WO2009081458A1 - Method of filtering crystallization slurry - Google Patents

Method of filtering crystallization slurry Download PDF

Info

Publication number
WO2009081458A1
WO2009081458A1 PCT/JP2007/074518 JP2007074518W WO2009081458A1 WO 2009081458 A1 WO2009081458 A1 WO 2009081458A1 JP 2007074518 W JP2007074518 W JP 2007074518W WO 2009081458 A1 WO2009081458 A1 WO 2009081458A1
Authority
WO
WIPO (PCT)
Prior art keywords
washing
filtering
washed
crystals
temperature
Prior art date
Application number
PCT/JP2007/074518
Other languages
French (fr)
Japanese (ja)
Inventor
Tokuaki Hara
Hiroyuki Toyoshima
Hatsutaro Yamazaki
Original Assignee
Hitachi Plant Technologies, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies, Ltd. filed Critical Hitachi Plant Technologies, Ltd.
Priority to CN2007801019499A priority Critical patent/CN101903072B/en
Priority to PCT/JP2007/074518 priority patent/WO2009081458A1/en
Publication of WO2009081458A1 publication Critical patent/WO2009081458A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C63/00Compounds having carboxyl groups bound to a carbon atoms of six-membered aromatic rings
    • C07C63/14Monocyclic dicarboxylic acids
    • C07C63/15Monocyclic dicarboxylic acids all carboxyl groups bound to carbon atoms of the six-membered aromatic ring
    • C07C63/241,3 - Benzenedicarboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D33/00Filters with filtering elements which move during the filtering operation
    • B01D33/06Filters with filtering elements which move during the filtering operation with rotary cylindrical filtering surfaces, e.g. hollow drums
    • B01D33/073Filters with filtering elements which move during the filtering operation with rotary cylindrical filtering surfaces, e.g. hollow drums arranged for inward flow filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D33/00Filters with filtering elements which move during the filtering operation
    • B01D33/06Filters with filtering elements which move during the filtering operation with rotary cylindrical filtering surfaces, e.g. hollow drums
    • B01D33/073Filters with filtering elements which move during the filtering operation with rotary cylindrical filtering surfaces, e.g. hollow drums arranged for inward flow filtration
    • B01D33/09Filters with filtering elements which move during the filtering operation with rotary cylindrical filtering surfaces, e.g. hollow drums arranged for inward flow filtration with surface cells independently connected to pressure distributors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D33/00Filters with filtering elements which move during the filtering operation
    • B01D33/44Regenerating the filter material in the filter
    • B01D33/48Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D33/00Filters with filtering elements which move during the filtering operation
    • B01D33/58Handling the filter cake in the filter for purposes other than for regenerating the filter cake remaining on the filtering element
    • B01D33/60Handling the filter cake in the filter for purposes other than for regenerating the filter cake remaining on the filtering element for washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0059General arrangements of crystallisation plant, e.g. flow sheets
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C63/00Compounds having carboxyl groups bound to a carbon atoms of six-membered aromatic rings
    • C07C63/14Monocyclic dicarboxylic acids
    • C07C63/15Monocyclic dicarboxylic acids all carboxyl groups bound to carbon atoms of the six-membered aromatic ring
    • C07C63/261,4 - Benzenedicarboxylic acid

Definitions

  • the present invention relates to a filtration method for efficiently performing continuous reduced pressure rotary filtration in which crystallization slurry is repeatedly subjected to steps of suction filtration, crystal washing, suction devolatilization, and crystal peeling in order, and particularly for recovering crystals by continuous reduced pressure rotary filtration. Further, the present invention relates to a filtration method capable of suppressing clogging of a filter medium (filter cloth) and allowing continuous filtration and washing treatment of crystals for a long time.
  • the oxidation reaction product is reduced in pressure and reduced in temperature by releasing (flashing) the solvent from the pressure and temperature of the solvent. Then, after obtaining a product slurry in which crystals are precipitated, the crystallized slurry is filtered and washed by a continuous vacuum rotary filtration method to recover aromatic dicarboxylic acid crystals.
  • the above-mentioned crude aromatic dicarboxylic acid crystal obtained as another method is dissolved in water, and through a hydrorefining process, the product is similarly reduced in pressure and cooled to obtain a product slurry in which crystals are precipitated. After that, the crystallization slurry is filtered and washed by a continuous reduced pressure rotary filtration method to recover crystals.
  • the product obtained by the reaction is reduced in pressure and cooled to obtain a slurry of the product from various solvents in which crystals are precipitated, and then the crystallization slurry is filtered and washed by a continuous reduced pressure rotary filtration method.
  • a method for recovering the crystal product produced by the reaction is often carried out in the production of organic chemical industrial products.
  • the filter cloth (filter material) is laid in a cylindrical shape or a belt shape, and the steps of suction filtration, crystal washing, suction drainage, and crystal peeling are repeated in order while rotating or moving the crystallization slurry. It is performed by a continuous vacuum rotary filtration / cleaning method.
  • the filtration / washing process is stopped, the filter cloth is washed / dissolved with an alkaline solution such as an aqueous solution of caustic soda to eliminate clogging of the filter cloth, and the filtration / washing operation is restarted. Therefore, when recovering crystals from the crystallization slurry by a continuous reduced pressure rotary filtration method, an inefficient treatment operation for stopping the filtration / washing treatment as described above has been forced.
  • Patent Document 1 Japanese Patent Laid-Open No. 1-2996178
  • Patent Document 2 Japanese Patent Laid-Open No. 2004-231636
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2006-265124
  • the crystallization slurry is cooled to a temperature (about 90 ° C.) below the boiling point (under atmospheric pressure) of the solvent by boiling under reduced pressure or a heat exchanger, and then suction filtration is performed.
  • a method has been proposed in which the evaporation of the solvent on the filter cloth is suppressed and the clogging of the mesh is suppressed.
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2002-203264 discloses a method for completely removing crystal particles from a filter cloth and eliminating clogging by supplying a vapor of a solvent component to a blowing gas for crystal peeling. Has been proposed, and methods for efficient treatment with a long continuous filtration and washing time have been devised and proposed.
  • Patent Document 1 it is necessary to pressurize the inside of the outer casing (casing) of the rotary filter, and not only the filter body but also incidental facilities such as a supply pump and a filtrate tank become heavy pressure-resistant facilities and reduce the equipment cost. Invite rise. Further, it is necessary to improve the equipment for smoothly transferring the collected wet crystals from under pressure to a dryer at normal pressure (atmospheric pressure) (Japanese Patent Application Laid-Open No. 11-179115, Special Table 2003-519205). Increases equipment costs.
  • Patent Document 4 in order to supply the vapor of the solvent component to the blowing gas for performing crystal peeling, moisture is given to the crystal dried in the previous step, and the wetness of the recovered crystal increases, and the subsequent drying step The load of increases.
  • the present invention provides a filtration method capable of suppressing clogging of a filter medium (filter cloth) and recovering continuous crystal filtration and washing for a long time when recovering crystals by continuous reduced pressure rotary filtration. is there. Further, even in a vacuum rotary filter performed under normal pressure (atmospheric pressure), the filter cloth is prevented from being clogged with crystallized particles, and can be continuously operated for a long time.
  • the present invention relates to a method for recovering crystals by continuous reduced pressure rotary filtration in which a slurry comprising crystals and a solvent is repeatedly filtered, washed, and peeled in order, and in the washing step, at least a temperature accompanied by vapor generation is overheated.
  • the crystal is washed using the washed solvent.
  • the continuous type is obtained from the crystallization slurry obtained by reducing the pressure and lowering the temperature.
  • the crystal is washed using a washing solvent heated to at least a temperature accompanied with vapor generation in the washing step.
  • the aromatic hydrocarbon is a dialkyl aromatic hydrocarbon composed of para-xylene or meta-xylene
  • the produced aromatic carboxylic acid is composed of terephthalic acid or isophthalic acid.
  • the crystal is washed with acetic acid heated to 120 ° C. or higher, preferably 130 ° C. or higher, more preferably 140 ° C. or higher as the cleaning solvent.
  • the crystal is washed using a washing solvent heated to a temperature at which the rate of vapor generation is preferably about 7% or more, more preferably about 14% or more. .
  • the clogging of the filter cloth is suppressed by washing the filtered crystals with at least a superheated washing solvent accompanied by vapor generation.
  • the filtration and washing operation can be performed continuously for a long time, and the crystal recovery operation can be performed under normal pressure.
  • FIG. 1 is a flow chart
  • FIG. 2 schematically shows a filtration section of the continuous vacuum rotary filter 2 therein.
  • the filter 2 is installed such that a cylindrical rotating body 11 having a filter surface with a filter medium (filter cloth) on the outer surface is rotated in the filter 2 so as to rotate in the clockwise direction.
  • the partition wall is fixed so as not to rotate. While the rotating body 11 rotates in the clockwise direction, first, the crystallization slurry retained in the bottom 12 of the filter 2 in the filtration step is sucked from the filtration region 13 inside the rotating body 11 by the suction of the rotating body 11. A crystal grain layer is formed on the outer surface of the substrate. This is done by sucking the mother liquor of the crystallization slurry that has entered the filtration zone 13 into the filtrate tank 3 of FIG.
  • the rotating surface 11 rotates while the filtration surface on which the crystal particle layer is formed is separated from the immersion of the crystal slurry, and rises up the cleaning / drainage zone 14 to reach the upper part.
  • the cleaning liquid is supplied from the outside of the rotating body 11 to the upper surface of the crystal particle layer by a method such as spraying and spraying, and the cleaning liquid that has passed through the rotating body 11 passes through the cleaning / drainage area 14 in the cleaning drainage tank of FIG. 4 sucked.
  • the cleaning liquid pushes out the residual mother liquor (slurry mother liquid) adhering to the surface of the crystal particle layer and the mesh of the filter medium, and is removed to the cleaning / drainage zone 14 inside the rotating body 11. To do.
  • the cleaning liquid (acetic acid) supplied by a method such as spraying and spraying is heated and controlled by the heater E-1 so that it is heated to at least a temperature exceeding the boiling point (118 ° C.) and accompanied by steam generation.
  • the superheated cleaning liquid is sprayed on the surface of the filtration (crystal particle) layer with steam.
  • the superheating temperature in the heater E-1 is preferably overheated to a temperature exceeding the boiling point (118 ° C.) with acetic acid, but by overheating to 120 ° C. or more, an improvement effect in suppressing clogging appears. Further, it is more preferable to overheat to about 130 ° C.
  • heating of the cleaning liquid is considered to require at least the presence of the cleaning liquid at the time of introduction and spraying (the liquid disappears if it is overheated). I think it's not good.
  • the crystal particle layer further rotates together with the rotator 11, and the internal suction is continued while moving from the upper part of the cleaning / dehydrating zone 14 to the right side, and the residual cleaning liquid in the crystal particle layer is the atmospheric vapor on the surface of the crystal particle layer. Then, the liquid is sucked together with the gas, and the liquid removal is performed while suppressing the evaporation of the residual cleaning liquid. By suppressing the evaporation, it is possible to suppress the precipitation of the solute of the residual cleaning liquid on the mesh of the filter cloth.
  • the crystal particle layer drained as described above is further rotated and moved to the crystal exfoliation region 15, and in the exfoliation region 15, an inert gas is sprayed from the inside of the rotating body 11 by the supply pulser M-2. Is removed from the rotating body 11, falls down the crystal discharge pipe 16, and is collected as wet terephthalic acid crystals in the screw discharge machine M- 1. Since the exfoliated crystals are heated to near the boiling point of the cleaning solvent, gas blowing in the exfoliation zone 15 causes evaporation of the residual cleaning liquid in the crystal particle layer, resulting in a decrease in wetness.
  • the crystals from the screw discharger M-1 are supplied to the dryer 8 and become terephthalic acid crystals that are sufficiently dried.
  • the rotating body 11 from which the crystal has been peeled enters the slurry retaining portion of the bottom 12 while further rotating, starts suction filtration again, and is repeatedly filtered, washed and drained.
  • the filtrate (mother liquid) sucked into the rotary body 11 by suction filtration in the process of filtering and washing on the rotary body filtration surface is almost recovered in the filtrate tank 3, and the solvent recovery process and oxidation are performed. It is recycled for reuse in the reaction.
  • the vapor components not collected in the filtrate tank 3 are condensed in the upper cooler E-2, and the condensed liquid is collected and refluxed in the gas-liquid separation tank 5.
  • the non-condensable gas component that has not been condensed is sucked into the vacuum pump M-3 and circulated, but excess gas is discharged out of the system.
  • the cleaning waste liquid sucked into the rotating body 11 by the cleaning is recovered in the cleaning drain tank 4 like the slurry filtrate, and then the cooler E-3 ⁇ the gas-liquid separator 6 ⁇ the vacuum pump
  • the condensate is collected and the non-condensable gas is circulated through the path M-3. Since the vacuum pump M-3 is expected to contain condensable vapor, it is preferable to use a liquid ring pump for suction and exhaust.
  • the outer cover of the filter 2 is usually sealed and sealed with an inert gas or the like. is there. Therefore, it is sealed with a non-condensable gas that is sucked together with the filtration / cleaning liquid and circulated through the vacuum pump M-3, and the supply / replenishment of the gas is mainly performed with a blowing gas for crystal peeling.
  • the terephthalic acid crystallization slurry When continuously collecting terephthalic acid crystals from the terephthalic acid crystallization slurry using the crystallization slurry filtration / separation system as described above, first, the high-temperature, high-pressure reaction product is released (flash) or the like. The terephthalic acid crystallization slurry whose pressure has been lowered and lowered is transferred to the slurry supply tank 1. In the slurry supply tank 1, the crystallization slurry is supplied to the bottom of the filter 2 while being circulated by an external pump.
  • the crystallization slurry at the bottom of the filter 2 is suction filtered at the bottom of the cylindrical rotating body 11 by suction from the inside of the cylindrical rotating body 11, and the excess slurry overflows (overflows) and is returned to the slurry supply tank 1.
  • the retained liquid level (filtrate level) of the slurry is maintained.
  • the supplied cleaning liquid (acetic acid) is heated and controlled so as to be heated to at least a temperature exceeding the boiling point (118 ° C.) and generating steam in the heater E-1.
  • This heating is based on the knowledge obtained by the present inventors, that is, the crystal cleaning solvent (cleaning liquid) is heated to a temperature at which vapor generation occurs at least above the boiling point of the cleaning liquid, and the cleaning liquid is released. Based on the knowledge that clogging due to crystals in the filter cloth can be suppressed by supplying (flush) and washing the filtration (crystal particle) layer as a mixed phase flow of high-temperature (liquid boiling point) vapor and liquid vapor. ing.
  • the crystallization slurry is supplied to the filter 2 and suction filtered in the filter zone 13, and then the cleaning solution heated in the cleaning step in the cleaning zone 14 is supplied in a flash form.
  • the filtration (crystal particle) layer is washed at a high speed as a mixed-phase flow of vapor and liquid having an increased capacity accompanied by high-temperature (liquid boiling point) vapor.
  • the generation of solvent vapor in the filtrate and washing waste liquid is suppressed, and the solute in the network is Clogging due to precipitation is suppressed.
  • the introduction of the cleaning liquid in the pressure release (flush) state by overheating supply causes the casing of the filter 2 to be filled with high-temperature (liquid boiling point) vapor (wet gas), and the filter cloth sucks the slurry.
  • high-temperature atmospheric vapor wet gas
  • the filter cloth sucks the slurry.
  • the temperature at which the cleaning liquid is heated is heated to a pressure exceeding the boiling point, and the pressure is released (flushed) and sprayed to the cleaning area in the atmospheric pressure state.
  • the high-temperature (boiling point) vapor generated at the time can exist in the atmosphere (in the filter casing) on the surface of the crystal particle layer, so that the period until clogging (clogging time) is improved. become.
  • the clogging time is improved if several percent of the supplied cleaning liquid generates steam, and long-term continuous operation (the clogging time of the terephthalic acid-producing slurry at about 90 ° C. is about 10 days or more) is achieved. Therefore, it has been found that the cleaning solution to be supplied is heated to a temperature at which about 7% (calculated) or more of steam is generated. And it is suggested that it is sufficient to overheat to a temperature at which steam with a temperature of overheating of about 13% (calculated) or more is generated.
  • the continuous vacuum rotary filter 2 under normal pressure that has been used in the past is implemented by the fact that a heater and a flash valve are installed in the supply line of the cleaning solvent. It is possible to operate the filter continuously for a long time with an easy improvement in terms of equipment.
  • it is not limited to application to crystallization slurry from the production of aromatic dicarboxylic acid by oxidation reaction in acetic acid solvent, and there are many such as crystallization slurry of aromatic dicarboxylic acid crystal from water solvent The same method can be applied to crystallization slurries of organic industrial chemicals.
  • the crystal particle layer on the filter cloth that has been washed and sucked and drained is peeled off by blowing (blowing) gas from the inside of the filter cloth.
  • a peeling method such as gas blowing using a shock wave (pulsar) can be used. It is done.
  • steam is not mixed compared with the method of supplying the solvent vapor
  • the crystal particle layer is maintained at a high temperature (solvent boiling point) during the cleaning / dehydrating process, there is also a decrease in wetness due to evaporation of the wet cleaning liquid remaining in the process of crystal peeling and crystal discharging. .
  • a vacuum rotary filter in addition to the vacuum rotary cylindrical filter 2 shown in FIGS. 1 and 2 called a rotary vacuum filter (RVF), a vacuum horizontal filter called a belt filter is used.
  • a filter such as a band type filter may be used in which the filter cloth moves and suction filtration, crystal washing, suction liquid removal, and crystal peeling are repeated in this order for continuous filtration and washing.
  • the slurry containing the crude terephthalic acid crystals flash-crystallized from the crystallization tank to the slurry supply tank 1 (FIG. 1), and filtered and washed with RVF2 according to the filtration and washing process described in the above embodiment and the flow of FIG. 1 to collect wet crystals. And after drying with dryer 8, it implemented by the method of collect
  • the terephthalic acid-containing slurry in the slurry supply tank 1 supplied to the RVF 2 contains about 33 wt% terephthalic acid crystals in the reaction solvent (acetic acid) and has a temperature of about 90 ° C.
  • RVF2 for crystal recovery uses a Young-type reduced-pressure rotating cylindrical filter (manufactured by Bird Co., USA), and rotates the cylindrical rotating body 11 under normal pressure (gas seal 100 mmAq or less) at a speed of 4.5 RPM.
  • the vacuum pump E-3 vacuum degree: about 400 mmHg
  • suction filtration, crystal washing and suction drainage are performed.
  • a shock wave maximum of about 0.2 Kg / cm 2 G.
  • the acetic acid cleaning liquid is heated (superheated) to a predetermined temperature by the heater E-1, and is introduced into the upper part of the cleaning zone 14 as a liquid (comparative example) or a flash vapor mixed phase (Examples 1 to 4). Washing was performed.
  • the acetic acid for washing was heated through a heater E-1 using a pressurized metering pump (discharge pressure of about 5 Kg / cm 2 G), and adjusted and supplied at a ratio of about 0.6 weight to the supplied terephthalic acid crystals. Therefore, the supply of the cleaning liquid to the RVF 2 is a pressure release supply through the flash valve 17 from under pressure.
  • Example 1 the temperature of the supplied acetic acid was overheated (120 ° C.) exceeding the boiling point on the basis of a comparative example (temperature conventionally practiced) conducted at the same temperature as the supplied slurry (temperature without steam generation).
  • Example 2 it was found that the clogging time was improved.
  • the clogging time was greatly improved at 130 ° C. (Example 2 / generated steam: about 7% in calculation), which is considered to have significant steam generation, but 140 ° C. or higher (Examples 3 and 4 / generation) Vapor: 14% or more calculated) was almost unchanged.
  • the terephthalic acid wet crystals obtained from RVF2 were collected at the receiving port of the crystal screw discharger M-1, and the wet rate (weight loss on drying wt%) of the recovered crystals and the ash content (ppm) as the contained inorganic substance were measured.
  • 3 shows the relationship with the washing acetic acid temperature as a table. As a result, both tended to improve as the temperature of the washing acetic acid increased.
  • FIG. 4 is a graph showing the characteristics of Examples 1 to 4 shown in FIG. 3.
  • the horizontal axis represents acetic acid temperature as a cleaning solution
  • the vertical axis represents clogging time. Judging from this graph and FIG. 3, in the cleaning step, it is clogged that the crystal is cleaned using acetic acid heated to 120 ° C. or higher, preferably 130 ° C. or higher, more preferably 140 ° C. or higher as the cleaning solvent.
  • the time can be lengthened. It can also be seen that the longest clogging time and a low wetting rate are obtained at 140 ° C. or higher, but are efficiently obtained at around 140 ° C. from the viewpoint of energy saving.
  • FIG. 5 is a characteristic diagram plotting Examples 1 to 4.

Abstract

In the prior art, crystals are separated and recovered from a crystallization slurry through, using a vacuum rotary filtering machine, suction filtering, crystal washing and liquid removing steps. In the washing step, portion of the solvent of a filtrate or washing liquid is evaporated and cooled by the suction of the washing liquid to thereby cause solute crystallization on the mesh of applied filter cloth. Consequently, the mesh of the filter cloth is clogged by crystal micrograins, so that formation of a filtration (crystal grain) layer by the suction filtration would become difficult. Further, passage of the washing liquid would become unsatisfactory to thereby cause continuation of continuous filtering/washing to be infeasible. Accordingly, it is intended to, in the rotary filtering method, inhibit clogging of filter cloth and attain prolonged continuation of filtering/washing. Microcrystal clogging on the mesh of the filter cloth has been inhibited by heating the washing liquid with the use of a heater so as to effect overheating until at least the temperature (pressure) for vapor generation and by feeding the washing liquid as a mixed phase flow entrained by generated vapor to a washing region within the filtering machine in the washing step. As a washing solvent, use is made of acetic acid overheated to 120°C or higher, preferably 130°C or higher, still preferably 140°C or higher. The washing solvent is overheated to preferably the temperature for about 7% or more vapor generation, still preferably the temperature for about 14% or more vapor generation.

Description

晶析スラリーの濾過方法Filtration method of crystallization slurry
 本発明は晶析スラリーを吸引濾過、結晶洗浄、吸引脱液、結晶剥離の各工程を順に繰り返し行う連続式減圧回転濾過を効率よく行う濾過方法に関し、特に連続減圧回転濾過により結晶を回収するにあたって、濾過材(濾布)の目詰まりを抑え、連続した結晶の濾過・洗浄処理を長時間継続することができる濾過方法に関するものである。 The present invention relates to a filtration method for efficiently performing continuous reduced pressure rotary filtration in which crystallization slurry is repeatedly subjected to steps of suction filtration, crystal washing, suction devolatilization, and crystal peeling in order, and particularly for recovering crystals by continuous reduced pressure rotary filtration. Further, the present invention relates to a filtration method capable of suppressing clogging of a filter medium (filter cloth) and allowing continuous filtration and washing treatment of crystals for a long time.
 パラキシレン、メタキシレンなどのジアルキル芳香族炭化水素を液相酸化して芳香族ジカルボン酸を製造する方法において、酸化反応生成物を溶媒の圧力、温度状態から放圧(フラッシュ)などによって降圧、降温して結晶を析出させた生成スラリーを得たのち、該晶析スラリーを連続式減圧回転濾過法によって濾過、洗浄を行い、芳香族ジカルボン酸の結晶を回収する方法が採られている。 In a process for producing aromatic dicarboxylic acids by liquid phase oxidation of dialkyl aromatic hydrocarbons such as para-xylene and meta-xylene, the oxidation reaction product is reduced in pressure and reduced in temperature by releasing (flashing) the solvent from the pressure and temperature of the solvent. Then, after obtaining a product slurry in which crystals are precipitated, the crystallized slurry is filtered and washed by a continuous vacuum rotary filtration method to recover aromatic dicarboxylic acid crystals.
 また、他の方法として得られた上記粗製の芳香族ジカルボン酸結晶を水に溶解し、水素化精製過程を経て、該生成物を同様に降圧、降温して結晶を析出させた生成スラリーを得たのち、該晶析スラリーを連続式減圧回転濾過法による濾過、洗浄を行って結晶を回収する方法も行われている。 In addition, the above-mentioned crude aromatic dicarboxylic acid crystal obtained as another method is dissolved in water, and through a hydrorefining process, the product is similarly reduced in pressure and cooled to obtain a product slurry in which crystals are precipitated. After that, the crystallization slurry is filtered and washed by a continuous reduced pressure rotary filtration method to recover crystals.
 以上のように、反応によって得た生成物を降圧、降温して結晶を析出させた各種溶媒からの生成物のスラリーを得たのち、該晶析スラリーを連続式減圧回転濾過法による濾過、洗浄を行って、反応により生成した結晶生成物を回収する方法が有機化学工業製品の製造において多く実施されている。そして濾過は、濾布(濾過材)を円筒状にあるいはベルト状に敷設し、回転あるいは移動させながら減圧により晶析スラリーを吸引濾過、結晶洗浄、吸引脱液、結晶剥離の各工程を順に繰り返し行う連続式の減圧回転濾過・洗浄方法によって行われている。 As described above, the product obtained by the reaction is reduced in pressure and cooled to obtain a slurry of the product from various solvents in which crystals are precipitated, and then the crystallization slurry is filtered and washed by a continuous reduced pressure rotary filtration method. A method for recovering the crystal product produced by the reaction is often carried out in the production of organic chemical industrial products. For filtration, the filter cloth (filter material) is laid in a cylindrical shape or a belt shape, and the steps of suction filtration, crystal washing, suction drainage, and crystal peeling are repeated in order while rotating or moving the crystallization slurry. It is performed by a continuous vacuum rotary filtration / cleaning method.
 このような連続式の濾過方法では吸引濾過、結晶洗浄、脱液工程において濾過液、洗浄液(洗浄溶媒)の吸引に際して、濾過液あるいは洗浄液の溶媒の一部が蒸発および降温して濾布の網目上に溶質が析出してくる。そのため、連続濾過・洗浄を繰り返し継続していると、濾布の網目に結晶の微細粒子が目詰まりし、吸引濾過による濾過(結晶粒子)層の形成が困難になり、また、洗浄液の通過も不充分となって連続濾過・洗浄の継続が出来なくなる。 In such a continuous filtration method, at the time of suction of the filtrate and washing liquid (washing solvent) in the suction filtration, crystal washing, and liquid removal processes, a part of the filtrate or the solvent of the washing liquid evaporates and cools down, and the mesh of the filter cloth. A solute is deposited on top. Therefore, if continuous filtration and washing are repeated, the fine particles of crystals are clogged in the mesh of the filter cloth, making it difficult to form a filtration (crystal particle) layer by suction filtration, and the washing liquid also passes through. Insufficient continuous filtration and cleaning cannot be performed.
 その際には濾過・洗浄処理を停止し、濾布を苛性ソーダ水溶液などのアルカリ溶液で洗浄・溶解し、濾布の目詰まりを解消したのち、濾過・洗浄運転を再開する方法が取られる。従って、晶析スラリーから連続式減圧回転濾過法によって結晶を回収するにあたっては、上記のような濾過・洗浄処理を停止する非効率な処理運転が余儀なくされてきた。 In this case, the filtration / washing process is stopped, the filter cloth is washed / dissolved with an alkaline solution such as an aqueous solution of caustic soda to eliminate clogging of the filter cloth, and the filtration / washing operation is restarted. Therefore, when recovering crystals from the crystallization slurry by a continuous reduced pressure rotary filtration method, an inefficient treatment operation for stopping the filtration / washing treatment as described above has been forced.
 そのため従来の対策として、特許文献1(特開平1-299618号公報)では濾過分離する晶析スラリーに圧力を加えて吸引濾過を行うこと、あるいは、特許文献2(特開2004-231636号公報)および特許文献3(特開2006-265124号公報)では晶析スラリーを減圧沸騰あるいは熱交換器などで溶媒の沸点(大気圧下)に満たない温度(約90℃)まで冷却したのちに吸引濾過を行うことにより、濾布上での溶媒の蒸発を抑え、網目の目詰まりを抑える方法が提案されている。また特許文献4(特開2002-20324号公報)では結晶剥離を行うブロー用のガスに溶媒成分の蒸気を供給する方法により、濾布から結晶粒子を完璧に剥離し、目詰まりを解消する方法が提案され、連続の濾過・洗浄時間を少しでも長く、効率的な処理をする方法が工夫・提案されてきた。 Therefore, as a conventional countermeasure, in Patent Document 1 (Japanese Patent Laid-Open No. 1-299618), suction filtration is performed by applying pressure to the crystallization slurry to be filtered or separated, or Patent Document 2 (Japanese Patent Laid-Open No. 2004-231636). In Patent Document 3 (Japanese Patent Application Laid-Open No. 2006-265124), the crystallization slurry is cooled to a temperature (about 90 ° C.) below the boiling point (under atmospheric pressure) of the solvent by boiling under reduced pressure or a heat exchanger, and then suction filtration is performed. A method has been proposed in which the evaporation of the solvent on the filter cloth is suppressed and the clogging of the mesh is suppressed. Patent Document 4 (Japanese Patent Application Laid-Open No. 2002-20324) discloses a method for completely removing crystal particles from a filter cloth and eliminating clogging by supplying a vapor of a solvent component to a blowing gas for crystal peeling. Has been proposed, and methods for efficient treatment with a long continuous filtration and washing time have been devised and proposed.
特開平1-299618号公報JP-A-1-299618 特開2004-231636号公報JP 2004-231636 A 特開2006-265124号公報JP 2006-265124 A 特開2002-020324号公報JP 2002-020324 A
 しかしながら、特許文献1の方法では該回転濾過機の外套(ケーシング)内部を加圧する必要があり、濾過機本体は勿論、供給ポンプ、濾過液槽などの付帯設備が耐圧の重設備となり設備コストの上昇を招く。また、回収された湿潤結晶を加圧下から常用圧力(大気圧)にある乾燥機に順調に移送するための設備改良が必要とされ(特開平11-179115号、特表2003-519205号)、設備コストの上昇を招く。 However, in the method of Patent Document 1, it is necessary to pressurize the inside of the outer casing (casing) of the rotary filter, and not only the filter body but also incidental facilities such as a supply pump and a filtrate tank become heavy pressure-resistant facilities and reduce the equipment cost. Invite rise. Further, it is necessary to improve the equipment for smoothly transferring the collected wet crystals from under pressure to a dryer at normal pressure (atmospheric pressure) (Japanese Patent Application Laid-Open No. 11-179115, Special Table 2003-519205). Increases equipment costs.
 また、従来の常圧下の連続式減圧回転法により晶析スラリーを濾過分離するにあたり、減圧沸騰などで冷却して溶媒蒸気圧を低下させて溶媒の蒸発量を抑える方法による特許文献2、3では目詰まり時間(目詰まりを起こすまでの時間)の改善は充分とは言えない。因みに、特許文献2の実施例1では、90℃におけるテレフタル酸生成スラリーの目詰まり時間は55時間、特許文献3の実施例1では90℃におけるテレフタル酸生成スラリーの目詰まり時間は120時間である。 In addition, when the crystallization slurry is filtered and separated by a conventional continuous reduced pressure rotation method under normal pressure, in Patent Documents 2 and 3 by a method of reducing the solvent vapor pressure by cooling by boiling under reduced pressure or the like, the evaporation amount of the solvent is reduced. The improvement of clogging time (time until clogging occurs) is not sufficient. Incidentally, in Example 1 of Patent Document 2, the clogging time of the terephthalic acid production slurry at 90 ° C. is 55 hours, and in Example 1 of Patent Document 3, the clogging time of the terephthalic acid production slurry at 90 ° C. is 120 hours. .
 また、特許文献4では、結晶剥離を行うブロー用のガスに溶媒成分の蒸気を供給するため、前工程で乾燥している結晶に湿度を与え、回収結晶の湿潤度が大きくなりその後の乾燥工程の負荷が大きくなる。 Further, in Patent Document 4, in order to supply the vapor of the solvent component to the blowing gas for performing crystal peeling, moisture is given to the crystal dried in the previous step, and the wetness of the recovered crystal increases, and the subsequent drying step The load of increases.
 本発明は、連続減圧回転濾過により結晶を回収するにあたって、濾過材(濾布)の目詰まりを抑え、連続した結晶の濾過・洗浄処理を長時間継続することができる濾過方法を提供するものである。また、常圧下(大気圧)に行われる減圧回転濾過機においても、濾布への晶析粒子による目詰まりを抑え長期に連続運転を可能とする。 The present invention provides a filtration method capable of suppressing clogging of a filter medium (filter cloth) and recovering continuous crystal filtration and washing for a long time when recovering crystals by continuous reduced pressure rotary filtration. is there. Further, even in a vacuum rotary filter performed under normal pressure (atmospheric pressure), the filter cloth is prevented from being clogged with crystallized particles, and can be continuously operated for a long time.
 本発明は、結晶と溶媒からなるスラリーを濾過、洗浄、剥離の各工程を順に繰返して行う連続式減圧回転濾過により結晶を回収する方法において、前記洗浄工程において、少なくとも蒸気発生が伴う温度に過熱された洗浄溶剤を用いて結晶を洗浄することを特徴とする。 The present invention relates to a method for recovering crystals by continuous reduced pressure rotary filtration in which a slurry comprising crystals and a solvent is repeatedly filtered, washed, and peeled in order, and in the washing step, at least a temperature accompanied by vapor generation is overheated. The crystal is washed using the washed solvent.
 また、触媒を含む酢酸溶液中で、芳香族炭化水素を原料として空気酸化して芳香族カルボン酸を製造するプロセスにおいて、酸化反応した後、降圧、降温して得た晶析スラリーから前記連続式減圧回転濾過により芳香族カルボン酸を回収するに当って、前記洗浄工程において少なくとも蒸気発生が伴う温度に過熱された洗浄溶剤を用いて結晶を洗浄することを特徴とする。 In the process of producing aromatic carboxylic acid by air oxidation using aromatic hydrocarbon as a raw material in an acetic acid solution containing a catalyst, after the oxidation reaction, the continuous type is obtained from the crystallization slurry obtained by reducing the pressure and lowering the temperature. In recovering the aromatic carboxylic acid by rotary filtration under reduced pressure, the crystal is washed using a washing solvent heated to at least a temperature accompanied with vapor generation in the washing step.
 また、前記芳香族炭化水素はパラキシレンまたはメタキシレンからなるジアルキル芳香族炭化水素であり、前記製造される芳香族カルボン酸はテレフタ酸またはイソフタル酸からなることを特徴とする。 Further, the aromatic hydrocarbon is a dialkyl aromatic hydrocarbon composed of para-xylene or meta-xylene, and the produced aromatic carboxylic acid is composed of terephthalic acid or isophthalic acid.
 また、前記洗浄工程において、前記洗浄溶剤として120℃以上、好ましくは130℃以上、さらに好ましくは140℃以上に過熱した酢酸を用いて結晶を洗浄することを特徴とする。 In the washing step, the crystal is washed with acetic acid heated to 120 ° C. or higher, preferably 130 ° C. or higher, more preferably 140 ° C. or higher as the cleaning solvent.
 また、前記洗浄工程において、蒸気発生の割合が好ましくは約7%以上となる温度に、より好ましくは約14%以上となる温度に過熱した洗浄溶剤を用いて結晶を洗浄することを特徴とする。 In the washing step, the crystal is washed using a washing solvent heated to a temperature at which the rate of vapor generation is preferably about 7% or more, more preferably about 14% or more. .
 以上のように本発明によれば、晶析スラリーから結晶を分離回収するにあたって、少なくとも蒸気発生の伴われる過熱洗浄溶媒により濾過した結晶の洗浄を行うことによって、濾布の目詰まりを抑え、結晶の濾過・洗浄運転を長い時間連続して行うことができ、また、結晶の回収運転が常圧下においても行うことができる。 As described above, according to the present invention, at the time of separating and recovering crystals from the crystallization slurry, the clogging of the filter cloth is suppressed by washing the filtered crystals with at least a superheated washing solvent accompanied by vapor generation. The filtration and washing operation can be performed continuously for a long time, and the crystal recovery operation can be performed under normal pressure.
 更に、汎用の連続式の減圧回転濾過機において、洗浄溶媒を少なくとも蒸気発生が伴われる温度まで過熱して供給できる加熱制御設備のみの改善であり、前記したように、加圧設備、結晶排出設備などの濾過機本体の設備改善が不要で、コスト負担も少なくて済む。そして、実施例にみられるように、結晶粒子層の洗浄効果も上がる傾向がみられ、回収結晶の湿潤度(湿り度)を小さくなる傾向があり、分離洗浄効果に対しても効果のある方法となった。 Furthermore, in a general-purpose continuous reduced-pressure rotary filter, it is only an improvement in heating control equipment that can supply the cleaning solvent by heating it to at least the temperature accompanied by vapor generation. It is not necessary to improve the equipment of the filter body such as, and the cost burden is small. And, as seen in the examples, there is a tendency that the cleaning effect of the crystal particle layer also increases, and the wetness (wetness) of the recovered crystals tends to decrease, which is also effective for the separation cleaning effect. It became.
 本発明の実施形態として、テレフタル酸の製造における結晶生成スラリーから連続式減圧回転濾過機(一般にロータリーバキュームフィルター:RVF)を用いて結晶を回収する例について説明する。 As an embodiment of the present invention, an example in which crystals are recovered from a crystal-forming slurry in the production of terephthalic acid using a continuous vacuum rotary filter (generally a rotary vacuum filter: RVF) will be described.
 図1は流れ図で、この中の連続式減圧回転濾過機2の濾過断面を図2に模式的に示す。先ず、濾過機内の濾過・洗浄、脱液、剥離の過程について述べる。 FIG. 1 is a flow chart, and FIG. 2 schematically shows a filtration section of the continuous vacuum rotary filter 2 therein. First, the process of filtration / washing, draining, and peeling in the filter will be described.
 図2で濾過機2は、外面に濾過材(濾布)を張った濾過面を持った円筒回転体11が該濾過機2内部に時計方向に回転するように設置され、内部の各領域を仕切る壁は回転しないように固定されている。該回転体11は時計方向に回転しながら、先ず濾過の工程では濾過機2の底部12に滞留させている晶析スラリーを、回転体11の内部の濾過域13からの吸引により該回転体11の外面に結晶粒子層を形成する。これは濾過域13に浸入した晶析スラリーの母液を図1の濾過液槽3へ吸引することでなされる。 In FIG. 2, the filter 2 is installed such that a cylindrical rotating body 11 having a filter surface with a filter medium (filter cloth) on the outer surface is rotated in the filter 2 so as to rotate in the clockwise direction. The partition wall is fixed so as not to rotate. While the rotating body 11 rotates in the clockwise direction, first, the crystallization slurry retained in the bottom 12 of the filter 2 in the filtration step is sucked from the filtration region 13 inside the rotating body 11 by the suction of the rotating body 11. A crystal grain layer is formed on the outer surface of the substrate. This is done by sucking the mother liquor of the crystallization slurry that has entered the filtration zone 13 into the filtrate tank 3 of FIG.
 次の洗浄工程では、該回転体11が回転しながら前記結晶粒子層を形成した濾過面が該結晶スラリーの浸漬から離れ、洗浄・脱液域14を上昇して上部に到達するまでの間に、回転体11の外側から洗浄液が散布ならびに噴霧などの方法によって結晶粒子層上面へ供給され、該回転体11を通過した洗浄液は、内部の洗浄・脱液域14から図1の洗浄排液槽4に吸引される。洗浄液が該回転体11を通過するに際し、洗浄液が結晶粒子層の表面および濾過材の網目に付着した残留母液(スラリーの母液)を押し出し、回転体11の内部の洗浄・脱液域14に排除する。 In the next cleaning step, the rotating surface 11 rotates while the filtration surface on which the crystal particle layer is formed is separated from the immersion of the crystal slurry, and rises up the cleaning / drainage zone 14 to reach the upper part. The cleaning liquid is supplied from the outside of the rotating body 11 to the upper surface of the crystal particle layer by a method such as spraying and spraying, and the cleaning liquid that has passed through the rotating body 11 passes through the cleaning / drainage area 14 in the cleaning drainage tank of FIG. 4 sucked. When the cleaning liquid passes through the rotating body 11, the cleaning liquid pushes out the residual mother liquor (slurry mother liquid) adhering to the surface of the crystal particle layer and the mesh of the filter medium, and is removed to the cleaning / drainage zone 14 inside the rotating body 11. To do.
 濾過材の網目に付着した残留母液を押し出し作用は、網目の目詰まり抑制に貢献する。ここで、散布ならびに噴霧などの方法で供給される洗浄液(酢酸)は、加熱器E-1で沸点(118℃)を超える少なくとも蒸気発生が伴われる温度に過熱されるように加熱制御される。過熱(スーパーヒート)された該洗浄液は、蒸気を伴って濾過(結晶粒子)層表面上に散布される。この加熱器E-1での過熱温度は酢酸では沸点(118℃)を超える温度に過熱するのがよいが、120℃以上に過熱するのことによって目詰まり抑制上の改善効果が現れる。そして約130℃以上に過熱して、導入散布の際に発生する蒸気の割合を増加させるような温度に過熱をさせることはさらに好ましい効果が現れる。しかし、洗浄液の加熱は導入散布の際に少なくとも洗浄液体の存在が必要であると考えられるため(過熱し過ぎると液体がなくなる。)、目詰まり抑制に必要な蒸気発生以上には過熱することは好ましくないと考える。 Extrusion of residual mother liquor adhering to the filter media will contribute to suppression of mesh clogging. Here, the cleaning liquid (acetic acid) supplied by a method such as spraying and spraying is heated and controlled by the heater E-1 so that it is heated to at least a temperature exceeding the boiling point (118 ° C.) and accompanied by steam generation. The superheated cleaning liquid is sprayed on the surface of the filtration (crystal particle) layer with steam. The superheating temperature in the heater E-1 is preferably overheated to a temperature exceeding the boiling point (118 ° C.) with acetic acid, but by overheating to 120 ° C. or more, an improvement effect in suppressing clogging appears. Further, it is more preferable to overheat to about 130 ° C. or higher to increase the ratio of the steam generated during the introduction and spraying. However, heating of the cleaning liquid is considered to require at least the presence of the cleaning liquid at the time of introduction and spraying (the liquid disappears if it is overheated). I think it's not good.
 そして、回転体11と共に結晶粒子層がさらに回転し、洗浄・脱液域14の上部から右側に移りながら内部吸引が継続され、結晶粒子層内の残留洗浄液が該結晶粒子層表面上の雰囲気蒸気およびガスとともに吸引され、残留洗浄液の蒸発を抑えた脱液が行われる。蒸発を抑えることにより、濾布の網目上に残留洗浄液の溶質の析出を抑制することが出来る。 Then, the crystal particle layer further rotates together with the rotator 11, and the internal suction is continued while moving from the upper part of the cleaning / dehydrating zone 14 to the right side, and the residual cleaning liquid in the crystal particle layer is the atmospheric vapor on the surface of the crystal particle layer. Then, the liquid is sucked together with the gas, and the liquid removal is performed while suppressing the evaporation of the residual cleaning liquid. By suppressing the evaporation, it is possible to suppress the precipitation of the solute of the residual cleaning liquid on the mesh of the filter cloth.
 上記のように脱液された結晶粒子層は、さらに回転して結晶剥離域15に移動しつつ、剥離域15では不活性ガスを回転体11内部から供給パルサーM-2で衝撃波噴き付けられることによって回転体11から剥離され、結晶排出管16を落下し、湿潤テレフタル酸結晶としてスクリュー排出機M-1に回収される。剥離された結晶は、洗浄溶媒の沸点近くまで加熱されているため、剥離域15でのガスブローによって結晶粒子層内の残留洗浄液の蒸発が起こって、湿潤度が低下している。そしてスクリュー排出機M-1からの結晶は、乾燥機8に供給されて充分乾燥されたテレフタル酸結晶となる。 The crystal particle layer drained as described above is further rotated and moved to the crystal exfoliation region 15, and in the exfoliation region 15, an inert gas is sprayed from the inside of the rotating body 11 by the supply pulser M-2. Is removed from the rotating body 11, falls down the crystal discharge pipe 16, and is collected as wet terephthalic acid crystals in the screw discharge machine M- 1. Since the exfoliated crystals are heated to near the boiling point of the cleaning solvent, gas blowing in the exfoliation zone 15 causes evaporation of the residual cleaning liquid in the crystal particle layer, resulting in a decrease in wetness. The crystals from the screw discharger M-1 are supplied to the dryer 8 and become terephthalic acid crystals that are sufficiently dried.
 結晶を剥離された回転体11は、さらに回転しながら底部12のスラリー滞留部に浸入し、再び吸引濾過を開始し、繰り返し濾過、洗浄・脱液が行われる。
以上の方法により、回転体濾過面に濾過、洗浄過程において、吸引濾過によって該回転体11内部に吸引された濾過液(母液)はほとんど濾過液槽3内に回収され、溶媒の回収工程ならびに酸化反応への再使用などに循環される。そして濾過液槽3で捕集されなかった蒸気成分は上部冷却器E-2で凝縮され、その凝縮液は気液分離槽5で捕集、還流される。凝縮されなかった非凝縮性のガス成分は、真空ポンプM-3に吸引されて循環使用されるが、余分なガスは系外に排出される。
The rotating body 11 from which the crystal has been peeled enters the slurry retaining portion of the bottom 12 while further rotating, starts suction filtration again, and is repeatedly filtered, washed and drained.
By the above method, the filtrate (mother liquid) sucked into the rotary body 11 by suction filtration in the process of filtering and washing on the rotary body filtration surface is almost recovered in the filtrate tank 3, and the solvent recovery process and oxidation are performed. It is recycled for reuse in the reaction. The vapor components not collected in the filtrate tank 3 are condensed in the upper cooler E-2, and the condensed liquid is collected and refluxed in the gas-liquid separation tank 5. The non-condensable gas component that has not been condensed is sucked into the vacuum pump M-3 and circulated, but excess gas is discharged out of the system.
 また、洗浄により該回転体11の内部に吸引された洗浄排液は、スラリー濾過液と同様に、洗浄排液槽4へ回収され、次いで冷却器E-3→気液分離器6→真空ポンプM-3の経路で凝縮液の捕集、非凝縮性ガスの循環が行われている。真空ポンプM-3は凝縮性蒸気の混入が予想されるため、吸引・排気には液封式のポンプを用いることが好ましい。 Further, the cleaning waste liquid sucked into the rotating body 11 by the cleaning is recovered in the cleaning drain tank 4 like the slurry filtrate, and then the cooler E-3 → the gas-liquid separator 6 → the vacuum pump The condensate is collected and the non-condensable gas is circulated through the path M-3. Since the vacuum pump M-3 is expected to contain condensable vapor, it is preferable to use a liquid ring pump for suction and exhaust.
 なお、テレフタル酸の製造のような溶媒に酢酸を使用するような危険ガス(蒸気)が発生する濾過分離には濾過機2の外套を密閉し、不活性ガスなどでシールされるのが通常である。そのため濾過・洗浄液などとともに吸引され真空ポンM-3を通って循環される非凝縮性ガスでシールされるが、そのガスの供給・補充は主に結晶剥離のブロー用ガスで行われる。 For filtration separation in which dangerous gas (vapor) such as acetic acid is used as a solvent for the production of terephthalic acid, the outer cover of the filter 2 is usually sealed and sealed with an inert gas or the like. is there. Therefore, it is sealed with a non-condensable gas that is sucked together with the filtration / cleaning liquid and circulated through the vacuum pump M-3, and the supply / replenishment of the gas is mainly performed with a blowing gas for crystal peeling.
 以上のような晶析スラリーの濾過分離システムを用いて、テレフタル酸の晶析スラリーからテレフタル酸結晶を連続して回収するに際し、先ず、高温、高圧の反応生成物を放圧(フラッシュ)などにより降圧、降温したテレフタル酸晶析スラリーが、スラリー供給槽1に移送される。スラリー供給槽1では該晶析スラリーを外部ポンプにより循環しながら濾過機2の底部に供給する。濾過機2の底部の晶析スラリーは、円筒回転体11の内部からの吸引により底部のスラリー浸漬部分で吸引濾過され、余分のスラリーはオーバーフロー(溢流)してスラリー供給槽1に戻され、スラリーの滞留液面(濾過液位)が保たれることになる。 When continuously collecting terephthalic acid crystals from the terephthalic acid crystallization slurry using the crystallization slurry filtration / separation system as described above, first, the high-temperature, high-pressure reaction product is released (flash) or the like. The terephthalic acid crystallization slurry whose pressure has been lowered and lowered is transferred to the slurry supply tank 1. In the slurry supply tank 1, the crystallization slurry is supplied to the bottom of the filter 2 while being circulated by an external pump. The crystallization slurry at the bottom of the filter 2 is suction filtered at the bottom of the cylindrical rotating body 11 by suction from the inside of the cylindrical rotating body 11, and the excess slurry overflows (overflows) and is returned to the slurry supply tank 1. The retained liquid level (filtrate level) of the slurry is maintained.
 次に洗浄工程について詳細に説明する。前述したように洗浄工程では、供給される洗浄液(酢酸)が、加熱器E-1で沸点(118℃)を超える少なくとも蒸気発生が伴われる温度に過熱されるように加熱制御される。 Next, the cleaning process will be described in detail. As described above, in the cleaning step, the supplied cleaning liquid (acetic acid) is heated and controlled so as to be heated to at least a temperature exceeding the boiling point (118 ° C.) and generating steam in the heater E-1.
 この加熱は、本発明者らの試行により得られた知見、即ち、結晶洗浄用の洗浄溶媒(洗浄液)を該洗浄液の沸点以上の少なくと蒸気発生が伴われる温度に過熱し、洗浄液を放圧(フラッシュ)供給して、高温(液の沸点)の蒸気と液体の蒸気混相流となって濾過(結晶粒子)層を洗浄することによって、濾布の結晶による目詰まりが抑えられるという知見に基づいている。 This heating is based on the knowledge obtained by the present inventors, that is, the crystal cleaning solvent (cleaning liquid) is heated to a temperature at which vapor generation occurs at least above the boiling point of the cleaning liquid, and the cleaning liquid is released. Based on the knowledge that clogging due to crystals in the filter cloth can be suppressed by supplying (flush) and washing the filtration (crystal particle) layer as a mixed phase flow of high-temperature (liquid boiling point) vapor and liquid vapor. ing.
 晶析スラリーを濾過機2に供給し、濾過域13で吸引濾過した後、洗浄域14での洗浄工程で過熱された洗浄液をフラッシュ状で供給する。洗浄域14では高温(液の沸点)の蒸気を伴って容量の増加した蒸気と液体の混相流となって濾過(結晶粒子)層を高速洗浄することになる。同時に、濾過(結晶粒子)層の表面上の雰囲気に存在する蒸発蒸気(と少量のガス)を吸引することによって、濾過液および洗浄排液の溶媒の蒸気発生が抑えられ、網目での溶質の析出による目詰まりが抑えられる。そして洗浄域と連続した脱液域では、結晶粒子層の表面上に存在する高温の湿潤雰囲気の蒸気(と少量ガス)を吸引して脱液することになるため、同じく洗浄溶媒の蒸発が抑えられ、溶質の析出が抑えられることになる。 The crystallization slurry is supplied to the filter 2 and suction filtered in the filter zone 13, and then the cleaning solution heated in the cleaning step in the cleaning zone 14 is supplied in a flash form. In the washing zone 14, the filtration (crystal particle) layer is washed at a high speed as a mixed-phase flow of vapor and liquid having an increased capacity accompanied by high-temperature (liquid boiling point) vapor. At the same time, by evaporating vapor (and a small amount of gas) present in the atmosphere on the surface of the filtration (crystal particle) layer, the generation of solvent vapor in the filtrate and washing waste liquid is suppressed, and the solute in the network is Clogging due to precipitation is suppressed. And in the decontamination zone that is continuous with the washing zone, the vapor (and small amount of gas) in the high-temperature wet atmosphere existing on the surface of the crystal particle layer is sucked and drained. Thus, precipitation of solute is suppressed.
 即ち、洗浄液の過熱供給による放圧(フラッシュ)状態での導入によって、濾過機2のケーシング内が高温(液の沸点)の蒸気(湿潤ガス)が充満することになり、濾布がスラリーを吸引濾過してのち、洗浄域から結晶剥離域までの間に、高温の雰囲気蒸気(湿潤ガス)を濾過液、高温の洗浄液とともに吸引して濾布を通過させるので、溶質析出による目詰まりを抑えられることになる。 That is, the introduction of the cleaning liquid in the pressure release (flush) state by overheating supply causes the casing of the filter 2 to be filled with high-temperature (liquid boiling point) vapor (wet gas), and the filter cloth sucks the slurry. After filtration, between the washing zone and the crystal peeling zone, high-temperature atmospheric vapor (wet gas) is sucked together with the filtrate and high-temperature washing solution and passed through the filter cloth, so clogging due to solute precipitation can be suppressed. It will be.
 そのため、本実施態様では、洗浄液を加熱する温度を沸点を超えた圧力下に過熱して、大気圧状態にある洗浄域に放圧(フラッシュ)して散布することになるが、洗浄液の供給の際に発生した高温(沸点)の蒸気が結晶粒子層の表面上の雰囲気(濾過機ケーシング内)に存在することができるので、目詰まりするまでの期間(目詰まり時間)の改善がなされることになる。 Therefore, in this embodiment, the temperature at which the cleaning liquid is heated is heated to a pressure exceeding the boiling point, and the pressure is released (flushed) and sprayed to the cleaning area in the atmospheric pressure state. The high-temperature (boiling point) vapor generated at the time can exist in the atmosphere (in the filter casing) on the surface of the crystal particle layer, so that the period until clogging (clogging time) is improved. become.
 後述する実施例によれば、供給洗浄液の数%が蒸気を発生すれば目詰まり時間が改善され、長期連続運転(約90℃におけるテレフタル酸生成スラリーの目詰まり時間は約10日以上)を達成するには供給する洗浄液を約7%(計算上)以上の蒸気が発生するような温度に過熱することになることが分かった。そして過熱する温度が約13%(計算上)以上の蒸気を発生する温度に過熱をすれば充分でありことが示唆される。 According to the examples described later, the clogging time is improved if several percent of the supplied cleaning liquid generates steam, and long-term continuous operation (the clogging time of the terephthalic acid-producing slurry at about 90 ° C. is about 10 days or more) is achieved. Therefore, it has been found that the cleaning solution to be supplied is heated to a temperature at which about 7% (calculated) or more of steam is generated. And it is suggested that it is sufficient to overheat to a temperature at which steam with a temperature of overheating of about 13% (calculated) or more is generated.
 このように本実施態様によれば、従来使用されている常圧下の連続式減圧回転濾過機2に対して、洗浄用溶媒の供給ラインに加熱器とフラッシュバルブを設置すると言ったことによって実施することができ、設備的に容易な改良で濾過機の長い連続運転を可能にしたものである。また、酢酸溶媒中での酸化反応による芳香族ジカルボン酸の製造からの晶析スラリーに対しての適用に限られたものでなく、水溶媒中からの芳香族ジカルボン酸結晶の晶析スラリーなど多くの有機工業薬品の晶析スラリーに対しても同様の方法で適用できるものである。 As described above, according to the present embodiment, the continuous vacuum rotary filter 2 under normal pressure that has been used in the past is implemented by the fact that a heater and a flash valve are installed in the supply line of the cleaning solvent. It is possible to operate the filter continuously for a long time with an easy improvement in terms of equipment. In addition, it is not limited to application to crystallization slurry from the production of aromatic dicarboxylic acid by oxidation reaction in acetic acid solvent, and there are many such as crystallization slurry of aromatic dicarboxylic acid crystal from water solvent The same method can be applied to crystallization slurries of organic industrial chemicals.
 次いで、洗浄、吸引脱液された濾布上の結晶粒子層は濾布内側からのガスの噴き付け(ブロー)によって剥離されることになるが、衝撃波(パルサー)によるガスブローなどの剥離法がとられる。その際、特許文献4の溶媒蒸気をブローガスに供給する方法と比べて、溶媒蒸気を混入させないので、剥離した回収結晶の湿潤度が小さくなる傾向があり好ましい。なお、洗浄・脱液過程で結晶粒子層が高温(溶媒沸点)を維持しているため、結晶剥離、結晶排出の過程で残留付着している湿潤洗浄液が蒸発することによる湿潤度の低下もある。 Next, the crystal particle layer on the filter cloth that has been washed and sucked and drained is peeled off by blowing (blowing) gas from the inside of the filter cloth. However, a peeling method such as gas blowing using a shock wave (pulsar) can be used. It is done. In that case, since the solvent vapor | steam is not mixed compared with the method of supplying the solvent vapor | steam of patent document 4 to blow gas, there exists a tendency for the wetness of the collect | recovered recovery | peeling peeling to become small, and it is preferable. In addition, since the crystal particle layer is maintained at a high temperature (solvent boiling point) during the cleaning / dehydrating process, there is also a decrease in wetness due to evaporation of the wet cleaning liquid remaining in the process of crystal peeling and crystal discharging. .
 本実施態様を適用しうる減圧回転濾過機としては、ロータリーバキュームフィルター(RVF)と称される図1、図2に示す減圧回転円筒型濾過機2のほかに、ベルトフィルターと称される減圧水平バンド型濾過機など、濾布が移動して吸引濾過、結晶洗浄、吸引脱液、結晶剥離の順に繰り返して連続濾過・洗浄を行う濾過機でも良い。
次に本実施態様を実施例により具体的に示す。酢酸溶媒中、コバルト、マンガンおよび臭素触媒の存在下、パラキシレンを空気酸化して粗テレフタル酸を製造する工程において、フラッシュ晶析された粗テレフタル酸結晶含有スラリーを晶析槽からスラリー供給槽1(図1)に受け入れ、上記実施態様に記載された濾過・洗浄過程および図1の流れにしたがってRVF2による濾過・洗浄を行い、湿潤結晶を回収した。そして乾燥機8で乾燥したのち粗テレフタル酸結晶粉体を回収する方法で実施した。
As a vacuum rotary filter to which this embodiment can be applied, in addition to the vacuum rotary cylindrical filter 2 shown in FIGS. 1 and 2 called a rotary vacuum filter (RVF), a vacuum horizontal filter called a belt filter is used. A filter such as a band type filter may be used in which the filter cloth moves and suction filtration, crystal washing, suction liquid removal, and crystal peeling are repeated in this order for continuous filtration and washing.
Next, this embodiment will be specifically described by way of examples. In the process of producing crude terephthalic acid by air oxidation of para-xylene in the presence of cobalt, manganese and bromine catalysts in an acetic acid solvent, the slurry containing the crude terephthalic acid crystals flash-crystallized from the crystallization tank to the slurry supply tank 1 (FIG. 1), and filtered and washed with RVF2 according to the filtration and washing process described in the above embodiment and the flow of FIG. 1 to collect wet crystals. And after drying with dryer 8, it implemented by the method of collect | recovering crude terephthalic acid crystal powder.
 RVF2に供給されるスラリー供給槽1のテレフタル酸含有スラリーは反応溶媒(酢酸)中に約33重量%テレフタル酸結晶が含有され、約90℃の温度である。結晶回収のためのRVF2は、ヤング式の減圧回転円筒型濾過機(米国バード社製)を用い、常圧下(ガスシール100mmAq以下)にある円筒回転体11を4.5RPMの速度で回転し、真空ポンプE-3(真空度約400mmHg)により濾過液槽3および洗浄排液槽4を通して吸引し、吸引濾過、結晶洗浄・吸引脱液を行い、結晶剥離は不活性ガスを供給パルサーM-2の衝撃波(最大約0.2Kg/cm2G)で供給して行った。回収した湿潤結晶は結晶排出管16を落下してスクリュー排出機M-1の受け口に重力落下させて乾燥機8へ移送した。 The terephthalic acid-containing slurry in the slurry supply tank 1 supplied to the RVF 2 contains about 33 wt% terephthalic acid crystals in the reaction solvent (acetic acid) and has a temperature of about 90 ° C. RVF2 for crystal recovery uses a Young-type reduced-pressure rotating cylindrical filter (manufactured by Bird Co., USA), and rotates the cylindrical rotating body 11 under normal pressure (gas seal 100 mmAq or less) at a speed of 4.5 RPM. The vacuum pump E-3 (vacuum degree: about 400 mmHg) is suctioned through the filtrate tank 3 and the washing drainage tank 4, and suction filtration, crystal washing and suction drainage are performed. And a shock wave (maximum of about 0.2 Kg / cm 2 G). The recovered wet crystals dropped on the crystal discharge pipe 16 and dropped onto the receiving port of the screw discharge machine M-1 and transferred to the dryer 8.
 酢酸洗浄液は加熱器E-1で所定の温度まで加熱(過熱)され、液状(比較例)あるいは、フラッシュした蒸気混相状(実施例1~4)にして洗浄域14上部に導入・散布され吸引洗浄を行った。洗浄用の酢酸は加圧(吐出圧約5Kg/cm2G)の定量ポンプを用い加熱器E-1を通して加熱し、供給テレフタル酸結晶に対して約0.6重量比になるように調節・供給した。そのためRVF2への洗浄液の供給は加圧下からフラッシュバルブ17を通って放圧供給となる。 The acetic acid cleaning liquid is heated (superheated) to a predetermined temperature by the heater E-1, and is introduced into the upper part of the cleaning zone 14 as a liquid (comparative example) or a flash vapor mixed phase (Examples 1 to 4). Washing was performed. The acetic acid for washing was heated through a heater E-1 using a pressurized metering pump (discharge pressure of about 5 Kg / cm 2 G), and adjusted and supplied at a ratio of about 0.6 weight to the supplied terephthalic acid crystals. Therefore, the supply of the cleaning liquid to the RVF 2 is a pressure release supply through the flash valve 17 from under pressure.
 以上のように、粗テレフタル酸晶析スラリーの連続吸引濾過・洗浄処理を継続して行い、濾布が目詰まりにより大幅に濾過速度が低下するまでの時間を目詰まり時間とし、洗浄酢酸を供給する温度を変えて連続濾過・洗浄処理を繰り返し行った。その時の洗浄用酢酸の供給温度と目詰まりまでの時間(目詰まり時間)などとの関係のテーブルを図3に示す。 As described above, continuous suction filtration and washing treatment of the crude terephthalic acid crystallization slurry is continued, and the time until the filtration speed is greatly reduced due to clogging of the filter cloth is set as the clogging time, and the washing acetic acid is supplied. The continuous filtration / washing process was repeated while changing the temperature of the liquid. A table showing the relationship between the supply temperature of the cleaning acetic acid at that time and the time until clogging (clogging time) is shown in FIG.
 これらの結果から、供給酢酸の温度を供給スラリーとほぼ同じ温度(蒸気発生の伴わない温度)で行った比較例(従来実施されていた温度)を基準として、沸点を超えて過熱(120℃)された実施例1では目詰まり時間が改善されることが分かった。そして有意的な蒸気発生があると考えられる130℃(実施例2/発生蒸気:計算上約7%)では目詰まり時間が大幅に改善されたが、140℃以上(実施例3、4/発生蒸気:計算上14%以上)ではほとんど変わらなかった。 From these results, the temperature of the supplied acetic acid was overheated (120 ° C.) exceeding the boiling point on the basis of a comparative example (temperature conventionally practiced) conducted at the same temperature as the supplied slurry (temperature without steam generation). In Example 1, it was found that the clogging time was improved. The clogging time was greatly improved at 130 ° C. (Example 2 / generated steam: about 7% in calculation), which is considered to have significant steam generation, but 140 ° C. or higher (Examples 3 and 4 / generation) Vapor: 14% or more calculated) was almost unchanged.
 また、RVF2から得られるテレフタル酸湿潤結晶を結晶スクリュー排出器M-1の受け口で採集し、回収結晶の湿潤率(乾燥減量wt%)および含有無機物としての灰分量(ppm)を測定し、図3に洗浄酢酸温度との関係をテーブルとして表示した。その結果、両者とも洗浄酢酸の温度の上昇に伴って良好になる傾向が見られた。 In addition, the terephthalic acid wet crystals obtained from RVF2 were collected at the receiving port of the crystal screw discharger M-1, and the wet rate (weight loss on drying wt%) of the recovered crystals and the ash content (ppm) as the contained inorganic substance were measured. 3 shows the relationship with the washing acetic acid temperature as a table. As a result, both tended to improve as the temperature of the washing acetic acid increased.
 図4は、図3に示す実施例1~4の特性をグラフに表したもので、横軸に洗浄液としての酢酸温度をとり、縦軸に目詰まり時間をとった。このグラフ及び図3から判断すると、前記洗浄工程において、前記洗浄溶剤として120℃以上、好ましくは130度以上、さらに好ましくは140℃以上に過熱した酢酸を用いて結晶を洗浄するのが、目詰まり時間を長くすることができる。また、最長の目詰まり時間と低い湿潤率は140℃以上で得られるが、省エネルギーなどの観点から効率的には140℃近傍で得られることが分かる。 FIG. 4 is a graph showing the characteristics of Examples 1 to 4 shown in FIG. 3. The horizontal axis represents acetic acid temperature as a cleaning solution, and the vertical axis represents clogging time. Judging from this graph and FIG. 3, in the cleaning step, it is clogged that the crystal is cleaned using acetic acid heated to 120 ° C. or higher, preferably 130 ° C. or higher, more preferably 140 ° C. or higher as the cleaning solvent. The time can be lengthened. It can also be seen that the longest clogging time and a low wetting rate are obtained at 140 ° C. or higher, but are efficiently obtained at around 140 ° C. from the viewpoint of energy saving.
結晶生成スラリーから濾過機を用いて結晶を回収する実施態様の流れ図。The flowchart of the embodiment which collect | recovers a crystal | crystallization using a filter from a crystal formation slurry. 連続式減圧回転濾過機(RVF)の模式図。Schematic diagram of a continuous vacuum rotary filter (RVF). 洗浄液温度と目詰まり時間との関係を示すテーブル。The table which shows the relationship between cleaning liquid temperature and clogging time. 実施例1~4をプロットして示す特性図。FIG. 5 is a characteristic diagram plotting Examples 1 to 4.
符号の説明Explanation of symbols
 1 スラリー供給槽
 2 連続式減圧回転濾過機
 3 濾過液槽
 4 洗浄排液槽
 5、6 気液分離槽
 7 シール液分離槽
 8 乾燥機
 11 回転体
 13 濾過域
 14 洗浄・脱液域
 15 剥離域
 17 フラッシュバルブ
 M-1 スクリュー排出機
 M-2 不活性ガス供給パルサー
 M-3 真空ポンプ
 E-1、E-5 加熱器
 E-2、E-3、E-4 冷却器。
DESCRIPTION OF SYMBOLS 1 Slurry supply tank 2 Continuous pressure reduction rotary filter 3 Filtrate tank 4 Cleaning drainage tank 5, 6 Gas-liquid separation tank 7 Seal liquid separation tank 8 Dryer 11 Rotating body 13 Filtration area 14 Washing / deliquidation area 15 Peeling area 17 Flush valve M-1 Screw discharger M-2 Inert gas supply pulser M-3 Vacuum pump E-1, E-5 Heater E-2, E-3, E-4 Cooler.

Claims (15)

  1.  結晶と溶媒からなるスラリーを濾過、洗浄、剥離の各工程を順に繰返して行う連続式減圧回転濾過により結晶を回収する方法において、
     前記洗浄工程において、少なくとも蒸気発生が伴う温度に過熱された洗浄溶剤を用いて結晶を洗浄することを特徴とする晶析スラリーの濾過方法。
    In the method of recovering crystals by continuous reduced pressure rotary filtration in which the slurry consisting of crystals and solvent is repeatedly filtered, washed, and peeled in order.
    The method for filtering a crystallization slurry, wherein in the washing step, the crystal is washed using a washing solvent heated to at least a temperature accompanied with vapor generation.
  2.  触媒を含む酢酸溶液中で、芳香族炭化水素を原料として空気酸化して芳香族カルボン酸を製造するプロセスにおいて、酸化反応した後、降圧、降温して得た晶析スラリーから前記連続式減圧回転濾過により芳香族カルボン酸を回収するに当って、前記洗浄工程において少なくとも蒸気発生が伴う温度に過熱された洗浄溶剤を用いて結晶を洗浄することを特徴とする請求項1に記載の晶析スラリーの濾過方法。 In the process of producing aromatic carboxylic acid by air oxidation using aromatic hydrocarbon as a raw material in an acetic acid solution containing a catalyst, the continuous reduced-pressure rotation from the crystallization slurry obtained by the pressure reduction and temperature drop after oxidation reaction 2. The crystallization slurry according to claim 1, wherein, in recovering the aromatic carboxylic acid by filtration, the crystal is washed using a washing solvent heated to at least a temperature accompanied with vapor generation in the washing step. Filtration method.
  3.  前記芳香族炭化水素はパラキシレンまたはメタキシレンからなるジアルキル芳香族炭化水素であり、前記製造される芳香族カルボン酸はテレフタ酸またはイソフタル酸からなることを特徴とする請求項2に記載の晶析スラリーの濾過方法。 The crystallization according to claim 2, wherein the aromatic hydrocarbon is a dialkyl aromatic hydrocarbon composed of para-xylene or meta-xylene, and the produced aromatic carboxylic acid is composed of terephthalic acid or isophthalic acid. Slurry filtration method.
  4.  前記洗浄工程において、前記洗浄溶剤として120℃以上に過熱した酢酸を用いて結晶を洗浄することを特徴とする請求項2に記載の晶析スラリーの濾過方法。 3. The method for filtering a crystallization slurry according to claim 2, wherein in the washing step, crystals are washed using acetic acid heated to 120 ° C. or more as the washing solvent.
  5.  前記洗浄工程において、前記洗浄溶剤として130℃以上に過熱した酢酸を用いて結晶を洗浄することを特徴とする請求項2に記載の晶析スラリーの濾過方法。 3. The method for filtering a crystallization slurry according to claim 2, wherein in the washing step, crystals are washed using acetic acid heated to 130 ° C. or more as the washing solvent.
  6.  前記洗浄工程において、前記洗浄溶剤として140℃以上に過熱した酢酸を用いて結晶を洗浄することを特徴とする請求項2に記載の晶析スラリーの濾過方法。 The method for filtering a crystallization slurry according to claim 2, wherein in the washing step, crystals are washed using acetic acid heated to 140 ° C or higher as the washing solvent.
  7.  前記洗浄工程において、前記洗浄溶剤として120℃以上に過熱した酢酸を用いて結晶を洗浄することを特徴とする請求項3に記載の晶析スラリーの濾過方法。 The method for filtering a crystallization slurry according to claim 3, wherein in the washing step, the crystals are washed using acetic acid heated to 120 ° C or higher as the washing solvent.
  8.  前記洗浄工程において、前記洗浄溶剤として130℃以上に過熱した酢酸を用いて結晶を洗浄することを特徴とする請求項3に記載の晶析スラリーの濾過方法。 4. The method for filtering a crystallization slurry according to claim 3, wherein in the washing step, crystals are washed using acetic acid heated to 130 ° C. or more as the washing solvent.
  9.  前記洗浄工程において、前記洗浄溶剤として140℃以上に過熱した酢酸を用いて結晶を洗浄することを特徴とする請求項3に記載の晶析スラリーの濾過方法。 4. The method for filtering a crystallization slurry according to claim 3, wherein in the washing step, crystals are washed using acetic acid heated to 140 ° C. or more as the washing solvent.
  10.  前記洗浄工程において、蒸気発生の割合が約7%以上となる温度に過熱した洗浄溶剤を用いて結晶を洗浄することを特徴とする請求項1に記載の晶析スラリーの濾過方法。 2. The method for filtering a crystallization slurry according to claim 1, wherein, in the washing step, the crystal is washed using a washing solvent heated to a temperature at which a rate of vapor generation is about 7% or more.
  11.  前記洗浄工程において、蒸気発生の割合が約14%以上となる温度に過熱した洗浄溶剤を用いて結晶を洗浄することを特徴とする請求項1に記載の晶析スラリーの濾過方法。 2. The method for filtering a crystallization slurry according to claim 1, wherein in the washing step, the crystals are washed using a washing solvent heated to a temperature at which the rate of vapor generation is about 14% or more.
  12.  前記洗浄工程において、蒸気発生の割合が約7%以上となる温度に過熱した洗浄溶剤を用いて結晶を洗浄することを特徴とする請求項2に記載の晶析スラリーの濾過方法。 3. The method for filtering a crystallization slurry according to claim 2, wherein in the washing step, the crystal is washed using a washing solvent heated to a temperature at which the rate of vapor generation is about 7% or more.
  13.  前記洗浄工程において、蒸気発生の割合が約14%以上となる温度に過熱した洗浄溶剤を用いて結晶を洗浄することを特徴とする請求項2に記載の晶析スラリーの濾過方法。 3. The method for filtering a crystallization slurry according to claim 2, wherein in the washing step, the crystals are washed using a washing solvent heated to a temperature at which a vapor generation rate is about 14% or more.
  14.  前記洗浄工程において、蒸気発生の割合が約7%以上となる温度に過熱した洗浄溶剤を用いて結晶を洗浄することを特徴とする請求項3に記載の晶析スラリーの濾過方法。 4. The method for filtering a crystallization slurry according to claim 3, wherein in the washing step, the crystal is washed using a washing solvent heated to a temperature at which the rate of vapor generation is about 7% or more.
  15.  前記洗浄工程において、蒸気発生の割合が約14%以上となる温度に過熱した洗浄溶剤を用いて結晶を洗浄することを特徴とする請求項3に記載の晶析スラリーの濾過方法。 4. The method for filtering a crystallization slurry according to claim 3, wherein in the washing step, the crystals are washed using a washing solvent heated to a temperature at which the rate of vapor generation is about 14% or more.
PCT/JP2007/074518 2007-12-20 2007-12-20 Method of filtering crystallization slurry WO2009081458A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2007801019499A CN101903072B (en) 2007-12-20 2007-12-20 Method of filtering crystallization slurry
PCT/JP2007/074518 WO2009081458A1 (en) 2007-12-20 2007-12-20 Method of filtering crystallization slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/074518 WO2009081458A1 (en) 2007-12-20 2007-12-20 Method of filtering crystallization slurry

Publications (1)

Publication Number Publication Date
WO2009081458A1 true WO2009081458A1 (en) 2009-07-02

Family

ID=40800777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/074518 WO2009081458A1 (en) 2007-12-20 2007-12-20 Method of filtering crystallization slurry

Country Status (2)

Country Link
CN (1) CN101903072B (en)
WO (1) WO2009081458A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013521800A (en) * 2010-03-17 2013-06-13 ティーネ エスアー Membrane filtration and membrane filtration assemblies
WO2014049793A1 (en) * 2012-09-27 2014-04-03 三菱化工機株式会社 Operation method for pressurized single-chamber rotary filtration device
WO2016025399A1 (en) * 2014-08-11 2016-02-18 Bp Corporation North America Inc. Separation process having improved capacity
WO2022023967A1 (en) * 2020-07-31 2022-02-03 Koch Technology Solutions, Llc Production of purified terephthalic acid

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102824880A (en) * 2011-06-15 2012-12-19 逸盛大化石化有限公司 Acetic acid spray improvement method
CN102992999B (en) * 2011-09-17 2014-08-27 中国石油化工股份有限公司 Matched filtering and washing method for crude m-phthalic acid in oxidation unit of refined m-phthalic acid device
CN102878067A (en) * 2012-08-30 2013-01-16 吴江市万事达环保溶剂有限公司 Liquid ring pump avoiding crystal substance excess accumulation
CN104860813B (en) * 2014-04-24 2017-04-26 因温斯特技术公司 Filter Used For Acromatic Carboxylic Acid
CN107376504A (en) * 2017-09-18 2017-11-24 四川祥龙生物工程技术有限公司 Separator
CN113214078A (en) * 2021-05-26 2021-08-06 宜兴市阳洋塑料助剂有限公司 Method for recycling and preparing dioctyl terephthalate by utilizing terephthalic acid production waste

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01299618A (en) * 1988-05-27 1989-12-04 Mitsui Petrochem Ind Ltd Method for recovering crystals from slurry
JPH07507291A (en) * 1992-05-29 1995-08-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for the production of purified terephthalic acid
JPH08143509A (en) * 1994-11-15 1996-06-04 Mitsubishi Chem Corp Preparation of terephthalic acid aqueous slurry
JPH1057722A (en) * 1996-08-20 1998-03-03 Tsukishima Kikai Co Ltd Solid-liquid separation and rotary cylinder type vacuum filter using the same
JP2002020324A (en) * 2000-07-05 2002-01-23 Mitsubishi Gas Chem Co Inc Method for recovering crystal from slurry
JP2004231636A (en) * 2003-01-10 2004-08-19 Mitsubishi Chemicals Corp Method for producing aromatic carboxylic acid and method for producing terephthalic acid
JP2005263653A (en) * 2004-03-17 2005-09-29 Toray Ind Inc Method for producing aromatic carboxylic acid
JP2006265124A (en) * 2005-03-22 2006-10-05 Mitsui Chemicals Inc Method for recovering crystal from slurry

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1264802C (en) * 2004-07-08 2006-07-19 艾博特(厦门)设备工程有限公司 Method for preparing pure terephthalic acid having 99.8% purity
CN200963537Y (en) * 2006-09-27 2007-10-24 徐建涛 Filtering separation device for crystal slurry solution

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01299618A (en) * 1988-05-27 1989-12-04 Mitsui Petrochem Ind Ltd Method for recovering crystals from slurry
JPH07507291A (en) * 1992-05-29 1995-08-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for the production of purified terephthalic acid
JPH08143509A (en) * 1994-11-15 1996-06-04 Mitsubishi Chem Corp Preparation of terephthalic acid aqueous slurry
JPH1057722A (en) * 1996-08-20 1998-03-03 Tsukishima Kikai Co Ltd Solid-liquid separation and rotary cylinder type vacuum filter using the same
JP2002020324A (en) * 2000-07-05 2002-01-23 Mitsubishi Gas Chem Co Inc Method for recovering crystal from slurry
JP2004231636A (en) * 2003-01-10 2004-08-19 Mitsubishi Chemicals Corp Method for producing aromatic carboxylic acid and method for producing terephthalic acid
JP2005263653A (en) * 2004-03-17 2005-09-29 Toray Ind Inc Method for producing aromatic carboxylic acid
JP2006265124A (en) * 2005-03-22 2006-10-05 Mitsui Chemicals Inc Method for recovering crystal from slurry

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013521800A (en) * 2010-03-17 2013-06-13 ティーネ エスアー Membrane filtration and membrane filtration assemblies
WO2014049793A1 (en) * 2012-09-27 2014-04-03 三菱化工機株式会社 Operation method for pressurized single-chamber rotary filtration device
WO2016025399A1 (en) * 2014-08-11 2016-02-18 Bp Corporation North America Inc. Separation process having improved capacity
US10857490B2 (en) 2014-08-11 2020-12-08 Bp Corporation North America Inc. Separation process having improved capacity
WO2022023967A1 (en) * 2020-07-31 2022-02-03 Koch Technology Solutions, Llc Production of purified terephthalic acid

Also Published As

Publication number Publication date
CN101903072B (en) 2013-12-25
CN101903072A (en) 2010-12-01

Similar Documents

Publication Publication Date Title
WO2009081458A1 (en) Method of filtering crystallization slurry
KR100738737B1 (en) Process for recovering crystals from a slurry
EP0406424B1 (en) Process for recovering crystals from slurry
CN1085889A (en) The preparation method of refining terephthalic acid
JP2001151709A5 (en)
WO2010119484A1 (en) Method for recovering crystals from a crystallization slurry
JP2010132828A (en) Apparatus and method for synthesizing polyester
WO2004043893A1 (en) Process for producing terephthalic acid
AU2019253902B2 (en) Divalent ion removal from monoethylene glycol (MEG) feed streams
JPH11343264A (en) Production of aromatic carboxylic acid
KR100897502B1 (en) Recovery of catalysts, benzoic acid and aromatic acid
RU2463096C2 (en) Method of crystalline suspension filtration
JP2017095391A (en) Manufacturing method of aromatic dicarboxylic acid
WO2007073658A1 (en) Process for separation of crude terephthalic acid
MX2012013450A (en) Process and system for the separation and drying of carboxylic acid crystals.
JP2004231636A (en) Method for producing aromatic carboxylic acid and method for producing terephthalic acid
JP2006008671A (en) Method for producing high-purity terephthalic acid
JP2005247839A (en) Method for producing aromatic carboxylic acid
CN220335046U (en) Thermal desorption deoiling device for oil-based mud
EP2619166A2 (en) Process and system
JP2004175797A (en) Method for producing terephthalic acid
JPS5811418B2 (en) How to dry terephthalic acid
JP2004285022A (en) Method for separating crystal from slurry
JP2005263653A (en) Method for producing aromatic carboxylic acid
WO2006001449A1 (en) Process for producing high-purity terephthalic acid

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780101949.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850953

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3833/DELNP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010124252

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07850953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP