18 of the elliptical mirror 17 is configured on the inner peripheral side of the arc on the one focal point f1, the reflection unit 19 having practical strength can be obtained simply by superimposing the surfaces of the blades 18. Can be configured. Note that the following configuration is preferable so that light leakage between the blades 18 can be suppressed.
 楕円ミラー17のブレード18は、光源15,16の光を透過する光透過性の樹脂、例えば、アクリル樹脂で構成され、厚さが数ミリ程度(例えば、2mm)である。楕円ミラー17の円弧部28は、アクリル樹脂29の外面に光反射材料、例えば、アルミニウム膜31が蒸着されている。その上には、白色塗装33に重ねて黒色塗装35が施されている。換言すると、円弧部28の端面は、アルミニウム膜31と、白色塗装33と、黒色塗装35とにより覆われ、最内側面が反射面36を構成している。また、楕円21の長軸bに沿う、楕円ミラー17の入射面25側に近い側の一端面が副反射部37として形成されている。この副反射部37は、円弧部28と同様に、アルミニウム膜31と、白色塗装33と、黒色塗装35とからなる三重塗装を施されている。副反射部37のアルミニウム膜31は、副反射面39を構成している。入射部26の反対側にあたる先端部41及び面23は、アルミニウム膜31及び白色塗装33が被着されておらず、反射面36を構成していない。入射部26のうち入射面25と、出射面27とは一切塗装が施されていないが、アクリル樹脂29の両面は白色塗装33に重ねて黒色塗装35が施されているだけである。 The blade 18 of the elliptical mirror 17 is made of a light-transmitting resin that transmits light from the light sources 15 and 16, for example, acrylic resin, and has a thickness of about several millimeters (for example, 2 mm). In the arc portion 28 of the elliptical mirror 17, a light reflecting material, for example, an aluminum film 31 is deposited on the outer surface of the acrylic resin 29. On top of this, a black paint 35 is applied to the white paint 33. In other words, the end surface of the circular arc portion 28 is covered with the aluminum film 31, the white coating 33, and the black coating 35, and the innermost surface forms the reflecting surface 36. In addition, an end surface on the side close to the incident surface 25 side of the elliptical mirror 17 along the major axis b of the ellipse 21 is formed as a sub-reflecting portion 37. Similar to the arc portion 28, the sub-reflecting portion 37 is subjected to triple coating composed of an aluminum film 31, a white coating 33, and a black coating 35. The aluminum film 31 of the sub reflective portion 37 constitutes a sub reflective surface 39. The tip part 41 and the surface 23 corresponding to the opposite side of the incident part 26 are not covered with the aluminum film 31 and the white coating 33 and do not constitute the reflecting surface 36. The entrance surface 25 and the exit surface 27 of the entrance portion 26 are not painted at all, but the both surfaces of the acrylic resin 29 are simply coated with the black paint 35 on the white paint 33.
 なお、円弧部28には、上述したアルミニウム膜を蒸着する他に、光反射材料を塗布することによって被膜を形成するようにしてもよく、さらに金属箔を貼り付けることによって被膜を形成するようにしてもよい。また、光反射材料として、上述したアルミニウムの他に、例えば、銀合金からなる被膜を形成するようにしてもよい。さらに、アクリル樹脂29の両面には、白色塗装33に重ねて黒色塗装35だけでなく、最内面に、上述した光反射材料からなる被膜を形成するようにしてもよい。 In addition to vapor-depositing the above-described aluminum film, the arc portion 28 may be formed with a light-reflective material, and a film may be formed by attaching a metal foil. May be. Further, as the light reflecting material, in addition to the above-described aluminum, a film made of, for example, a silver alloy may be formed. Furthermore, on both surfaces of the acrylic resin 29, a coating made of the above-described light reflecting material may be formed not only on the white coating 33 but on the innermost surface in addition to the white coating 33.
 楕円ミラー17は、上述したように構成されており、光透過性のアクリル樹脂により光源15,16の光を効率的に透過させることができ、入射した光を反射面36の光反射材料で反射させることができるとともに、白色塗装33及び黒色塗装35により入射した光を効率的に出射面27に導くことができる。また、反射面36のアルミニウム膜31がアクリル樹脂29で保護されることになるので、アルミニウム膜31が曇ったり腐食したりすることで反射率が低下するような経時劣化を抑制できる。 The elliptical mirror 17 is configured as described above, and can efficiently transmit the light of the light sources 15 and 16 by the light-transmitting acrylic resin, and the incident light is reflected by the light reflecting material of the reflecting surface 36. In addition, the light incident by the white paint 33 and the black paint 35 can be efficiently guided to the emission surface 27. In addition, since the aluminum film 31 on the reflective surface 36 is protected by the acrylic resin 29, it is possible to suppress deterioration over time such that the reflectance is lowered due to the aluminum film 31 being clouded or corroded.
 なお、上述したように、楕円21の一方の焦点f1側から放射された光が、楕円21の他方の焦点f2ではなく焦点fに集光するのは、楕円ミラー17がアクリル樹脂29で構成されているので、その出射面27で屈折することによる。 As described above, the light emitted from one focus f1 side of the ellipse 21 is collected at the focus f instead of the other focus f2 of the ellipse 21 because the elliptic mirror 17 is made of the acrylic resin 29. Therefore, the light is refracted at the emission surface 27.
 また、立体画像表示装置では、通常、観察者の眼が集光位置からずれると画像が見えなくなるが、副反射面39及び反射面36により焦点位置fよりも外側に向かって出射するようにしているので、立体画像は見ることができないものの、右眼用画像または左眼用画像だけによる二次元画像として見ることができる。したがって、立体視している観察者の周囲であっても観察者が立体視している画像の概略を知ることができるようになっている。 Further, in the stereoscopic image display device, the image usually becomes invisible when the observer's eyes deviate from the condensing position. However, the image is emitted outward from the focal position f by the sub-reflecting surface 39 and the reflecting surface 36. Therefore, although the stereoscopic image cannot be seen, it can be seen as a two-dimensional image only by the right eye image or the left eye image. Therefore, it is possible to know the outline of the image stereoscopically viewed by the observer even around the observer viewing stereoscopically.
 反射ユニット19は、図1及び図5に示すように、楕円ミラー17の出射面27を透過型の液晶表示パネル5側に向けるとともに、入射部26を互いに反対側へ向けた互い違いの状態で、一対の光源15,16を結ぶラインに直交する方向(図1の紙面方向、図5の上下方向)に、かつ、一対の光源15,16の長手方向に面同士を積層して構成されている。その際、出射面27が一つの平面を構成するようにして積層してあるので、拡散板11を容易に配設することができるようになっている。 As shown in FIGS. 1 and 5, the reflection unit 19 has the elliptical mirror 17 with the emission surface 27 facing the transmission-type liquid crystal display panel 5 and the incident portions 26 facing the opposite sides. It is configured by laminating surfaces in a direction orthogonal to a line connecting the pair of light sources 15 and 16 (paper surface direction in FIG. 1, vertical direction in FIG. 5) and in the longitudinal direction of the pair of light sources 15 and 16. . At this time, since the emission surface 27 is laminated so as to constitute one plane, the diffusion plate 11 can be easily disposed.
 このように構成されている立体画像表示装置は、一方の焦点側f1にあたる右眼用の光源15から放射された光は、反射ユニット19の楕円ミラー17の入射部26から入射し、反射面36で反射し、透過型の液晶表示パネル5を透過して他方の焦点位置f2にあたる焦点fに右眼用画像を結像する。また、左眼用の光源16から放射された光は、右眼用のものとは左右対称の関係で入射部26が反対側に向けられた同形状の楕円ミラー17により、他方の焦点側f2にあたる位置に左眼用画像を結像する。反射ユニット19は、立体画像表示装置の正面からみて上下方向に面同士を積層して構成されているので、画像の左右方向における明暗均一性を向上させることができる。したがって、左右方向に光を拡散させる必要がないので、クロストークを悪化させることがない。 In the stereoscopic image display apparatus configured as described above, the light emitted from the light source 15 for the right eye corresponding to one focal side f1 is incident from the incident portion 26 of the elliptical mirror 17 of the reflection unit 19 and is reflected on the reflection surface 36. And the right-eye image is formed at the focal point f corresponding to the other focal position f2 through the transmissive liquid crystal display panel 5. Further, the light emitted from the light source 16 for the left eye is symmetrical to the right eye, and the other focal side f2 by the elliptical mirror 17 having the same shape with the incident portion 26 directed to the opposite side. An image for the left eye is formed at a position corresponding to this. Since the reflection unit 19 is configured by laminating surfaces in the vertical direction when viewed from the front of the stereoscopic image display device, it is possible to improve brightness uniformity in the horizontal direction of the image. Therefore, since it is not necessary to diffuse light in the left-right direction, crosstalk is not deteriorated.
 また、拡散部材11によって光を上下方向に拡散させるものの、拡散させる方向が楕円ミラー17の積層方向であるので、クロストークを悪化させることなく、楕円ミラー17による画像の上下方向の明暗均一性を向上させることができる。 In addition, although the light is diffused in the vertical direction by the diffusing member 11, the diffusion direction is the stacking direction of the elliptical mirrors 17, so that the vertical and vertical brightness uniformity of the image by the elliptical mirrors 17 is reduced without deteriorating the crosstalk. Can be improved.
 なお、上述した入射部26は、次のように構成することが好ましい。ここで図7を参照する。図7(a)~(e)は、入射部の各種構成を示す概略構成図である。ここでの前提として、光源15(16)が複数個の発光ダイオード43で構成されているものとする。なお、以下の構成によると、発光ダイオード43の光の利用効率を高めることができる。 In addition, it is preferable to comprise the incident part 26 mentioned above as follows. Reference is now made to FIG. 7A to 7E are schematic configuration diagrams showing various configurations of the incident portion. As a premise here, it is assumed that the light source 15 (16) is composed of a plurality of light emitting diodes 43. In addition, according to the following structure, the utilization efficiency of the light of the light emitting diode 43 can be improved.
 (1)図7(a) 楕円ミラー17の入射面25と光源15(16)との間には、楕円ミラー17の積層方向に光を拡散する拡散部材45を備えている。これにより発光ダイオード43の位置ずれ等があっても、確実に光を入射面25に入射させることができる。 (1) FIG. 7A A diffusion member 45 that diffuses light in the stacking direction of the elliptical mirror 17 is provided between the incident surface 25 of the elliptical mirror 17 and the light source 15 (16). As a result, even if the light emitting diode 43 is misaligned, the light can be reliably incident on the incident surface 25.
 (2)図7(b) 入射面25の厚みを、楕円ミラー17における反射面36の厚みの2倍程度にする。例えば、図7(b)のように、入射面25側に向かって厚みが増すように傾斜面46を形成しておく。傾斜面46の角度を、入射した光が全反射するように形成しておくと、傾斜面46への反射材は不要にできる。 (2) FIG. 7B: The thickness of the incident surface 25 is set to about twice the thickness of the reflecting surface 36 of the elliptical mirror 17. For example, as shown in FIG. 7B, the inclined surface 46 is formed so that the thickness increases toward the incident surface 25 side. If the angle of the inclined surface 46 is formed so that the incident light is totally reflected, a reflector for the inclined surface 46 can be eliminated.
 (3)図7(c) 楕円ミラー17の間であって、入射面25に一致する位置に、反射板47を配置する。これにより、楕円ミラー17間に照射された光が発光ダイオード43側へ反射されるとともに、拡散部材45によって反射されて入射面25に光を向かわせることができる。 (3) FIG. 7 (c) A reflector 47 is arranged at a position between the elliptical mirrors 17 and coincident with the incident surface 25. Thereby, the light irradiated between the elliptical mirrors 17 is reflected to the light emitting diode 43 side, and is reflected by the diffusing member 45 so that the light can be directed to the incident surface 25.
 (4)図7(d) 楕円ミラー17と発光ダイオード43とを一対一に対応させて配置する。この場合には、拡散部材45を省略することができ、構成を簡易化することができる。 (4) FIG. 7 (d) The elliptical mirror 17 and the light emitting diode 43 are arranged in a one-to-one correspondence. In this case, the diffusing member 45 can be omitted, and the configuration can be simplified.
 (5)図7(e) 上述した(3)の変形例であり、反射板47を入射面25よりも円弧部28側へ配置したものである。この場合、楕円ミラー17の入射面25側における外周面の塗装を行わず、アクリル樹脂29を露出させたままとする。これにより、反射板47により楕円ミラー17の間に出射された光を、反射板47によって反射させてアクリル樹脂29に入射させることができる。また、点線で示すように反射板47を傾斜姿勢としてもよい。 (5) FIG. 7 (e) This is a modification of (3) described above, in which the reflector 47 is arranged closer to the arc portion 28 than the incident surface 25. In this case, the outer peripheral surface of the elliptical mirror 17 on the incident surface 25 side is not painted, and the acrylic resin 29 is left exposed. Thereby, the light emitted between the elliptical mirrors 17 by the reflecting plate 47 can be reflected by the reflecting plate 47 and incident on the acrylic resin 29. Further, as shown by a dotted line, the reflecting plate 47 may be inclined.
 本発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。 The present invention is not limited to the above embodiment, and can be modified as follows.
 (1)上述した実施例では、楕円ミラー17の出射面27と入射部26を除いた面に、白色塗装33と黒色塗装35を施しているが、積層面に微小突起を設けて、積層した状態で楕円ミラー17の面同士が密着しないように構成してもよい。このように構成すると、白色塗装33と黒色塗装35を省略することができ、楕円ミラー17のコストを低減することができる。なお、アクリル樹脂29と微小空間(空気)とでは、アクリル樹脂29の方が屈折率が高いので、隣接する楕円ミラー17へ光が漏れることが抑制できる。 (1) In the above-described embodiment, the white coating 33 and the black coating 35 are applied to the surface of the elliptical mirror 17 excluding the exit surface 27 and the incident portion 26. You may comprise so that the surfaces of the elliptical mirror 17 may not contact | adhere in a state. If comprised in this way, the white coating 33 and the black coating 35 can be abbreviate | omitted, and the cost of the elliptical mirror 17 can be reduced. In addition, since the acrylic resin 29 has a higher refractive index than the acrylic resin 29 and the minute space (air), the leakage of light to the adjacent elliptical mirror 17 can be suppressed.
 また、微小突起に代えて、楕円ミラー17の間に光漏れを防止するシートを挟んで積層するようにしてもよい。 Further, instead of the minute projections, a sheet for preventing light leakage may be sandwiched between the elliptical mirrors 17 and laminated.
 (2)上述した実施例では、拡散部材11を設けて楕円ミラー17の積層方向へ光を拡散させるように構成しているが、楕円ミラー17の出射面27に工夫を施すことにより、拡散部材11を省略して、構造の簡易化及びコスト低減を図ることができる。 (2) In the above-described embodiment, the diffusing member 11 is provided to diffuse the light in the stacking direction of the elliptical mirror 17, but the diffusing member can be obtained by devising the exit surface 27 of the elliptical mirror 17. 11 can be omitted to simplify the structure and reduce the cost.
 例えば、出射面27で光が拡散するように、表面を荒らすエッチング処理を行ったり、表面が内側にへこんだ凹レンズを形成したりすればよい。 For example, an etching process for roughening the surface may be performed so that light is diffused on the emission surface 27, or a concave lens with a concave surface may be formed.
 (3)なお、上述した楕円ミラー17に代えて、図8に示す楕円ミラー17Aを採用してもよい。なお、図8は、楕円ミラーの変形例を示す概略構成図である。 (3) Instead of the elliptical mirror 17 described above, an elliptical mirror 17A shown in FIG. FIG. 8 is a schematic configuration diagram showing a modification of the elliptical mirror.
 この楕円ミラー17Aは、反射面36が上述した楕円ミラー17と同様の楕円の円弧の一部で構成されているが、一方の焦点f1より円弧の外周側に楕円ミラー17Aのブレード50が存在する。つまり、光は空気中を進み、反射面36で反射されるように構成されている。このような構造の楕円ミラー17Aを積層して反射ユニット19Aを構成しても、上述した反射ユニット19による構成と同様の効果を奏することができる。但し、隣接する楕円ミラー17Aの間における光漏れを防止するための遮断部材51を各楕円ミラー17A間に配置する必要がある。 In this elliptical mirror 17A, the reflecting surface 36 is formed of a part of an elliptical arc similar to the elliptical mirror 17 described above, but the blade 50 of the elliptical mirror 17A exists on the outer peripheral side of the arc from one focal point f1. . That is, the light travels in the air and is reflected by the reflecting surface 36. Even if the reflection unit 19A is configured by stacking the elliptical mirrors 17A having such a structure, the same effect as the configuration by the reflection unit 19 described above can be obtained. However, a blocking member 51 for preventing light leakage between adjacent elliptical mirrors 17A needs to be arranged between the elliptical mirrors 17A.
 <点灯制御例>
 次に、図9を参照して、上述した構成の立体画像表示装置において、光源15A,16Aを採用した場合について説明する。なお、図9は、立体表示装置の概略構成を示すブロック図である。
<Example of lighting control>
Next, a case where the light sources 15A and 16A are employed in the stereoscopic image display apparatus having the above-described configuration will be described with reference to FIG. FIG. 9 is a block diagram illustrating a schematic configuration of the stereoscopic display device.
 この構成では、光源15A,16Aがそれぞれ複数個の発光ダイオード61で構成されている。反射ユニット19Aを構成する楕円ミラー17は、厚さが液晶表示パネル5の表示ラインのピッチに一致していることが好ましい。また、各発光ダイオード61は、楕円ミラー17ごとに配設され、各々が独立して点灯制御される。 In this configuration, each of the light sources 15A and 16A includes a plurality of light emitting diodes 61. The elliptical mirror 17 constituting the reflection unit 19 </ b> A preferably has a thickness that matches the pitch of the display lines of the liquid crystal display panel 5. Each light emitting diode 61 is disposed for each elliptical mirror 17 and is controlled to be lit independently.
 制御部63は、映像信号VDを受け取るとともに液晶表示パネル5に右眼用画像と左眼用画像とを交互に出力する画像信号出力部65と、画像信号出力部65が右眼用画像と左眼用画像とを順次に切り換える際に、垂直同期信号VSに応じて、画像に対応した側の光源15A,16Aの発光ダイオード61だけを画像の表示位置に応じて点灯させてゆく光源制御部67とを備えている。 The control unit 63 receives the video signal VD and outputs the right-eye image and the left-eye image to the liquid crystal display panel 5 alternately, and the image signal output unit 65 outputs the right-eye image and the left-eye image. When sequentially switching to the eye image, the light source control unit 67 turns on only the light emitting diodes 61 of the light sources 15A and 16A on the side corresponding to the image according to the display position of the image according to the vertical synchronization signal VS. And.
 なお、画像信号出力部65が本発明における画像出力手段に相当し、光源制御部67が本発明における光源制御手段に相当する。 The image signal output unit 65 corresponds to the image output unit in the present invention, and the light source control unit 67 corresponds to the light source control unit in the present invention.
 光源制御部67は、画像信号出力部65が右眼用画像と左眼用画像とを液晶表示パネル5に出力する際に、右眼用の光源15Aと左眼用の光源16Aの各発光ダイオード61を点灯させてゆく。具体的には、図10のように制御してゆく。なお、図10(a)~(d)は光源の制御例を示す模式図である。 When the image signal output unit 65 outputs the image for the right eye and the image for the left eye to the liquid crystal display panel 5, the light source control unit 67 emits the light emitting diodes of the light source 15A for the right eye and the light source 16A for the left eye. Turn on 61. Specifically, the control is performed as shown in FIG. FIGS. 10A to 10D are schematic diagrams showing examples of light source control.
 図10(a)に示すように、まず左眼用画像だけが液晶表示パネル5に表示されている状態では、左眼用の光源16Aの全発光ダイオード61を点灯させる。次に、右眼用画像に切り替わるが、図10(b),(c)に示すように、その最初の段階では、液晶表示パネル5のうちの上部が右眼用画像に書き換えられるだけである。その状態では、左眼用画像に対応する側の左眼用の光源16Aのうち左眼用画像の表示位置に応じた発光ダイオード61だけを発光させるとともに、右眼用画像に対応する側の右眼用の光源15Aのうち右眼用画像の表示位置に応じた発光ダイオード61だけを発光させる。このようにして、図10(d)のように液晶表示パネル5の画像が右眼用画像だけとなるまで右眼用の光源15Aと、左眼用の光源16Aとを構成している複数個の発光ダイオード61の点灯を独立して制御する。 As shown in FIG. 10A, in the state where only the image for the left eye is displayed on the liquid crystal display panel 5, all the light emitting diodes 61 of the light source 16A for the left eye are turned on. Next, the image is switched to the right-eye image. As shown in FIGS. 10B and 10C, at the first stage, the upper part of the liquid crystal display panel 5 is simply rewritten to the right-eye image. . In this state, only the light emitting diode 61 corresponding to the display position of the left-eye image is emitted from the left-eye light source 16A on the side corresponding to the left-eye image, and the right side on the side corresponding to the right-eye image is displayed. Only the light emitting diode 61 corresponding to the display position of the right-eye image in the eye light source 15A is caused to emit light. In this way, as shown in FIG. 10D, a plurality of right-eye light sources 15A and left-eye light sources 16A are formed until the image on the liquid crystal display panel 5 is only the right-eye image. The lighting of the light emitting diode 61 is controlled independently.
 液晶表示パネル5に左眼用画像と右眼用画像とを交互に表示させる際に、液晶素子のメモリ効果により、前後するフィールドの両方の画像が表示されている状態が存在する(図10(b),(c))。その場合には、両方の画像が観察者に同時に入射するので正常に立体視することができない。そこで、光源制御部67が、一対の光源15A,16Aを構成している複数個の発光ダイオード61のうち、画像に対応している側の発光ダイオード61だけを画像の表示位置に応じて点灯させてゆく(スキャンさせる)。これにより、左眼用画像は左眼に、右眼用画像は右眼に入射するので、液晶表示パネル5に両画像が同時に表示されていても正常に立体視することができる。また、両画像が表示されて正常に立体視できない期間に一方の光源を消灯させる必要もないので、画像の輝度が低下することもない。 When the left-eye image and the right-eye image are alternately displayed on the liquid crystal display panel 5, there is a state in which images of both the preceding and following fields are displayed due to the memory effect of the liquid crystal element (FIG. 10 ( b), (c)). In this case, since both images are incident on the observer at the same time, stereoscopic viewing cannot be performed normally. Therefore, the light source control unit 67 turns on only the light emitting diode 61 corresponding to the image among the plurality of light emitting diodes 61 constituting the pair of light sources 15A and 16A according to the display position of the image. Go (scan). As a result, the left-eye image is incident on the left eye and the right-eye image is incident on the right eye, so that even if both images are simultaneously displayed on the liquid crystal display panel 5, a stereoscopic view can be normally performed. Further, since it is not necessary to turn off one light source during a period in which both images are displayed and cannot be normally stereoscopically viewed, the luminance of the image does not decrease.
 なお、上記の説明では、各発光ダイオード61が楕円ミラー17ごとに配設されているとしているが、数枚の楕円ミラー17ごとに一つの発光ダイオード61を備える構成としてもよい。この場合には、発光ダイオード61の個数を少なくできるので、コストを抑制することができる。 In the above description, each light emitting diode 61 is arranged for each elliptical mirror 17, but one light emitting diode 61 may be provided for every several elliptical mirrors 17. In this case, since the number of the light emitting diodes 61 can be reduced, the cost can be suppressed.
 上記の構成とした場合には、図10中に示すように、例えば、ブロックBL1~4からなる4つのブロックに分けて点灯制御を行うようにすればよい。これにより正常に立体視を行うことができつつも点灯制御を比較的容易に行うことができる。 In the case of the above configuration, as shown in FIG. 10, for example, the lighting control may be performed by dividing into four blocks including blocks BL1 to BL4. As a result, it is possible to perform lighting control relatively easily while performing stereoscopic viewing normally.
 上記の構成の場合の他の制御例について図11を参照して説明する。なお、図11(a)~(d)は、光源の他の制御例を示す模式図である。 Another example of control in the case of the above configuration will be described with reference to FIG. FIGS. 11A to 11D are schematic diagrams showing other control examples of the light source.
 この例では、左眼用画像と右眼用画像との境界(隣接する領域)に、黒帯BSを表示させるようになっている。具体的には、上述した画像信号出力部65が、右眼用画像と左眼用画像とを液晶表示パネル5に出力する際に、画像間に黒帯BSに係る映像信号を挿入して出力する。この場合には、黒帯BSの部分においては右眼用及び左眼用の光源15A,16Aの両方が点灯していてもよいので、点灯制御を容易にすることができる。したがって、上述した発光ダイオード61のブロックBL1~4ごとの制御に好適である。 In this example, a black belt BS is displayed at the boundary (adjacent region) between the left-eye image and the right-eye image. Specifically, when the above-described image signal output unit 65 outputs the right-eye image and the left-eye image to the liquid crystal display panel 5, the video signal related to the black band BS is inserted and output between the images. To do. In this case, since both the right-eye and left- eye light sources 15A and 16A may be lit in the black belt BS, lighting control can be facilitated. Therefore, it is suitable for controlling the blocks BL1 to BL4 of the light emitting diode 61 described above.
 また、左眼用画像と右眼用画像との境界は、液晶素子のメモリ効果により、画像が確定していない状態、例えば前の画像から次の画像への遷移状態が表示されるだけで不鮮明な画像となる。したがって、この境界に黒帯BSを表示することにより、不確定画像の影響を抑制して立体画像を鮮明に表示させることができる。 In addition, the boundary between the left-eye image and the right-eye image is unclear due to the memory effect of the liquid crystal element, such as when the state of the image is not fixed, for example, the transition state from the previous image to the next image is displayed. It becomes a correct image. Therefore, by displaying the black belt BS at this boundary, it is possible to suppress the influence of the indeterminate image and display the stereoscopic image clearly.
 <視野角制限>
 上述した実施例は、立体画像に係る表示装置の例であったが、以下に視野角制限の例を示す。
<Viewing angle restriction>
The embodiment described above is an example of a display device related to a stereoscopic image, but an example of viewing angle restriction is shown below.
 ここで図12を参照する。なお、図12は、視野角が制限されていることの説明に供する模式図である。 Here, refer to FIG. FIG. 12 is a schematic diagram for explaining that the viewing angle is limited.
 この装置は、一方の楕円ミラー17だけを用いて構成されている。但し、副反射部37の副反射面39は不要である。この場合には、楕円ミラー17の出射面27から出射した光が焦点fに集光する。したがって、可視領域VR1(図12中のハッチングされた領域)と、不可視領域IVR1とが生じることになる。そのため、可視領域VR1中にあたる位置L1では、画像を観察することができる一方、不可視領域IVR1中にあたる位置L2では、画像を観察することができない。つまり、一方の楕円ミラー17だけを用いることにより、その焦点f方向だけに限定することができる。 This device is configured using only one elliptical mirror 17. However, the sub-reflection surface 39 of the sub-reflection part 37 is not necessary. In this case, the light emitted from the emission surface 27 of the elliptical mirror 17 is collected at the focal point f. Therefore, a visible region VR1 (hatched region in FIG. 12) and an invisible region IVR1 are generated. Therefore, an image can be observed at the position L1 corresponding to the visible region VR1, whereas an image cannot be observed at the position L2 corresponding to the invisible region IVR1. That is, by using only one of the elliptical mirrors 17, it is possible to limit to the focal point f direction.
 なお、副反射面37を備えている場合には、不可視領域IVR1側(図12における位置L2側)にも可視領域VR1が広がることになる(可視領域VR1を含む扇形状の領域となる)。この場合であっても、一方の楕円ミラー17により図12における観察者の右眼ER側だけに視野角を制限することができる。 In addition, when the sub-reflection surface 37 is provided, the visible region VR1 also expands to the invisible region IVR1 side (position L2 side in FIG. 12) (a fan-shaped region including the visible region VR1). Even in this case, the viewing angle can be limited only to the observer's right eye ER side in FIG.
 また、両方の楕円ミラー17を備えている場合であっても、それぞれの副反射面39を備えない構成とすることで、図2における観察者の右眼ERと左眼ELの位置と液晶表示パネル5とを結んで構成される台形領域と、その台形領域を、右眼ERと左眼ELとを結んだラインで対称に配置してなる逆台形領域内が可視領域VR1となる。これは、図12における可視領域VR1を、図2における左眼EL付近の焦点fにも配置したような領域となる。 Further, even if both elliptical mirrors 17 are provided, the positions of the observer's right eye ER and left eye EL in FIG. A visible trapezoidal area formed by connecting the panel 5 and the inverted trapezoidal area in which the trapezoidal area is arranged symmetrically by a line connecting the right eye ER and the left eye EL is the visible area VR1. This is a region in which the visible region VR1 in FIG. 12 is also arranged at the focal point f near the left eye EL in FIG.
 上述した構成で単に視野角制限を行うだけでよい場合には、上述した立体表示装置のように画像を交互に出力する必要もなく、さらに光源の点灯制御を行う必要もなく、光源を常時点灯させておけばよい。 When it is sufficient to simply limit the viewing angle with the above-described configuration, it is not necessary to output images alternately as in the above-described stereoscopic display device, and it is not necessary to perform lighting control of the light source, and the light source is always turned on. You can let it go.
 上述した装置によると、一方の焦点f1側に配置された光源から放射された光は、楕円ミラー17の入射面25から入射し、楕円の反射面36で反射して出射面27から出射され、透過型の液晶表示パネル5を透過して他方の焦点f2側の焦点fに集光する。したがって、視野角を他方の焦点f方向だけに限定することができる。また、楕円の一方の焦点f1からの光を他方の焦点f2側に集光させるには、楕円ミラー17の側方に光源15,16を配置すればよいので、装置の奥行きを短くすることができて、小型化を図ることができる。 According to the above-described apparatus, the light emitted from the light source arranged on the one side of the focal point f1 is incident from the incident surface 25 of the elliptical mirror 17, reflected by the elliptical reflective surface 36, and emitted from the output surface 27. The light passes through the transmissive liquid crystal display panel 5 and is focused on the focal point f on the other focal point f2. Therefore, the viewing angle can be limited only to the other focus f direction. Further, in order to condense the light from one focal point f1 of the ellipse toward the other focal point f2, the light sources 15 and 16 may be arranged on the side of the elliptical mirror 17, so that the depth of the apparatus can be shortened. And can be reduced in size.
 (ブレード変形)
 ここで図13を参照する。なお、図13は、楕円ミラーの変形例を示す斜視図である。
 上述した実施例では、楕円ミラー17が薄板状であるとしているが、立体表示を行わない場合には、厚板状としてもよい。
(Blade deformation)
Reference is now made to FIG. FIG. 13 is a perspective view showing a modification of the elliptical mirror.
In the embodiment described above, the elliptical mirror 17 has a thin plate shape. However, when the stereoscopic display is not performed, the elliptical mirror 17 may have a thick plate shape.
 すなわち、立体表示を行う必要がなく、視野角制限を行えばよい表示装置の場合には、楕円ミラー17を積層する必要がないので、単体の厚板状のブレード18Aで構成された楕円ミラー17Aとしてもよい。但し、図12に示したように、視野が焦点f方向の可視領域VR1だけでよい場合には副反射部37に副反射面39を備える必要はない。 That is, in the case of a display device that does not need to perform stereoscopic display and only needs to limit the viewing angle, it is not necessary to stack the elliptical mirrors 17, and thus the elliptical mirror 17 </ b> A configured by a single thick blade 18 </ b> A. It is good. However, as shown in FIG. 12, when the visual field only needs to be the visible region VR1 in the direction of the focus f, it is not necessary to provide the sub-reflecting surface 39 in the sub-reflecting portion 37.
 (デュアルビュー表示)
 ここで図14を参照する。なお、図14は、デュアルビューの表示装置の概念を説明する模式図である。
(Dual view display)
Reference is now made to FIG. FIG. 14 is a schematic diagram illustrating the concept of a dual view display device.
 焦点fと焦点(f)との間隔が、平均的な人の両眼間隔よりも広くなるような楕円ミラー17及び反射ユニット19を採用することにより、観察方向により異なる画像を見ることができる装置とすることができる。このようなものをデュアルビューと称する。例えば、自動車のセンターコンソールに配備することにより、運転席側にはナビゲーション画像を表示させ、助手席側にはテレビ画像を表示させることができる。具体的には、楕円ミラー17の副反射部39によって得られる二次元画像を観察可能な領域を利用すればよい。つまり、図14における可視領域VR1,VR2を利用する。なお、焦点f,(f)を上記の間隔に設定することにより、両画像が重複して観察されてしまう領域を極力少なくすることができる。また、図14における点線DLよりも外側に焦点fが位置するように楕円ミラー17を構成することにより、装置正面から見て両画像が重複して観察可能な領域をなくすことができる。図14においては、図示省略してあるが、他方の焦点f2,(f2)は、楕円21よりも外側に位置する。 By adopting the elliptical mirror 17 and the reflection unit 19 in which the distance between the focal point f and the focal point (f) is wider than the average distance between both eyes of the person, an apparatus capable of viewing different images depending on the viewing direction. It can be. Such a thing is called a dual view. For example, a navigation image can be displayed on the driver's seat side and a television image can be displayed on the passenger's seat side by deploying in the center console of an automobile. Specifically, an area where the two-dimensional image obtained by the sub-reflecting unit 39 of the elliptical mirror 17 can be observed may be used. That is, the visible regions VR1 and VR2 in FIG. 14 are used. Note that, by setting the focal points f and (f) to the above-described interval, it is possible to minimize the region where both images are observed in an overlapping manner. Further, by configuring the elliptical mirror 17 so that the focal point f is positioned outside the dotted line DL in FIG. 14, it is possible to eliminate an area where both images can be observed as viewed from the front of the apparatus. Although not shown in FIG. 14, the other focal points f <b> 2 and (f <b> 2) are located outside the ellipse 21.
 制御的には、上述した立体画像表示装置における右眼用画像と左眼用画像に代えて、第1の画像(例えば、ナビゲーション画像)と第2の画像(例えば、テレビ画像)とを画像信号出力部65(図9)から交互に出力させるとともに、それぞれに応じた光源15,16を交互に点灯させればよい。 In terms of control, instead of the right-eye image and the left-eye image in the above-described stereoscopic image display device, the first image (for example, navigation image) and the second image (for example, television image) are image signals. What is necessary is just to make it alternately output from the output part 65 (FIG. 9), and to light the light sources 15 and 16 according to each alternately.
 また、可視領域VR1,VR2における光量を増加させるために、光源15,16だけでなく、副反射面39を入射可能な面とし、ここに光源15,16と同様の光源を追加することが好ましい。 In order to increase the amount of light in the visible regions VR1 and VR2, it is preferable to use not only the light sources 15 and 16 but also the sub-reflecting surface 39 as an incident surface, and a light source similar to the light sources 15 and 16 is added here. .
 なお、上述した実施例1では、図2に示すように、楕円ミラー17の入射面25が、楕円の一方の焦点f1を端点として、楕円の円弧の一部からなる反射面に対向し、楕円の一方の焦点f1から円弧側に向かうにしたがって長軸から離れるような傾斜面で構成されている。光源15は、その一方の焦点f1を端点とする平面に付設されている。 In the first embodiment described above, as shown in FIG. 2, the incident surface 25 of the elliptical mirror 17 is opposed to the reflecting surface formed of a part of the elliptical arc, with one focal point f1 of the elliptical as an end point. It is comprised by the inclined surface which leaves | separates from a long axis as it goes to the circular arc side from one focus f1. The light source 15 is attached to a plane whose end point is one of the focal points f1.
 しかしながら、この実施例1の装置は、光源15から出射された光のうち、一方の焦点f1を通る光量が少ないので、他方の焦点f2にあたる視点から見た液晶表示パネル5の画面輝度を高めることが困難である。また、この実施例1の装置では、液表表示パネル5の輝度分布が光源の配光分布(角度強度分布)に依存するので、液晶表示パネル5に大きな輝度ムラを生じるという問題もある。さらに、光源15を平面としたままで二次元画像の視野を広げるには、光源15を楕円の円弧側に長くする必要があり、そのために装置の幅が大きくなる。 However, the apparatus according to the first embodiment increases the screen brightness of the liquid crystal display panel 5 as viewed from the viewpoint corresponding to the other focal point f2 because the amount of light emitted from the light source 15 passes through one focal point f1 is small. Is difficult. Further, in the apparatus of the first embodiment, since the luminance distribution of the liquid surface display panel 5 depends on the light distribution (angular intensity distribution) of the light source, there is a problem that large luminance unevenness occurs in the liquid crystal display panel 5. Furthermore, in order to widen the field of view of the two-dimensional image while keeping the light source 15 flat, it is necessary to lengthen the light source 15 toward the ellipse arc, which increases the width of the apparatus.
 そこで、このような実施例1の装置の課題を解決する実施例について以下に説明する。この実施例2は、光の取り込み方を工夫することにより、視野角を制限することができ、装置の奥行きを短くすることができて小型化に有利でありながらも、輝度ムラを抑制することができ、かつ二次元画像の視野を広げても装置幅を抑制することができることを目的とする。 Therefore, an embodiment that solves the problem of the apparatus of the first embodiment will be described below. In the second embodiment, by devising how to capture light, the viewing angle can be limited, and the depth of the apparatus can be shortened, which is advantageous for downsizing, but also suppresses uneven brightness. It is possible to suppress the width of the apparatus even when the field of view of the two-dimensional image is widened.
 以下、図面を参照して本発明の実施例2を説明する。
 図15は、実施例2に係る立体画像表示装置の概略構成を示す横断面図であり、図16は、楕円ミラーを構成する楕円を説明する模式図である。また、図17は、楕円ミラーの一部断面を示す図であり、(a)は楕円ミラーの正面図、(b)は楕円ミラーの側面図であり、図18は、楕円ミラーの外観斜視図であり、図19は、反射ユニットの正面図である。
Embodiment 2 of the present invention will be described below with reference to the drawings.
FIG. 15 is a cross-sectional view illustrating a schematic configuration of the stereoscopic image display apparatus according to the second embodiment, and FIG. 16 is a schematic diagram illustrating an ellipse constituting an elliptic mirror. 17 is a diagram showing a partial cross section of the elliptical mirror, where (a) is a front view of the elliptical mirror, (b) is a side view of the elliptical mirror, and FIG. 18 is an external perspective view of the elliptical mirror. FIG. 19 is a front view of the reflection unit.
 本実施例に係る立体画像表示装置(本発明における「画像表示装置」)は、横断面がコの字状の筐体3を備えている。この筐体3の前面4には、透過型の液晶表示パネル5がフロントベゼルを含む支持部7を介して取り付けられている。以下、透過型の液晶表示パネル5については、適宜、液晶表示パネル5と記す。液晶表示パネル5の両端側にあたる支持部7の奥側には、支持枠9を介して拡散部材11が取り付けられている。この拡散部材11は、光を縦方向(紙面方向)に拡散させる機能を備えている。支持枠9の一方の奥側(前面4から見て左側奥)には、右眼用の光源15が取り付けられ、支持枠9の他方の奥側(前面4から見て右側奥)には、左眼用の光源16が取り付けられている。光源15,16(本発明における第1の光源及び第2の光源に相当)は、例えば、外観が棒状を呈し、図1において、紙面方向に長手方向が位置するように取り付けられている。 The stereoscopic image display apparatus according to the present embodiment (“image display apparatus” in the present invention) includes a housing 3 having a U-shaped cross section. A transmissive liquid crystal display panel 5 is attached to the front surface 4 of the housing 3 via a support portion 7 including a front bezel. Hereinafter, the transmissive liquid crystal display panel 5 is appropriately referred to as a liquid crystal display panel 5. A diffusion member 11 is attached to the back side of the support portion 7 corresponding to both ends of the liquid crystal display panel 5 via a support frame 9. The diffusing member 11 has a function of diffusing light in the vertical direction (paper surface direction). A light source 15 for the right eye is attached to one back side of the support frame 9 (left side back when viewed from the front surface 4), and the other back side (right side back when viewed from the front surface 4) of the support frame 9 is A light source 16 for the left eye is attached. The light sources 15 and 16 (corresponding to the first light source and the second light source in the present invention) have, for example, a rod-like appearance and are attached so that the longitudinal direction is positioned in the paper surface direction in FIG.
 一対の光源15,16の奥側には、同形状の楕円ミラー17を互い違いに異なる向きにした状態で積層して構成された反射ユニット19が配設されている(図15及び図19参照)。楕円ミラー17は、薄板状の外観を呈しており、面方向(紙面方向)から見て一端面が楕円の円弧の一部を構成している。楕円ミラー17は、左眼用も右眼用も向きが異なるだけで同じものであるので、ここでは右眼用の楕円ミラー17の構成を例に採って図17を参照しつつ説明する。 On the back side of the pair of light sources 15 and 16, a reflection unit 19 configured by laminating the elliptical mirrors 17 having the same shape in different directions is arranged (see FIGS. 15 and 19). . The elliptical mirror 17 has a thin plate-like appearance, and one end surface thereof constitutes a part of an elliptical arc when viewed from the surface direction (paper surface direction). Since the elliptical mirror 17 is the same for the left eye and the right eye only in different directions, the configuration of the elliptical mirror 17 for the right eye will be described as an example with reference to FIG.
 なお、上述した光源15,16が本発明における「第1の光源」及び「第2の光源」に相当し、上述した楕円ミラー17が本発明における「導光体」に相当する。 The light sources 15 and 16 described above correspond to the “first light source” and the “second light source” in the present invention, and the elliptic mirror 17 described above corresponds to the “light guide” in the present invention.
 楕円ミラー17は、外観形状が刃状を呈するブレード20(本発明における「本体」に相当)を備えている。このブレード20は、面方向から見て一端面が楕円21の円弧の一部から構成されている。ブレード20の一方の焦点f1側には、一方の焦点f1及び長軸aから離間するとともに、楕円21の下側の長軸aに沿って形成された入射面22を備えている。この入射面22は、ブレード20の上部右側にあたる放物面形状の突起部24にわたって形成されている。なお、ここで言う「沿う」とは、平行も含むが、平行である必要はなく、楕円21の下側の長軸aに付かず離れず距離を保っているという意である。ブレード20は、換言すると、一方の焦点f1側の楕円21の円弧の内周側で構成されている。ブレード20の面方向(紙面方向)から見て直線状を呈する他端面には、出射面27が形成されている。楕円ミラー17の端面側から見て細帯状を呈する円弧部28は、出射面27から出射した光が他方の焦点f2側に集光するように形成されている。図示省略しているが、実際には、後述する楕円ミラー17の構成(アクリル樹脂29から出射される際の屈折)により、出射面27から出射した光は、他方の焦点f2よりも楕円21の中心c側に寄った位置に集光する。しかしながら、ここでは説明の理解を容易にするために、他方の焦点f2が観察者の右眼ERの位置にあたるものとする。なお、楕円ミラー17の左右を反転させると、他方の焦点f2は、観察者の左眼ELの位置にあたる。右眼ERと左眼ELとの間隔、つまり焦点f2と焦点(f2)との間隔は、平均的に64mm程度、最大でも80mm程度である。 The elliptical mirror 17 includes a blade 20 (corresponding to a “main body” in the present invention) whose outer shape is a blade shape. The blade 20 is constituted by a part of an arc having an ellipse 21 as viewed from the surface direction. On one focal point f1 side of the blade 20, there is provided an incident surface 22 that is separated from the one focal point f1 and the major axis a and is formed along the lower major axis a of the ellipse 21. The incident surface 22 is formed over a parabolic projection 24 that is on the upper right side of the blade 20. The term “along” here includes parallel but does not need to be parallel, and does not attach to the long axis a on the lower side of the ellipse 21 and keeps a distance. In other words, the blade 20 is configured on the inner peripheral side of the arc of the ellipse 21 on the one focal point f1 side. An emission surface 27 is formed on the other end surface that is linear when viewed from the surface direction (paper surface direction) of the blade 20. The circular arc portion 28 having a narrow band shape when viewed from the end surface side of the elliptical mirror 17 is formed so that the light emitted from the emission surface 27 is condensed on the other focal point f2 side. Although not shown, actually, the light emitted from the emission surface 27 is more elliptical than the other focal point f2 due to the configuration of the elliptic mirror 17 described later (refraction when emitted from the acrylic resin 29). The light is condensed at a position close to the center c side. However, here, in order to facilitate understanding of the explanation, it is assumed that the other focal point f2 corresponds to the position of the right eye ER of the observer. If the left and right sides of the elliptical mirror 17 are reversed, the other focal point f2 corresponds to the position of the left eye EL of the observer. The distance between the right eye ER and the left eye EL, that is, the distance between the focal point f2 and the focal point (f2) is about 64 mm on average and about 80 mm at the maximum.
 ブレード20のうち、面方向から見て一方の焦点f1を囲う位置には、中間反射面53が形成されている。この中間反射面53は、入射面22から入射した右眼用の光源15からの光を、円弧部28(正確には後述する反射面36)に向けて反射する。この中間反射面53の詳細については後述する。 An intermediate reflecting surface 53 is formed in the blade 20 at a position surrounding one focal point f1 when viewed from the surface direction. The intermediate reflecting surface 53 reflects the light from the light source 15 for the right eye that has entered from the incident surface 22 toward the arc portion 28 (more precisely, a reflecting surface 36 described later). Details of the intermediate reflecting surface 53 will be described later.
 上述したように楕円ミラー17のブレード20が一方の焦点f1側の円弧の内周側で構成されているので、ブレード20の面同士を重ね合わせるだけで実用的な強度を備えた反射ユニット19を構成することができる。なお、ブレード20間における光の漏れを防止するために、楕円ミラー17を次のように構成することが好ましい。 As described above, since the blade 20 of the elliptical mirror 17 is configured on the inner peripheral side of the arc on the one focal point f1, the reflection unit 19 having a practical strength can be obtained by simply overlapping the surfaces of the blades 20. Can be configured. In order to prevent light leakage between the blades 20, the elliptical mirror 17 is preferably configured as follows.
 楕円ミラー17のブレード20は、光源15,16からの光を透過する光透過性の樹脂、具体的には、例えばアクリル樹脂で構成され、厚さが数ミリ程度(例えば、2mm)である。楕円ミラー17の円弧部25及び中間反射面53は、アクリル樹脂29の外面に光反射材料、例えば、アルミニウム膜31が蒸着されている。その上には、白色塗装33に重ねて黒色塗装35が施されている。換言すると、円弧部28におけるアクリル樹脂29の端面は、アルミニウム膜31と、白色塗装33と、黒色塗装35とによってその順で覆われ、最内側面が反射面36(本発明における「楕円反射面」に相当)を構成している。また、入射面22と出射面27とは、端面に一切の塗装が施されていないが、アクリル樹脂29の両面には白色塗装33に重ねて黒色塗装35が施されている。 The blade 20 of the elliptical mirror 17 is made of a light-transmitting resin that transmits light from the light sources 15 and 16, specifically, an acrylic resin, for example, and has a thickness of about several millimeters (for example, 2 mm). The arc portion 25 and the intermediate reflecting surface 53 of the elliptical mirror 17 are formed by depositing a light reflecting material, for example, an aluminum film 31 on the outer surface of the acrylic resin 29. On top of this, a black paint 35 is applied to the white paint 33. In other words, the end surface of the acrylic resin 29 in the circular arc portion 28 is covered in that order by the aluminum film 31, the white coating 33, and the black coating 35, and the innermost side surface is the reflecting surface 36 (“elliptical reflecting surface in the present invention”). Is equivalent). The entrance surface 22 and the exit surface 27 are not painted at all on the end surfaces, but the both surfaces of the acrylic resin 29 are coated with the white coating 33 and the black coating 35.
 なお、円弧部28には、上述したアルミニウム膜31を蒸着する他に、光反射材料を塗布することによって被膜を形成するようにしてもよく、さらに、金属箔を貼り付けることによって被膜を形成するようにしてもよい。また、光反射材料として、上述したアルミニウムの他に、例えば、銀合金からなる被膜を形成するようにしてもよい。さらに、アクリル樹脂29の両面には、白色塗装33に重ねて黒色塗装35だけでなく、最内面に、上述した光反射材料からなる被膜を形成するようにしてもよい。 In addition to vapor-depositing the aluminum film 31 described above, a film may be formed on the arc portion 28 by applying a light reflecting material, and further, a film is formed by attaching a metal foil. You may do it. Further, as the light reflecting material, in addition to the above-described aluminum, a film made of, for example, a silver alloy may be formed. Furthermore, on both surfaces of the acrylic resin 29, a coating made of the above-described light reflecting material may be formed not only on the white coating 33 but on the innermost surface in addition to the white coating 33.
 楕円ミラー17は、上述したように構成されており、光透過性のアクリル樹脂29により光源15,16の光を効率的に透過させることができ、入射した光を反射面36の光反射材料で反射させることができるとともに、白色塗装33及び黒色塗装35により、入射した光を効率的に出射面27にまで導くことができる。また、反射面36のアルミニウム膜31がアクリル樹脂29で外部雰囲気から遮断されて保護されることになるので、アルミニウム膜31が曇ったり腐食したりすることで反射率が低下するような経時劣化を抑制することができる。 The elliptical mirror 17 is configured as described above, and can efficiently transmit the light from the light sources 15 and 16 by the light-transmitting acrylic resin 29. The incident light is reflected by the light reflecting material of the reflecting surface 36. In addition to being able to reflect, the white paint 33 and the black paint 35 can efficiently guide the incident light to the emission surface 27. Further, since the aluminum film 31 on the reflective surface 36 is protected from the external atmosphere by the acrylic resin 29, the aluminum film 31 is protected from deterioration with time such that the reflectance is lowered by the clouding or corrosion of the aluminum film 31. Can be suppressed.
 なお、立体画像表示装置では、通常、観察者の眼が集光位置からずれると画像が見えなくなるが、図16中に点線で示すように光源15を入射面22に沿って長く伸ばすことにより、焦点位置f2よりも外側(図16の左方向)に向かって出射する(図16に矢付き二点鎖線)。したがって、立体画像を観察できないものの、右眼用画像または左眼用画像だけによる二次元画像として観察することができる。したがって、立体視している観察者の周囲からでも観察者が立体視している画像の概略を知ることができる。 In the stereoscopic image display device, the image is usually invisible when the observer's eyes deviate from the condensing position. However, by extending the light source 15 along the incident surface 22 as shown by the dotted line in FIG. The light is emitted outward (leftward in FIG. 16) from the focal position f2 (a two-dot chain line with an arrow in FIG. 16). Therefore, although a stereoscopic image cannot be observed, it can be observed as a two-dimensional image using only the right-eye image or the left-eye image. Therefore, it is possible to know the outline of the image stereoscopically viewed by the observer even from around the stereoscopic observer.
 反射ユニット19は、図15及び図19に示すように、楕円ミラー17の出射面27を透過型の液晶表示パネル5の背面に向けるとともに、入射面22を互いに反対側(左及び右)に向けた互い違いの状態で、一対の光源15,16を結ぶラインに直交する方向(図15の紙面方向、図19の上下方向)に、かつ、一対の光源15,16の長手方向に面同士を積層して構成されている。その際、出射面27が一つの平面を構成するようにして積層してあるので、拡散板11を容易に配設することができるようになっている。 As shown in FIGS. 15 and 19, the reflection unit 19 directs the exit surface 27 of the elliptical mirror 17 to the back surface of the transmissive liquid crystal display panel 5 and directs the entrance surface 22 to opposite sides (left and right). In a staggered state, the surfaces are stacked in a direction perpendicular to the line connecting the pair of light sources 15 and 16 (the paper surface direction in FIG. 15 and the vertical direction in FIG. 19) and in the longitudinal direction of the pair of light sources 15 and 16. Configured. At this time, since the emission surface 27 is laminated so as to constitute one plane, the diffusion plate 11 can be easily disposed.
 ここで、図20を参照して、中間反射面53について説明する。なお、図20は、中間反射面を示すブレードの一部拡大図である。 Here, the intermediate reflecting surface 53 will be described with reference to FIG. FIG. 20 is a partially enlarged view of the blade showing the intermediate reflecting surface.
 中間反射面53は、横向きの放物線状を呈し、横向きの中心軸PCが出射面27よりも若干上に位置している。そして、その放物線の焦点は、楕円21の一方の焦点f1に一致するように中間反射面53が形成されている。なお、楕円21の他方の焦点f2から見た液晶表示パネル5における画面輝度分布均一化のために、以下のように構成するのが好ましい。 The intermediate reflecting surface 53 has a horizontal parabolic shape, and the horizontal central axis PC is located slightly above the emission surface 27. An intermediate reflecting surface 53 is formed so that the parabola has the focal point coincident with one focal point f 1 of the ellipse 21. In order to make the screen luminance distribution uniform in the liquid crystal display panel 5 as viewed from the other focal point f2 of the ellipse 21, the following configuration is preferable.
 ここで、図16に示すように、楕円21の他方の焦点f2から液晶表示パネル5の右端を通る直線と円弧部28との交点を符号pとし、他方の焦点f2から液晶表示パネル5の左端を通る直線と円弧部28との交点を符号qとする。そして、交点pから一方の焦点f1に直線を描いたときの光源15との交点を符号R1とし、交点qから一方の焦点f1に直線を描いたときの光源15との交点を符号R2とした場合、交点R1が光源15の最上部または放物線上となることが好ましい。一方の焦点f1を通り、液晶表示パネル5の全面を照らすことになる光は、放物線の中心軸PCに平行な光であり、画面輝度分布と光源15の表面各点を一対一に対応付けることができる。このため、光源15が液晶表示パネル5の全面にわたって一様な光源であった場合、一方の焦点f1を通る光線の強度は全て等しくなり、均一な輝度分布を得られることになる。また、光源15が全面一様でなかったとしても、角度強度比分布が一様であれば、画面上各点の輝度調整は光源15の各点での光束調整により均一な輝度分布とすることが可能となり、光源15の出射面表面へのパターン形成や、光源15が発光ダイオードを備えている場合には、各発光ダイオードの駆動電流や、発光ダイオードのピッチ調整などによって画面輝度均一化を比較的容易に図ることができる。 Here, as shown in FIG. 16, the intersection of the straight line passing through the right end of the liquid crystal display panel 5 from the other focal point f2 of the ellipse 21 and the arc portion 28 is denoted by p, and the left end of the liquid crystal display panel 5 from the other focal point f2. The intersection of the straight line passing through and the arc portion 28 is denoted by q. The intersection point with the light source 15 when a straight line is drawn from the intersection point p to one focus f1 is denoted by R1, and the intersection point with the light source 15 when a straight line is drawn from the intersection point q to one focus f1 is denoted by R2. In this case, the intersection R1 is preferably on the uppermost part of the light source 15 or on the parabola. The light that passes through one focal point f1 and illuminates the entire surface of the liquid crystal display panel 5 is light that is parallel to the central axis PC of the parabola, and the screen luminance distribution and each surface point of the light source 15 can be associated one-to-one. it can. For this reason, when the light source 15 is a uniform light source over the entire surface of the liquid crystal display panel 5, the intensities of the light beams passing through one focal point f1 are all equal, and a uniform luminance distribution can be obtained. Even if the light source 15 is not uniform on the entire surface, if the angular intensity ratio distribution is uniform, the luminance adjustment at each point on the screen is made uniform by adjusting the luminous flux at each point of the light source 15. If the light source 15 is provided with a light emitting diode, and the light source 15 is provided with a light emitting diode, the brightness of the screen is compared by adjusting the driving current of each light emitting diode and adjusting the pitch of the light emitting diode. Can be easily achieved.
 上記のような条件で中間反射面53を設計する場合には、交点R1が光源15における三次元画像表示用の最上部となり、この交点R1から下に必要分だけ光源15を伸ばすことになる。この下に伸ばした点をR3とすると、この点R3は、交点R2よりも上側になくてはならない。点R3が交点R2よりも上にある場合には、三次元画像表示用の光源15の範囲を交点R1から交点R2までとすることにより、必要光量を確保することができる。点R3が交点R2よりも下にある場合には、光源15をさらに外側(図20の右側)に移動させ、交点R1を上に設定する必要がある。そのようにすると、立体画像表示装置の全幅が広くなるので、立体画像表示装置の全幅が許容範囲内であれば、上述した手法で設計することが好ましい。 When the intermediate reflecting surface 53 is designed under the above-described conditions, the intersection R1 is the uppermost part for displaying a three-dimensional image in the light source 15, and the light source 15 is extended below the intersection R1 by a necessary amount. If the point extended below this is R3, this point R3 must be above the intersection R2. When the point R3 is above the intersection R2, the necessary light quantity can be secured by setting the range of the light source 15 for displaying a three-dimensional image from the intersection R1 to the intersection R2. When the point R3 is below the intersection point R2, it is necessary to move the light source 15 further outward (right side in FIG. 20) and set the intersection point R1 above. By doing so, the full width of the stereoscopic image display device is widened. Therefore, if the full width of the stereoscopic image display device is within an allowable range, it is preferable to design by the above-described method.
 なお、図20中において一方の焦点f1の左側に点線で示しているのは、クロストーク限界ラインLCである。このクロストーク限界ラインLCは、観察者の顔の中央(右眼と左眼の中央)にくる光線を示している。例えば、観察者の右眼に光線を集める場合、このクロストーク限界ラインLCを超えた液晶表示パネル5側から、一方の焦点f1を通らずに楕円ミラー17に向かう光があった場合、楕円ミラー17で反射した光線は、観察者の顔の中心よりも左側に向かう。つまり、放物線中心軸PCに平行でない光のうち、このクロストーク限界ラインLCよりも液晶表示パネル5側で反射して楕円ミラー17に向かう光があるとクロストークとなって立体画像が不鮮明となる原因となる。そこで、このクロストーク限界ラインLCと中間反射面53を構成している放物線の中心軸PCとの交点PEを、中間反射面53の放物線の終端とすることにより、全ての光線をクロストークさせずに画像化に利用することができる。 In FIG. 20, the crosstalk limit line LC is indicated by a dotted line on the left side of one focal point f1. The crosstalk limit line LC indicates a light beam that comes to the center of the observer's face (the center of the right eye and the left eye). For example, when collecting light rays in the right eye of the observer, if there is light traveling from the liquid crystal display panel 5 side that exceeds the crosstalk limit line LC toward the elliptical mirror 17 without passing through one focus f1, the elliptical mirror The light beam reflected by 17 is directed to the left side of the center of the observer's face. That is, of the light that is not parallel to the parabola central axis PC, if there is light that is reflected on the liquid crystal display panel 5 side from the crosstalk limit line LC and is directed to the elliptical mirror 17, crosstalk occurs and the stereoscopic image becomes unclear. Cause. Therefore, the intersection PE between the crosstalk limit line LC and the central axis PC of the parabola constituting the intermediate reflection surface 53 is set as the end of the parabola of the intermediate reflection surface 53, so that all the rays are not crosstalked. It can be used for imaging.
 さらに、中間反射面53のうち、一方の焦点f1と交点qの光線と中間反射面53の放物線における交点CPからクロストーク限界ラインLCまでの範囲(クロストーク範囲)を直線的な面LSとして形成すると、ここに入射した光線は交点qよりも左で反射面36に入射することになる。したがって、この光線は、立体視距離において立体画像表示装置の観察者の右眼ERよりもさらに右側(観察者の右腕側)に向かう。その結果、二次元画像の表示用として光線を有効利用することができ、光源15の利用効率向上が期待できる。なお、二次元画像用を必要としない場合には、面LSを、光を吸収する吸収面で構成すればよい。 Further, in the intermediate reflecting surface 53, a range (crosstalk range) from the intersection point CP to the crosstalk limit line LC in the parabola of one focal point f1, the intersection q, and the intermediate reflecting surface 53 is formed as a linear surface LS. Then, the light ray incident here enters the reflecting surface 36 on the left side of the intersection point q. Therefore, this light beam is directed further to the right side (the observer's right arm side) than the observer's right eye ER of the stereoscopic image display device at the stereoscopic viewing distance. As a result, it is possible to effectively use light rays for displaying a two-dimensional image, and the use efficiency of the light source 15 can be expected to be improved. In addition, what is necessary is just to comprise the surface LS with the absorption surface which absorbs light, when the object for two-dimensional images is not required.
 上述したように構成されている立体画像表示装置では、一方の焦点f1側に配設された右眼用の光源15から出射された光は、ブレード20の入射面22から入射し、中間反射面53を介して楕円形状の反射面36で反射して出射面27から出射され、透過型の液晶表示パネル5を透過して楕円21の他方の焦点側f2に集光する。したがって、他方の焦点f2方向に視野角を限定することができる。また、ブレード20の入射面22が楕円21の一方の焦点f1及び楕円21の長軸aから離間して形成されており、右眼用の光源15からの光が中間反射面53を介して入射するので、右眼用の光源15からの光のうち楕円21の一方の焦点f1を通る光量を増やすことができる。したがって、他方の焦点f2にあたる視点から見た透過型の液晶表示パネル5の輝度ムラを抑制することができる。さらに、ブレード20の入射面22が楕円21の長軸aに沿って形成されているので、二次元画像の視野を広げるために右眼用の光源15を長くしても、右眼用の光源15が装置の幅方向に長くならない。したがって、装置の幅が広がることを抑制できる。 In the stereoscopic image display apparatus configured as described above, the light emitted from the light source 15 for the right eye disposed on the one focus f1 side is incident from the incident surface 22 of the blade 20, and the intermediate reflecting surface. The light is reflected by the elliptical reflection surface 36 through 53 and emitted from the emission surface 27, passes through the transmissive liquid crystal display panel 5, and is condensed on the other focal side f <b> 2 of the ellipse 21. Therefore, the viewing angle can be limited to the other focus f2 direction. Further, the incident surface 22 of the blade 20 is formed apart from one focal point f1 of the ellipse 21 and the long axis a of the ellipse 21, and light from the light source 15 for the right eye is incident through the intermediate reflecting surface 53. Therefore, the amount of light passing through one focal point f1 of the ellipse 21 among the light from the light source 15 for the right eye can be increased. Therefore, the luminance unevenness of the transmissive liquid crystal display panel 5 viewed from the viewpoint corresponding to the other focal point f2 can be suppressed. Further, since the incident surface 22 of the blade 20 is formed along the long axis a of the ellipse 21, even if the right-eye light source 15 is lengthened to widen the field of view of the two-dimensional image, the right-eye light source 15 does not become longer in the width direction of the apparatus. Therefore, it can suppress that the width | variety of an apparatus spreads.
 また、拡散板11によって光を上下方向に拡散させるものの、拡散させる方向が楕円ミラー17の積層方向であるので、クロストークを悪化させることなく、楕円ミラー17による画像の上下方向の明暗均一性を向上させることができる。 Further, although the light is diffused in the vertical direction by the diffusion plate 11, the diffusion direction is the stacking direction of the elliptical mirrors 17, so that the vertical and vertical brightness uniformity of the image by the elliptical mirror 17 is reduced without deteriorating the crosstalk. Can be improved.
 なお、上述した実施例では、ブレード20に入射面22と、出射面27と、中間反射面53と、反射面36とを備えた構成を例に採って説明したが、ブレード20が存在せず、単に楕円形状の反射面36と、放物線状の中間反射面53とを備えた構成であっても、上記の構成と同様の効果を奏する。 In the above-described embodiment, the configuration in which the blade 20 includes the incident surface 22, the output surface 27, the intermediate reflecting surface 53, and the reflecting surface 36 has been described as an example. However, the blade 20 does not exist. Even if the configuration includes only the elliptical reflection surface 36 and the parabolic intermediate reflection surface 53, the same effect as the above configuration can be obtained.
 なお、中間反射面53を構成する放物線の焦点と、楕円ミラー17の一方の焦点f1とは正確に一致する必要はなく、多少のずれがあってもほぼ上記同様の効果を奏する。 It should be noted that the focal point of the parabola that constitutes the intermediate reflecting surface 53 and one focal point f1 of the elliptical mirror 17 do not have to coincide with each other, and the same effect as described above can be obtained even if there is a slight deviation.
 <中間反射面の第1の変形例>
 次に、図21を参照して、中間反射面の変形例について説明する。なお、図21は、第1の変形例に係る中間反射面を示すブレードの一部拡大図である。
<First Modification of Intermediate Reflecting Surface>
Next, a modified example of the intermediate reflecting surface will be described with reference to FIG. FIG. 21 is a partially enlarged view of the blade showing the intermediate reflecting surface according to the first modification.
 この突起部24Aに形成された中間反射面53Aは、上述した中間反射面53と放物線状である点では共通しているが、その形状が相違する。具体的には、上述した第1の設計手法で全幅が許容範囲外であった場合には、許容範囲内にまで右眼用の光源15を一方の焦点f1側に近づけ、交点R1から必要光量分だけ右眼用の光源15を上に伸ばした点を三次元画像用の光源15の最上部とし、これを通る放物線を求める。放物線が得られると、交点R2が求まり、交点R1と交点R2のうち、下側にある方の交点(この例では交点R1)が三次元画像用の光源15の最下端となる。ここより下に光源15を伸ばすと、二次元画像用の視野を広げることができる。このとき、三次元画像用の光線は、放物線上で一旦反射して反射面36に向かうものと、直接反射面36に向かうものとがある。直接的に反射面36に向かう光線は、光源15からの放射角度が異なるので、放物線と光源15の境界に対応する位置付近において、輝度の低下が発生してしまう。このため、できるだけ第1の設計手法によって構成することが好ましい。 The intermediate reflecting surface 53A formed on the protrusion 24A is common to the above-described intermediate reflecting surface 53 in a parabolic shape, but the shape is different. Specifically, when the total width is outside the allowable range in the first design method described above, the right eye light source 15 is brought closer to the one focus f1 side within the allowable range, and the necessary light amount from the intersection R1. A point where the light source 15 for the right eye is extended upward by an amount corresponding to the top of the light source 15 for the three-dimensional image is obtained, and a parabola passing through the top is obtained. When the parabola is obtained, the intersection R2 is obtained, and the lower intersection (intersection R1 in this example) of the intersection R1 and the intersection R2 becomes the lowermost end of the light source 15 for the three-dimensional image. If the light source 15 is extended below here, the field of view for a two-dimensional image can be expanded. At this time, the light beam for the three-dimensional image is once reflected on the parabola and directed toward the reflecting surface 36, and directly toward the reflecting surface 36. Since the light rays directly directed to the reflecting surface 36 have different emission angles from the light source 15, the luminance is reduced near the position corresponding to the boundary between the parabola and the light source 15. For this reason, it is preferable to configure by the first design method as much as possible.
 なお、この第1の変形例においても、中間反射面53Aのうち、クロストーク範囲にあたる部分を直線的な面LSとすることでクロストークを低減できる。 Note that, also in the first modification, the crosstalk can be reduced by setting the portion corresponding to the crosstalk range in the intermediate reflecting surface 53A as the linear surface LS.
 <中間反射面の第2の変形例>
 次に、図22を参照して、もう一つの中間反射面の変形例について説明する。なお、図22は、第2の変形例に係る中間反射面を示すブレードの一部拡大図である。
<Second Modification of Intermediate Reflecting Surface>
Next, another modification of the intermediate reflection surface will be described with reference to FIG. FIG. 22 is a partially enlarged view of the blade showing the intermediate reflecting surface according to the second modification.
 上述した二つの突起部24,24Aに形成された中間反射面53,53Aは、放物線がともに一方の焦点f1を囲う位置に配設されているが、この変形例では、一方の焦点f1から外れた位置に突起部24Bの中間反射面53Bが形成されている点で相違する。具体的には、突起部24Bの上端面を放物線状に構成して中間反射面53Bとする。その焦点と一方の焦点f1とは一致させてある。そして、一方の焦点f1とは反対側にあたる中間反射面53Bで光源15からの光を反射面36に反射させる。 The intermediate reflecting surfaces 53 and 53A formed on the two protrusions 24 and 24A described above are disposed at positions where the parabolas both surround one focal point f1, but in this modification, the intermediate reflecting surfaces 53 and 53A deviate from one focal point f1. This is different in that the intermediate reflection surface 53B of the protrusion 24B is formed at the position. Specifically, the upper end surface of the projecting portion 24B is formed in a parabolic shape to form an intermediate reflecting surface 53B. The focal point and one focal point f1 are matched. Then, the light from the light source 15 is reflected on the reflecting surface 36 by the intermediate reflecting surface 53B on the side opposite to the one focal point f1.
 一方の焦点f1は、中間反射面53B及び反射面36からは見かけ上の焦点となるので、光源15を液晶表示パネル5側にさらに近づけて配置することができる。したがって、装置の幅を狭くすることができて、より小型化することができる。 Since one focal point f1 is an apparent focal point from the intermediate reflecting surface 53B and the reflecting surface 36, the light source 15 can be disposed closer to the liquid crystal display panel 5 side. Therefore, the width of the device can be narrowed, and the size can be further reduced.
 なお、上述した第1及び第2の変形例であっても、ブレード20が存在せず、単に楕円形状の反射面36と、放物線状の中間反射面27A,Bとを備えた構成であっても、上記の構成と同様の効果を奏する。 Even in the first and second modified examples described above, the blade 20 does not exist, and simply includes an elliptical reflecting surface 36 and parabolic intermediate reflecting surfaces 27A and 27B. Also has the same effect as the above configuration.
 なお、上述した実施例1における変形例(1)~(3)については、本実施例2についても適用することができる。 Note that the modifications (1) to (3) in the first embodiment described above can also be applied to the second embodiment.
 <点灯制御例>
 なお、光源15,16の点灯制御は、上述した実施例1と同様に行えばよい。
<Example of lighting control>
The lighting control of the light sources 15 and 16 may be performed in the same manner as in the first embodiment.
 <視野角制限>
 上述した実施例は、立体画像にかかる画像表示装置の例であったが、以下に視野角制限の例を説明する。
<Viewing angle restriction>
Although the above-described embodiment is an example of an image display device for a stereoscopic image, an example of viewing angle restriction will be described below.
 ここで、図23を参照する。なお、図23は、視野角が制限されていることの説明に供する模式図である。 Here, refer to FIG. FIG. 23 is a schematic diagram for explaining that the viewing angle is limited.
 この装置は、一方の楕円ミラー17だけを用いて構成されている。この場合には、楕円ミラー17の出射面27から出射した光が焦点f2に集光する。したがって、可視領域VR1(図23中のハッチング領域)と、不可視領域IVR1とが生じることになる。そのため、可視領域VR1中にあたる位置L1では、画像を観察することができる一方。不可視領域IVR1中にあたる位置L2では、画像を観察することができない。つまり、一方の楕円ミラー17だけを用いることにより、観察可能領域をその焦点f2方向だけに限定することができる。 This device is configured using only one elliptical mirror 17. In this case, the light emitted from the emission surface 27 of the elliptical mirror 17 is collected at the focal point f2. Therefore, a visible region VR1 (hatched region in FIG. 23) and an invisible region IVR1 are generated. Therefore, an image can be observed at the position L1 corresponding to the visible region VR1. An image cannot be observed at a position L2 corresponding to the invisible region IVR1. That is, by using only one elliptical mirror 17, the observable region can be limited only to the focus f2 direction.
 なお、上述した構成において単に視野角制限を行うだけでよい場合には、上述した立体画像表示装置のように画像を交互に表示させる必要はなく、さらに光源の点灯制御も必要がない。 In the above-described configuration, when it is only necessary to limit the viewing angle, it is not necessary to alternately display images as in the above-described stereoscopic image display device, and it is not necessary to control lighting of the light source.
 (ブレード変形例)
 単に視野角を制限する場合には、上述したように薄板状のブレード20を複数枚積層して反射ユニット19を構成する必要はなく、上述した実施例1と同様に、一枚の厚みがあるブレードで反射ユニット19を構成してもよい(図13参照)。
(Blade modification)
When the viewing angle is simply limited, it is not necessary to form the reflection unit 19 by stacking a plurality of thin blades 20 as described above, and there is one thickness as in the first embodiment. You may comprise the reflection unit 19 with a braid | blade (refer FIG. 13).
 <デュアルビュー表示>
 ここで図24を参照する。なお、図24は、デュアルビューの画像表示装置の概念を説明する模式図である。
<Dual view display>
Reference is now made to FIG. FIG. 24 is a schematic diagram illustrating the concept of a dual view image display device.
 焦点fと焦点(f)との間隔が、平均的な人の両眼間隔よりも広くなるような楕円ミラー17及び反射ユニット19を採用することにより、観察方向により異なる画像を見ることができる装置を実現できる。このような装置は、デュアルビュー表示装置と呼ばれている。例えば、自動車のセンターコンソールに配備することにより、運転席側にはナビゲーション画像を表示させ、助手席側にはテレビ画像を表示させることができる。具体的には、楕円ミラー17の光源15,16を入射面22に沿って長くし、二次元画像を観察可能な領域を利用すればよい。つまり、図24における可視領域VR1,VR2を利用する。なお、焦点f,(f)を上記の間隔に設定することにより、両画像が重複して観察されてしまう領域を極力少なくすることができる。 By adopting the elliptical mirror 17 and the reflection unit 19 in which the distance between the focal point f and the focal point (f) is wider than the average distance between both eyes of the person, an apparatus capable of viewing different images depending on the viewing direction. Can be realized. Such a device is called a dual view display device. For example, a navigation image can be displayed on the driver's seat side and a television image can be displayed on the passenger's seat side by deploying in the center console of an automobile. Specifically, the light sources 15 and 16 of the elliptical mirror 17 may be elongated along the incident surface 22 and an area where a two-dimensional image can be observed may be used. That is, the visible regions VR1 and VR2 in FIG. 24 are used. Note that, by setting the focal points f and (f) to the above-described interval, it is possible to minimize the region where both images are observed in an overlapping manner.
 制御的には、上述した立体画像表示装置における右眼用画像と左眼用画像に代えて、第1の画像(例えば、ナビゲーション画像)と第2の画像(例えば、テレビ画像)とを画像信号出力部65(図9)から交互に出力させるとともに、それぞれに応じた光源15,16を交互に点灯させればよい。 In terms of control, instead of the right-eye image and the left-eye image in the above-described stereoscopic image display device, the first image (for example, navigation image) and the second image (for example, television image) are image signals. What is necessary is just to make it alternately output from the output part 65 (FIG. 9), and to light the light sources 15 and 16 according to each alternately.
 以上のように、本発明は、画像を表示するモニタなどの表示装置に適している。 As described above, the present invention is suitable for a display device such as a monitor for displaying an image.

Claims (21)

  1.  画像を表示するための透過型の液晶表示パネルと、
     板状の外観形状を呈し、面方向から見て一端面が楕円の円弧の一部で構成され、光を透過する部材で構成された本体と、前記楕円の一方の焦点側にあたる前記本体の端面に形成され、光が入射される入射面と、面方向から見て前記本体の他端面に形成され、前記入射面から前記本体に入射された光を前記楕円の他方の焦点側に出射する出射面と、前記本体の端面に形成され、面方向から見て前記楕円の円弧の一部からなる反射面とを備えている導光体と、
     前記楕円の一方の焦点側に配設された光源と、
     を備えていることを特徴とする表示装置。
    A transmissive liquid crystal display panel for displaying images;
    A main body having a plate-like appearance shape, one end surface of which is formed by a part of an elliptical arc when viewed from the surface direction, and a member transmitting light, and an end surface of the main body corresponding to one focal side of the ellipse The light incident surface is formed on the other end surface of the main body when viewed from the surface direction, and the light incident on the main body from the incident surface is emitted to the other focal side of the ellipse. A light guide including a surface and a reflecting surface formed on a part of the elliptical arc when viewed from the surface direction, and an end surface of the main body;
    A light source disposed on one focal side of the ellipse;
    A display device comprising:
  2.  画像を表示するための透過型の液晶表示パネルと、
     板状の外観形状を呈し、面方向から見て一端面が楕円の円弧の一部で構成され、光を透過する部材で構成された本体と、前記楕円の一方の焦点側にあたる前記本体の端面に形成され、光が入射される入射面と、面方向から見て前記本体の他端面に形成され、前記入射面から前記本体に入射された光を前記楕円の他方の焦点側に出射する出射面と、前記本体の端面に形成され、面方向から見て前記楕円の円弧の一部からなる反射面とを備えている導光体と、
     前記導光体を複数備え、入射面を一方側に向けた導光体と、入射面を他方側へ向けた導光体とを面同士を合わせて積層して構成された反射ユニットと、
     一方側へ向けられた前記導光体の入射面付近に配置された第1の光源と、他方側へ向けられた前記導光体の入射面付近に配置された第2の光源とを備えた一対の光源と、
     を備えていることを特徴とする表示装置。
    A transmissive liquid crystal display panel for displaying images;
    A main body having a plate-like appearance shape, one end surface of which is formed by a part of an elliptical arc when viewed from the surface direction, and a member transmitting light, and an end surface of the main body corresponding to one focal side of the ellipse The light incident surface is formed on the other end surface of the main body when viewed from the surface direction, and the light incident on the main body from the incident surface is emitted to the other focal side of the ellipse. A light guide including a surface and a reflecting surface formed on a part of the elliptical arc when viewed from the surface direction, and an end surface of the main body;
    A plurality of the light guides, a reflection unit configured by laminating a light guide having an incident surface directed to one side and a light guide having the incident surface directed to the other side;
    A first light source disposed in the vicinity of the incident surface of the light guide directed to one side, and a second light source disposed in the vicinity of the incident surface of the light guide directed to the other side. A pair of light sources;
    A display device comprising:
  3.  請求項2に記載の表示装置において、
     前記透過型の液晶表示パネルに異なる第1の画像と第2の画像を交互に出力する画像出力手段と、
     前記画像出力手段が第1の画像から第2の画像に、または第2の画像から第1の画像に順次に切り換える際に、第1の画像が出力されている場合には前記第1の光源を、第2の画像が出力されている場合には前記第2の光源を点灯させる光源制御手段と、
     を備えていることを特徴とする表示装置。
    The display device according to claim 2,
    Image output means for alternately outputting different first images and second images to the transmissive liquid crystal display panel;
    When the first image is output when the image output means sequentially switches from the first image to the second image or from the second image to the first image, the first light source is output. A light source control means for turning on the second light source when the second image is output;
    A display device comprising:
  4.  請求項2に記載の表示装置において、
     前記透過型の液晶表示パネルに右眼用画像と左眼用画像を交互に出力する画像出力手段と、
     前記画像出力手段が右眼用画像から左眼用画像に、または左眼用画像から右眼用画像に順次に切り換える際に、右眼用画像が出力されている場合には前記第1の光源を、左眼用画像が出力されている場合には前記第2の光源を点灯させる光源制御手段と、
     を備えていることを特徴とする表示装置。
    The display device according to claim 2,
    Image output means for alternately outputting right-eye images and left-eye images to the transmissive liquid crystal display panel;
    When the image output means sequentially switches from the right-eye image to the left-eye image or from the left-eye image to the right-eye image, when the right-eye image is output, the first light source A light source control means for turning on the second light source when an image for the left eye is output;
    A display device comprising:
  5.  請求項1から4のいずれかに記載の表示装置において、
     前記導光体の反射面は、光を反射する光反射材料が、前記本体の外側にあたる周面に層を構成していることを特徴とする表示装置。
    The display device according to any one of claims 1 to 4,
    The display device according to claim 1, wherein a light reflecting material that reflects light forms a layer on a peripheral surface that is outside the main body.
  6.  請求項1から4のいずれかに記載の表示装置において、
     前記本体のうち、前記出射面と前記入射面を除く面側に白色塗装に重ねて黒色塗装が施され、前記出射面と前記入射面を除く端面側に黒色塗装が施されていることを特徴とする表示装置。
    The display device according to any one of claims 1 to 4,
    Of the main body, a black coating is applied to the surface side excluding the exit surface and the entrance surface, overlaid with white paint, and a black paint is applied to the end surface side excluding the exit surface and the entrance surface. Display device.
  7.  請求項1から6のいずれかに記載の表示装置において、
     前記本体が積層されたときに本体間に空気層が形成されていることを特徴とする表示装置。
    The display device according to any one of claims 1 to 6,
    A display device, wherein an air layer is formed between the main bodies when the main bodies are laminated.
  8.  請求項1から7のいずれかに記載の表示装置において、
     前記本体は、楕円の長軸に沿う、前記入射面に近い側の一端面が副反射面として形成され、前記入射面から入射した光が副反射面及び反射面を介して他方の焦点側よりも外側に向かって出射するように構成されていることを特徴とする表示装置。
    The display device according to any one of claims 1 to 7,
    In the main body, one end surface close to the incident surface along the major axis of the ellipse is formed as a sub-reflection surface, and light incident from the incident surface is transmitted from the other focal side through the sub-reflection surface and the reflection surface. The display device is also configured to emit light toward the outside.
  9.  請求項1から8のいずれかに記載の表示装置において、
     前記入射面は、その厚みが、前記反射面の厚みよりも厚く構成されていることを特徴とする表示装置。
    The display device according to any one of claims 1 to 8,
    The display device according to claim 1, wherein a thickness of the incident surface is greater than a thickness of the reflective surface.
  10.  画像を表示するための表示装置において、
     画像を表示するための透過型の液晶表示パネルと、
     板状の外観形状を呈し、面方向から見て一端面が楕円の円弧の一部で構成され、光を透過する部材で構成された本体と、前記楕円の一方の焦点及び前記楕円の長軸から離間するとともに、前記楕円の長軸に沿って前記本体に形成され、光が入射される入射面と、面方向から見て前記楕円の一方の焦点を囲う位置に配設され、前記入射面から入射された光を反射する中間反射面と、前記本体の楕円の円弧の一部を構成し、前記中間反射面からの光を前記楕円の他方の焦点側に対して反射する楕円反射面と、前記本体の他端面に形成され、前記楕円反射面で反射された光を出射する出射面とを備えた導光体と、
     前記導光体の中間反射面側に配設された光源と、
     を備えていることを特徴とする表示装置。
    In a display device for displaying an image,
    A transmissive liquid crystal display panel for displaying images;
    A body having a plate-like appearance, one end surface of which is formed by a part of an elliptical arc when viewed from the surface direction, a light transmitting member, one focal point of the ellipse, and the major axis of the ellipse The incident surface formed on the main body along the major axis of the ellipse and disposed at a position surrounding one focal point of the ellipse when viewed from the surface direction. An intermediate reflecting surface that reflects light incident from the main body, and an elliptical reflecting surface that forms part of an elliptical arc of the main body and reflects light from the intermediate reflecting surface to the other focal side of the ellipse; A light guide including an emission surface that is formed on the other end surface of the main body and emits light reflected by the elliptical reflection surface;
    A light source disposed on the intermediate reflecting surface side of the light guide;
    A display device comprising:
  11.  画像を表示するための表示装置において、
     画像を表示するための透過型の液晶表示パネルと、
     表示面から見て前記透過型の液晶表示パネルの背後に配設され、かつ、平面視で楕円の円弧の一部で構成され、前記楕円の一方の焦点からの光を前記楕円の他方の焦点側に対して反射する楕円反射面と、
     前記透過型の液晶表示パネルの側方であって、かつ、前記楕円の一方の焦点及び前記楕円の長軸から離間するとともに、前記楕円の長軸に沿って配設された光源と、
     前記光源と前記楕円反射面との間に位置し、前記楕円の一方の焦点を囲う位置に配設され、前記光源からの光を前記楕円反射面に反射する中間反射面と、
     を備えていることを特徴とする表示装置。
    In a display device for displaying an image,
    A transmissive liquid crystal display panel for displaying images;
    It is disposed behind the transmissive liquid crystal display panel as viewed from the display surface, and is constituted by a part of an elliptical arc in plan view, and transmits light from one focal point of the elliptical to the other focal point of the elliptical shape. An elliptical reflecting surface that reflects toward the side;
    A light source disposed on the side of the transmissive liquid crystal display panel, spaced apart from one focal point of the ellipse and the major axis of the ellipse, and disposed along the major axis of the ellipse;
    An intermediate reflection surface located between the light source and the elliptical reflection surface, disposed at a position surrounding one focal point of the ellipse, and reflecting light from the light source to the elliptical reflection surface;
    A display device comprising:
  12.  画像を表示するための表示装置において、
     画像を表示するための透過型の液晶表示パネルと、
     板状の外観形状を呈し、面方向から見て一端面が楕円の円弧の一部で構成され、光を透過する部材で構成された本体と、前記楕円の一方の焦点から離間するとともに、前記楕円の長軸側から鉛直方向に沿って下方に延出されて形成され、光が入射される入射面と、面方向から見て前記楕円の一方の焦点から外れた位置に配設され、前記楕円の一方の焦点とは反対側の面で前記入射面から入射した光を反射する中間反射面と、前記本体の円弧の一部を構成し、前記中間反射面からの光を前記楕円の他方の焦点側に対して反射する楕円反射面とを備えた導光体と、
     前記導光体の中間反射面側に配設された光源と、
     を備えていることを特徴とする表示装置。
    In a display device for displaying an image,
    A transmissive liquid crystal display panel for displaying images;
    Presenting a plate-like appearance shape, one end surface when viewed from the surface direction is constituted by a part of an elliptical arc, and is separated from a main body constituted by a light transmitting member, and one focal point of the ellipse, and Formed by extending downward along the vertical direction from the long axis side of the ellipse, disposed on the incident surface on which light is incident, and at a position deviated from one focal point of the ellipse when viewed from the surface direction, An intermediate reflection surface that reflects light incident from the incident surface on a surface opposite to one focal point of the ellipse and a part of an arc of the main body, and the light from the intermediate reflection surface is converted to the other of the ellipse A light guide with an elliptical reflecting surface that reflects toward the focal side of the
    A light source disposed on the intermediate reflecting surface side of the light guide;
    A display device comprising:
  13.  画像を表示するための表示装置において、
     画像を表示するための透過型の液晶表示パネルと、
     表示面から見て前記透過型の液晶表示パネルの背後に配設され、かつ、平面視で楕円の円弧の一部で構成され、前記楕円の一方の焦点からの光を前記楕円の他方の焦点側に対して反射する楕円反射面と、
     前記透過型の液晶表示パネルの側方であって、かつ、前記楕円の一方の焦点から離間するとともに、前記楕円の長軸側から鉛直方向に沿って下方に延出されて配設された光源と、
     前記光源と前記楕円反射面との間に位置し、前記楕円の一方の焦点から外れた位置に配設され、前記楕円の一方の焦点とは反対側の面で前記光源からの光を前記楕円反射面に反射する中間反射面と、
     を備えていることを特徴とする表示装置。
    In a display device for displaying an image,
    A transmissive liquid crystal display panel for displaying images;
    It is disposed behind the transmissive liquid crystal display panel as viewed from the display surface, and is constituted by a part of an elliptical arc in plan view, and transmits light from one focal point of the elliptical to the other focal point of the elliptical shape. An elliptical reflecting surface that reflects toward the side;
    A light source disposed on the side of the transmissive liquid crystal display panel and spaced from one focal point of the ellipse and extending downward along the vertical direction from the long axis side of the ellipse When,
    Located between the light source and the ellipsoidal reflecting surface, disposed at a position deviated from one focus of the ellipse, the light from the light source on the surface opposite to the one focus of the ellipse An intermediate reflective surface that reflects off the reflective surface;
    A display device comprising:
  14.  請求項10から13のいずれかに記載の表示装置において、
     前記中間反射面は、放物線の一部を用いた放物反射面を備えていることを特徴とする表示装置。
    The display device according to any one of claims 10 to 13,
    The display device, wherein the intermediate reflecting surface includes a parabolic reflecting surface using a part of a parabola.
  15.  請求項10から14のいずれかに記載の表示装置において、
     前記楕円反射面は、前記楕円の他方の焦点方向にのみ光を反射させることを特徴とする表示装置。
    The display device according to any one of claims 10 to 14,
    The display device characterized in that the elliptical reflecting surface reflects light only in the other focal direction of the ellipse.
  16.  請求項10または13に記載の表示装置において、
     前記導光体は、入射面を一方側へ向けた導光体と、入射面を他方側へ向けた導光体とを面同士を合わせて複数枚積層してなる反射ユニットとして構成され、
     前記光源は、入射面が一方側へ向けられた導光体に配設された第1の光源と、入射面が他方側へ向けられた導光体に配設された第2の光源とを備えた一対の光源として構成され、
     前記透過型の液晶表示パネルに異なる第1の画像と第2の画像とを交互に出力する画像出力手段と、
     前記画像出力手段が第1の画像から第2の画像に、または第2の画像から第1の画像に順次に切り換える際に、第1の画像が出力されている場合には前記第1の光源を、第2の画像が出力されている場合には前記第2の光源を点灯させる光源制御手段と、
     を備えていることを特徴とする表示装置。
    The display device according to claim 10 or 13,
    The light guide is configured as a reflection unit formed by laminating a plurality of light guides having an incident surface directed to one side and a light guide having the incident surface directed to the other side,
    The light source includes a first light source disposed on a light guide having an incident surface directed toward one side, and a second light source disposed on the light guide having an incident surface directed toward the other side. Configured as a pair of light sources,
    Image output means for alternately outputting different first images and second images to the transmissive liquid crystal display panel;
    When the first image is output when the image output means sequentially switches from the first image to the second image or from the second image to the first image, the first light source is output. A light source control means for turning on the second light source when the second image is output;
    A display device comprising:
  17.  請求項11または13に記載の表示装置において、
     前記楕円反射面を複数枚積層して構成され、かつ、隣接する前記楕円反射面同士の一方の焦点を一方側と他方側とで反対側に向けて構成された反射ユニットを備え、
     前記光源は、前記楕円の一方の焦点が一方側へ向けられた楕円反射面の中間反射面に配設された第1の光源と、前記楕円の一方の焦点が他方側へ向けられた楕円反射面の中間反射面に配設された第2の光源とを備えた一対の光源として構成され、
     前記透過型の液晶表示パネルに異なる第1の画像と第2の画像とを交互に出力する画像出力手段と、
     前記画像出力手段が第1の画像から第2の画像に、または第2の画像から第1の画像に順次に切り換える際に、第1の画像が出力されている場合には前記第1の光源を、第2の画像が出力されている場合には前記第2の光源を点灯させる光源制御手段と、
     を備えていることを特徴とする表示装置。
    The display device according to claim 11 or 13,
    A plurality of the elliptical reflection surfaces, and a reflection unit configured such that one focal point of the adjacent elliptical reflection surfaces is directed to the opposite side on one side and the other side;
    The light source includes a first light source disposed on an intermediate reflecting surface of an elliptical reflecting surface in which one focal point of the ellipse is directed to one side, and an elliptical reflection in which one focal point of the ellipse is directed to the other side. Configured as a pair of light sources including a second light source disposed on the intermediate reflection surface of the surface,
    Image output means for alternately outputting different first images and second images to the transmissive liquid crystal display panel;
    When the first image is output when the image output means sequentially switches from the first image to the second image or from the second image to the first image, the first light source is output. A light source control means for turning on the second light source when the second image is output;
    A display device comprising:
  18.  請求項16または17に記載の表示装置において、
     前記第1の画像と前記第2の画像は、互いに視差を有する左眼用画像と右眼用画像であることを特徴とする表示装置。
    The display device according to claim 16 or 17,
    The display device, wherein the first image and the second image are a left-eye image and a right-eye image having parallax with each other.
  19.  請求項16または17に記載の表示装置において、
     前記第1の画像と前記第2の画像とは、互いに異なる二次元画像であることを特徴とする表示装置。
    The display device according to claim 16 or 17,
    The display device, wherein the first image and the second image are two-dimensional images different from each other.
  20.  請求項14に記載の表示装置において、
     前記中間反射面は、前記放物線の焦点が前記楕円の一方の焦点に一致するように構成されていることを特徴とする表示装置。
    The display device according to claim 14, wherein
    The display device according to claim 1, wherein the intermediate reflecting surface is configured such that a focal point of the parabola coincides with one focal point of the ellipse.
  21.  請求項20に記載の表示装置において、
     前記中間反射面は、クロストーク範囲にあたる部分が直線的に構成され、その部分が反射面または吸収面として構成されていることを特徴とする表示装置。
    The display device according to claim 20,
    The intermediate reflection surface is configured such that a portion corresponding to a crosstalk range is configured linearly, and the portion is configured as a reflection surface or an absorption surface.
PCT/JP2008/071132 2007-12-25 2008-11-20 Display apparatus WO2009081674A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007331911A JP4767938B2 (en) 2007-12-25 2007-12-25 Display device
JP2007-331911 2007-12-25
JP2008126135A JP4767994B2 (en) 2008-05-13 2008-05-13 Image display device
JP2008-126135 2008-05-13

Publications (1)

Publication Number Publication Date
WO2009081674A1 true WO2009081674A1 (en) 2009-07-02

Family

ID=40800988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/071132 WO2009081674A1 (en) 2007-12-25 2008-11-20 Display apparatus

Country Status (1)

Country Link
WO (1) WO2009081674A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11273438A (en) * 1998-03-25 1999-10-08 Enplas Corp Sidelight surface light source device and liquid crystal display device
JP2001066547A (en) * 1999-08-31 2001-03-16 Toshiba Corp Stereoscopic display device
JP2001513939A (en) * 1997-03-06 2001-09-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Lighting unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001513939A (en) * 1997-03-06 2001-09-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Lighting unit
JPH11273438A (en) * 1998-03-25 1999-10-08 Enplas Corp Sidelight surface light source device and liquid crystal display device
JP2001066547A (en) * 1999-08-31 2001-03-16 Toshiba Corp Stereoscopic display device

Similar Documents

Publication Publication Date Title
US9784974B2 (en) Virtual image display apparatus
US7599012B2 (en) Luminous display device
KR102117220B1 (en) Directional backlight
KR101019820B1 (en) Surface light source device
JP6579212B2 (en) Head-up display device
JP4655465B2 (en) Surface light source and liquid crystal display device
JP2002107659A (en) Optical system for head-mounted display
JP7195454B2 (en) Light source device, information display system and head-up display device using the same
JP4412167B2 (en) Display device
JP2009093989A (en) Plane light source apparatus and liquid crystal display device
JP2019032404A (en) Aerial video display device
JP2004287041A (en) Image display device and light source unit
JP2009015090A (en) Liquid crystal display device
WO2019087615A1 (en) Virtual image display device
JP4483233B2 (en) Surface light source and liquid crystal display device
JP4767994B2 (en) Image display device
JP4767977B2 (en) Image display device
JP4767937B2 (en) Stereoscopic image display device
JP2005077472A (en) Liquid crystal display
WO2009081674A1 (en) Display apparatus
JP4767938B2 (en) Display device
JP2009222797A (en) Liquid crystal display panel and liquid crystal display device
JP2020118935A (en) Virtual image display device
CN219302828U (en) Backlight assembly, display device and vehicle
JP4457752B2 (en) Liquid crystal display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08865337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08865337

Country of ref document: EP

Kind code of ref document: A1