WO2009080847A1 - High-gain photovoltaic concentrator with a reflective stage inserted into a liquid optical dielectric - Google Patents

High-gain photovoltaic concentrator with a reflective stage inserted into a liquid optical dielectric Download PDF

Info

Publication number
WO2009080847A1
WO2009080847A1 PCT/ES2008/000727 ES2008000727W WO2009080847A1 WO 2009080847 A1 WO2009080847 A1 WO 2009080847A1 ES 2008000727 W ES2008000727 W ES 2008000727W WO 2009080847 A1 WO2009080847 A1 WO 2009080847A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
liquid
optical
photovoltaic
cells
Prior art date
Application number
PCT/ES2008/000727
Other languages
Spanish (es)
French (fr)
Inventor
Ignacio ANTÓN HERNÁNDEZ
Gabriel Sala Pano
César DOMÍNGUEZ DOMÍNGUEZ
Marta VICTORIA PÉREZ
Original Assignee
Universidad Politécnica de Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Politécnica de Madrid filed Critical Universidad Politécnica de Madrid
Publication of WO2009080847A1 publication Critical patent/WO2009080847A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the invention is part of the photovoltaic solar energy sector, more specifically in relation to high gain compact concentration modules with geometric concentration levels greater than 100.
  • the concentration of sunlight on the solar cell by means of optical systems is one of the ways that are currently more relevant as a competitive alternative to conventional photovoltaic modules.
  • An advantage of the concentration is that it allows efficient use of the cells made with IH-V semiconductors in terrestrial applications * that, in another way and with the current costs, could not compete with the silicon photovoltaic modules.
  • the proposed photovoltaic concentration systems are of a very diverse nature.
  • One of the options is the so-called concentration module, in which the optical system, the cell, the cooling system and the connection elements are assembled in the manufacturing process and thereafter inseparable except by destructive means.
  • the modules are prepared for installation and interconnection on a solar tracker, that is, a structure that moves following the sun. It is about reproducing the conventional flat photovoltaic module, with its flat and compact structure, introducing optical systems to concentrate the light in the cells.
  • the opening area of the concentration module is much larger than the cell area, a relationship known as geometric concentration.
  • Many optical solutions have been proposed for the realization of photovoltaic concentration modules.
  • optical liquids in photovoltaic modules also has some background. Its use has been proposed in low concentration modules with bifacial cells (US1979 / 4169738; US1996 / 5538563).
  • the bifacial cells have the particularity that both sides are optically active and therefore cannot adhere to a heatsink. When used in a concentration system they are arranged perpendicular to the opening plane of the optical system, being illuminated on both sides and being inserted in a liquid medium for cooling.
  • the optical liquid fulfills a cooling function in reflective or refractive concentrating systems in which the cells are arranged in the back of the module [US1977 / 4045246, US1979 / 4143233].
  • the optic is refractive, to obtain high luminous concentrations it is necessary that the optical medium from the opening area to the cell is not continuous but there is an area with air to make use of the refraction.
  • Another alternative, but that only allows low concentration values (less than 100), is to use a tube in which the lens Ia forms the external face thereof and the cells are arranged in the rear part, the interior of the cylinder being filled with optical liquid [US / RE30584].
  • the side walls of the module are mirrors that concentrate the light on the cell, arranged in the back of the module, "the whole assembly being filled with a liquid optical medium.
  • This design does not allow to reach high values of
  • concentration module this is a compact set that encompasses the optics, cells, connection and heat dissipation system
  • the liquid does not serve as a continuous optical medium, in a closed compartment between the collector and the cell.
  • collector and cell are independent and are partially or totally immersed in a container (tank, lake, pond, ...) of water or other means liquid whose function is to protect the collector itself and cool the cells [US2006 / 260605]
  • the liquid serves as a substitute for the used encapsulant in conventional photovoltaic modules
  • the novelty of the invention lies in the use of a transparent optical liquid (5) inside a photovoltaic concentration module, which makes use of a reflective optical stage (1) and in which the cells (2) are arranged on the front face of the module itself under a glass or other transparent substrate (4).
  • the arrangement of the cells on the front face means that heatsinks cannot be used for cooling since they would impede the passage of light.
  • the transparent liquid (5) performs the double function of extracting heat from the cells and providing continuity of refractive index from the front face of the module to the cell.
  • This invention allows to reach very high geometric concentrations, up to 2000, where the geometric concentration is defined as the ratio between the optical system opening area (light input area) and the cell area and is considered high for higher values to 100.
  • Concentrators that use a reflective primary optical stage have some advantages over those in which the primary is a lens. Since they lack the effect known as chromatic aberration, which causes the spectral dispersion of light, the concentration levels that can be reached are higher when the primary is a mirror and not a lens. The problem with reflective systems is that the focus is on the mirror, so that the cell and any cooling element produce shadows.
  • the solution used in the concentration modules consists of mounting the cell on a metallic substrate that distributes the heat horizontally, offering a convection surface on the back of the module similar to the opening area of the concentrator, either by means of one or several fins
  • the light enters through the front face of the module and concentrates on the photovoltaic device that is thermally adhered to the back side of the module that acts as a heatsink, exchanging with the air surrounding the module the energy that is not converted in electricity
  • the primary optical stage is reflective, this configuration requires redirecting the light rays in the same direction in which they affect the opening plane in order to extract the heat from the rear face of the module.
  • a second reflexive stage is essential, avoiding the shading that the heat dissipation system would otherwise cause.
  • the serial or parallel electrical connection of the devices makes it essential that the cells are electrically isolated from the metal substrate, but thermally bonded, which is a great challenge from the construction point of view of the concentration modules.
  • the concentration modules there are air spaces due to the optical system, between the primary and the secondary stage if it exists or the cell itself. To properly seal the module and prevent corrosion inside it, the aging of the insulating materials and the loss of electrical insulation is the main difficulty in the concentration modules.
  • the present invention enables' reach very high concentration, up to 2000, to Ia time solves the problem of heat dissipation Ia Ia cell using a single reflective optical stage and a liquid transparent dielectric.
  • the basic elements that form the concentration module (8) are a set of reflective optical elements (1) arranged in parquet form and that form the back of the module, a transparent glass or plastic substrate (4) that constitutes the part front of the module, profiles (6) that form the side walls and seal the module tightly to form a watertight compartment, and a frame (7), which adheres to the profiles (6) and that contains support elements for The fastening of the module to a structure that follows the sun.
  • the front face (4) of the module (8) can be considered as a first refractive optical stage and can be flat or curved and in its inner part the photovoltaic cells (2) adhere, as well as strips of conductive material (3) that They contain cables or other connection elements.
  • the module assembly (8) is filled with transparent optical liquid (5) that envelops the set of reflective optical elements (1) and the photovoltaic cells themselves (2).
  • Said transparent optical liquid (5) fulfills the triple functionality of providing continuity of refractive index from glass or plastic to the cell, reducing Fresnel optical losses, cooling of photovoltaic cells and filling the inside of the module of a dielectric medium instead of air.
  • the concentration module (8) is a mounting unit, prepared to be fixed in a structure that follows the sun forming an array of modules.
  • the optical elements can be of first reflective surface, that is, the metallized face is the anterior one of the optical system.
  • the optical elements can be of a second surface, in which case the light also passes through the transparent material or materials that the optical elements form before and after being reflected.
  • the cooling of the cells is produced by natural convection in the liquid, which transports heat from the device to the walls and the module. Also by natural convection, heat exchange occurs between the walls of the module with the outside air.
  • a second alternative consists in forcing the circulation of the liquid with a pump, which, in addition to improving the cooling of the cell, allows for a filter to keep the liquid clean of impurities ⁇ and a liquid accumulator that ensures the operation of the concentrator in case of small losses of liquid.
  • an expansion tank can be used for the liquid that absorbs the expansion of the liquid, preventing it from pressing the walls of the module when it expands and providing extra liquid for small leakage losses.
  • Another significant advantage of the invention is the fact that the active circuit formed by solar cells, connection wires, etc. and the module housing or electrical mass, are very separated by dielectric materials such as the transparent optical liquid, the glass or plastic of the front face and the parquet of optical elements, having distances greater than 1cm. between both circuits
  • dielectric materials such as the transparent optical liquid, the glass or plastic of the front face and the parquet of optical elements, having distances greater than 1cm. between both circuits
  • dielectric materials such as the transparent optical liquid, the glass or plastic of the front face and the parquet of optical elements, having distances greater than 1cm. between both circuits
  • dielectric materials such as the transparent optical liquid, the glass or plastic of the front face and the parquet of optical elements, having distances greater than 1cm. between both circuits
  • the cell is very close to the metal heatsink, only separated from it by a dielectric material that must guarantee both the electrical insulation between both elements and a good thermal conduction.
  • dielectric materials of only a few
  • the invention also avoids the condensation of water inside the module.
  • conventional concentration modules there is air inside the module,
  • the module is filled with liquid and this problem is avoided.
  • the present invention is illustrated with Figure 1 showing a cross-section of the module and with Figure 2 showing a detail of the front view. These figures are not intended to determine the number of mirrors and cells that make up the concentration module.
  • the reflective optical elements (1) or mirrors are arranged in the form of a parquet that make up the back of the module and concentrate the sunlight on the photovoltaic cells (2) that are electrically adhered to small strips of conductive material (3). These strips allow the electrical connection of the photovoltaic cells in series or parallel and minimize the shading on the front face of the module.
  • the strips that support the cells are attached or attached to the lower part of the transparent glass or plastic substrate (4) that involves the closing of the front face of the module and that can be flat or curved.
  • the assembly is completely closed and sealed by profiles (6) on the sides and is filled with a transparent optical liquid (5) that provides continuity of refractive index and performs cooling of the photovoltaic cells.
  • the module ends in a side frame (7) attached, to the profiles (6) and that allows its fastening in any structure.
  • the concentration module (8) is a mounting unit prepared to be installed in a structure that follows the sun as illustrated in Figure 3, forming arrays of electrically connected modules in seine or parallel.
  • the manufacture of the reflective optical elements (1) or mirrors can be done by injection of plastic or glass into a mold, by thermoforming, by metal stamping or casting ⁇ . Depending on the process, the parquet of mirrors can be manufactured in one piece or in individual pieces that are subsequently assembled.
  • the metallization of the mirrors can be chemical, by evaporation of metal or by adhering reflective sheets.
  • the conductive strips (3) support the photovoltaic cells and allow their connection, being able to be manufactured in many of the encapsulation materials available in the electronic industry such as lead-frame, ceramic substrates or metallic plastics (DBC, IMS, printed circuits) ,, or of conductive metals such as copper.
  • the photovoltaic cells (2) are welded or adhered with conductive adhesive to the strips and the upper contact of the cell is made by welding with wire (wire bonding).
  • the cells are fixed and electrically connected to the strips that support them, they adhere to the lower part of a transparent glass or plastic (4) that constitutes the front face of the module, with the cell facing down.
  • the electrical connections between the strips and the electrical output connectors of the module, arranged on one side, must also be made.
  • the module is built with the parquet of mirrors as the lower face and the glass or plastic as the upper face. It is then closed laterally with profiles (6), so that it is sealed, and filled with transparent optical liquid (4) by means of a valve, arranged on one side for this purpose.
  • the photovoltaic cells (2), which remain inside the module, must be submerged in the liquid.
  • the first is to make exclusive use of the natural convection of the liquid, which is heated by being in contact with the photovoltaic cells.
  • the second is to force the circulation of the liquid through a pump by exchanging heat outside the module.
  • the present invention consists of a photovoltaic concentration module whose application is to produce electrical energy from sunlight.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The invention relates to a photovoltaic concentration module with an optical stage that operates by means of metallic reflection. The inside of the module is filled with a transparent optical liquid which provides continuous refractive index from the module inlet, formed by planar or curved transparent glass or plastic, to the actual cell. The cells are submerged in the liquid which cools same by means of natural or forced convection and fills all of the interior so as to prevent the passage of moisture and the formation of condensation inside the module.

Description

Título: Title:
Concentrador fotovoltaico de alta ganancia con una etapa reflexiva inserta en un dieléctrico óptico líquidoHigh gain photovoltaic concentrator with a reflective stage inserted in a liquid optical dielectric
_ Sector técnico_ Technical sector
La invención se encuadra en el sector de Ia energía solar fotovoltaica, más concretamente en el relativo a los módulos de concentración compactos de alta ganancia con niveles de concentración geométrica superiores a 100.The invention is part of the photovoltaic solar energy sector, more specifically in relation to high gain compact concentration modules with geometric concentration levels greater than 100.
Estado de Ia TécnicaState of the Technique
La concentración de Ia luz del sol sobre Ia célula solar por medio de sistemas ópticos es una de las vías que actualmente tienen mayor relevancia como alternativa competitiva a los módulos fotovoltaicos convencionales. Una ventaja de Ia concentración es que permite hacer un uso eficiente de las células realizadas con semiconductores IH-V en aplicaciones terrestres* que, de otra forma y con los costes actuales, no podrían competir con los módulos fotovoltaicos de silicio.The concentration of sunlight on the solar cell by means of optical systems is one of the ways that are currently more relevant as a competitive alternative to conventional photovoltaic modules. An advantage of the concentration is that it allows efficient use of the cells made with IH-V semiconductors in terrestrial applications * that, in another way and with the current costs, could not compete with the silicon photovoltaic modules.
Los sistemas de concentración fotovoltaica propuestos son de muy diversa naturaleza. Una de las opciones es el denominado módulo de concentración, en el que el sistema óptico, Ia célula, el sistema de refrigeración y los elementos de conexionado son ensamblados en el proceso de fabricación e inseparables a partir de entonces salvo por medios destructivos. Los módulos quedan preparados para su instalación e interconexión sobre un seguidor solar, esto es, una estructura que se mueve siguiendo al sol. Se trata de reproducir el módulo fotovoltaico plano convencional, con sus estructura plana y compacta, introduciendo sistemas ópticos para concentrar Ia luz en las células. A diferencia de los módulos convencionales, el área de apertura del módulo de concentración (área de captación de luz) es muy superior al área de las células, relación que se conoce como concentración geométrica. Se han propuesto muchas soluciones ópticas para Ia realización de módulos fotovoltaicos de concentración. La mayoría de ellas se basan en elementos refractivos, esto es, lentes que desvían los rayos por medio del fenómeno físico conocido como refracción [ES2157846, ES2157829, ES2232299], [Bett AW, Siefer G, Baur C, RiesenThe proposed photovoltaic concentration systems are of a very diverse nature. One of the options is the so-called concentration module, in which the optical system, the cell, the cooling system and the connection elements are assembled in the manufacturing process and thereafter inseparable except by destructive means. The modules are prepared for installation and interconnection on a solar tracker, that is, a structure that moves following the sun. It is about reproducing the conventional flat photovoltaic module, with its flat and compact structure, introducing optical systems to concentrate the light in the cells. Unlike conventional modules, the opening area of the concentration module (light collection area) is much larger than the cell area, a relationship known as geometric concentration. Many optical solutions have been proposed for the realization of photovoltaic concentration modules. Most of them are based on refractive elements, that is, lenses that deflect the rays by means of the physical phenomenon known as refraction [ES2157846, ES2157829, ES2232299], [Bett AW, Siefer G, Baur C, Riesen
Sv, Peharz G, Lerchenmüller H, and Dimroth F. FLATCON™ Concentrator PV- Technology Ready for the Market. Proc. of the 20th European Photovoltaic Solar Energy Conference and Exhibition 2005: 114-117], [Andreev V, lonova E, Rumyantsev V, Sadchikov N1 and Shvarts M. Concentrator PV Modules of All-Glass Design with Modified Structure. Proceedings of the 3rd WCPEC 2003; 1 :873-876]. Estos sistemas ópticos desvían los rayos de luz pero, a diferencia de los espejos, no invierten sus sentido por Io que permiten diseños ópticos de una sola etapa.Sv, Peharz G, Lerchenmüller H, and Dimroth F. FLATCON ™ Concentrator PV- Technology Ready for the Market. Proc. of the 20th European Photovoltaic Solar Energy Conference and Exhibition 2005: 114-117], [Andreev V, lonova E, Rumyantsev V, Sadchikov N 1 and Shvarts M. Concentrator PV Modules of All-Glass Design with Modified Structure. Proceedings of the 3rd WCPEC 2003; 1: 873-876]. These optical systems deflect the rays of light but, unlike mirrors, they do not reverse their meaning because they allow single-stage optical designs.
Por el contrario, el uso de elementos reflexivos o espejos impone el uso de dos o más etapas ópticas para redirigir Ia luz de forma que llegue a Ia célula, que se coloca en Ia parte posterior del módulo, en el sentido de incidencia por el plano de apertura. De esta forma, el sistema de disipación de calor sobre el que va montada Ia célula fotovoltaica no produce sombras en el plano de apertura del sistema óptico (cara frontal del módulo). Una solución propuesta se basa en Ia estructura ampliamente conocida y denominada Cassegrain, que consiste en Ia combinación de dos espejos, uno primario cóncavo y uno secundario plano o convexo [US2007/063522], [Gordon J. Concentrator Optics, in Concentrator Photovoltaics, Luque A and Andreev V, Editors. Springer: 2007]. También se han propuesto variaciones en las que el medio óptico entre ambas estructuras no es aire sino vidrio o plástico transparente, que permiten hacer usos de Ia reflexión total interna como mecanismo para concentrar Ia luz [Álvarez JL, Hernández M, Benitez P, Miñano JC. RXI Concentrator for 1000X Photovoltaic Energy Conversión. SPIE'S, Intern. Symposium of Optical Science, Engineering and Instrumentation, 1999: pp. 30-37]On the contrary, the use of reflective elements or mirrors imposes the use of two or more optical stages to redirect the light so that it reaches the cell, which is placed in the back of the module, in the sense of incidence by the plane opening. In this way, the heat dissipation system on which the photovoltaic cell is mounted does not produce shadows in the opening plane of the optical system (front face of the module). A proposed solution is based on the structure widely known and called Cassegrain, which consists of the combination of two mirrors, one concave primary and one flat or convex secondary [US2007 / 063522], [Gordon J. Concentrator Optics, in Concentrator Photovoltaics, Luque A and Andreev V, Editors. Springer: 2007]. Variations have also been proposed in which the optical medium between both structures is not air but transparent glass or plastic, which allow us to make use of the total internal reflection as a mechanism to concentrate the light [Álvarez JL, Hernández M, Benitez P, Miñano JC . RXI Concentrator for 1000X Photovoltaic Energy Conversion. SPIE'S, Intern. Symposium of Optical Science, Engineering and Instrumentation, 1999: pp. 30-37]
El uso de líquidos ópticos en módulos fotovoltaicos tiene también algunos antecedentes. Se ha propuesto su utilización en módulos de baja concentración con células bifaciales (US1979/4169738; US1996/5538563). Las^ células bifaciales tiene como particularidad que ambas caras son ópticamente activas y por tanto no pueden adherirse a un disipador. Cuando se utilizan en un sistema de concentración se disponen perpendiculares al plano de apertura del sistema óptico, siendo iluminadas por ambos lados y estando insertas en un medio líquido para su refrigeración.The use of optical liquids in photovoltaic modules also has some background. Its use has been proposed in low concentration modules with bifacial cells (US1979 / 4169738; US1996 / 5538563). The bifacial cells have the particularity that both sides are optically active and therefore cannot adhere to a heatsink. When used in a concentration system they are arranged perpendicular to the opening plane of the optical system, being illuminated on both sides and being inserted in a liquid medium for cooling.
En otras propuestas el líquido óptico cumple una función refrigerante en sistemas concentradores reflexivos o refractivos en los que las células se encuentran dispuestas en Ia parte posterior del módulo [US1977/4045246, US1979/4143233]. Cuando Ia óptica es refractiva, para obtener concentraciones luminosas elevadas es necesario que el medio óptico desde el área de apertura hasta Ia célula no sea continuo sino que exista una zona con aire para hacer uso de Ia refracción. Otra alternativa, pero que sólo permite valores bajos de concentración (inferiores a 100), es usar un tubo en el que Ia lente Ia conforma Ia cara externa del mismo y las células están dispuestas en Ia parte posterior, estando el interior del cilindro lleno de líquido óptico [US/RE30584]. También se ha propuesto hacer uso de los laterales del módulo como sistema óptico refractivo, por ejemplo una lente curvada, junto con Ia reflexión total interna en Ia cara frontal del convertidor como mecanismo para concentrar Ia luz gracias a un medio óptico líquido í que rellena en el interior del sistema [US2003/6583349]. A diferencia de Ia invención que se propone, no usa óptica reflexiva para disponer las células en Ia cara frontal.In other proposals the optical liquid fulfills a cooling function in reflective or refractive concentrating systems in which the cells are arranged in the back of the module [US1977 / 4045246, US1979 / 4143233]. When the optic is refractive, to obtain high luminous concentrations it is necessary that the optical medium from the opening area to the cell is not continuous but there is an area with air to make use of the refraction. Another alternative, but that only allows low concentration values (less than 100), is to use a tube in which the lens Ia forms the external face thereof and the cells are arranged in the rear part, the interior of the cylinder being filled with optical liquid [US / RE30584]. It has also been proposed to use the side of the module as the optical system refractive, for example a curved lens, with Ia Total internal reflection in the front face of the converter as a mechanism to concentrate the light through a liquid optical medium í filling in the interior of the system [US2003 / 6583349]. Unlike the proposed invention, it does not use reflective optics to arrange the cells on the front face.
Cuando Ia óptica es reflexiva, las paredes laterales del módulo son espejos que concentran Ia luz sobre Ia célula, dispuesta en Ia parte posterior del módulo, "estando todo el conjunto relleno de un medio óptico líquido. Este diseño no permite tampoco alcanzar valores elevados de concentración. Existen también diseños que no responden al concepto de módulo de concentración, esto es un conjunto compacto que engloba a Ia óptica, células, conexionado y sistema de disipación del calor. En uno de ellos el líquido no sirve como medio óptico continuo, en un compartimiento cerrado entre el colector y Ia célula. A diferencia de Ia invención que se propone, colector y célula son independientes y se encuentran parcialmente o totalmente inmersos en un contenedor (tanque, lago, estanque,...) de agua u otro medio líquido cuya función es Ia de proteger al propio colector y refrigerar las células [US2006/260605]. En otro el líquido sirve como sustitutivo del encapsulante usado en los módulos fotovoltaicos convencionalesWhen the optics are reflective, the side walls of the module are mirrors that concentrate the light on the cell, arranged in the back of the module, "the whole assembly being filled with a liquid optical medium. This design does not allow to reach high values of There are also designs that do not respond to the concept of concentration module, this is a compact set that encompasses the optics, cells, connection and heat dissipation system In one of them the liquid does not serve as a continuous optical medium, in a closed compartment between the collector and the cell.Unlike the proposed invention, collector and cell are independent and are partially or totally immersed in a container (tank, lake, pond, ...) of water or other means liquid whose function is to protect the collector itself and cool the cells [US2006 / 260605] In another, the liquid serves as a substitute for the used encapsulant in conventional photovoltaic modules
Descripción detallada de Ia invenciónDetailed description of the invention
La novedad de Ia invención reside, en Ia utilización de un líquido óptico transparente (5) en el interior de un módulo fotovoltaico de concentración, que hace uso de una etapa óptica reflexiva (1 ) y en el que las células (2) se encuentran dispuestas en Ia propia cara frontal del módulo bajo un vidrio u otro sustrato transparente (4). La disposición de las células en Ia cara frontal hace que no pueda utilizarse disipadores para su refrigeración puesto que impedirían el paso de Ia luz.The novelty of the invention lies in the use of a transparent optical liquid (5) inside a photovoltaic concentration module, which makes use of a reflective optical stage (1) and in which the cells (2) are arranged on the front face of the module itself under a glass or other transparent substrate (4). The arrangement of the cells on the front face means that heatsinks cannot be used for cooling since they would impede the passage of light.
El líquido transparente (5) realiza Ia doble función de extraer el calor de las células y proporcionar continuidad de índice de refracción desde Ia cara frontal del módulo hasta Ia célula. Esta invención permite alcanzar concentraciones geométricas muy elevadas, de hasta 2000, donde Ia concentración geométrica se define como Ia relación entre el área de apertura del sistema óptico (área de entrada de luz) y el área de las células y se considera elevada para valores superiores a 100. Los concentradores que usan una etapa óptica primaria reflexiva tienen algunas ventajas respecto a aquellos en los que el primario es una lente. Puesto que carecen del efecto conocido como aberración cromática, causante de Ia dispersión espectral de Ia luz, los niveles de concentración que pueden alcanzarse son mayores cuando el primario es un espejo y no una lente. El problema de los sistemas reflexivos es que el foco se encuentra encima del espejo por Io que Ia célula y cualquier elemento de refrigeración producen sombras. Es por esto por Io que su aplicación en un módulo compacto de concentración fotovoltaica ha exigido, hasta Ia fecha, el uso de una segunda etapa reflexiva, Io que introduce mayores pérdidas ópticas. Hay que tener en cuenta' que Ia eficiencia de cada etapa no es del 100%. Alternativamente se han usado espejos en concentradores cilindro-parabólicos o disco-parabólicos, donde el colector óptico y el receptor fotovoltaico son elementos diferenciados que no forman un conjunto inseparable o módulo.The transparent liquid (5) performs the double function of extracting heat from the cells and providing continuity of refractive index from the front face of the module to the cell. This invention allows to reach very high geometric concentrations, up to 2000, where the geometric concentration is defined as the ratio between the optical system opening area (light input area) and the cell area and is considered high for higher values to 100. Concentrators that use a reflective primary optical stage have some advantages over those in which the primary is a lens. Since they lack the effect known as chromatic aberration, which causes the spectral dispersion of light, the concentration levels that can be reached are higher when the primary is a mirror and not a lens. The problem with reflective systems is that the focus is on the mirror, so that the cell and any cooling element produce shadows. This is why its application in a compact module of photovoltaic concentration has required, to date, the use of a second reflective stage, which introduces greater optical losses. It must be taken into account that the efficiency of each stage is not 100%. Alternatively, mirrors have been used in parabolic trough or parabolic trough concentrators, where the optical collector and the photovoltaic receiver are differentiated elements that do not form an inseparable assembly or module.
Uno de los aspectos más importantes en un sistema de concentración 'fotovoltaica es el sistema de refrigeración de las células, teniendo en cuenta que el rendimiento es tanto mayor como menor sea Ia temperatura de operación de los dispositivos. Si _ Ia refrigeración es pasiva, resulta imprescindible tener grandes superficies de convección. La solución empleada en los módulos de concentración consiste en montar Ia célula sobre un sustrato metálico que reparte horizontalmente el calor, ofreciendo una superficie de convección en Ia parte posterior del módulo semejante al área de apertura del concentrador, ya sea por medio de una o varias aletas. En este tipo de diseños Ia luz entra por Ia cara frontal del módulo y se concentra en el dispositivo fotovoltaico que está térmicamente adherido a Ia cara posterior del módulo que actúa como disipador, intercambiando con el aire que rodea al módulo Ia energía que no es convertida en electricidad. Si Ia etapa óptica primaria es reflexiva, esta configuración exige redirigir los rayos de luz en el mismo sentido en el que inciden en el plano de apertura para poder extraer el calor por Ia cara posterior del módulo. Es imprescindible una segunda etapa reflexiva, evitando el sombreado que el sistema de disipación del calor causaría en caso contrario. Además, el conexionado eléctrico en serie o paralelo de los dispositivos hace, imprescindible que las células estén aisladas eléctricamente del sustrato metálico, pero bien adheridas térmicamente, Io cuál supone un gran reto desde el punto de vista constructivo de los módulos de concentración. A diferencia de los módulos convencionales, donde Ia célula está rodeada de un material dieléctrico transparente, en los módulos de concentración existen espacios de aire debido al sistema óptico, entre Ia etapa primaria y Ia secundaria si existe o Ia propia célula. Conseguir sellar adecuadamente el módulo y prevenir Ia corrosión en el interior del mismo, el envejecimiento de los materiales aislantes y Ia pérdida' de aislamiento eléctrico es Ia principal dificultad en los módulos de concentración.One of the most important aspects in a photovoltaic concentration system is the cell cooling system, taking into account that the performance is both higher and lower, the operating temperature of the devices. If _ refrigeration is passive, it is essential to have large convection surfaces. The solution used in the concentration modules consists of mounting the cell on a metallic substrate that distributes the heat horizontally, offering a convection surface on the back of the module similar to the opening area of the concentrator, either by means of one or several fins In this type of design, the light enters through the front face of the module and concentrates on the photovoltaic device that is thermally adhered to the back side of the module that acts as a heatsink, exchanging with the air surrounding the module the energy that is not converted in electricity If the primary optical stage is reflective, this configuration requires redirecting the light rays in the same direction in which they affect the opening plane in order to extract the heat from the rear face of the module. A second reflexive stage is essential, avoiding the shading that the heat dissipation system would otherwise cause. In addition, the serial or parallel electrical connection of the devices makes it essential that the cells are electrically isolated from the metal substrate, but thermally bonded, which is a great challenge from the construction point of view of the concentration modules. Unlike conventional modules, where the cell is surrounded by a transparent dielectric material, in the concentration modules there are air spaces due to the optical system, between the primary and the secondary stage if it exists or the cell itself. To properly seal the module and prevent corrosion inside it, the aging of the insulating materials and the loss of electrical insulation is the main difficulty in the concentration modules.
A todo esto hay que añadir que Ia vida útil de los módulos, para competir con sus homólogos de panel plano, ha de ser superior a 20 años, y que las tensiones de operación habituales son de centenares de voltios. El módulo, en condiciones de operación, somete a los materiales del módulo, en particular del sustrato que garantiza el aislamiento eléctrico, a tensiones elevadas y densidades de potencia muy altas. Todo esto hace que las condiciones técnicas de certificación de estos productos sean, en consecuencia, muy exigentes.To all this we must add that the useful life of the modules, to compete with their flat panel counterparts, must be over 20 years, and that the usual operating voltages are hundreds of volts. The module, under operating conditions, subjects the module materials, in particular the substrate that guarantees electrical insulation, to high voltages and very high power densities. All this makes the technical conditions of certification of these products are, consequently, very demanding.
La presente invención, permite ' alcanzar niveles de concentración muy elevados, de hasta 2000, a Ia vez que resuelve el problema de Ia disipación del calor en Ia célula mediante el uso de una única etapa óptica reflexiva y un dieléctrico transparente líquido. Los elementos básicos que forman el módulo de concentración (8) son un conjunto de elementos ópticos reflexivos (1) dispuestos en forma de parqué y que conforman Ia parte posterior del módulo, un sustrato de vidrio o plástico transparente (4) que constituye Ia parte frontal del módulo, unos perfiles (6) que forman las paredes laterales y sellan el módulo de forma hermética para formar un compartimiento estanco, y un marco (7), que se adhiere a los perfiles (6) y que contiene elementos de soporte para Ia sujeción del módulo a una estructura que sigue al sol. La cara frontal (4) del módulo (8) puede considerarse como una primera etapa óptica refractiva y puede ser plana o curvada y en su parte interior se adhieren las células fotovoltaicas (2), así como unas tiras de material conductor (3) que contienen cables u otros elementos de conexionado. El conjunto del módulo (8) se rellena de líquido óptico transparente (5) que envuelve el conjunto de elementos ópticos reflexivos (1 ) y las propias células fotovoltaicas (2). Dicho líquido óptico transparente (5) cumple la triple funcionalidad de proporcionar continuidad de índice de refracción desde el vidrio o plástico hasta Ia célula, reduciendo las pérdidas ópticas de Fresnel, Ia de enfriar las células fotovoltaicas y Ia de rellenar el interior del módulo de un medio dieléctrico en vez de aire. El módulo de concentración (8) es una unidad de montaje, preparada para ser fijado en una estructura que sigue al sol formando array de módulos.The present invention enables' reach very high concentration, up to 2000, to Ia time solves the problem of heat dissipation Ia Ia cell using a single reflective optical stage and a liquid transparent dielectric. The basic elements that form the concentration module (8) are a set of reflective optical elements (1) arranged in parquet form and that form the back of the module, a transparent glass or plastic substrate (4) that constitutes the part front of the module, profiles (6) that form the side walls and seal the module tightly to form a watertight compartment, and a frame (7), which adheres to the profiles (6) and that contains support elements for The fastening of the module to a structure that follows the sun. The front face (4) of the module (8) can be considered as a first refractive optical stage and can be flat or curved and in its inner part the photovoltaic cells (2) adhere, as well as strips of conductive material (3) that They contain cables or other connection elements. The module assembly (8) is filled with transparent optical liquid (5) that envelops the set of reflective optical elements (1) and the photovoltaic cells themselves (2). Said transparent optical liquid (5) fulfills the triple functionality of providing continuity of refractive index from glass or plastic to the cell, reducing Fresnel optical losses, cooling of photovoltaic cells and filling the inside of the module of a dielectric medium instead of air. The concentration module (8) is a mounting unit, prepared to be fixed in a structure that follows the sun forming an array of modules.
Los elementos ópticos pueden ser de primera superficie reflexiva, esto es, Ia cara metalizada es Ia anterior del sistema óptico. Alternativamente los elementos ópticos pueden ser de segunda superficie, en cuyo caso Ia luz atraviesa además, el material o materiales transparentes que forman los elementos ópticos antes y después de ser reflejada.The optical elements can be of first reflective surface, that is, the metallized face is the anterior one of the optical system. Alternatively, the optical elements can be of a second surface, in which case the light also passes through the transparent material or materials that the optical elements form before and after being reflected.
La refrigeración de las células se produce por convección natural en el líquido, que transporta el calor desde el dispositivo hasta las paredes y del módulo. También por convección natural se produce el intercambio de calor entre las paredes del módulo con el aire exterior. Una segunda alternativa consiste en forzar Ia circulación del líquido con una bomba, Io que además de mejorar Ia refrigeración de Ia célula, permite disponer de un filtro para mantener el líquido limpio de impurezas ^y de un acumulador de líquido que asegure Ia operación del concentrador en caso de pequeñas pérdidas de líquido. Alternativamente puede usarse un depósito de expansión para el líquido que absorbe las dilataciones del líquido evitando que presione las pareces del módulo cuando se expande y que aporta líquido extra para pequeñas pérdidas por fugas.The cooling of the cells is produced by natural convection in the liquid, which transports heat from the device to the walls and the module. Also by natural convection, heat exchange occurs between the walls of the module with the outside air. A second alternative consists in forcing the circulation of the liquid with a pump, which, in addition to improving the cooling of the cell, allows for a filter to keep the liquid clean of impurities ^ and a liquid accumulator that ensures the operation of the concentrator in case of small losses of liquid. Alternatively, an expansion tank can be used for the liquid that absorbs the expansion of the liquid, preventing it from pressing the walls of the module when it expands and providing extra liquid for small leakage losses.
Otra ventaja significativa de Ia invención es el hecho que el circuito activo formado por las células solares, hilos de conexión, etc. y Ia carcasa del módulo o masa eléctrica, están muy separados por materiales dieléctricos como son el líquido óptico transparente, el vidrio o plástico de Ia cara frontal y el parqué de elementos ópticos, habiendo distancias superiores a 1cm. entre ambos circuitos. En los diseños habituales de módulos de concentración Ia célula está muy cerca del disipador metálico, sólo separada del mismo por un material dieléctrico que debe garantizar tanto el aislamiento eléctrico entre ambos elementos como una buena conducción térmica. Siendo ambas propiedades antagónicas, se recurre a materiales dieléctricos de apenas unos cientos de mieras de espesor. Estos materiales sufren a Ia larga un gran desgaste por el envejecimientos causado por Ia operación del módulo, Io que de lugar a pérdidas del aislamiento eléctrico del módulo. Este problema es uno de los más críticos en el diseño de este tipo de módulos fotovoltaicos, que deben garantizar un correcto funcionamiento durante más de 20 años en el mercado actual.Another significant advantage of the invention is the fact that the active circuit formed by solar cells, connection wires, etc. and the module housing or electrical mass, are very separated by dielectric materials such as the transparent optical liquid, the glass or plastic of the front face and the parquet of optical elements, having distances greater than 1cm. between both circuits In the usual designs of concentration modules the cell is very close to the metal heatsink, only separated from it by a dielectric material that must guarantee both the electrical insulation between both elements and a good thermal conduction. Being both antagonistic properties, dielectric materials of only a few hundred microns thick are used. These materials suffer long wear due to the aging caused by the operation of the module, which place to losses of the electrical isolation of the module. This problem is one of the most critical in the design of this type of photovoltaic modules, which must ensure proper operation for more than 20 years in the current market.
La invención evita además Ia condensación de agua en el interior del módulo. En los módulos de concentración convencionales existe aire en el interior del módulo,The invention also avoids the condensation of water inside the module. In conventional concentration modules there is air inside the module,
Io que propicia Ia entrada y condensación de agua que causa degradación óptica, corrosión y fallos de aislamiento eléctrico. En Ia invención el módulo está relleno de líquido y se evita este problema.What propitiates the entry and condensation of water that causes optical degradation, corrosion and electrical insulation failures. In the invention the module is filled with liquid and this problem is avoided.
Breve descripción de los dibujosBrief description of the drawings
La presente invención se ilustra con Ia figura 1 que muestra un corte transversal del módulo y con Ia figura 2 que muestra un detalle de Ia vista frontal. Dichas figuras no pretenden determinar el número de espejos y células que conforman el módulo de concentración. Los elementos ópticos reflexivos (1 ) o espejos se disponen en forma de parqué que conforman Ia parte posterior del módulo y concentran Ia luz del sol en las células fotovoltaicas (2) que están adheridas eléctricamente a pequeñas tiras de material conductor (3). Estas tiras permiten el conexionado eléctrico de las células fotovoltaicas en serie o paralelo y minimizan el sombreado en Ia cara frontal del módulo. Las tiras que soportan las células están adheridas o sujetas a Ia parte inferior del sustrato de vidrio o plástico transparente (4) que supone el cerramiento de Ia cara frontal del módulo y que puede ser plano o curvado. El conjunto queda completamente cerrado y sellado por unos perfiles (6) en los laterales y se rellena de un líquido óptico transparente (5) que proporciona continuidad de índice de refracción y realiza el enfriamiento de las células fotovoltaicas. El módulo finaliza en un marco lateral (7) adherido,a los perfiles (6) y que permite su sujeción en cualquier estructura.The present invention is illustrated with Figure 1 showing a cross-section of the module and with Figure 2 showing a detail of the front view. These figures are not intended to determine the number of mirrors and cells that make up the concentration module. The reflective optical elements (1) or mirrors are arranged in the form of a parquet that make up the back of the module and concentrate the sunlight on the photovoltaic cells (2) that are electrically adhered to small strips of conductive material (3). These strips allow the electrical connection of the photovoltaic cells in series or parallel and minimize the shading on the front face of the module. The strips that support the cells are attached or attached to the lower part of the transparent glass or plastic substrate (4) that involves the closing of the front face of the module and that can be flat or curved. The assembly is completely closed and sealed by profiles (6) on the sides and is filled with a transparent optical liquid (5) that provides continuity of refractive index and performs cooling of the photovoltaic cells. The module ends in a side frame (7) attached, to the profiles (6) and that allows its fastening in any structure.
El módulo de concentración (8) es una unidad de montaje preparada para ser instalada en una estructura que sigue al sol como ¡lustra Ia figura 3, formando matrices de módulos conectados eléctricamente en sene o paralelo.The concentration module (8) is a mounting unit prepared to be installed in a structure that follows the sun as illustrated in Figure 3, forming arrays of electrically connected modules in seine or parallel.
Exposición de al menos-un modo de realización de Ia invenciónExposure of at least one embodiment of the invention
La fabricación de los elementos ópticos reflexivos (1 ) o espejos puede realizarse por inyección de plástico o vidrio en un molde, por termoconformado, por embutición de metal o por ^colada. Dependiendo del proceso puede fabricarse el parqué de espejos en una sola pieza o en piezas individuales que posteriormente se ensamblan. El metalizado de los espejos puede ser químico, por evaporación de metal o adhiriendo láminas reflectantes. Las tiras conductoras (3) soportan las células fotovoltaicas y permiten su conexionado, pudiendo fabricarse en muchos de los materiales de encapsulado disponibles en Ia industria electrónica como el lead-frame, sustratos cerámicos o plásticos metalizados (DBC, IMS, circuitos impresos),, o de metales conductores como el cobre. Las células fotovoltaicas (2) se sueldan o adhieren con adhesivo conductor a las tiras y el contacto superior de Ia célula se realiza por soldadura con hilo (wire bonding).The manufacture of the reflective optical elements (1) or mirrors can be done by injection of plastic or glass into a mold, by thermoforming, by metal stamping or casting ^. Depending on the process, the parquet of mirrors can be manufactured in one piece or in individual pieces that are subsequently assembled. The metallization of the mirrors can be chemical, by evaporation of metal or by adhering reflective sheets. The conductive strips (3) support the photovoltaic cells and allow their connection, being able to be manufactured in many of the encapsulation materials available in the electronic industry such as lead-frame, ceramic substrates or metallic plastics (DBC, IMS, printed circuits) ,, or of conductive metals such as copper. The photovoltaic cells (2) are welded or adhered with conductive adhesive to the strips and the upper contact of the cell is made by welding with wire (wire bonding).
Una vez fijadas y conectadas eléctricamente las células a las tiras que las soportan, éstas se adhieren a Ia parte inferior de un vidrio o plástico transparente (4) que constituye Ia cara frontal del módulo, con Ia célula hacia abajo. También han de realizarse las conexiones eléctricas entre las tiras y a los conectores eléctricos de salida del módulo, dispuestos en un lateral.Once the cells are fixed and electrically connected to the strips that support them, they adhere to the lower part of a transparent glass or plastic (4) that constitutes the front face of the module, with the cell facing down. The electrical connections between the strips and the electrical output connectors of the module, arranged on one side, must also be made.
El módulo se construye con el parqué de espejos como cara inferior y el vidrio o plástico como cara superior. A continuación se cierra lateralmente con unos perfiles (6), de forma que quede sellado, y se rellena de líquido transparente óptico (4) por medio de una válvula, dispuesta en un lateral para tal fin. Las células fotovoltaicas (2), que quedan dentro del módulo, han de estar sumergidas en el líquido.The module is built with the parquet of mirrors as the lower face and the glass or plastic as the upper face. It is then closed laterally with profiles (6), so that it is sealed, and filled with transparent optical liquid (4) by means of a valve, arranged on one side for this purpose. The photovoltaic cells (2), which remain inside the module, must be submerged in the liquid.
Se contemplan dos alternativas para Ia refrigeración de las células en operación. La primera es hacer uso exclusivo de Ia convección natural del líquido, que se calienta al estar en contacto con las células fotovoltaicas. La segunda es Ia de forzar Ia circulación del líquido por medio de una bomba intercambiando el calor en el exterior del módulo.Two alternatives are contemplated for the cooling of the cells in operation. The first is to make exclusive use of the natural convection of the liquid, which is heated by being in contact with the photovoltaic cells. The second is to force the circulation of the liquid through a pump by exchanging heat outside the module.
Aplicación industrial^ Industrial Application ^
La presente invención consiste en un módulo de concentración fotovoltaica cuya aplicación es Ia de producir energía eléctrica a partir de Ia luz del sol. The present invention consists of a photovoltaic concentration module whose application is to produce electrical energy from sunlight.

Claims

REIVINDICACIONES
1. Módulo de alta concentración fotovoltaica compacto con una etapa óptica de reflexión metálica que comprende: a. un conjunto de elementos ópticos reflexivos (1 ) dispuestos en forma de parqué y que conforman Ia cara posterior del módulo, b. un sustrato de vidrio o plástico transparente (4), plano o curvado, que constituye Ia cara frontal del módulo, y en cuya cara inferior se adhieren las células fotovoltaicas (2) y unas tiras de material conductor (3) formadas por cables u otros elementos de conexionado, c. unos perfiles (6) situados en los laterales del módulo y que sellan el módulo de forma hermética, y marcos (7) adheridos a los perfiles (6), y que contienen elementos de soporte que permiten Ia sujeción del módulo a una estructura que sigue al sol, d. un líquido óptico transparente (5) que rellena el interior del módulo, envolviendo el conjunto de elementos ópticos reflexivos (1 ) y las células fotovoltaicas (2), que tiene como funciones las de transportar el calor hasta las caras frontal, posterior y laterales del módulo, proporcionar continuidad de índice de refracción en el sistema óptico desde que Ia luz entra por Ia cara frontal del módulo hasta que alcanza las células y evitar simultáneamente Ia entrada de humedad ambiente y Ia condensación de vapor de agua en el interior del módulo.1. Module of high compact photovoltaic concentration with an optical stage of metallic reflection comprising: a. a set of reflective optical elements (1) arranged in parquet form and that make up the rear face of the module, b. a transparent glass or plastic substrate (4), flat or curved, that constitutes the front face of the module, and on whose lower face the photovoltaic cells (2) and some strips of conductive material (3) formed by cables or others adhere connection elements, c. profiles (6) located on the sides of the module and sealing the module tightly, and frames (7) adhered to the profiles (6), and containing support elements that allow the module to be attached to a structure that follows in the sun, d. a transparent optical liquid (5) that fills the inside of the module, wrapping the set of reflective optical elements (1) and photovoltaic cells (2), whose functions are to transport heat to the front, back and side faces of the module, provide continuity of refractive index in the optical system from when the light enters the front face of the module until it reaches the cells and simultaneously avoid the entry of ambient humidity and the condensation of water vapor inside the module.
2. Modulo de concentración fotovoltaico según reivindicación 1 caracterizado porque en una realización concreta, .se Ie puede añadir un depósito de expansión para absorber las pequeñas dilataciones del líquido que tienen lugar como consecuencia de Ia variación de su temperatura, con el fin de no presionar las paredes del módulo.2. Photovoltaic concentration module according to claim 1, characterized in that, in a specific embodiment, an expansion tank can be added to absorb the small expansions of the liquid that take place as a result of the variation in its temperature, in order not to press The walls of the module.
3. Módulo de concentración fotovoltaico según reivindicación 1 caracterizado porque, en otra realización concreta, se puede añadir una bomba y un circuito externo al módulo que incorpore un filtro para forzar Ia circulación del líquido transparente para lograr que Ia disipación del calor sea más efectiva y permitiendo además Ia purificación o reposición del líquido. 3. Photovoltaic concentration module according to claim 1 characterized in that, in another specific embodiment, a pump and an external circuit can be added to the module incorporating a filter to force the circulation of the transparent liquid to make heat dissipation more effective and also allowing the purification or replacement of the liquid.
PCT/ES2008/000727 2007-12-21 2008-11-20 High-gain photovoltaic concentrator with a reflective stage inserted into a liquid optical dielectric WO2009080847A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200703419 2007-12-21
ES200703419A ES2302656A1 (en) 2007-12-21 2007-12-21 High-gain photovoltaic concentrator with a reflective stage inserted into a liquid optical dielectric

Publications (1)

Publication Number Publication Date
WO2009080847A1 true WO2009080847A1 (en) 2009-07-02

Family

ID=39577386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2008/000727 WO2009080847A1 (en) 2007-12-21 2008-11-20 High-gain photovoltaic concentrator with a reflective stage inserted into a liquid optical dielectric

Country Status (2)

Country Link
ES (1) ES2302656A1 (en)
WO (1) WO2009080847A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104966755A (en) * 2015-07-21 2015-10-07 中国建筑科学研究院天津分院 Solar cell panel cooling system suitable for pluvial region
US9748895B2 (en) 2013-06-26 2017-08-29 Commissariat à l'ènergie atomique et aux énergies alternatives Solar module with simplified humidity level regulation
US9761745B2 (en) 2012-07-09 2017-09-12 Commissariat A L'energie Atomique Et Aux Energies Alternatives Device for regulating the level of moisture in a concentrating solar module and solar module comprising at least one such device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4052228A (en) * 1976-07-12 1977-10-04 Russell Charles R Optical concentrator and cooling system for photovoltaic cells
DE19600813A1 (en) * 1996-01-11 1996-07-18 Michael Dr Eckert Solar cell assembly
WO2003100866A1 (en) * 2002-05-28 2003-12-04 Ebara Corporation Solar cell module
WO2005090873A1 (en) * 2004-03-23 2005-09-29 Menova Engineering Inc. Solar collector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4052228A (en) * 1976-07-12 1977-10-04 Russell Charles R Optical concentrator and cooling system for photovoltaic cells
DE19600813A1 (en) * 1996-01-11 1996-07-18 Michael Dr Eckert Solar cell assembly
WO2003100866A1 (en) * 2002-05-28 2003-12-04 Ebara Corporation Solar cell module
WO2005090873A1 (en) * 2004-03-23 2005-09-29 Menova Engineering Inc. Solar collector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9761745B2 (en) 2012-07-09 2017-09-12 Commissariat A L'energie Atomique Et Aux Energies Alternatives Device for regulating the level of moisture in a concentrating solar module and solar module comprising at least one such device
US9748895B2 (en) 2013-06-26 2017-08-29 Commissariat à l'ènergie atomique et aux énergies alternatives Solar module with simplified humidity level regulation
CN104966755A (en) * 2015-07-21 2015-10-07 中国建筑科学研究院天津分院 Solar cell panel cooling system suitable for pluvial region

Also Published As

Publication number Publication date
ES2302656A1 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
US20100126554A1 (en) Staggered light collectors for concentrator solar panels
ES2363701T3 (en) COOLING CIRCUIT FOR A SOLAR RADIATION RECEIVER.
ES2642209T3 (en) Solar light guide panel and its manufacturing method
US9029684B2 (en) Hybrid solar receiver and concentrating solar system comprising the same
US20090173376A1 (en) Solar collector desiccant system
US20100012171A1 (en) High efficiency concentrating photovoltaic module with reflective optics
PT10687U (en) MODULE OF CONCENTRATED PHOTOVOLTAIC SYSTEM USING SEMICONDUCTOR SOLAR CELLS III-V
IL228571A (en) Solar energy converter
ES2400634B2 (en) CONCENTRATION PHOTOVOLTAIC SYSTEM MODULES USING SOLAR SEMICONDUCTOR CELLS III-V.
KR20120018792A (en) Solar photovoltaic concentrator panel
WO2006049524A1 (en) Photovoltaic module
US20140034117A1 (en) Photovoltaic concentrator receiver and its use
KR100860202B1 (en) Solar Module Attach With Absorb Heat Panel
US20110265852A1 (en) Open encapsulated concentrator system for solar radiation
US20110203638A1 (en) Concentrating linear photovoltaic receiver and method for manufacturing same
WO2009080847A1 (en) High-gain photovoltaic concentrator with a reflective stage inserted into a liquid optical dielectric
KR101616796B1 (en) Solar cell with cooling device
ES2929587T3 (en) Hybrid solar panel for the production of electrical energy and thermal energy
US20160204296A1 (en) Liquid immersing photovoltaic module
CN106134070A (en) A kind of TRT including secondary cell
RU2395136C1 (en) Photovoltaic module
US20140352758A1 (en) Solar cell module
US20120291851A1 (en) Liquid immersing photovoltaic module
KR101211947B1 (en) Electro-generation system with function for heating of water using solar cell and thermo-electric device
Norman et al. Trough-lens-cone optics with microcell arrays: high efficiency at low cost

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08864308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08864308

Country of ref document: EP

Kind code of ref document: A1