WO2009079538A1 - Auxiliary electrodes for enhanced electrostatic discharge - Google Patents

Auxiliary electrodes for enhanced electrostatic discharge Download PDF

Info

Publication number
WO2009079538A1
WO2009079538A1 PCT/US2008/087107 US2008087107W WO2009079538A1 WO 2009079538 A1 WO2009079538 A1 WO 2009079538A1 US 2008087107 W US2008087107 W US 2008087107W WO 2009079538 A1 WO2009079538 A1 WO 2009079538A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
auxiliary electrodes
primary
electrodes
ehd
Prior art date
Application number
PCT/US2008/087107
Other languages
French (fr)
Inventor
Daniel Jon Schlitz
Original Assignee
Ventiva, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ventiva, Inc. filed Critical Ventiva, Inc.
Priority to CN2008801200046A priority Critical patent/CN101896990A/en
Priority to EP08861959A priority patent/EP2229686A1/en
Priority to JP2010539726A priority patent/JP2011511997A/en
Publication of WO2009079538A1 publication Critical patent/WO2009079538A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/006Micropumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/006Motors

Definitions

  • the present invention relates to electrostatic pumping apparatuses and methods using ion generation, and more particularly, to enhanced corona discharge using novel electrode arrangements for establishing the ion generation zone without relying on small features of a corona electrode to concentrate the electric field.
  • An electrostatic hydrodynamic (EHD) gas pump such as a corona discharge gas pump (i.e. corona wind) typically consists of one or more sharp (e.g. corona) and blunt (e.g. collecting or neutralizing) electrodes.
  • An electric field is applied between the two electrodes causing a partial breakdown of the gas, referred to as a corona discharge, near the sharp electrode.
  • the discharge produces ions which are attracted to the neutralizing, or collecting electrode.
  • the ions collide with neutral gas molecules creating pressure head and flow similar to that produced by a mechanical fan.
  • the corona driving portion is much larger in size than the corona emitting portion such that corona from the electrode arrangement is emitted from the corona emitting portion in a direction away from the corona driving portion.
  • the corona emitting portion is comprised of a series of stepped, generally concentric, spaced corona emitting rings about a center emitting element. The locations of the rings and emitting element are such that a corona is produced over a circular area rather than an annular ring.
  • This invention is a complex corona electrode that consists of multiple ionization regions.
  • the present invention relates to methods and apparatuses that achieve high gas flow rates through the use of an electrostatic pump.
  • the present invention relates to additional, auxiliary electrodes that generate increased ion current at lower voltages, which leads to greater pumping power than a corona wind discharge.
  • the invention provides for a directional emission of the ions. This eliminates the back flow of ions and improves the electro-fluid power conversion efficiency and pumping performance.
  • the invention enables the electrodes to be fabricated directly on a dielectric substrate, making the system mechanically rugged and easily fabricated.
  • an electrostatic hydrodynamic apparatus includes one or more auxiliary electrodes disposed near a primary sharp electrode in a sharp/blunt electrode pair, wherein the electrode pair is configured such that when an electric field is applied between them, a partial breakdown of the gas between them occurs near the primary sharp electrode, which produces ions that are attracted to the blunt electrode, and wherein electric power applied to the one or more auxiliary electrodes is applied independently of the electric field applied to the electrode pair.
  • an electrostatic hydrodynamic apparatus includes a primary sharp electrode, a blunt electrode integrally formed in a fin of a heat sink, one or more auxiliary electrodes disposed near the primary sharp electrode, wherein the primary sharp and blunt electrodes are configured such that when an electric field is applied between them, a partial breakdown of the gas between them occurs near the primary sharp electrode, which produces ions that are attracted to the blunt electrode, and wherein the one or more auxiliary electrodes are configured to enhance the ion production.
  • a heat sink according to the invention includes a plurality of separated fins and an electrostatic hydrodynamic (EHD) apparatus comprising: a primary sharp electrode, a plurality of blunt electrodes integrally formed in respective ones of the fins, one or more auxiliary electrodes disposed near the primary sharp electrode, a voltage source coupled to the primary sharp and blunt electrodes for establishing an electric field between them, and an auxiliary voltage source coupled to the one or more auxiliary electrodes, wherein the auxiliary voltage source is controlled independently from the voltage source so as to enhance ions produced between the primary and blunt electrodes.
  • EHD electrostatic hydrodynamic
  • Figures IA and IB show perspective and end views, respectively of the primary/auxiliary electrode system and collector electrodes of example embodiments of the invention.
  • Figure 2 illustrates an example self seeding mechanism according to embodiments of the invention
  • Figure 3 shows an example plasma mechanism according to embodiments of the invention
  • Figures 4(A) and 4(B) illustrate how primary/auxiliary electrodes according to the invention can cause ions to be generated in a desired direction, resulting in better pumping efficiency.
  • Figure 5 illustrates a recessed substrate that is used to confine the direction of the ion current according to embodiments of the invention
  • Figure 6 illustrates an alternative embodiment where a primary electrode is plaeed directly in between the auxiliary and collector electrodes.
  • Figure 7 illustrates an alternative embodiment showing wire-like primary and auxiliary electrodes.
  • Embodiments described as being implemented in software should not be limited thereto, but can include embodiments implemented in hardware, or combinations of software and hardware, and vice-versa, as will be apparent to those skilled in the art, unless otherwise specified herein.
  • an embodiment showing a singular component should not be considered limiting; rather, the invention is intended to encompass other embodiments including a plurality of the same component, and vice-versa, unless explicitly stated otherwise herein.
  • the present invention encompasses present and future known equivalents to the known components referred to herein by way of illustration.
  • the present invention provides a unique ion generation mechanism. This method and apparatus establishes the ion generation zone without relying on small features of a corona electrode to concentrate the electric field. In addition, the quantity of ions generated is enhanced.
  • embodiments of the invention include a set of auxiliary electrodes in close proximity to a primary electrode as shown in Figures IA and IB . More particularly, Figure IA is a perspective view of the primary/ auxiliary electrode system and collector electrodes 106 and Figure IB is a detailed view of the primary 102 and auxiliary electrodes 104 provided on a common substrate 108 when the system is viewed from an end. [0023] As shown in Figure IB, in operation, the auxiliary electrodes 104 stimulate the ionization region which surrounds the primary electrode 102. As will be described in more detail below, the electrodes 104 can be configured to either increase production of seed electrons for ion generating electron avalanches or be used to generate a weak plasma.
  • the plasma is confined to the small region surrounding the primary electrode 102 because the electric field strength in the gap between the primary/auxiliary electrodes and the large grounded electrode 106 is too weak to sustain a plasma.
  • the sizes of the primary electrode 102 and auxiliary electrodes 104 are about 5 to 250 ⁇ m wide and the auxiliary electrodes 104 arc separated by about 5 to 250 ⁇ m from the primary electrode 102.
  • the gap from the primary/auxiliary electrode system to the large, collector electrodes 106 range from about 0.25 to 5 mm and the voltages applied between the primary electrode 102 and collector electrode 106 range from about 0 to 5000 V.
  • Substrate 108 is typically implemented using a dielectric material such as quartz, glass, metal-oxides, polymers, etc.
  • collector electrodes 106 are contoured and configured as fins of a heat sink as described in more detail in co-pending Application No. 12/017,986. However, this is not necessary, and many other configurations and electrode geometries are possible.
  • the auxiliary electrodes can be held between 0 and 5000 V, independent of the primary and ground electrodes. For example, lowering the voltage applied to the auxiliary electrodes towards ground potential, raising the voltage above the primary electrode voltage or oscillating the auxiliary electrode voltage stresses the ionization region to the point of breakdown, a state with a very large number of free electrons and ions.
  • a plasma arc can be avoided through the use of a current limiting resistor, replacing the resistor with a capacitor, or by coating the auxiliary electrodes with a dielectric. This process generates more ions than a corona discharge, which is limited by the process of seed electron production.
  • auxiliary electrodes of the present invention produces more ions at a lower voltage than a corona discharge. This results in more pumping power and a greater pressure head.
  • Figure 2 shows an example embodiment employing self seeding mechanism where large amounts of seed electrons are provided by the auxiliary electrodes and initiate additional avalanches in the high electric field region near the primary electrode.
  • Figure 3 shows an example plasma mechanism where the auxiliary electrodes generate a plasma in the region surrounding the primary electrode. The plasma is the ion source for the enhanced corona discharge.
  • the auxiliary electrodes 104 provide seed electrons to the system.
  • This self-seeding mechanism is in contrast to a corona discharge, where seed electrons come from the ground electrode or through photo- ionization of gas molecules. Seed electron production is the limiting factor in corona discharges.
  • This embodiment of the invention decouples the seed electron current from other gaseous electronic properties of the system, and hence it can be independently controlled and enhanced.
  • the seed electron current in this embodiment of the present invention, is controlled primarily by the voltage waveform V aux on the auxiliary electrodes 104 and by geometrical design considerations. This seed electron current determines the ion current. Larger seed electron currents create larger ion currents, which leads to a more effective pump (larger pumping action and larger pressure head).
  • R aux is provided in this configuration to limit current and to thereby prevent plasma formation.
  • V aux is 500 V and R aux is 10 M ⁇ .
  • the auxiliary electrodes 104 can be used to establish a weak plasma in the region near the primary electrode 102.
  • the plasma is the source of an enhanced ion current. Then, similar to the self-seeding electron process, a large ion current emanates from these electrodes that exceeds any corona process.
  • auxiliary electrodes 104 are V 311x is 500 V.
  • FIG. 4A illustrates an example configuration of a corona discharge pump 410 that generates ions in all directions, some of which counteract the desired overall pumping action and/or direction of air flow.
  • Figure 4(B) illustrates a configuration made possible by the present invention in which a substrate 402 has mounted thereon pi ⁇ i ⁇ ary/auxilian electrodes 102/104 which only generate ions in the desired direction, resulting in better pumping efficiency.
  • the ions can only travel in a direct path towards the ground electrode 106.
  • Figure 5 illustrates another possible configuration in which a recessed substrate
  • the directional confinement of the ion current is not limited to 180D It can directed in an arbitrarily narrow beam as shown in Figure 5 by recessing the primary/auxiliary electrodes 102 and 104 in an shrouded substrate 508. It can also be opened up to exceed 180L] and many other variations are possible by varying the geometry of the substrate 508.
  • Figure 6 illustrates an alternative embodiment where the primary electrode is placed directly in between the auxiliary and collector electrodes. More particularly, Figure 6 shows a device where the primary electrode 102 is positioned between a single, large auxiliary electrode 604 formed in a substrate 608 and a collector electrode (not shown).
  • Figure 7 illustrates an alternative embodiment showing wire-like electrodes.
  • this diagram also shows an embodiment where there is a gap between the primary and the dielectric.
  • both primary electrode 702 and auxiliary electrode 704 are implemented as wire-type electrodes.
  • This figure also depicts an option where the primary electrode 702 is offset from the substrate 708 in which auxiliary electrode 704 is provided, leaving an air gap between the electrodes.
  • the corona discharge configurations and methodologies described herein can be utilized as an electrostatic air pump.
  • the primary/auxiliary electrodes can be integrated into a heat sink to create a complete cooling system or they can be used as a stand-alone air blower.
  • the present invention it is no longer required to have a small diameter corona electrode to create the high electric field ionization region as in many conventional approaches.
  • the high electric field region is created by the primary and the auxiliary electrodes. Since the gap can be larger than is possible with a corona discharge wire, the corona electrode can be made less sensitive to dust build-up. Dust accumulation on a corona electrode immediately reduces the pumping performance due to an increase in the effective size of the corona electrode. Dust accumulation on the self seeding electrodes will not have the same effect, since the ion generation region is no longer defined by the size of the primary electrode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Plasma Technology (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

In general, the present invention relates to methods and apparatuses that achieve high gas flow rates through the use of an electrostatic pump. According to some aspects, the present invention relates to additional, auxiliary electrodes that generate increased ion current at lower voltages, which leads to greater pumping power than a corona wind discharge. According to further aspects, the invention provides for a directional emission of the ions. This eliminates the back flow of ions and improves the electro-fluid power conversion efficiency and pumping performance. According to yet further aspects, the invention enables the electrodes to be fabricated directly on a dielectric substrate, making the system mechanically rugged and easily fabricated.

Description

AUXILIARY ELECTRODES FOR ENHANCED ELECTROSTATIC DISCHARGE
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] The present application claims priority to U.S. Prov. Appln. No. 61/014,694 filed
December 18, 2007, the contents of which are incorporated by reference herein in their entirety.
FIELD OF THE INVENTION f0002] The present invention relates to electrostatic pumping apparatuses and methods using ion generation, and more particularly, to enhanced corona discharge using novel electrode arrangements for establishing the ion generation zone without relying on small features of a corona electrode to concentrate the electric field.
BACKGROUND
[0003] An electrostatic hydrodynamic (EHD) gas pump such as a corona discharge gas pump (i.e. corona wind) typically consists of one or more sharp (e.g. corona) and blunt (e.g. collecting or neutralizing) electrodes. An electric field is applied between the two electrodes causing a partial breakdown of the gas, referred to as a corona discharge, near the sharp electrode. The discharge produces ions which are attracted to the neutralizing, or collecting electrode. En route, the ions collide with neutral gas molecules creating pressure head and flow similar to that produced by a mechanical fan. Co-pending applications Nos. 11/338,617, 12/017,986 and 12/011,219, commonly owned by the present assignee, and the contents of which are incorporated herein by reference, have dramatically advanced the state of the art of EHD pumps and cooling apparatuses incorporating the same, including those that utilize corona wind techniques. [0004] Some attempts have been made to enhance corona discharge through various electrode arrangements. One example is U.S. Patent No. 5,019,709, titled " Electrode arrangement for cheating [sic] corona." This patent discloses an electrode arrangement for creation of a corona over an area. The arrangement includes a corona driving portion and a corona emitting portion in electrical contact with the corona driving portion. The corona driving portion is much larger in size than the corona emitting portion such that corona from the electrode arrangement is emitted from the corona emitting portion in a direction away from the corona driving portion. The corona emitting portion is comprised of a series of stepped, generally concentric, spaced corona emitting rings about a center emitting element. The locations of the rings and emitting element are such that a corona is produced over a circular area rather than an annular ring. This invention is a complex corona electrode that consists of multiple ionization regions.
[0005] Another attempt is U.S. Patent No. 7,053,565, titled "Electrostatic fluid accelerator for and a method of controlling fluid flow". This patent discusses issues of "back flow" with regards to multi-stage electrostatic pumps. Their solution is to synchronize the waveforms on the corona electrodes.
[0006] There also are a large number corona discharge publications and patents concerning a variety of two-electrode geometries and applications. There is also a large body of literature regarding Dielectric Barrier Discharge (DBD). However, none of this literature discusses utilizing the DBD to enhance a corona discharge current. [0007] Accordingly, a need remains in the art for improved electrostatic discharge current, including methods and apparatuses that do not rely on complex electrode geometries or waveform schemes, among other things. SUMMARY
[0008] In general, the present invention relates to methods and apparatuses that achieve high gas flow rates through the use of an electrostatic pump. According to some aspects, the present invention relates to additional, auxiliary electrodes that generate increased ion current at lower voltages, which leads to greater pumping power than a corona wind discharge. According to further aspects, the invention provides for a directional emission of the ions. This eliminates the back flow of ions and improves the electro-fluid power conversion efficiency and pumping performance. According to yet further aspects, the invention enables the electrodes to be fabricated directly on a dielectric substrate, making the system mechanically rugged and easily fabricated.
[0009] In furtherance of these and other aspects, an electrostatic hydrodynamic apparatus according to embodiments of the invention includes one or more auxiliary electrodes disposed near a primary sharp electrode in a sharp/blunt electrode pair, wherein the electrode pair is configured such that when an electric field is applied between them, a partial breakdown of the gas between them occurs near the primary sharp electrode, which produces ions that are attracted to the blunt electrode, and wherein electric power applied to the one or more auxiliary electrodes is applied independently of the electric field applied to the electrode pair.
[0010] In additional furtherance of these and other aspects, an electrostatic hydrodynamic apparatus according to embodiments of the invention includes a primary sharp electrode, a blunt electrode integrally formed in a fin of a heat sink, one or more auxiliary electrodes disposed near the primary sharp electrode, wherein the primary sharp and blunt electrodes are configured such that when an electric field is applied between them, a partial breakdown of the gas between them occurs near the primary sharp electrode, which produces ions that are attracted to the blunt electrode, and wherein the one or more auxiliary electrodes are configured to enhance the ion production.
[0011] In yet additional furtherance of these and other aspects, a heat sink according to the invention includes a plurality of separated fins and an electrostatic hydrodynamic (EHD) apparatus comprising: a primary sharp electrode, a plurality of blunt electrodes integrally formed in respective ones of the fins, one or more auxiliary electrodes disposed near the primary sharp electrode, a voltage source coupled to the primary sharp and blunt electrodes for establishing an electric field between them, and an auxiliary voltage source coupled to the one or more auxiliary electrodes, wherein the auxiliary voltage source is controlled independently from the voltage source so as to enhance ions produced between the primary and blunt electrodes.
BRIEF DESCRIPTION OF THE DRAWINGS
[0012] These and other aspects and features of the present invention will become apparent to those ordinarily skilled in the art upon review of the following description of specific embodiments of the invention in conjunction with the accompanying figures, wherein:
[0013] Figures IA and IB show perspective and end views, respectively of the primary/auxiliary electrode system and collector electrodes of example embodiments of the invention;
[0014] Figure 2 illustrates an example self seeding mechanism according to embodiments of the invention;
[0015] Figure 3 shows an example plasma mechanism according to embodiments of the invention; [0016] Figures 4(A) and 4(B) illustrate how primary/auxiliary electrodes according to the invention can cause ions to be generated in a desired direction, resulting in better pumping efficiency.
[0017] Figure 5 illustrates a recessed substrate that is used to confine the direction of the ion current according to embodiments of the invention;
[0018] Figure 6 illustrates an alternative embodiment where a primary electrode is plaeed directly in between the auxiliary and collector electrodes; and
[0019] Figure 7 illustrates an alternative embodiment showing wire-like primary and auxiliary electrodes.
DETAILED DESCRIPTION
[0020] The present invention will now be described in detail with reference to the drawings, which are provided as illustrative examples of the invention so as to enable those skilled in the art to practice the invention. Notably, the figures and examples below are not meant to limit the scope of the present invention to a single embodiment, but other embodiments are possible by way of interchange of some or all of the described or illustrated elements. Moreover, where certain elements of the present invention can be partially or fully implemented using known components, only those portions of such known components that are necessary for an understanding of the present invention will be described, and detailed descriptions of other portions of such known components will be omitted so as not to obscure the invention. Embodiments described as being implemented in software should not be limited thereto, but can include embodiments implemented in hardware, or combinations of software and hardware, and vice-versa, as will be apparent to those skilled in the art, unless otherwise specified herein. In the present specification, an embodiment showing a singular component should not be considered limiting; rather, the invention is intended to encompass other embodiments including a plurality of the same component, and vice-versa, unless explicitly stated otherwise herein. Moreover, applicants do not intend for any term in the specification or claims to be ascribed an uncommon or special meaning unless explicitly set forth as such. Further, the present invention encompasses present and future known equivalents to the known components referred to herein by way of illustration.
[0021] According to one aspect, the present invention provides a unique ion generation mechanism. This method and apparatus establishes the ion generation zone without relying on small features of a corona electrode to concentrate the electric field. In addition, the quantity of ions generated is enhanced.
[0022] In general, embodiments of the invention include a set of auxiliary electrodes in close proximity to a primary electrode as shown in Figures IA and IB . More particularly, Figure IA is a perspective view of the primary/ auxiliary electrode system and collector electrodes 106 and Figure IB is a detailed view of the primary 102 and auxiliary electrodes 104 provided on a common substrate 108 when the system is viewed from an end. [0023] As shown in Figure IB, in operation, the auxiliary electrodes 104 stimulate the ionization region which surrounds the primary electrode 102. As will be described in more detail below, the electrodes 104 can be configured to either increase production of seed electrons for ion generating electron avalanches or be used to generate a weak plasma. In the latter case, the plasma is confined to the small region surrounding the primary electrode 102 because the electric field strength in the gap between the primary/auxiliary electrodes and the large grounded electrode 106 is too weak to sustain a plasma. [0024] In some embodiments, the sizes of the primary electrode 102 and auxiliary electrodes 104 are about 5 to 250 μm wide and the auxiliary electrodes 104 arc separated by about 5 to 250 μm from the primary electrode 102. In such configurations, the gap from the primary/auxiliary electrode system to the large, collector electrodes 106 range from about 0.25 to 5 mm and the voltages applied between the primary electrode 102 and collector electrode 106 range from about 0 to 5000 V. Many variations are possible, as will become apparent to those skilled in the art after being taught by these examples. Substrate 108 is typically implemented using a dielectric material such as quartz, glass, metal-oxides, polymers, etc. [0025] Moreover, as shown in Figure IA, collector electrodes 106 are contoured and configured as fins of a heat sink as described in more detail in co-pending Application No. 12/017,986. However, this is not necessary, and many other configurations and electrode geometries are possible.
[0026] In general, the auxiliary electrodes can be held between 0 and 5000 V, independent of the primary and ground electrodes. For example, lowering the voltage applied to the auxiliary electrodes towards ground potential, raising the voltage above the primary electrode voltage or oscillating the auxiliary electrode voltage stresses the ionization region to the point of breakdown, a state with a very large number of free electrons and ions. A plasma arc can be avoided through the use of a current limiting resistor, replacing the resistor with a capacitor, or by coating the auxiliary electrodes with a dielectric. This process generates more ions than a corona discharge, which is limited by the process of seed electron production. [0027] One advantage of configuring the auxiliary electrodes of the present invention is that it produces more ions at a lower voltage than a corona discharge. This results in more pumping power and a greater pressure head. This can be accomplished in several different ways, as illustrated in more detail in connection with Figures 2 and 3. Generally, Figure 2 shows an example embodiment employing self seeding mechanism where large amounts of seed electrons are provided by the auxiliary electrodes and initiate additional avalanches in the high electric field region near the primary electrode. Figure 3 shows an example plasma mechanism where the auxiliary electrodes generate a plasma in the region surrounding the primary electrode. The plasma is the ion source for the enhanced corona discharge.
[0028] More particularly, in the example embodiment shown in Figure 2, the auxiliary electrodes 104 provide seed electrons to the system. This self-seeding mechanism is in contrast to a corona discharge, where seed electrons come from the ground electrode or through photo- ionization of gas molecules. Seed electron production is the limiting factor in corona discharges. This embodiment of the invention decouples the seed electron current from other gaseous electronic properties of the system, and hence it can be independently controlled and enhanced. The seed electron current, in this embodiment of the present invention, is controlled primarily by the voltage waveform Vaux on the auxiliary electrodes 104 and by geometrical design considerations. This seed electron current determines the ion current. Larger seed electron currents create larger ion currents, which leads to a more effective pump (larger pumping action and larger pressure head).
[0029] As described above, Raux is provided in this configuration to limit current and to thereby prevent plasma formation. In one example configuration, where auxiliary electrodes 104 are 25 mm across and separated by 25 mm, Vaux is 500 V and Raux is 10 MΩ. [0030] Alternatively, as shown in Figure 3, the auxiliary electrodes 104 can be used to establish a weak plasma in the region near the primary electrode 102. In this embodiment, the plasma is the source of an enhanced ion current. Then, similar to the self-seeding electron process, a large ion current emanates from these electrodes that exceeds any corona process. In one example configuration, where auxiliary electrodes 104 are V311x is 500 V.
[0031] Another advantage of the invention is that the ion production can be confined to a region that lies between the primary/auxiliary electrodes and the collector electrode. This is illustrated in more detail in connection with Figures 4(A) and 4(B). For example, Figure 4A illustrates an example configuration of a corona discharge pump 410 that generates ions in all directions, some of which counteract the desired overall pumping action and/or direction of air flow.
[0032] Figure 4(B) illustrates a configuration made possible by the present invention in which a substrate 402 has mounted thereon piϊiπary/auxilian electrodes 102/104 which only generate ions in the desired direction, resulting in better pumping efficiency. In this configuration, the ions can only travel in a direct path towards the ground electrode 106. There is no counter-current and no counter-acting pumping forces as in the configuration of Figure
4(A). As a result, the electro-fluidic power conversion efficiency of primary/auxiliary electrodes is higher.
[0033] Figure 5 illustrates another possible configuration in which a recessed substrate
508 is used to confine the direction of the ion current. More particularly, the directional confinement of the ion current is not limited to 180D It can directed in an arbitrarily narrow beam as shown in Figure 5 by recessing the primary/auxiliary electrodes 102 and 104 in an shrouded substrate 508. It can also be opened up to exceed 180L] and many other variations are possible by varying the geometry of the substrate 508.
[0034] Many configurations of primary and auxiliary electrodes according to the principles of the invention are possible other than those described above. Two of the many possible additional embodiments of the invention are shown below in Figures 6 and 7. They represent further implementations of the same basic concept of primary-auxiliary ion generator as described in the present application.
[0035] Figure 6 illustrates an alternative embodiment where the primary electrode is placed directly in between the auxiliary and collector electrodes. More particularly, Figure 6 shows a device where the primary electrode 102 is positioned between a single, large auxiliary electrode 604 formed in a substrate 608 and a collector electrode (not shown).
[0036] Figure 7 illustrates an alternative embodiment showing wire-like electrodes.
More particularly, this diagram also shows an embodiment where there is a gap between the primary and the dielectric. In the example of Figure 7, both primary electrode 702 and auxiliary electrode 704 are implemented as wire-type electrodes. This figure also depicts an option where the primary electrode 702 is offset from the substrate 708 in which auxiliary electrode 704 is provided, leaving an air gap between the electrodes.
[0037] In one example implementation, the corona discharge configurations and methodologies described herein can be utilized as an electrostatic air pump. For example, the primary/auxiliary electrodes can be integrated into a heat sink to create a complete cooling system or they can be used as a stand-alone air blower.
[0038] It should be further noted that in the present invention, it is no longer required to have a small diameter corona electrode to create the high electric field ionization region as in many conventional approaches. With auxiliary electrodes of the present invention, the high electric field region is created by the primary and the auxiliary electrodes. Since the gap can be larger than is possible with a corona discharge wire, the corona electrode can be made less sensitive to dust build-up. Dust accumulation on a corona electrode immediately reduces the pumping performance due to an increase in the effective size of the corona electrode. Dust accumulation on the self seeding electrodes will not have the same effect, since the ion generation region is no longer defined by the size of the primary electrode. [0039] Although the present invention has been particularly described with reference to the preferred embodiments thereof, it should be readily apparent to those of ordinary skill in the art that changes and modifications in the form and details may he made without departing from the spirit and scope of the invention. It is intended that the appended claims encompass such changes and modifications.

Claims

WHAT IS CLAIMED IS:
1. An electrostatic hydro dynamic (EHD) apparatus comprising: one or more auxiliary electrodes disposed near a primary sharp electrode in a sharp/blunt electrode pair, wherein the electrode pair is configured such that when an electric field is applied between them, a partial breakdown of the gas between them occurs near the primary sharp electrode, which produces ions that are attracted to the blunt electrode, and wherein electric power applied to the one or more auxiliary electrodes is applied independently of the electric field applied to the electrode pair.
2. An EHD apparatus according to claim 1 , wherein the one or more auxiliary electrodes arc configured to provide seed electrons for an electron avalanche near the primary sharp electrode.
3. An EHD apparatus according to claim 1, wherein the one or more auxiliary electrodes are configured to establish a weak corona near the primary sharp electrode.
4. An EHD apparatus according to claim 1, wherein the one or more auxiliary electrodes are configured to direct the produced ions in a desired direction.
5. An EHD apparatus according to claim 4, wherein the one or more auxiliary electrodes are disposed in an upstream direction from the primary sharp electrode with respect to the desired direction.
6. An EHD apparatus according to claim 1, wherein the blunt electrode is integrally formed in a fin of a heat sink.
7. An EHD apparatus according to claim 1, wherein the blunt electrode has a contoured edge facing the primary sharp electrode.
8. An electrostatic hydrodynamic (EHD) apparatus comprising: a primary sharp electrode; a blunt electrode integrally formed in a fin of a heat sink; and one or more auxiliary electrodes disposed near the primary sharp electrode, wherein the primary sharp and blunt electrodes are configured such that when an electric field is applied between them, a partial breakdown of the gas between them occurs near the primary sharp electrode, which produces ions that are attracted to the blunt electrode, and wherein the one or more auxiliary electrodes are configured to enhance the ion production.
9. An EHD apparatus according to claim 8. wherein the one or more auxiliary electrodes are configured to provide seed electrons for an electron avalanche near the primary sharp electrode.
10. An EHD apparatus according to claim 8, wherein the one or more auxiliary electrodes are configured to establish a weak corona near the primary sharp electrode.
1 1. An EHD apparatus according to claim 8, wherein the one or more auxiliary electrodes are configured to direct the produced ions in a desired direction.
12. An EHD apparatus according to claim 8, wherein the blunt electrode has a contoured edge facing the primary sharp electrode.
13. An EHD apparatus according to claim 8, wherein the primary sharp electrode and one or more auxiliary electrodes are disposed on a common substrate.
14. An EHD apparatus according to claim 13. wherein the substrate is contoured to partially shroud the primary sharp electrode and one or more auxiliary electrodes so that ion current is constrained in a desired direction.
15. An EHD apparatus according to claim 13, w herein the substrate is substantially Hat with opposing surfaces and wherein the primary sharp electrode is disposed on an opposite surface from the one or more auxiliary electrodes.
16. An EHD apparatus according to claim 8, wherein the primary sharp electrode is comprised of a wire, and wherein the one or more auxiliary electrodes comprises a conductor surrounded by a dielectric disposed substantially parallel to the primary sharp electrode.
17. A heat sink, comprising: a plurality of separated fins; and an electrostatic hydrodynamic (EHD) apparatus comprising: a primary sharp electrode, a plurality of blunt electrodes integrally formed in respective ones of the fins, one or more auxiliary electrodes disposed near the primary sharp electrode, a voltage source coupled to the primary sharp and blunt electrodes for establishing an electric field between them, and an auxiliary voltage source coupled to the one or more auxiliary electrodes, wherein the auxiliary voltage source is controlled independently from the voltage source so as to enhance ions produced between the primary and blunt electrodes.
18. A heat sink according to claim 17, wherein the one or more auxiliary electrodes are configured to provide seed electrons for an electron avalanche near the primary sharp electrode.
19. A heat sink according to claim 17, wherein the one or more auxiliary electrodes are configured to establish a weak corona near the primary sharp electrode.
20. A heat sink according to claim 17, wherein the one or more auxiliary electrodes are configured to direct the produced ions in a desired direction.
PCT/US2008/087107 2007-12-18 2008-12-17 Auxiliary electrodes for enhanced electrostatic discharge WO2009079538A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2008801200046A CN101896990A (en) 2007-12-18 2008-12-17 Auxiliary electrodes for enhanced electrostatic discharge
EP08861959A EP2229686A1 (en) 2007-12-18 2008-12-17 Auxiliary electrodes for enhanced electrostatic discharge
JP2010539726A JP2011511997A (en) 2007-12-18 2008-12-17 Auxiliary electrode for enhanced electrostatic discharge

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US1469407P 2007-12-18 2007-12-18
US61/014,694 2007-12-18

Publications (1)

Publication Number Publication Date
WO2009079538A1 true WO2009079538A1 (en) 2009-06-25

Family

ID=40753505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/087107 WO2009079538A1 (en) 2007-12-18 2008-12-17 Auxiliary electrodes for enhanced electrostatic discharge

Country Status (7)

Country Link
US (1) US20090155090A1 (en)
EP (1) EP2229686A1 (en)
JP (1) JP2011511997A (en)
KR (1) KR20100116173A (en)
CN (1) CN101896990A (en)
TW (1) TW200938727A (en)
WO (1) WO2009079538A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8466624B2 (en) * 2008-09-03 2013-06-18 Tessera, Inc. Electrohydrodynamic fluid accelerator device with collector electrode exhibiting curved leading edge profile
US20110116205A1 (en) * 2009-09-18 2011-05-19 Ventiva, Inc. Collector electrodes for an ion wind fan
US20110149252A1 (en) * 2009-12-21 2011-06-23 Matthew Keith Schwiebert Electrohydrodynamic Air Mover Performance
US9038920B2 (en) 2011-12-21 2015-05-26 General Electric Company Systems and methods for electro-hydrodynamic wind energy conversion
KR102139117B1 (en) * 2018-04-13 2020-07-29 방지철 Removal apparatus of particle dust matter and operating method thereof
US11615936B2 (en) * 2020-02-09 2023-03-28 Desaraju Subrahmanyam Controllable electrostatic ion and fluid flow generator
CN112333910B (en) * 2020-11-04 2023-03-28 中国人民解放军空军工程大学 Preionization type high-efficiency plasma synthetic jet exciter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4686682A (en) * 1984-10-09 1987-08-11 Mitsubishi Denki Kabushiki Kaisha Discharge excitation type short pulse laser device
US7214949B2 (en) * 2004-11-12 2007-05-08 Thorrn Micro Technologies, Inc. Ion generation by the temporal control of gaseous dielectric breakdown

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812711A (en) * 1985-06-06 1989-03-14 Astra-Vent Ab Corona discharge air transporting arrangement
US4967119A (en) * 1985-06-06 1990-10-30 Astra-Vent Ab Air transporting arrangement
SE462703B (en) * 1986-04-21 1990-08-20 Astra Vent Ab DEVICE FOR GENERATION OF AN ELECTRIC CORONA CHARGING IN AIR
SE456204B (en) * 1987-02-05 1988-09-12 Astra Vent Ab DEVICE FOR TRANSPORTATION OF AIR WITH THE USE OF ELECTRIC ION WIND
US5019709A (en) * 1990-01-05 1991-05-28 Pfaff Ernest H Electrode arrangement for cheating corona
SE505053C2 (en) * 1995-04-18 1997-06-16 Strainer Lpb Ab Device for air transport and / or air purification by means of so-called ion wind
US7053565B2 (en) * 2002-07-03 2006-05-30 Kronos Advanced Technologies, Inc. Electrostatic fluid accelerator for and a method of controlling fluid flow
US7077890B2 (en) * 2003-09-05 2006-07-18 Sharper Image Corporation Electrostatic precipitators with insulated driver electrodes
SE0401749L (en) * 2004-07-02 2006-01-03 Aureola Swedish Engineering Ab Apparatus and method for cooling a heat source
WO2006079111A2 (en) * 2005-01-24 2006-07-27 Thorrn Micro Technologies, Inc. Electro-hydrodynamic pump and cooling apparatus comprising an electro-hydrodynamic pump

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4686682A (en) * 1984-10-09 1987-08-11 Mitsubishi Denki Kabushiki Kaisha Discharge excitation type short pulse laser device
US7214949B2 (en) * 2004-11-12 2007-05-08 Thorrn Micro Technologies, Inc. Ion generation by the temporal control of gaseous dielectric breakdown

Also Published As

Publication number Publication date
TW200938727A (en) 2009-09-16
JP2011511997A (en) 2011-04-14
CN101896990A (en) 2010-11-24
KR20100116173A (en) 2010-10-29
EP2229686A1 (en) 2010-09-22
US20090155090A1 (en) 2009-06-18

Similar Documents

Publication Publication Date Title
US20090155090A1 (en) Auxiliary electrodes for enhanced electrostatic discharge
US7661468B2 (en) Electro-hydrodynamic gas flow cooling system
US7652431B2 (en) Electrostatic fluid accelerator
US7248003B2 (en) Electrostatic fluid accelerator for and method of controlling a fluid flow
US7214949B2 (en) Ion generation by the temporal control of gaseous dielectric breakdown
WO2010013570A1 (en) Ion generator and electrical device
US7236344B2 (en) Ionic flow generator for thermal management
US20060072279A1 (en) Air ionization module and method
US10722287B2 (en) Spark ablation device
WO2008136697A1 (en) Method and apparatus for flow control of a gas
KR20090107548A (en) Contoured electrodes for an electrostatic gas pump
JP5515099B2 (en) Ion wind generator and gas pump
US20100110602A1 (en) Electric field control methods and apparatuses for corona wind fans
CN116207619A (en) Electron beam ionization type ion wind device
JP2010500713A (en) X-ray tube and voltage supply method for ion deflection and collection mechanism of X-ray tube
JP2009030699A (en) Diffuser
JP2007123270A (en) Ion generating device
KR20200082698A (en) Ionic Wind Generator
JP5766739B2 (en) Diffuser
JP2019021509A (en) Discharge element
RU113083U1 (en) PORTABLE COOLING DEVICE USING "ION WIND" IN CROWN DISCHARGE
WO2022070090A1 (en) Field emission cathode device and method for forming a field emission cathode device
CN113471816A (en) Gas discharge tube capable of generating distortion electric field
WO2024225948A1 (en) An electrohydrodynamic pump for pumping a dielectric fluid
Abidat et al. A modeling of atmospheric DBD parameters effect on plasma elctrical characteristics

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880120004.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08861959

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010539726

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008861959

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107015908

Country of ref document: KR

Kind code of ref document: A