WO2009079815A1 - Procédé pour optimiser la performance radiofréquence du terminal - Google Patents

Procédé pour optimiser la performance radiofréquence du terminal Download PDF

Info

Publication number
WO2009079815A1
WO2009079815A1 PCT/CN2007/003514 CN2007003514W WO2009079815A1 WO 2009079815 A1 WO2009079815 A1 WO 2009079815A1 CN 2007003514 W CN2007003514 W CN 2007003514W WO 2009079815 A1 WO2009079815 A1 WO 2009079815A1
Authority
WO
WIPO (PCT)
Prior art keywords
training sequence
radio frequency
signal
equalizer
frequency performance
Prior art date
Application number
PCT/CN2007/003514
Other languages
English (en)
French (fr)
Inventor
Man Wang
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to PCT/CN2007/003514 priority Critical patent/WO2009079815A1/zh
Priority to CN200780101181.5A priority patent/CN101836407B/zh
Publication of WO2009079815A1 publication Critical patent/WO2009079815A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03114Arrangements for removing intersymbol interference operating in the time domain non-adaptive, i.e. not adjustable, manually adjustable, or adjustable only during the reception of special signals
    • H04L25/03133Arrangements for removing intersymbol interference operating in the time domain non-adaptive, i.e. not adjustable, manually adjustable, or adjustable only during the reception of special signals with a non-recursive structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03592Adaptation methods
    • H04L2025/03745Timing of adaptation
    • H04L2025/03764Timing of adaptation only during predefined intervals
    • H04L2025/0377Timing of adaptation only during predefined intervals during the reception of training signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03777Arrangements for removing intersymbol interference characterised by the signalling

Definitions

  • the present invention relates to a terminal operating in a time division multiplexing manner, and in particular to an optimization method for radio frequency performance of a terminal.
  • the present invention has been made in view of the above problems, and it is therefore an object of the present invention to provide an optimization method for radio frequency performance of a terminal.
  • the method for optimizing the radio frequency performance of the terminal comprises the steps of: adding a training sequence to a time slot of the original signal to obtain an initial signal; transmitting the initial signal to the equalizer through the communication channel, and then inputting to the decider to obtain an input. Signaling, and providing the training sequence of the initial signal directly to the decider; the decider compares the training sequence of the input signal with the training sequence of the initial signal to obtain their difference, and the difference And feeding back to the equalizer; and the equalizer corrects the initial signal by using the difference, and outputs the corrected signal to the determiner.
  • adding a training sequence to a time slot of the original signal is achieved by placing the training sequence at the beginning of the time slot, or by increasing the length of the original training sequence in the time slot.
  • the length of the added training sequence is an integer multiple of the spreading factor.
  • the equalizer is an inverse filter.
  • the decider includes an adder.
  • the difference contains the phase of the offset.
  • the equalizer corrects the phase of the input signal by using the phase of the offset.
  • FIG. 1 is a flow chart showing a method for optimizing radio frequency performance of a terminal according to an embodiment of the present invention
  • FIG. 2a is a diagram showing the original subframe structure of TD-SCDMA
  • FIG. 2b is a diagram showing TD.
  • -SCDMA is a subframe structure diagram after slot extension
  • 3a is a diagram showing a conventional time slot structure
  • FIG. 3b - FIG. 3c are diagrams showing a preferred time slot structure
  • FIG. 1 is a flow chart showing a method for optimizing radio frequency performance of a terminal according to an embodiment of the present invention
  • FIG. 2a is a diagram showing the original subframe structure of TD-SCDMA
  • FIG. 2b is a diagram showing TD.
  • -SCDMA is a subframe structure diagram after slot extension
  • 3a is a diagram showing a conventional time slot structure
  • FIG. 3b - FIG. 3c are diagrams showing a preferred time slot structure
  • FIG. 1 is a flow chart
  • FIG. 1 is a flow chart showing an optimization method of radio frequency performance of a terminal according to an embodiment of the present invention. As shown in FIG. 1, the following steps are included: Step S102: adding a training sequence to a time slot of the original signal to obtain an initial signal; Step S104, transmitting the initial signal to the equalizer through the communication channel, and then inputting to the decider.
  • step S106 the determiner compares the input signal with the initial signal to obtain their difference, and feeds the difference to the equalizer; and step S108
  • the equalizer corrects the initial signal by using the difference and outputs the corrected signal to the decider.
  • adding a training sequence to a time slot of the original signal is achieved by placing the training sequence at the beginning of the time slot, or by increasing the length of the original training sequence in the time slot.
  • the length of the added training sequence is an integer multiple of the spreading factor.
  • the equalizer is an inverse filter.
  • the decider includes an adder.
  • the difference contains the phase of the offset.
  • the equalizer uses the phase of the offset to correct the phase of the input signal.
  • Embodiment 1 Optimize the radio frequency by reducing the number of slots and increasing the training sequence.
  • FIG. 2a shows the original TD-SCDMA. Sub-frame structure diagram; and FIG. 2b is a diagram showing a subframe structure after TD-SCDMA is used for time slot extension.
  • three special time slots and one regular time slot constitute a total of 6400 chips. Each regular time slot is 864 chips long.
  • TS represents a Time Slot slot
  • Dw represents a downlink synchronization code
  • UpPTS represents an uplink synchronization code
  • GP represents an airspace.
  • Figure 3a is a diagram showing a conventional slot structure; and Figures 3a - 3c show an optimized slot structure diagram.
  • the increased slot length is dedicated to combat Doppler shift, that is, to offset the amplitude and phase of the frequency between transmit and receive.
  • the training sequence can be extended or used as a guard interval.
  • two schemes & 1) are listed in this embodiment.
  • the extension in scenario a is placed at the beginning of the time slot as a training sequence, as shown in Figure 3b.
  • the new length in scenario b forms a new incremental training sequence of 288 chips as a new training sequence with the original training sequence, as shown in Figure 3c.
  • this embodiment exemplifies the following scheme.
  • the training sequence is a sequence of known sequences used by the equalizer to generate a channel model. It is a well-known sequence between the transmitting end and the receiving end and can be used to confirm the determined position of other bits in the same time slot. It can play an important role in estimating the interference of the transmission channel when the receiving end receives the sequence. In general, the training sequence for each cell is the same. 4 is a diagram showing a specific implementation of the training sequence against the Doppler frequency shift at the beginning of the time slot. As shown in FIG. 4, the scheme includes an equalizer, a decider and an adder. The equalizer is actually an inverse filter of the transmission channel. After receiving the feedback information from the adder, the equalizer can track the channel change and correct the received information in time.
  • the training sequence information of the initial signal is stored in the decider.
  • the adder performs a simple addition function.
  • the information stored in the decider is compared with the information obtained by the adder to obtain an error e between the two. This error e will be fed back into the equalizer.
  • the equalizer receives the data transmitted after the training sequence, the transmitted data can be corrected by e. For example, record e contains the phase of the offset, Then the phase of the data received after the training sequence will be corrected accordingly.
  • the lengthening of the training sequence in the scheme will increase the accuracy of the error between the received sequence and the original sequence derived by the adder, thereby enhancing the anti-frequency shifting capability.
  • Embodiment 2 Optimizing the radio frequency performance of a TD-SCDMA system by reducing the length of the transmitted data field and increasing the training sequence.
  • the conventional slot structure of TD-SCDMA includes two 352 chip data fields and one 144chip training sequence.
  • the reduced data field length must be an integer multiple of the spreading factor. That is, if the spreading factor is 16, then the length of the reduced data field must be an integer multiple of 16, which is 16, 32 or 48....
  • Particular Embodiment 3 Optimizing the radio frequency performance of the GSM system by reducing the length of the transmitted data field and increasing the training sequence.
  • the GSM band of 200 kHz is divided into 8 time slots, each of which contains a training sequence and a guard interval.
  • the transmitted data bits can be reduced, and the length of the training sequence and the guard interval can be increased.
  • the number of data bits can be appropriately reduced, and the number of training bits can be increased to counter the Doppler frequency shift.
  • the Doppler frequency shift (including the time-varying Doppler shift) can be combated in a high-speed motion state, and the bit error rate can be reduced to optimize the radio frequency performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

终端射频性能的优化方法 技术领域 本发明涉及一种工作在时分复用方式下的终端,具体地涉及终端射频性 能的优化方法。 背景技术 随着移动终端的普及和各种基于移动终端的新业务的广泛开展,移动终 端越来越成为人们沟通和娱乐必不可少的工具。 随着新的需求和新的业务的 产生, 对终端的设计和性能提出了更高的要求。 随着手机上网和手机电视等新业务的兴起,移动终端更是成为人们的日 常生活必不可少的工具。 特别是在;^途中、 上下班途中, 移动终端将成为人 们获取信息和娱乐最便捷的工具; 还有移动终端的 GPS业务, 也将是行车途 中的必备的功能。 所有这些衍生了移动终端在一种新的场景的广泛应用, 那 就是在高速火车, 高速汽车或磁悬浮中的应用。 当终端以一定的速度 V运动时, 由于 Doppler效应的存在, 将会对终端 的频率产生一定的影响, 引起中心频率的偏移, 从而在接收端由于频率的偏 差引起误码率的提高, 影响了系统性能。 特别是在速度比较大的时候, 频率 的偏移将更大, 对系统性能的影响也就更大, 到一定程度会影响通话质量, 甚至会引起掉线。 现有的移动通信系统均不同程度的考虑了由于多径而引起的码间干扰 的影响, 这能在一定程度上抑制 Doppler效应产生的影响。 但是在高速状态 下, 由于中心频率的变化值随着速度的改变而改变, 也就是说频率的变化值 比较大, 并且这个变化值随着时间的改变而改变, 所以必须采取切实有效的 措施来对抗高速运动状态下的 Doppler 频移。 而现有的制式如 GSM、 TD-SCDMA并没有能够很好地消除 Doppler频移带来的误码率的提高。 发明内容 根据上述问题而做出本发明, 因此, 本发明的目的在于提供一种终端射 频性能的优化方法。 根据本发明的终端射频性能的优化方法, 包括以下步骤: 在原始信号的 时隙中增加训练序列, 得到初始信号; 将初始信号通过通信信道传输后输入 均衡器, 然后输入到判决器, 得到输入信号, 并将初始信号的训练序列直接 提供给所述判决器; 所述判决器将所述输入信号的训练序列和初始信号的训 练序列进行比较, 得到它们的差值, 并将所述差值反馈给所述均衡器; 以及 所述均衡器利用所述差值修正所述初始信号, 并将修正后的信号通过判决器 输出。 此外, 在该方法中, 在原始信号的时隙中加入训练序列是通过将训练序 列置于时隙开头来实现的, 或通过增加时隙中的原始训练序列的长度来实现 的。 此外, 在该方法中, 增加的训练序列的长度为扩频因子的整数倍。 此外, 在该方法中, 均衡器为反向滤波器。 且判决器包括加法器。 此外, 在该方法中, 差值包含偏移的相位。 此外, 在该方法中, 均衡器利用偏移的相位, 修正输入信号的相位。 通过本发明的上述方面, 能够在高速运动状态时对抗 Doppler频移(包 括时变的 Doppler频移), 减 、误码率, 从而优化射频性能。 本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从说 明书中变得显而易见, 或者通过实施本发明而了解。 本发明的目的和其他优 点可通过在所写的说明书、 权利要求书、 以及附图中所特别指出的结构来实 现和获得。 附图说明 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本 发明的实施例一起用于解释本发明, 并不构成对本发明的限制。 在附图中: 图 1是示出了根据本发明实施例的终端射频性能的优化方法的流程图; 图 2a是示出了 TD-SCDMA原有子帧结构图; 图 2b是示出了 TD-SCDMA作时隙延长后的子帧结构图; 图 3a是示出了常规时隙结构图; 图 3b -图 3c示出了优 ^匕后的时隙结构图; 以及 图 4是示出了时隙开头处训练序列对抗 Doppler频移的具体实现图。 具体实施方式 以下结合附图对本发明的优选实施例进行说明, 应当理解, 此处所描述 的优选实施例仅用于说明和解释本发明, 并不用于限定本发明。 图 1是示出了根据本发明实施例的终端射频性能的优化方法的流程图。 如图 1 所示, 包括以下步據: 步骤 S102 , 在原始信号的时隙中增加训 练序列, 得到初始信号; 步骤 S104, 将初始信号通过通信信道传输后输入均 衡器, 然后输入到判决器, 得到输入信号, 并将初始信号中的训练序列直接 提供给判决器; 步骤 S106, 判决器将输入信号和初始信号进行比较, 得到它 们的差值, 并将差值反馈给均衡器; 以及步骤 S108, 均衡器利用差值修正初 始信号, 并将修正后的信号通过判决器输出。 此外, 在该方法中, 在原始信号的时隙中加入训练序列是通过将训练序 列置于时隙开头来实现的, 或通过增加时隙中的原始训练序列的长度来实现 的。 此外, 在该方法中, 增加的训练序列的长度为扩频因子的整数倍。 此外, 在该方法中, 均衡器为反向滤波器。 且判决器包括加法器。 此外, 在该方法中, 差值包含偏移的相位。 此外, 在该方法中, 均衡器利用偏移的相位, 修正输入信号的相位 具体实施例 1 : 通过减小时隙数、 增加训练序列来优化射频性 匕 图 2a 是示出了 TD-SCDMA 原有子帧结构图; 以及图 2b 是示出了 TD-SCDMA作时隙延长后的子帧结构图 如图 2a、图 2b所示, 3个特殊时隙和 Ί个常规时隙组成了总共 6400chip。 每常规时隙长度为 864码片。 其中, TS表示 Time Slot 时隙, Dw表示下行 同步码, UpPTS表示上行同步码, GP表示空域。 图 3a是示出了常规时隙结构图;以及图 3a -图 3c示出了优化后的时隙 结构图。 现延长每一时隙的长度如图 3所示, 则每一时隙的长度为 (864+144 ) chip=1008chip。 也就是说每一时隙的长度增加了 144chip。 但所有时隙的总 长度不变, 所以本实施例中总的时隙数减少了 1。 但是必须遵循的是, 每一 时隙增加的长度必须是扩频因子的整数倍, 如果扩频因子是 16, 那么增加的 数据域的长度必须为 16的整数倍, 为 16, 32或者 48...。 增加的时隙长度专用于对抗 Doppler频移, 也就是来对抗发射和接收之 间的频率的幅度和相位的偏移。可以将训练序列延长,也可以作为保护间隔。 如图 3b, 图 3c所示, 本实施例中列举两种方案 &和1)。 方案 a中延长部分作为训练序列置于该时隙开头处, 如图 3b。 方案 b中的新增的长度作为新的训练序列与原训练序列形成 288chip的 新的增长的训练序列, 如图 3c所示。 对于方案 a中的时隙开头处的训练序列, 如何应用它们来对抗 Doppler 频移, 本实施例列举下述方案。 训练序列是一串已知序列, 用于供均衡器产生信道模型。 它是发射端和 接收端所共知的序列, 可以用来确认同一时隙里其他比特的确定位置。 它对 于接收端在收到该序列时近似的估算出发送信道的干扰情况能起到很重要的 作用。 一般来说每个小区的训练序列都相同。 图 4是示出了时隙开头处训练序列对抗 Doppler频移的具体实现图 如图 4所示, 方案中包含一个均衡器, 一个判决器和一个加法器。 均衡 器实际上是一个传输信道的反向滤波器, 当收到加法器传来的反馈信息后, 均衡器可以跟踪信道的变化, 及时修正接收的信息。 判决器中存储了初始信 号的训练序列信息。 加法器执行简单的加法功能。 当接收端的信号被送入均 衡器之后, 将与判决器内存储的信息通过加法器比较, 得出两者之间的误差 e。 这个误差 e将被反馈入均衡器。 当均衡器接收到训练序列后传输过来的数 据时, 可以通过 e对传输过来的数据进行修正。 比如记录 e包含偏移的相位, 则训练序列后接收到的数据的相位将相应被爹正。 方案 中的训练序列加长将使由加法器得出的接收序列和原始序列之 间的误差精度提高, 从而增强抗频移能力。 具体实施例 2: 通过减少传送的数据域的长度、 增加训练序列来优化 TD-SCDMA系统的射频性能 如图 3a所示, TD-SCDMA的常规的时隙结构包含两个 352chip的数据 域和一个 144chip的训练序列。 为了能使系统更好地适应于高速模式, 现需 减小数据域的长度, 增加训练序列的长度。 而减少的数据域的长度必须为扩 频因子的整数倍。 也就是说, 如果扩频因子是 16, 那么减少的数据域的长度 必须为 16的整数倍, 为 16, 32或者 48...。 具体实施例 3 : 通过减少传送的数据域的长度、 增加训练序列来优化 GSM系统的射频性能。
GSM每 200kHz的频段分 8个时隙, 每个时隙中已包含训练序列和保 护间隔。 为了保证在高速运行状态下接收信号的准确性, 可减少传输的数据 比特, 增加训练序列和保护间隔的长度。 比如对于普通突发脉沖, 存在 2组 57个数据比特和 26个训练比特。 可 以适当减少数据比特个数, 增大训练比特的个数来对抗 Doppler频移。 综上所述, 通过本发明, 能够在高速运动状态时对抗 Doppler频移(包 括时变的 Doppler频移), 减小误码率, 从而优化射频性能。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书 一种终端射频性能的优化方法, 其特征在于, 包括以下步骤:
在原始信号的时隙中增加训练序列, 得到初始信号;
将初始信号通过通信信道传输后输入均衡器, 然后输入到判决器, 得到输入信号, 并将初始信号的训练序列直接提供给所述判决器;
所述判决器将所述输入信号的训练序列和初始信号的训练序列进 行比较, 得到它们的差值, 并将所述差值反馈给所述均衡器; 以及
所述均衡器利用所述差值修正所述初始信号,并将修正后的信号通 过判决器输出。 根据权利要求 1所述的终端射频性能的优化方法, 其特征在于, 在初始 信号的时隙中加入训练序列是通过将所述训练序列置于时隙开头来实现 的, 或通过增加时隙中的原始训练序列的长度来实现的。 根据权利要求 2所述的终端射频性能的优化方法, 其特征在于, 增加的 训练序列的长度为扩频因子的整数倍。 根据权利要求 1所述的终端射频性能的优化方法, 其特征在于, 所述均 衡器为反向滤波器。 根据权利要求 1所述的终端射频性能的优化方法, 其特征在于, 所述判 决器包括加法器。 根据权利要求 1所述的终端射频性能的优化方法, 其特征在于, 所述差 值包含偏移的相位。 根据权利要求 6所述的终端射频性能的优化方法, 其特征在于, 所述均 衡器利用所述偏移的相位, 修正所述输入信号的相位。
PCT/CN2007/003514 2007-12-10 2007-12-10 Procédé pour optimiser la performance radiofréquence du terminal WO2009079815A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2007/003514 WO2009079815A1 (fr) 2007-12-10 2007-12-10 Procédé pour optimiser la performance radiofréquence du terminal
CN200780101181.5A CN101836407B (zh) 2007-12-10 2007-12-10 终端射频性能的优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2007/003514 WO2009079815A1 (fr) 2007-12-10 2007-12-10 Procédé pour optimiser la performance radiofréquence du terminal

Publications (1)

Publication Number Publication Date
WO2009079815A1 true WO2009079815A1 (fr) 2009-07-02

Family

ID=40800640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/003514 WO2009079815A1 (fr) 2007-12-10 2007-12-10 Procédé pour optimiser la performance radiofréquence du terminal

Country Status (2)

Country Link
CN (1) CN101836407B (zh)
WO (1) WO2009079815A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1498487A (zh) * 2002-02-14 2004-05-19 ������������ʽ���� 迭代循环短训练序列直至均方差低于目标阈值的最小均方差均衡方法和系统
CN1679288A (zh) * 2002-06-26 2005-10-05 阿雷伊通讯有限公司 在无线通信网络中利用开销数据进行训练
US20070092042A1 (en) * 2005-10-24 2007-04-26 Nokia Corporation Receiver and a receiving method
CN101043481A (zh) * 2007-04-20 2007-09-26 清华大学 一种用于固定训练序列填充调制系统的迭代分解方法
CN101052025A (zh) * 2006-04-03 2007-10-10 世意法(北京)半导体研发有限责任公司 消除训练序列干扰的方法和基于均衡器的接收器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0998083A1 (de) * 1998-10-30 2000-05-03 Ascom Systec AG Verfahren zum Entzerren, insbesondere für Offset-Modulationsarten
EP1319289A1 (en) * 2000-09-11 2003-06-18 Fox Digital Apparatus and method for using adaptive algorithms to exploit sparsity in target weight vectors in an adaptive channel equalizer
KR100510861B1 (ko) * 2003-01-18 2005-08-31 디지피아(주) 직교 주파수 분할 다중 전송 시스템에서의 훈련 신호 결정방법 및 그 훈련 신호를 이용한 직교 주파수 분할 다중수신기와 수신 방법
CN1688146A (zh) * 2005-04-28 2005-10-26 上海微科集成电路有限公司 适用于高阶qam的自适应均衡与载波恢复方法及其电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1498487A (zh) * 2002-02-14 2004-05-19 ������������ʽ���� 迭代循环短训练序列直至均方差低于目标阈值的最小均方差均衡方法和系统
CN1679288A (zh) * 2002-06-26 2005-10-05 阿雷伊通讯有限公司 在无线通信网络中利用开销数据进行训练
US20070092042A1 (en) * 2005-10-24 2007-04-26 Nokia Corporation Receiver and a receiving method
CN101052025A (zh) * 2006-04-03 2007-10-10 世意法(北京)半导体研发有限责任公司 消除训练序列干扰的方法和基于均衡器的接收器
CN101043481A (zh) * 2007-04-20 2007-09-26 清华大学 一种用于固定训练序列填充调制系统的迭代分解方法

Also Published As

Publication number Publication date
CN101836407A (zh) 2010-09-15
CN101836407B (zh) 2013-03-27

Similar Documents

Publication Publication Date Title
CN108702350B (zh) 用于发送单个信道、被绑定信道以及具有用以有助于agc、定时和信道估计的字段的mimo ofdm帧的装置和方法
TWI245501B (en) A method and system for multiple channel wireless transmitter and receiver phase and amplitude calibration
US7920599B1 (en) Methods and systems for synchronizing wireless transmission of data packets
Lu et al. Implementation of physical-layer network coding
KR100851426B1 (ko) 다수의 슬롯 포맷을 사용하여 제어 데이터를 전달하는시스템 및 방법
CN103905159B (zh) 一种水声通信系统中时频编码的方法
CN101977168A (zh) 无线通信的信道估计
CN104937873A (zh) 无线通信系统中的方法和节点
CN101116298B (zh) 用于信道均衡的方法和系统
CN103238278A (zh) 正交资源选择发送分集
US20150229368A1 (en) Frame synchronization method and apparatus of wireless system, and wireless system
MX2021011872A (es) Método de comunicación y aparato de comunicación.
TWI493888B (zh) 乙太網phy至具有橋接抽頭線的通道的擴展
CN1913396B (zh) 单/多载波共融数字广播系统通信方法
JP4426447B2 (ja) ダイバーシティシステム
CN101540744B (zh) 数据接收处理方法、装置与用户终端
US20050195849A1 (en) Early termination of low data rate traffic in a wireless network
US20100103882A1 (en) Early termination of low data rate traffic in a wireless network
WO2009079815A1 (fr) Procédé pour optimiser la performance radiofréquence du terminal
CN101141426B (zh) 用于多用户多天线系统的信道估计方法
CN107302513B (zh) 适用于tdd sc-fde的宽带无线传输系统的物理层帧结构
TW201332324A (zh) 協調式多點傳輸系統之通訊方法
CN103986674A (zh) 矿井巷道上行时频编码协作mc-cdma信道估计方法
CN114651428B (zh) 低峰值平均功率比(papr)的调制方案
CN101645724A (zh) 译码性能优化方法、装置和移动终端

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780101181.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07845871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07845871

Country of ref document: EP

Kind code of ref document: A1