WO2009079301A1 - Ribbed force sensor - Google Patents
Ribbed force sensor Download PDFInfo
- Publication number
- WO2009079301A1 WO2009079301A1 PCT/US2008/086240 US2008086240W WO2009079301A1 WO 2009079301 A1 WO2009079301 A1 WO 2009079301A1 US 2008086240 W US2008086240 W US 2008086240W WO 2009079301 A1 WO2009079301 A1 WO 2009079301A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ribs
- instrument
- shaft
- tube portion
- lengthwise axis
- Prior art date
Links
- 210000003857 wrist joint Anatomy 0.000 claims abstract description 19
- 239000012636 effector Substances 0.000 claims abstract description 15
- 239000000835 fiber Substances 0.000 claims description 43
- 239000000463 material Substances 0.000 claims description 16
- 238000005520 cutting process Methods 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 239000012530 fluid Substances 0.000 claims description 6
- 239000011888 foil Substances 0.000 claims description 6
- 239000004065 semiconductor Substances 0.000 claims description 6
- 238000010897 surface acoustic wave method Methods 0.000 claims description 6
- 239000000523 sample Substances 0.000 claims description 5
- 230000002262 irrigation Effects 0.000 claims description 4
- 238000003973 irrigation Methods 0.000 claims description 4
- 239000011810 insulating material Substances 0.000 claims 2
- 238000000034 method Methods 0.000 description 23
- 230000000712 assembly Effects 0.000 description 20
- 238000000429 assembly Methods 0.000 description 20
- 230000033001 locomotion Effects 0.000 description 14
- 210000000707 wrist Anatomy 0.000 description 14
- 238000005452 bending Methods 0.000 description 9
- 230000000994 depressogenic effect Effects 0.000 description 9
- 238000013461 design Methods 0.000 description 9
- 238000012937 correction Methods 0.000 description 7
- 239000004593 Epoxy Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 238000004382 potting Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000001356 surgical procedure Methods 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 210000004247 hand Anatomy 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 229910000755 6061-T6 aluminium alloy Inorganic materials 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- 230000001112 coagulating effect Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 239000000806 elastomer Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000013536 elastomeric material Substances 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 210000000245 forearm Anatomy 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000008447 perception Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 210000002435 tendon Anatomy 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 241001631457 Cannula Species 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 206010044565 Tremor Diseases 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 210000001508 eye Anatomy 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 239000002783 friction material Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000002357 laparoscopic surgery Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000002324 minimally invasive surgery Methods 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000002355 open surgical procedure Methods 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000002432 robotic surgery Methods 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 230000002277 temperature effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/24—Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
- G01L1/242—Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
- G01L1/246—Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using integrated gratings, e.g. Bragg gratings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B34/37—Master-slave robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/71—Manipulators operated by drive cable mechanisms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/06—Measuring instruments not otherwise provided for
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00477—Coupling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B2034/305—Details of wrist mechanisms at distal ends of robotic arms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/06—Measuring instruments not otherwise provided for
- A61B2090/064—Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
Definitions
- FIG. 9C illustrates an end view of the force sensor apparatus of FIGS. 9A and 9B including radial ribs positioned in non-uniform angles and a central through passage in accordance with another embodiment of the present invention.
- the monitor 94 will be suitably coupled to the viewing scope assembly such that an image of the surgical site is provided adjacent the surgeon's hands on surgeon console.
- monitor 94 will display an image on a display that is oriented so that the surgeon feels that he or she is actually looking directly down onto the operating site.
- an image of the surgical instruments 54 appears to be located substantially where the operator's hands are located even though the observation points (i.e., the endoscope or viewing camera) may not be from the point of view of the image.
- the real-time image is preferably transformed into a stereo image such that the operator can manipulate the end effector and the hand control as if viewing the workspace in substantially true presence.
- the servo control preferably has a servo bandwidth with a 3 dB cut off frequency of at least 10 Hz so that the system can quickly and accurately respond to the rapid hand motions used by the surgeon and yet to filter out undesirable surgeon hand tremors.
- manipulator assemblies 51 have a relatively low inertia, and the drive motors have relatively low ratio gear or pulley couplings.
- Any suitable conventional or specialized servo control may be used in the practice of the present invention, with those incorporating force and torque feedback being particularly preferred for telepresence operation of the system.
- a calibration process in which combinations of forces and torques are applied to the instrument tip serially, simultaneously, or in combinations while correction factors and offsets are determined.
- the correction factors and offsets may then be applied to the theoretical equations for combining the gauge outputs to obtain F x , F y , F z , T x , and T y .
- Such a calibration process may be done either by directly calculating the correction factors and offsets or by a learning system such as a neural network embedded in the calibration fixture or in the instrument itself.
- the calibration data may be programmed into an integrated circuit embedded in the instrument so that the surgical system using the individual instrument can correctly identify and apply its correction factors and offsets while the instrument is in use .
- FIG. 4B is a partial cross-sectional view of an outer tube 214 over the inner tube 218.
- outer tube 214 of force sensor apparatus 200 is a concentric tubular structural member made of sufficiently strong materials that can encapsulate the strain gauges and other electronics within an annular gap between the inner and outer tubes 218 and 214.
- the concentric tubes are joined rigidly at the proximal end adjacent proximal portion 218b while a narrow annular gap between the distal ends near a distal portion is filled with an elastomeric material 215 that prevents the high and varying axial forces of the wrist and jaw actuator cable or rods from being transmitted through the inner tube carrying the strain gauges.
- force sensor apparatus 300 of the present invention is adaptable to the size and shape constraints of robotic endoscopic surgical instruments and is suitable for a variety of instruments.
- force sensor apparatus 300 may be manufactured, tested, and calibrated as a separate modular component and brought together with other components in the conventional instrument assembly process or as an integrated part of the instrument shaft 310.
- the sensor may be a slip-on module with suitable electrical contacts that mate with contacts on the instrument shaft permitting a higher value sensor to be used with lower cost instruments of limited cycle life.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Robotics (AREA)
- Pathology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Manipulator (AREA)
- Surgical Instruments (AREA)
Abstract
In one embodiment, a force sensor apparatus is provided including a tube portion having a plurality of radial ribs and a strain gauge positioned over each of the plurality of radial ribs, a proximal end of the tube portion that operably couples to a shaft of a surgical instrument that operably couples to a manipulator arm of a robotic surgical system, and a distal end of the tube portion that proximally couples to a wrist joint coupled to an end effector.
Description
RIBBED FORCE SENSOR
Stephen J. Blumenkranz Christopher J. Hasser
CROSS-REFERENCE TO RELATED APPLICATIONS AND PATENTS
This application is related to U.S. Provisional Application No. 60/755,108 filed December 30, 2005, U.S. Provisional
Application 60/755,157 filed December 30, 2005, U.S. Application No. 11/553,303 filed October 26, 2006, U.S. Patent Application No. 11/537,241 filed September 29, 2006, U.S. Patent Application No. 11/093,372 filed March 30, 2005, and U.S. Patent Nos. 6,936,042, 6,902,560, 6,879,880, 6,866,671, 6,817,974,
6,783,524, 6,676,684, 6,371,952, 6,331,181, and 5,807,377, the full disclosures of which are incorporated by reference herein for all purposes.
TECHNICAL FIELD
The present invention relates generally to surgical robot systems and, more particularly, to an improved system, apparatus, and method for sensing forces applied to a surgical instrument .
BACKGROUND
In robotically-assisted surgery, the surgeon typically operates a master controller to control the motion of surgical instruments at the surgical site from a location that may be remote from the patient (e.g., across the operating room, in a different room or a completely different building from the patient) . The master controller usually includes one or more
hand input devices, such as handheld wrist gimbals, joysticks, exoskeletal gloves, handpieces, or the like, which are operatively coupled to the surgical instruments through a controller with servo motors for articulating the instruments' position and orientation at the surgical site. The servo motors are typically part of an electromechanical device or surgical manipulator arm ("the slave") that includes a plurality of joints, linkages, etc., that are connected together to support and control the surgical instruments that have been introduced directly into an open surgical site or through trocar sleeves (cannulas) inserted through incisions into a body cavity, such as the patient's abdomen. There are available a variety of surgical instruments, such as tissue graspers, needle drivers, electrosurgical cautery probes, etc., to perform various functions for the surgeon, e.g., retracting tissue, holding or driving a needle, suturing, grasping a blood vessel, dissecting, cauterizing, coagulating tissue, etc. A surgeon may employ a large number of different surgical instruments/tools during a procedure .
This new surgical method through remote manipulation has created many new challenges. One such challenge is providing the surgeon with the ability to accurately "feel" the tissue that is being manipulated by the surgical instrument via the robotic manipulator. The surgeon must rely on visual indications of the forces applied by the instruments or sutures. It is desirable to sense the forces and torques applied to the tip of the instrument, such as an end effector (e.g., jaws, grasper, blades, etc.) of robotic minimally invasive surgical instruments, in order to feed the forces and torques back to the surgeon user through the system hand controls or by other means, such as visual display, vibrations, or audible tone. One device for this purpose from the laboratory of G. Hirzinger at DLR Institute of Robotics and Mechatronics is described in "Review
of Fixtures for Low-Invasiveness Surgery" by F. Cepolina and R. C. Michelini, Int'l Journal of Medical Robotics and Computer Assisted Surgery, Vol.l, Issue 1, page 58, the contents of which are incorporated by reference herein for all purposes. However, that design disadvantageously places a force sensor distal to
(or outboard of) the wrist joints, thus requiring wires or optic fibers to be routed through the flexing wrist joint and also requiring the yaw and grip axes to be on separate pivot axes.
Another problem has been fitting and positioning the necessary wires, rods, or tubes for mechanical actuation of end effectors in as small a space as possible because relatively small instruments are typically desirable for performing surgery .
What is needed, therefore, are improved telerobotic systems and methods for remotely controlling surgical instruments at a surgical site on a patient. In particular, these systems and methods should be configured to provide accurate feedback of forces and torques to the surgeon to improve user awareness and control of the instruments.
SUMMARY
The present invention provides an apparatus, system, and method for improving force and torque feedback to and sensing by a surgeon performing a robotic surgery. In one embodiment, a force sensor includes a tube portion that includes a plurality of radial ribs and a strain gauge positioned over each of the plurality of radial ribs. A proximal part of the tube portion is coupled to a shaft of a surgical instrument that may be operably coupled to a manipulator arm of a robotic surgical system. A distal part of the tube portion is coupled to a wrist joint coupled to an end effector. The couplings may be direct
or indirect with an intermediate mechanical component between the coupled parts.
Groups of strain gauges are positioned on or near a distal end of an instrument shaft proximal to (i.e., inboard of) a moveable wrist of a robotic surgical instrument via an apparatus that senses forces and torques at the distal tip of the instrument without errors due to changes in the configuration of the tip (such as with a moveable wrist) or steady state temperature variations.
Advantageously, the present invention improves the sensing and feedback of forces and/or torques to the surgeon and substantially eliminates the problem of passing delicate wires, or optic fibers through the flexible wrist joint of the instrument. A force sensor apparatus may be manufactured, tested, and calibrated as a separate modular component and brought together with other components in the conventional instrument assembly process. The force sensor apparatus may also be manufactured as an integrated part of the instrument. In addition, it is possible to choose a material for the sensor structural member different from the material of the instrument shaft whose design considerations may compromise the mechanical properties required for the sensor.
The scope of the invention is defined by the claims, which are incorporated into this section by reference. A more complete understanding of embodiments of the present invention will be afforded to those skilled in the art, as well as a realization of additional advantages thereof, by a consideration of the following detailed description of one or more embodiments. Reference will be made to the appended sheets of drawings that will first be described briefly.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. IA is a perspective view of a robotic surgical system in accordance with an embodiment of the present invention.
FIG. IB is a perspective view of a robotic surgical arm cart system of the robotic surgical system in FIG. IA in accordance with an embodiment of the present invention.
FIG. 1C is a front perspective view of a master console of the robotic surgical system in FIG. IA in accordance with an embodiment of the present invention.
FIG. 2 is a perspective view of a surgical instrument including a force sensor apparatus operably coupled proximal (or inboard) to a wrist joint in accordance with an embodiment of the present invention.
FIG. 3A is a perspective view of a force sensor apparatus in accordance with an embodiment of the present invention.
FIG. 3B illustrates the force sensor of FIG. 3A operably coupled to a shaft and end portion of a surgical instrument in accordance with an embodiment of the present invention.
FIG. 3C illustrates the force sensor of FIG. 3A with a protective cover over a portion of the force sensor in accordance with an embodiment of the present invention.
FIG. 4A is a perspective view of an inner tube of a force sensor apparatus in accordance with another embodiment of the present invention.
FIG. 4B is a partial cross-sectional view of an outer tube/cover over the inner tube of FIG. 4A of the force sensor
apparatus in accordance with an embodiment of the present invention .
FIG. 4C shows intervening material between the inner and outer tubes of FIG. 4B of the force sensor apparatus and wires or optic fibers operably coupled to the force sensor apparatus in accordance with an embodiment of the present invention.
FIG. 4D shows a partial cross-sectional view of the force sensor apparatus operably coupled proximal to (or inboard of) a wrist joint of a surgical instrument in accordance with an embodiment of the present invention.
FIG. 5A is a perspective view of a force sensor apparatus in accordance with yet another embodiment of the present invention .
FIG. 5B illustrates an enlarged perspective view of a section of the force sensor apparatus of FIG. 5A.
FIG. 5C illustrates a cross-sectional view of the force sensor apparatus of FIG. 5A along line 5C-5C, and FIG. 5Cl illustrates a magnified section labeled 5Cl in FIG. 5C.
FIG. 5D illustrates a cross-sectional view of the force sensor apparatus of FIG. 5A along line 5D-5D.
FIG. 5E illustrates a strain relief for strain gauge wires or optic fibers in accordance with an embodiment of the present invention .
FIGS. 6A and 6B illustrate perspective views of another force sensor apparatus and an enlarged section of the force sensor apparatus in accordance with another embodiment of the present invention.
FIG. 6C illustrates an end view of the force sensor apparatus of FIGS. 6A and 6B including radial ribs positioned in non-uniform angles, and FIG. 6Cl illustrates a magnified section labeled 6Cl in FIG. 6C, in accordance with another embodiment of the present invention.
FIGS. 7A and 7B illustrate a perspective view and an end view of another force sensor apparatus including radial ribs positioned in non-uniform angles and apertures on the tube surface, and FIG. 7Bl illustrates a magnified section labeled 7Bl in FIG. 7B, in accordance with another embodiment of the present invention.
FIG. 8 illustrates an end view of another force sensor apparatus including three radial ribs in accordance with another embodiment of the present invention.
FIGS. 9A and 9B illustrate perspective views of another force sensor apparatus and an enlarged section of the force sensor apparatus, respectively, in accordance with another embodiment of the present invention.
FIG. 9C illustrates an end view of the force sensor apparatus of FIGS. 9A and 9B including radial ribs positioned in non-uniform angles and a central through passage in accordance with another embodiment of the present invention.
Embodiments of the present invention and their advantages are best understood by referring to the detailed description that follows. It should be appreciated that like reference numerals are used to identify like elements illustrated in one or more of the figures. It should also be appreciated that the figures may not be necessarily drawn to scale.
DETAILED DESCRIPTION
The present invention provides a multi-component system, apparatus, and method for sensing forces applied to tissue while performing robotically-assisted surgical procedures on a patient, particularly including open surgical procedures, neurosurgical procedures, and minimally invasive procedures, such as laparoscopy, arthroscopy, thoracoscopy, and the like. The apparatus and method of the present invention are particularly useful as part of a telerobotic surgical system that allows the surgeon to manipulate the surgical instruments through a servomechanism from a remote location from the patient. To that end, the manipulator apparatus or slave of the present invention will usually be driven by a kinematically- equivalent master having six or more degrees of freedom (e.g., 3 degrees of freedom for position and 3 degrees of freedom for orientation) to form a telepresence system with force reflection or other scalar force magnitude display. A description of a suitable slave-master system can be found in U.S. Patent No. 6,574,355, the complete disclosure of which is incorporated herein by reference for all purposes.
Referring to the drawings in detail, wherein like numerals indicate like elements, a robotic surgical system 10 is illustrated according to an embodiment of the present invention. As shown in FIGS. IA through 1C, robotic system 10 generally includes one or more surgical manipulator assemblies 51 mounted to or near an operating table O and a master control assembly located at a surgeon's console 90 for allowing the surgeon S to view the surgical site and to control the manipulator assemblies 51. The system 10 will also include one or more viewing scope assemblies and a plurality of surgical instrument assemblies 54 adapted for being removably coupled to the manipulator assemblies 51 (discussed in more detail below) . Robotic system
10 includes at least two manipulator assemblies 51 and preferably at least three manipulator assemblies 51. The exact number of manipulator assemblies 51 will depend on the surgical procedure and the space constraints within the operating room among other factors. As discussed in detail below, one of the assemblies 51 will typically operate a viewing scope assembly (e.g., in endoscopic procedures) for viewing the surgical site, while the other manipulator assemblies 51 operate surgical instruments 54 for performing various procedures on the patient P.
The control assembly may be located at a surgeon's console 90 which is usually located in the same room as operating table O so that the surgeon may speak to his/her assistant (s) and directly monitor the operating procedure. However, it should be understood that the surgeon S can be located in a different room or a completely different building from the patient P. The master control assembly generally includes a support, a monitor for displaying an image of the surgical site to the surgeon S, and one or more master (s) for controlling manipulator assemblies 51. Master (s) may include a variety of input devices, such as hand-held wrist gimbals, joysticks, gloves, trigger-guns, hand- operated controllers, voice recognition devices, or the like. Preferably, master (s) will be provided with the same degrees of freedom as the associated surgical instrument assemblies 54 to provide the surgeon with telepresence, the perception that the surgeon is immediately adjacent to and immersed in the surgical site, and intuitiveness, the perception that the master (s) are integral with the instruments 54 so that the surgeon has a strong sense of directly and intuitively controlling instruments 54 as if they are part of or held in his/her hands. Position, force, and tactile feedback sensors (not shown) may also be employed on instrument assemblies 54 to transmit position, force, and tactile sensations from the surgical instrument back
to the surgeon's hands, ears, or eyes as he/she operates the telerobotic system. One suitable system and method for providing telepresence to the operator is described in U.S. Patent No. 6,574,355, which has previously been incorporated herein by reference.
The monitor 94 will be suitably coupled to the viewing scope assembly such that an image of the surgical site is provided adjacent the surgeon's hands on surgeon console. Preferably, monitor 94 will display an image on a display that is oriented so that the surgeon feels that he or she is actually looking directly down onto the operating site. To that end, an image of the surgical instruments 54 appears to be located substantially where the operator's hands are located even though the observation points (i.e., the endoscope or viewing camera) may not be from the point of view of the image. In addition, the real-time image is preferably transformed into a stereo image such that the operator can manipulate the end effector and the hand control as if viewing the workspace in substantially true presence. By true presence, it is meant that the presentation of an image is a true stereo image simulating the viewpoint of an operator that is physically manipulating the surgical instruments 54. Thus, a controller (not shown) transforms the coordinates of the surgical instruments 54 to a perceived position so that the stereo image is the image that one would see if the camera or endoscope was located directly behind the surgical instruments 54. A suitable coordinate transformation system for providing this virtual image is described in U.S. Patent No. 5,631,973, the complete disclosure of which is incorporated herein by reference for all purposes.
A servo control is provided for transferring the mechanical motion of masters to manipulator assemblies 51. The servo control may be separate from, or integral with, manipulator
assemblies 51. The servo control will usually provide force and torque feedback from the surgical instruments 51 to the hand- operated masters. In addition, the servo control may include a safety monitoring controller (not shown) to safely halt system operation, or at least inhibit all robot motion, in response to recognized undesirable conditions (e.g., exertion of excessive force on the patient, mismatched encoder readings, etc.) . The servo control preferably has a servo bandwidth with a 3 dB cut off frequency of at least 10 Hz so that the system can quickly and accurately respond to the rapid hand motions used by the surgeon and yet to filter out undesirable surgeon hand tremors. To operate effectively with this system, manipulator assemblies 51 have a relatively low inertia, and the drive motors have relatively low ratio gear or pulley couplings. Any suitable conventional or specialized servo control may be used in the practice of the present invention, with those incorporating force and torque feedback being particularly preferred for telepresence operation of the system.
Referring to FIG. 2, a perspective view is shown of a surgical instrument 54 including a force sensor apparatus 100 operably coupled to a distal end of a rigid shaft 110 and proximal to a wrist joint 121 in accordance with an embodiment of the present invention. An end portion 120, such as a surgical end effector, is coupled to force sensor apparatus 100 via the wrist joint 121. A housing 150 is operably coupled to a proximal end of the rigid shaft 110 and includes an interface 152 which mechanically and electrically couples instrument 54 to the manipulator 51.
Referring now to FIGS. 3A-3C in conjunction with FIGS. IA- 1C and 2, an improved apparatus, system, and method for sensing and feedback of forces and/or torques to the surgeon will be described in accordance with an embodiment of the present
invention. FIG. 3A shows a perspective view of force sensor apparatus 100 including in one embodiment a tube 102 including a number (e.g., 3, 4, 6, or 8) of strain gauges 104 (e.g., 104a and 104b) mounted to a surface of tube 102 and oriented axially (parallel to the lengthwise axis z of the tube) . FIG. 3B shows the force sensor apparatus 100 of FIG. 3A operably coupled to a shaft 110 and end portion 120 of a surgical instrument in accordance with an embodiment of the present invention. FIG. 3C shows a cross-section view of force sensor apparatus 100 including a cover or sleeve 113 over tube 102.
In accordance with an embodiment of the present invention, force sensor apparatus 100 is a separately manufacturable module or part adapted for incorporation as part of the shaft 110 of surgical instrument 54 at a prescribed distance from the tip where there may be an articulated wrist with specialized jaws, cutting devices, or other end portion 120. In one example, tube 102 may be made of a sufficiently strong material and may be spool shaped, including end portions 102b, 102c with a depressed portion 102a therebetween that is smaller in diameter than end portions 102b, 102c. Strain gauges 104 may be mounted on the surface of depressed portion 102a. Proximal tube portion 102c operably couples to the shaft 110 of surgical instrument 54 and distal tube portion 102b operably couples to a wrist joint 121. In one example, the diameter of the completed force sensor apparatus matches the diameter of the instrument shaft, thus allowing the entire assembly of the instrument (including the coupled force sensor apparatus) to pass through a cannula or a seal without added friction or snagging.
Force sensor apparatus 100 includes a through passage 109 for end portion actuation cables or rods. End features 108 of end portion 102b insure secure mounting and angular alignment to the main instrument shaft and wrist/ jaw/other end portion sub-
assembly of the instrument. Wire leads or optic fibers 116 (e.g., shielded twisted pairs, coax, or fiber) from the strain gauges 104 may be inlaid into grooves 112 in proximal tube portion 102c of tube 102 and matching grooves in the shaft 110 of the surgical instrument 54. The wire leads or optic fibers 116 may then be embedded in an adhesive bonding or potting compound such as epoxy.
In one embodiment, as illustrated in FIG. 3C, cover 113 is positioned over and encapsulates the mounted strain gauges 104 and other circuit elements on the surface of the tube 102, thereby providing mechanical protection of the sensors. In one example, cover 113 is a mechanically protective woven sleeve potted on depressed portion 102a and is comprised of a woven resin impregnated fiberglass or metal braid electrical shielding.
As disclosed in U.S. Patent Application No. 11/537,241, filed September 29, 2006, the contents of which have been previously incorporated by reference, strain gauges 104 may be spaced in a ring at intervals around the circumference of the tube 102 (e.g., 3 gauges at 120 degrees, 4 gauges at 90 degrees, or 4 gauges at 70 degrees and 110 degrees) . The signals from the sensors are combined arithmetically in various sums and differences to obtain measures of three perpendicular forces (e.g., Fx, Fy, and Fz) exerted upon the instrument tip and the torques about the two axes perpendicular to the shaft axis
(i.e., axes x and y) . In accordance with the present invention, the measurement of the forces is made independent of the orientation and effective lever arm length of an articulated wrist mechanism at the distal end of the instrument when two axially separated sets or rings of gauges are utilized. Forces exerted against end portion 120 are detected by the force sensing elements via an interrogator, which may be operably
coupled to the servo control or to a processor for notifying the surgeon of these forces (e.g., via master(s) or a display) . It is understood that by adding a second ring of similarly oriented gauges (e.g., two sets of 3 gauges or two sets of 4 gauges) at a different axial position on the tube, additional applied torque information (e.g., Tx and Ty) may be obtained, and dependence of the force data on instrument wrist length, orientation, and resulting jaw distance may be eliminated.
In one example, various strain gauges may be used, including but not limited to conventional foil type resistance gauges, semiconductor gauges, optic fiber type gauges using Bragg grating or Fabry-Perot technology, or others, such as strain sensing surface acoustic wave (SAW) devices. Optic fiber Bragg grating (FBG) gauges may be advantageous in that two sensing elements may be located along one fiber at a known separation, thereby only requiring the provision of four fibers along the instrument shaft.
Both fiber technologies require an interrogator unit that decodes the optically encoded strain information into electrical signals compatible with the computer control hardware or display means of the robotic surgical system. A processor may then be used to calculate forces according to the signals from the strain gauges/sensors.
Additionally, there may be co-mounted unstrained gauges or Poisson strained gauges oriented in the circumferential direction adjacent to each axial gauge and incorporated in the bridge completion circuits to eliminate temperature effects. The strain gauge bridge circuits are completed in a manner to give the best signal for bending loads due to the lateral forces (Fx and Fy) exerted on the instrument tip jaws.
For resistive foil or semiconductor strain gauges, active components such as bare die op-amps and passive components such as secondary resistors or capacitors may be attached adjacent to the strain gauges connected by bond wires or thick film circuit traces in the manner of hybrid circuits to amplify, filter, and/or modulate the gauge output signals to reject noise sources. Such components are not needed for fiber optic gauges.
Surgical instrument 54 to which force sensor apparatus 100 couples may include a circumferentially coiled insulated flex circuit style service loop of parallel conductive traces at the proximal end of the instrument shaft 110 permitting the substantially free rotation of the instrument shaft while conducting the input gauge excitation power and output gauge signals to stationary housing 150 of the instrument 54.
Housing 150 operably interfaces with a robotic manipulator arm 51, in one embodiment via a sterile adaptor interface 152. Applicable housings, sterile adaptor interfaces, and manipulator arms are disclosed in U.S. Patent Application No. 11/314,040 filed on December 20, 2005, and U.S. Application No. 11/613,800 filed on December 20, 2006, the full disclosures of which are incorporated by reference herein for all purposes. Examples of applicable shafts, end portions, housings, sterile adaptors, and manipulator arms are manufactured by Intuitive Surgical, Inc. of Sunnyvale, California.
In a preferred configuration, end portion 120 has a range of motion that includes pitch and yaw motion about the x- and y- axes and rotation about the z-axis (as shown in FIG. 3A) . These motions as well as actuation of an end effector are provided via cables and/or rods running through shaft 110 and into housing 150 that transfer motion from the manipulator arm 51.
Embodiments of drive assemblies, arms, forearm assemblies, adaptors, and other applicable parts are described for example
in U.S. Patent Nos. 6,331,181, 6,491,701, and 6,770,081, the full disclosures of which are incorporated herein by reference for all purposes.
It is noted that various surgical instruments may be improved in accordance with the present invention, including but not limited to tools with and without end effectors, such as jaws, scissors, graspers, needle holders, micro-dissectors, staple appliers, tackers, suction irrigation tools, clip appliers, cutting blades, irrigators, catheters, and suction orifices. Alternatively, the surgical instrument may comprise an electrosurgical probe for ablating, resecting, cutting or coagulating tissue. Such surgical instruments are available from Intuitive Surgical, Inc. of Sunnyvale, California.
For the methods and apparatus mentioned above, it may be advantageous to use a calibration process in which combinations of forces and torques are applied to the instrument tip serially, simultaneously, or in combinations while correction factors and offsets are determined. The correction factors and offsets may then be applied to the theoretical equations for combining the gauge outputs to obtain Fx, Fy, Fz, Tx, and Ty. Such a calibration process may be done either by directly calculating the correction factors and offsets or by a learning system such as a neural network embedded in the calibration fixture or in the instrument itself. In any calibration method, the calibration data may be programmed into an integrated circuit embedded in the instrument so that the surgical system using the individual instrument can correctly identify and apply its correction factors and offsets while the instrument is in use .
Advantageously, force sensor apparatus 100 of the present invention is adaptable to the size and shape constraints of various robotic surgical instruments and is suitable for a
variety of instruments. Accordingly, end portions 102b, 102c may be formed into various applicable shapes and sizes. Furthermore, force sensor apparatus 100 may be manufactured, tested, and calibrated as a separate modular component and brought together with other components in the conventional instrument assembly process. Also, the sensor may be a slip-on module with suitable electrical contacts that mate with contacts on the instrument shaft permitting a higher value sensor to be used with lower cost instruments of limited cycle life. In addition, the sensor structural member 102 may be comprised of an advantageous material, which may be a different material than the instrument shaft 110 whose design considerations may compromise the properties required for the sensor.
Referring now to FIGS. 4A through 4D, a force sensor apparatus 200 is illustrated in accordance with another embodiment of the present invention. The descriptions of substantially similar parts or elements as those described above with respect to FIGS. 3A-3C are applicable in this embodiment with respect to FIGS. 4A-4D, although redundant descriptions will be omitted.
FIG. 4A is a perspective view of an inner tube 218 of force sensor apparatus 200 in accordance with an embodiment of the present invention. Inner tube 218 includes a proximal raised end portion 218b and a depressed portion 218a smaller in diameter than raised end portion 218b. Strain gauges, as described above with respect to FIGS. 3A-3C, may be mounted on the surface of depressed portion 218a. Raised end portion 218b may include grooves 212 for routing of wire leads or optic fibers from strain gauges 204.
FIG. 4B is a partial cross-sectional view of an outer tube 214 over the inner tube 218. In one example, outer tube 214 of force sensor apparatus 200 is a concentric tubular structural
member made of sufficiently strong materials that can encapsulate the strain gauges and other electronics within an annular gap between the inner and outer tubes 218 and 214. In one embodiment, the concentric tubes are joined rigidly at the proximal end adjacent proximal portion 218b while a narrow annular gap between the distal ends near a distal portion is filled with an elastomeric material 215 that prevents the high and varying axial forces of the wrist and jaw actuator cable or rods from being transmitted through the inner tube carrying the strain gauges. It is noted that the partially isolated tube carrying the gauges may be either the outer or the inner tube. The non-isolated tube of the pair may carry the entire axial cable load. Preferably, the gauges may be placed on the interior tube to isolate the gauges from the environment. In such an embodiment, the outer tube 214 carries the axial cable forces and also permits the outer tube to provide mechanical protection and potentially act as electromagnetic interference (EMI) shielding to the gauges 204 on the inner tube 218.
FIG. 4C highlights elastomeric material 215 between the inner tube 218 and outer tube 214 of the force sensor apparatus 200, and wires or optic fibers 216 operably coupled to gauges 204. FIG. 4D is a partial cross-sectional view of the force sensor apparatus 200 operably coupled proximal to a wrist joint 221 of a surgical instrument in accordance with an embodiment of the present invention. Leads 216 (e.g., shielded twisted pairs, coax, or optic fiber) from the strain gauges 204 may be inlaid into grooves 212 in proximal tube portion 218b of tube 218 and matching grooves in the shaft 210 of a surgical instrument. The leads 216 may then be embedded in an adhesive potting compound such as an epoxy.
In one example, if an outer sensor carrying tube is mounted stationary at the rear mechanism housing, the wire routing may be simplified by not requiring a rotating joint service loop.
Advantageously, the relative shear and compressive properties of elastomers enable this design concept. A suitable elastomer 215 with a low shear modulus permits the relative compression and extension of the cable load carrying tube with respect to the sensor carrying tube (which is connected rigidly at only one end of the tubes as mentioned above) . Thus, cable loads and load changes do not affect the sensors. On the other hand, an elastomer confined between two relatively rigid surfaces where the gap between the surfaces is small compared to the extent of the surfaces behaves as a nearly incompressible rigid connection in the direction normal to the confining surfaces, in this case the radial direction of the combined annular tube structure. This causes bending moments carried in the axially loaded tube to be transmitted to and shared by the sensor tube. Thus, the sensor tube can advantageously detect the bending moments due to lateral loads on the instrument wrist and jaws without significant interference or "noise" from the higher varying axial cable loads carried by the other tube. Advantageously, the decoupling of the load carrying members in an endoscopic surgical instrument force sensor enables the separation of undesired jaw actuator tendon forces from desired lateral jaw load induced bending moments on the force sensor.
Alternatively, the desired effect of axially de- constraining the sensor carrying tube from the cable load carrying tube at one end may be obtained by inserting an annular ring of a more rigid low friction material in the annular gap between the unconnected ends of the tubes machined for a very close fit, thereby permitting the relative axial motion but transmitting the lateral motion associated with bending moments
due to the lateral tip forces. Another alternative is to make the tubes with a very close fit and apply a low friction coating to one or both surfaces at the distal end. However, these alternatives may create a small deadband in sensor response depending on how close a fit may be reliably obtained. The expansion thermal coefficients of the inner and outer tubes must also be matched or the required close fit may bind when heated or cooled.
It should also be understood that the same decoupling effect achieved with concentric tubes as described above may potentially be achieved with alternating axial finger-like members half (or some number) of which carry the axial cable loads while the alternating (or remaining) ones carry the bending loads. Again, these members may be rigidly connected at the proximal end while they are decoupled in the axial direction at the distal end.
Referring now to FIGS. 5A-5E, views of a surgical instrument including another force sensor apparatus 300 is illustrated in accordance with yet another embodiment of the present invention. An end portion 320, such as a surgical end effector, is coupled to force sensor apparatus 300 via a wrist joint 321. A housing 150 (FIG. 5E) is operably coupled to a proximal end of a rigid shaft 310, the housing 150 further including an interface 152 which mechanically and electrically couples the instrument to the manipulator. FIG. 5B is an enlarged perspective view of an aperture and rib section of the force sensor apparatus of FIG. 5A. FIGS. 5C and 5D are cross- sectional views of the force sensor apparatus of FIG. 5A along lines 5C-5C and 5D-5D, respectively, and FIG. 5Cl illustrates a magnified section labeled 5Cl in FIG. 5C. FIG. 5E illustrates an example proximal portion of the surgical instrument including the housing and operably coupling of the instrument to an
interrogator 334 and processor 340. The descriptions of substantially similar parts or elements as those described above with respect to FIGS. 1-4 are applicable in this embodiment with respect to FIGS. 5A-5E, although redundant descriptions may be omitted.
Returning to Fig.5A, force sensor apparatus 300 includes a generally annular tube 306 operably coupled to a distal end of rigid shaft 310 and proximal to wrist joint 321 in accordance with an embodiment of the present invention. In one embodiment, tube 306 includes a number of rectangular-shaped apertures 301 cut from tube 306 and a plurality of radial ribs 302 forming through passages 308 for passage of actuation cables, wires, tubes, rods, and/or flushing fluids. Ribs 302 run along and radiate from the z-axis centerline of tube 306, and a number (e.g., 3, 4, 6, or 8) of strain gauges 304 are oriented parallel to the lengthwise z-axis of the tube and mounted to an outer rib surface 302a. The strain gauges may be inlaid into grooves or a depressed area 317 on the outer rib surface 302a in one example.
In the embodiment illustrated in FIGS. 5A-5D, force sensor apparatus 300 includes two sets of four apertures 301 cut from the wall of tube 306 at separate axial locations along tube 306. Each of the ribs 302 are separated by 90 degrees measured about the z-axis centerline of tube 306, which forms a cruciform cross-sectional view of the ribs 302, as shown in FIGS. 5C and 5D. Ribs 302 form four through passages 308 for passage of actuation cables, wires, tubes, and/or rods. Furthermore, ribs 302 may extend along the entire length of tube 306 thereby forming internal through passages along the entire length of tube 306, or ribs 302 may extend along a portion(s) of the length of tube 306, thereby forming internal through passages along a portion or portions of the length of tube 306.
Force sensor apparatus 300 is capable of sensing bending moments applied to its distal end due to lateral forces applied to the wrist joint or its specialized end portion. Advantageously, apertures 301 and ribs 302 provide for regions of controlled stress and strain when subjected to bending moments, which may be measured by fiber optic strain gauges 304 embedded in grooves along an outer surface of the ribs and sensor body parallel to the lengthwise z-axis of tube 306. Through passages 308 permit cables, wires, tubes, or rigid tendons to pass through the sensor apparatus body to actuate the distal wrist joint (s) and/or control the end portion.
In one example, tube 306 and ribs 302 may be made of a sufficiently strong but elastic material to allow sensing of stress and strain without mechanical failure. Tube 306 and ribs 302 are further comprised of material with a sufficiently low modulus of elasticity to give a sufficient strain signal under an applied load, a sufficiently high strain at yield to give adequate safety margin above the maximum design load, and a sufficiently high thermal diffusivity to promote rapid thermal equilibrium (therefore reducing thermal disturbances to sensor output signals) when subject to localized or asymmetric thermal disturbances from tissue contact or endoscope illumination. In particular, the plurality of radial ribs 302 may be comprised of a high thermal diffusivity material, such as an aluminum alloy (e.g., 6061-T6 aluminum) or a copper alloy (e.g., GlidCop® AL-
60) to reduce the temperature difference between opposing gauges under transient thermal disturbances while providing a direct thermal pathway between opposing gauges.
In one example, tube 306 may be comprised of metal alloys, treated metals, or plated metals, such as of aluminum, copper, or silver, which allow for adequate strain, mechanical failure safety margin, and high thermal diffusivity. In a further
example, 6061-T6 aluminum, which is an aluminum alloy that is heat treated and aged, GlidCop® AL-60, which is copper that is dispersion strengthened with ultrafine particles of aluminum oxide, or a dispersion strengthened silver, may be used to form tube 306 and ribs 302.
Advantageously, the present invention allows for a low bending moment of inertia to increase a strain signal to noise signal ratio consistent with a materials choice and rib design meeting the need for high thermal diffusivity and a direct thermal path between opposing strain gauges while also providing passage for actuation cables, wires, tubes, and/or rods.
Wire leads or optic fibers 316 (e.g., shielded twisted pairs, coax, or fiber) coupled to the strain gauges 304 may be inlaid into grooves 317 on tube 306, the outer rib surface 302a, and matching grooves 319 in shaft 310 of the surgical instrument. The wire leads or optic fibers 316 may then be embedded in an adhesive potting compound such as epoxy.
As disclosed in U.S. Patent Application No. 11/537,241, filed September 29, 2006, the contents of which have been previously incorporated by reference, strain gauges 304 may be spaced in a ring at intervals around the circumference of the tube 306 mounted on ribs 302 (e.g., 3 gauges at 120 degrees, 4 gauges at 90 degrees, or 4 gauges at 70 and 110 degrees) . The signals from the sensors are combined arithmetically in various sums and differences to obtain measures of three perpendicular forces (e.g., Fx, Fy, and Fz) exerted upon the instrument tip and the torques about the two axes perpendicular to the shaft axis (i.e., axes x and y) . In accordance with the present invention, the measurement of the forces is made independent of the orientation and effective lever arm length of an articulated wrist mechanism at the distal end of the instrument as well as wrist friction moments and actuator cable tensions when two
axially separated sets or rings of gauges are utilized. Forces exerted against end portion 320 are detected by the force sensing elements, which may be operably coupled to the servo control or surgeon display means via an interrogator 334 or to a processor 340 for notifying the surgeon of these forces (e.g., via master (s) or a display means) . It is understood that by adding a second ring of similarly oriented gauges (e.g., two sets of 3 gauges or two sets of 4 gauges) at a different position along the z-axis of the tube, additional applied torque information (e.g., Tx and Ty) can be obtained, and dependence of the force data on instrument wrist length, orientation, and resulting jaw distance and cable tensions, can be eliminated.
In one example, various strain gauges may be used, including but not limited to conventional foil type resistance gauges, semiconductor gauges, optic fiber type gauges using Bragg grating or Fabry-Perot technology, or others, such as strain sensing surface acoustic wave (SAW) devices. Optic fiber Bragg grating (FBG) gauges may be advantageous in that two sensing elements may be located along one fiber at a known separation, thereby only requiring the provision of four fibers along the instrument shaft. Fiber optic gauges may also be desirable because of their resistance to disturbance from cautery and other electromagnetic noise.
Both fiber technologies require an interrogator unit, such as interrogator unit 334 (FIG. 5E) that decodes the optically encoded strain information into electrical signals compatible with the computer control hardware of the robotic surgical system. A processor 340 (FIG. 5E) operably coupled to the interrogator unit 334 may then be used to calculate forces according to the signals from the strain gauges/sensors.
For resistive foil or semiconductor strain gauges, active components such as bare die op-amps and passive components such
as secondary resistors or capacitors may be attached adjacent to the strain gauges connected by bond wires or thick film circuit traces in the manner of hybrid circuits to amplify, filter, and/or modulate the gauge output signals to reject noise sources. Such components are not needed for fiber optic gauges.
In accordance with an embodiment of the present invention, force sensor apparatus 300 is a separately manufactured module or part adapted for incorporation as part of the shaft 310 of a laparoscopic surgical instrument at a prescribed distance from the tip where there may be an articulated wrist with specialized jaws, cutting devices, or other end portion 320. A proximal portion of tube 306 operably couples to the shaft 310 of the surgical instrument and a distal portion of tube 306 operably couples to wrist joint 321. In one example, the diameter of the completed force sensor apparatus matches the diameter of the instrument shaft, thus allowing the entire assembly of the instrument (including the coupled force sensor apparatus) to pass through a cannula or a seal without added friction or snagging. In other embodiments, the surgical instrument may be manufactured with a force sensor portion integrated as a part of shaft 310 (i.e., force sensor apparatus 300 is not separable from the shaft) .
Similar to the embodiments described above, the surgical instrument to which force sensor apparatus 300 couples may also include a service loop 330 (FIG. 5E) of conductive traces or optic fibers at the proximal end of the instrument shaft 310 and a cable swivel mechanism 332 permitting the substantially free rotation of the instrument shaft while conducting the input gauge excitation power or light and electrical or optical output gauge signals to the interrogator unit 334.
Similar to the embodiments described above, the housing 150 operably interfaces with a robotic manipulator arm, in one
embodiment via a sterile adaptor interface. Applicable housings, sterile adaptor interfaces, and manipulator arms are disclosed in U.S. Patent Application No. 11/314,040 filed on December 20, 2005, and U.S. Patent Application No. 11/613,800 filed on December 20, 2006, the full disclosures of which are incorporated by reference herein for all purposes. Examples of applicable shafts, end portions, housings, sterile adaptors, and manipulator arms are manufactured by Intuitive Surgical, Inc. of Sunnyvale, California.
In a preferred configuration, end portion 320 has a range of motion that includes pitch and yaw motion about the x- and y- axes and rotation about the z-axis. These motions as well as actuation of an end effector are provided via cables, wires, tubes, and/or rods running through through passages 308 and into the housing that transfer motion from the manipulator arm. Embodiments of drive assemblies, arms, forearm assemblies, adaptors, and other applicable parts are described for example in U.S. Patent Nos. 6,331,181, 6,491,701, and 6,770,081, the full disclosures of which are incorporated herein by reference for all purposes.
It is noted that various surgical instruments may be improved in accordance with the present invention, including but not limited to tools with and without end effectors, such as jaws, scissors, graspers, needle holders, micro-dissectors, staple appliers, tackers, suction irrigation tools, clip appliers, cutting blades, hooks, sealers, lasers, irrigators, catheters, and suction orifices. Alternatively, the surgical instrument may comprise an electrosurgical probe for ablating, resecting, cutting or coagulating tissue. Such surgical instruments are manufactured by Intuitive Surgical, Inc. of Sunnyvale, California.
For the sensing methods and apparatus mentioned above, it may be advantageous to use a calibration process in which combinations of forces and torques are applied to the instrument tip serially, simultaneously, or in combinations while correction factors and offsets are determined to apply to the theoretical equations for combining the gauge outputs to obtain Fx, Fy, Fz, Tx, and Ty. This calibration may be done either by directly calculating the correction factors and offsets or by a learning system such as a neural network embedded in the calibration fixture or in the instrument itself. In any calibration method, the calibration data may be programmed into an integrated circuit embedded in the instrument so that the surgical system using the individual instrument can correctly identify and apply its correction factors and offsets while the instrument is in use.
Advantageously, force sensor apparatus 300 of the present invention is adaptable to the size and shape constraints of robotic endoscopic surgical instruments and is suitable for a variety of instruments. Furthermore, force sensor apparatus 300 may be manufactured, tested, and calibrated as a separate modular component and brought together with other components in the conventional instrument assembly process or as an integrated part of the instrument shaft 310. Also, the sensor may be a slip-on module with suitable electrical contacts that mate with contacts on the instrument shaft permitting a higher value sensor to be used with lower cost instruments of limited cycle life.
The present invention is not limited to rib orientation or a certain number of ribs, sets of ribs, strain gauges, or tube apertures, and FIGS. 6A-6C1, 7A-7B1, 8, and 9A-9C illustrate force sensor apparatus in accordance with other embodiments of the present invention. The descriptions of substantially
similar parts or elements as those described above with respect to FIGS. 5A-5E are applicable in these embodiments although redundant descriptions may be omitted.
Referring now to FIGS. 6A-6C1, a force sensor apparatus 400 is illustrated, the force sensor apparatus 400 including four ribs 402 paired at skewed angles (e.g., 70 degrees and 110 degrees) about a z-axis centerline of a tube 406. Ribs 402 extend radially within tube 406 from the z-axis centerline of the tube providing four through passages 408a and 408b for passage of actuation cables, wires, tubes, and/or rods.
Advantageously, a larger through passage 408a utilizing skewed angles allows for easier passage of cables, wires, tubes, and/or rods through tube 406 (e.g., three hypodermic tubes may be passed per 110 degree channel) . In this embodiment, as can be seen in FIG. 6A, tube 406 does not include apertures through the wall of tube 406. However, the combined stiffness of tube 406 and ribs 402 still allow for a strong strain signal to noise signal ratio consistent with a materials choice and rib design meeting the need for high thermal diffusivity and a direct thermal path between opposing strain gauges while also providing passage for actuation cables, wires, tubes, and/or rods.
Similar to the embodiments disclosed above, a number of strain gauges 404 are oriented parallel to the lengthwise z-axis of the tube and mounted to an outer rib surface 402a. The strain gauges may be inlaid into grooves or a depressed area 417 on the outer rib surface 402a in one example. Wire leads or optic fibers 416 (e.g., shielded twisted pairs, coax, or fiber) coupled to the strain gauges 404 may be inlaid into grooves 417 on tube 406, the outer rib surface 402a, and matching grooves 417 in a shaft of the surgical instrument. The wire leads or optic fibers 416 may then be embedded in an adhesive potting compound such as epoxy.
Referring now in particular to FIGS. 6C and 6Cl, an end view of force sensor apparatus 400 and a magnified section labeled 6Cl in FIG. 6C are respectively illustrated. A thermal shielding over the strain gauges may be provided in accordance with another embodiment of the present invention. In one example, a thermal shunt shell 452 is provided over tube 406 with an insulating fluid filled gap 450 being provided between the outer surface of tube 406 and the inner surface of thermal shunt shell 452. Thermal shunt shell 452 may be comprised of a high diffusivity material, such as an aluminum alloy (e.g., 6061-T6 aluminum) or a copper alloy (e.g., GlidCop® AL-60) . Optionally, a light reflective coating 453 may be provided over thermal shunt shell 452, which may deflect light and reduce localized heating of the force sensor apparatus. An insulating coating 454 may also be provided over thermal shunt shell 452, the insulating coating 454 being comprised of a substantially transparent plastic shrink polymer in one example. Advantageously, the thermal shielding over the strain gauges as described above allows for greater heat/thermal diffusion among the sensors, being particularly advantageous for mitigating asymmetric thermal loads upon the instrument. The thermal shielding described above is applicable for various embodiments of the present invention.
Referring now to FIGS. 7A thru 7Bl, a force sensor apparatus 500 is illustrated, the force sensor apparatus 500 including four ribs 502 paired at skewed angles (e.g., 70 degrees and 110 degrees) about a z-axis centerline of a tube 506. Ribs 502 extend radially within tube 506 from the z-axis centerline of the tube providing four through passages 508a and 508b for passage of actuation cables, wires, tubes, and/or rods. Advantageously, a larger through passage 508a utilizing skewed angles allows for easier passage of cables, wires, tubes, and/or rods through tube 506 (e.g., three hypodermic tubes may be
passed per 110 degree channel) . In this embodiment, as can be seen in FIG. 7A, tube 506 include apertures 501 provided through the wall of tube 506. The reduced stiffness of exposed ribs 502 allow for a strong strain signal to noise signal ratio consistent with a materials choice and rib design meeting the need for high thermal diffusivity and a direct thermal path between opposing strain gauges while also providing passage for actuation cables, wires, tubes, and/or rods.
Similar to the embodiments disclosed above, a number of strain gauges 504 are oriented parallel to the lengthwise z-axis of the tube and mounted to an outer rib surface 502a. The strain gauges may be inlaid into grooves or a depressed area 517 on the outer rib surface 502a in one example. Wire leads or optic fibers 516 (e.g., shielded twisted pairs, coax, or fiber) coupled to the strain gauges 504 may be inlaid into grooves 517 on tube 506, the outer rib surface 502a, and matching grooves 517 in a shaft of the surgical instrument. The wire leads or optic fibers 516 in grooves 517 may then be embedded in an adhesive potting compound such as epoxy.
FIG. 8 illustrates a cross-sectional view of another force sensor apparatus which includes three ribs 602 separated by 120 degrees about a z-axis centerline of the force sensor apparatus tube 606. Ribs 602 provide three through passages 608. Wire leads or optic fibers 616 (e.g., shielded twisted pairs, coax, or fiber) coupled to strain gauges may be inlaid into grooves 617 on an instrument tube, an outer rib surface, and matching grooves in a shaft of the surgical instrument.
Referring now to FIGS. 9A-9C, a force sensor apparatus 700 is illustrated, the force sensor apparatus 700 including four ribs 702 paired at skewed angles (e.g., 70 degrees and 110 degrees) about a z-axis centerline of a tube 706. Ribs 702 extend radially within tube 706 from the z-axis centerline of
the tube providing through passages 708a and 708b. In this embodiment, force sensor apparatus 700 also includes a central through passage 708c along a lengthwise axis of tube 706 in accordance with another embodiment of the present invention. The through passages may be used for passage of actuation cables, wires, tubes, rods, and/or fluids. In this embodiment, as can be seen in FIG. 9A, tube 706 does not include apertures through the wall of the tube but apertures exposing portions of the interior ribs are within the scope of the present invention. Furthermore, the combined stiffness of tube 706 and ribs 702 still allow for a strong strain signal to noise signal ratio consistent with a materials choice and rib design meeting the need for high thermal diffusivity and a thermal path between opposing strain gauges while also providing passage for actuation cables, wires, tubes, rods, and/or fluids.
Similar to the embodiments disclosed above, a number of strain gauges 704 are oriented parallel to the lengthwise z-axis of the tube and mounted to an outer rib surface 702a. The strain gauges may be inlaid into grooves or a depressed area 717 on the outer rib surface 702a in one example. Wire leads or optic fibers 716 (e.g., shielded twisted pairs, coax, or fiber) coupled to the strain gauges 704 may be inlaid into grooves 717 on tube 706, the outer rib surface 702a, and matching grooves 717 in a shaft of the surgical instrument. The wire leads or optic fibers 716 may then be embedded in an adhesive potting compound such as epoxy.
Embodiments described above illustrate but do not limit the invention. It should also be understood that numerous modifications and variations are possible in accordance with the principles of the present invention. For example, the number of strain gauges and their configuration may vary but must allow for applicable force and torque determinations and noise
rejection. Similarly, the number of ribs and angle between ribs may vary from those described above. Furthermore, the embodiments of force sensor apparatus described above may be integrated with a surgical instrument upon manufacture as a non- separable part of the shaft. Accordingly, the scope of the invention is defined only by the following claims.
Claims
1. A force sensor apparatus, comprising: a tube portion including a plurality of radial ribs and a strain gauge positioned over each of the plurality of radial ribs; a proximal end of the tube portion that operably couples to a shaft of a surgical instrument that operably couples to a manipulator arm of a robotic surgical system; and a distal end of the tube portion that proximally couples to a wrist joint coupled to an end effector.
2. The apparatus of Claim 1, wherein the plurality of radial ribs are comprised of a high thermal diffusivity material.
3. The apparatus of Claim 1, wherein the plurality of radial ribs includes one selected from the group consisting of four ribs spaced apart by about 90 degrees about a lengthwise axis of the shaft and three ribs spaced apart by about 120 degrees about a lengthwise axis of the shaft.
4. The apparatus of Claim 1, wherein the plurality of radial ribs includes eight ribs in two groups of four exposed ribs, with each of the ribs in a group being spaced apart by about 90 degrees about a lengthwise axis of the tube portion.
5. The apparatus of Claim 1, wherein the plurality of radial ribs includes six ribs in two groups of three exposed ribs, with each of the ribs in a group being spaced apart by about 120 degrees about a lengthwise axis of the tube portion.
6. The apparatus of Claim 1, wherein the plurality of radial ribs includes two ribs spaced apart by 110 degrees about a lengthwise axis of the tube portion and two ribs spaced apart by
70 degrees about the lengthwise axis of the tube portion.
7. The apparatus of Claim 1, wherein each strain gauge is aligned with one other strain gauge along an axis parallel to a lengthwise axis of the tube portion.
8. The apparatus of Claim 1, wherein the primary strain sensing direction of each strain gauge is oriented parallel to a lengthwise axis of the tube portion.
9. The apparatus of Claim 1, wherein the strain gauge is selected from the group consisting of fiber optic, foil resistive, surface acoustic wave, and semiconductor type strain gauges.
10. The apparatus of Claim 1, wherein the strain gauge is selected from the group consisting of a Fabry-Perot strain gauge and a fiber Bragg grating strain gauge.
11. The apparatus of Claim 1, wherein each of the plurality of radial ribs includes an outer surface and a groove in the outer surface .
12. The apparatus of Claim 1, wherein the end effector is selected from the group consisting of jaws, scissors, graspers, needle holders, micro-dissectors, staple appliers, tackers, suction irrigation tools, clip appliers, cutting blades, cautery probes, hooks, sealers, lasers, irrigators, catheters, and suction devices.
13. The apparatus of Claim 1, further comprising at least one aperture on the tube portion that exposes at least one of the plurality of radial ribs.
14. The apparatus of Claim 1, further comprising a thermal shunt shell over an outer surface of the tube portion with a fluid filled gap between an inner surface of the thermal shunt shell and the outer surface of the tube portion.
15. The apparatus of Claim 14, further comprising an insulating material over the thermal shunt shell.
16. The apparatus of Claim 14, further comprising a light reflective coating over the thermal shunt shell.
17. The apparatus of Claim 1, further comprising a central through passage along a lengthwise axis of the tube portion.
18. A surgical instrument, comprising: a housing portion that interfaces with a manipulator arm of a robotic surgical system; a shaft with a distal tube portion including a plurality of radial ribs and a strain gauge positioned over each of the plurality of radial ribs; a wrist joint operably coupled to a distal end of the shaft; and an end effector operably coupled to the wrist joint.
19. The instrument of Claim 18, wherein the plurality of radial ribs are comprised of a high thermal diffusivity material.
20. The instrument of Claim 18, wherein the housing portion interfaces with a sterile adaptor interfacing with the manipulator arm.
21. The instrument of Claim 18, further comprising a force sensor proximate the housing portion for sensing an axial force along a lengthwise axis of the shaft.
22. The instrument of Claim 18, wherein the plurality of radial ribs includes one selected from the group consisting of four ribs spaced apart by about 90 degrees about a lengthwise axis of the shaft and three ribs spaced apart by about 120 degrees about a lengthwise axis of the shaft.
23. The instrument of Claim 18, wherein the plurality of radial ribs includes eight ribs in two groups of four exposed ribs, with each of the ribs in a group being spaced apart by about 90 degrees about a lengthwise axis of the shaft.
24. The instrument of Claim 18, wherein the plurality of radial ribs includes six ribs in two groups of three exposed ribs, with each of the ribs in a group being spaced apart by about 120 degrees about a lengthwise axis of the shaft.
25. The instrument of Claim 18, wherein the plurality of radial ribs includes two ribs spaced apart by 110 degrees about a lengthwise axis of the shaft and two ribs spaced apart by 70 degrees about the lengthwise axis of the shaft.
26. The instrument of Claim 18, wherein each strain gauge is aligned with one other strain gauge along an axis parallel to a lengthwise axis of the shaft.
27. The instrument of Claim 18, wherein the primary strain sensing direction of each of the strain gauges is oriented parallel to a lengthwise axis of the shaft.
28. The instrument of Claim 18, wherein the plurality of strain gauges is selected from the group consisting of fiber optic, foil resistive, surface acoustic wave, and semiconductor type strain gauges.
29. The instrument of Claim 18, wherein a strain gauge is selected from the group consisting of a Fabry-Perot strain gauge and a fiber Bragg grating strain gauge.
30. The instrument of Claim 18, wherein each of the plurality of radial ribs includes an outer surface and a groove in the outer surface.
31. The instrument of Claim 18, wherein the end effector is selected from the group consisting of jaws, scissors, graspers, needle holders, micro-dissectors, staple appliers, tackers, suction irrigation tools, clip appliers, cutting blades, cautery probes, hooks, sealers, lasers, irrigators, catheters, and suction devices.
32. The instrument of Claim 18, further comprising at least one aperture on the shaft that exposes at least one of the plurality of radial ribs
33. The instrument of Claim 18, further comprising a thermal shunt shell over an outer surface of the tube portion with a fluid filled gap between an inner surface of the thermal shunt shell and the outer surface of the tube portion.
34. The instrument of Claim 33, further comprising an insulating material over the thermal shunt shell.
35. The instrument of Claim 33, further comprising a light reflective coating over the thermal shunt shell.
36. The instrument of Claim 18, further comprising a central through passage along a lengthwise axis of the tube portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08861934A EP2231050B1 (en) | 2007-12-18 | 2008-12-10 | Ribbed force sensor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/958,772 US8496647B2 (en) | 2007-12-18 | 2007-12-18 | Ribbed force sensor |
US11/958,772 | 2007-12-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009079301A1 true WO2009079301A1 (en) | 2009-06-25 |
Family
ID=40383796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2008/086240 WO2009079301A1 (en) | 2007-12-18 | 2008-12-10 | Ribbed force sensor |
Country Status (3)
Country | Link |
---|---|
US (5) | US8496647B2 (en) |
EP (1) | EP2231050B1 (en) |
WO (1) | WO2009079301A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014005689A2 (en) | 2012-07-03 | 2014-01-09 | Kuka Laboratories Gmbh | Surgical instrument arrangement and drive train arrangement for a surgical instrument, in particular a robot-guided surgical instrument, and surgical instrument |
DE102013004487A1 (en) | 2013-03-11 | 2014-09-11 | Kuka Laboratories Gmbh | Drive train arrangement for a, in particular robot-guided, surgical instrument |
WO2017087439A1 (en) * | 2015-11-19 | 2017-05-26 | Covidien Lp | Optical force sensor for robotic surgical system |
WO2019174496A1 (en) | 2018-03-16 | 2019-09-19 | 微创(上海)医疗机器人有限公司 | Surgical robot system and surgical instrument thereof |
Families Citing this family (251)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9155544B2 (en) * | 2002-03-20 | 2015-10-13 | P Tech, Llc | Robotic systems and methods |
US8463439B2 (en) | 2009-03-31 | 2013-06-11 | Intuitive Surgical Operations, Inc. | Optic fiber connection for a force sensing instrument |
US8465474B2 (en) | 2009-05-19 | 2013-06-18 | Intuitive Surgical Operations, Inc. | Cleaning of a surgical instrument force sensor |
US7752920B2 (en) * | 2005-12-30 | 2010-07-13 | Intuitive Surgical Operations, Inc. | Modular force sensor |
US8496647B2 (en) | 2007-12-18 | 2013-07-30 | Intuitive Surgical Operations, Inc. | Ribbed force sensor |
US8628518B2 (en) | 2005-12-30 | 2014-01-14 | Intuitive Surgical Operations, Inc. | Wireless force sensor on a distal portion of a surgical instrument and method |
KR101296220B1 (en) | 2005-12-30 | 2013-08-13 | 인튜어티브 서지컬 인코포레이티드 | Modular force sensor |
US8219178B2 (en) | 2007-02-16 | 2012-07-10 | Catholic Healthcare West | Method and system for performing invasive medical procedures using a surgical robot |
US10893912B2 (en) | 2006-02-16 | 2021-01-19 | Globus Medical Inc. | Surgical tool systems and methods |
US10357184B2 (en) | 2012-06-21 | 2019-07-23 | Globus Medical, Inc. | Surgical tool systems and method |
US10653497B2 (en) | 2006-02-16 | 2020-05-19 | Globus Medical, Inc. | Surgical tool systems and methods |
US8561473B2 (en) | 2007-12-18 | 2013-10-22 | Intuitive Surgical Operations, Inc. | Force sensor temperature compensation |
JP5258314B2 (en) * | 2008-02-01 | 2013-08-07 | テルモ株式会社 | Medical manipulator and medical robot system |
US8491574B2 (en) * | 2009-03-30 | 2013-07-23 | Intuitive Surgical Operations, Inc. | Polarization and temperature insensitive surgical instrument force transducer |
US8918212B2 (en) | 2009-06-24 | 2014-12-23 | Intuitive Surgical Operations, Inc. | Arm with a combined shape and force sensor |
US8888789B2 (en) | 2009-09-23 | 2014-11-18 | Intuitive Surgical Operations, Inc. | Curved cannula surgical system control |
US20110071541A1 (en) | 2009-09-23 | 2011-03-24 | Intuitive Surgical, Inc. | Curved cannula |
US8623028B2 (en) | 2009-09-23 | 2014-01-07 | Intuitive Surgical Operations, Inc. | Surgical port feature |
US8465476B2 (en) | 2009-09-23 | 2013-06-18 | Intuitive Surgical Operations, Inc. | Cannula mounting fixture |
US8551115B2 (en) | 2009-09-23 | 2013-10-08 | Intuitive Surgical Operations, Inc. | Curved cannula instrument |
WO2011060031A1 (en) | 2009-09-23 | 2011-05-19 | Intuitive Surgical Operations, Inc. | Curved cannula surgical system |
EP2501319A1 (en) * | 2009-11-16 | 2012-09-26 | Koninklijke Philips Electronics N.V. | Human-robot shared control for endoscopic assistant robot |
WO2012012565A2 (en) * | 2010-07-20 | 2012-01-26 | The Johns Hopkins University | Interferometric force sensor for surgical instruments |
US20120116369A1 (en) * | 2010-11-10 | 2012-05-10 | Viola Frank J | Surgical instrument including accessory powering feature |
US20120116368A1 (en) * | 2010-11-10 | 2012-05-10 | Viola Frank J | Surgical instrument with add-on power adapter for accessory |
WO2012065175A2 (en) * | 2010-11-11 | 2012-05-18 | The Johns Hopkins University | Human-machine collaborative robotic systems |
US9775982B2 (en) | 2010-12-29 | 2017-10-03 | Medtronic, Inc. | Implantable medical device fixation |
US20120172891A1 (en) * | 2010-12-29 | 2012-07-05 | Medtronic, Inc. | Implantable medical device fixation testing |
US10112045B2 (en) | 2010-12-29 | 2018-10-30 | Medtronic, Inc. | Implantable medical device fixation |
WO2012131660A1 (en) | 2011-04-01 | 2012-10-04 | Ecole Polytechnique Federale De Lausanne (Epfl) | Robotic system for spinal and other surgeries |
US9161772B2 (en) * | 2011-08-04 | 2015-10-20 | Olympus Corporation | Surgical instrument and medical manipulator |
JP5841451B2 (en) | 2011-08-04 | 2016-01-13 | オリンパス株式会社 | Surgical instrument and control method thereof |
JP5931497B2 (en) | 2011-08-04 | 2016-06-08 | オリンパス株式会社 | Surgery support apparatus and assembly method thereof |
JP6009840B2 (en) | 2011-08-04 | 2016-10-19 | オリンパス株式会社 | Medical equipment |
JP6000641B2 (en) | 2011-08-04 | 2016-10-05 | オリンパス株式会社 | Manipulator system |
JP6005950B2 (en) | 2011-08-04 | 2016-10-12 | オリンパス株式会社 | Surgery support apparatus and control method thereof |
JP5953058B2 (en) | 2011-08-04 | 2016-07-13 | オリンパス株式会社 | Surgery support device and method for attaching and detaching the same |
JP5936914B2 (en) | 2011-08-04 | 2016-06-22 | オリンパス株式会社 | Operation input device and manipulator system including the same |
WO2013018861A1 (en) | 2011-08-04 | 2013-02-07 | オリンパス株式会社 | Medical manipulator and method for controlling same |
JP6081061B2 (en) | 2011-08-04 | 2017-02-15 | オリンパス株式会社 | Surgery support device |
JP6021484B2 (en) | 2011-08-04 | 2016-11-09 | オリンパス株式会社 | Medical manipulator |
WO2013018908A1 (en) | 2011-08-04 | 2013-02-07 | オリンパス株式会社 | Manipulator for medical use and surgery support device |
JP6021353B2 (en) | 2011-08-04 | 2016-11-09 | オリンパス株式会社 | Surgery support device |
KR101839444B1 (en) * | 2011-10-31 | 2018-04-27 | 삼성전자 주식회사 | Force sensing apparatus and robot arm including the force sensing apparatus |
KR101912716B1 (en) * | 2011-11-01 | 2018-10-30 | 삼성전자주식회사 | Robot arm including force sensing apparatus |
US8652031B2 (en) * | 2011-12-29 | 2014-02-18 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Remote guidance system for medical devices for use in environments having electromagnetic interference |
US9339197B2 (en) | 2012-03-26 | 2016-05-17 | Medtronic, Inc. | Intravascular implantable medical device introduction |
US9854982B2 (en) | 2012-03-26 | 2018-01-02 | Medtronic, Inc. | Implantable medical device deployment within a vessel |
US9220906B2 (en) | 2012-03-26 | 2015-12-29 | Medtronic, Inc. | Tethered implantable medical device deployment |
US10485435B2 (en) | 2012-03-26 | 2019-11-26 | Medtronic, Inc. | Pass-through implantable medical device delivery catheter with removeable distal tip |
US9717421B2 (en) | 2012-03-26 | 2017-08-01 | Medtronic, Inc. | Implantable medical device delivery catheter with tether |
US9833625B2 (en) | 2012-03-26 | 2017-12-05 | Medtronic, Inc. | Implantable medical device delivery with inner and outer sheaths |
CN104364628A (en) * | 2012-06-14 | 2015-02-18 | Skf公司 | Machine arrangement |
US11974822B2 (en) | 2012-06-21 | 2024-05-07 | Globus Medical Inc. | Method for a surveillance marker in robotic-assisted surgery |
US11793570B2 (en) | 2012-06-21 | 2023-10-24 | Globus Medical Inc. | Surgical robotic automation with tracking markers |
US11864745B2 (en) | 2012-06-21 | 2024-01-09 | Globus Medical, Inc. | Surgical robotic system with retractor |
US11045267B2 (en) | 2012-06-21 | 2021-06-29 | Globus Medical, Inc. | Surgical robotic automation with tracking markers |
US11857266B2 (en) | 2012-06-21 | 2024-01-02 | Globus Medical, Inc. | System for a surveillance marker in robotic-assisted surgery |
US11395706B2 (en) | 2012-06-21 | 2022-07-26 | Globus Medical Inc. | Surgical robot platform |
US11399900B2 (en) | 2012-06-21 | 2022-08-02 | Globus Medical, Inc. | Robotic systems providing co-registration using natural fiducials and related methods |
US11298196B2 (en) | 2012-06-21 | 2022-04-12 | Globus Medical Inc. | Surgical robotic automation with tracking markers and controlled tool advancement |
US10231791B2 (en) | 2012-06-21 | 2019-03-19 | Globus Medical, Inc. | Infrared signal based position recognition system for use with a robot-assisted surgery |
US11864839B2 (en) | 2012-06-21 | 2024-01-09 | Globus Medical Inc. | Methods of adjusting a virtual implant and related surgical navigation systems |
US12004905B2 (en) | 2012-06-21 | 2024-06-11 | Globus Medical, Inc. | Medical imaging systems using robotic actuators and related methods |
US11116576B2 (en) | 2012-06-21 | 2021-09-14 | Globus Medical Inc. | Dynamic reference arrays and methods of use |
US10624710B2 (en) | 2012-06-21 | 2020-04-21 | Globus Medical, Inc. | System and method for measuring depth of instrumentation |
US11253327B2 (en) | 2012-06-21 | 2022-02-22 | Globus Medical, Inc. | Systems and methods for automatically changing an end-effector on a surgical robot |
US10350013B2 (en) | 2012-06-21 | 2019-07-16 | Globus Medical, Inc. | Surgical tool systems and methods |
US10136954B2 (en) | 2012-06-21 | 2018-11-27 | Globus Medical, Inc. | Surgical tool systems and method |
US11857149B2 (en) | 2012-06-21 | 2024-01-02 | Globus Medical, Inc. | Surgical robotic systems with target trajectory deviation monitoring and related methods |
WO2013192598A1 (en) | 2012-06-21 | 2013-12-27 | Excelsius Surgical, L.L.C. | Surgical robot platform |
US10758315B2 (en) | 2012-06-21 | 2020-09-01 | Globus Medical Inc. | Method and system for improving 2D-3D registration convergence |
US11317971B2 (en) | 2012-06-21 | 2022-05-03 | Globus Medical, Inc. | Systems and methods related to robotic guidance in surgery |
US11607149B2 (en) | 2012-06-21 | 2023-03-21 | Globus Medical Inc. | Surgical tool systems and method |
KR101960839B1 (en) * | 2012-09-04 | 2019-03-22 | 삼성전자주식회사 | Force sensing apparatus and method of operating force sensing apparatus |
RU2515481C1 (en) * | 2012-11-09 | 2014-05-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет им. М.В. Ломоносова" | Adaptive device for biological tissue elasticity research in endoscopic examination |
US20140296869A1 (en) | 2013-03-14 | 2014-10-02 | Intuitive Surgical Operations, Inc. | Surgical instrument shaft |
KR101531088B1 (en) * | 2013-05-30 | 2015-07-06 | 삼성전기주식회사 | Inertial Sensor and Method of Manufacturing The Same |
US9884426B2 (en) | 2013-06-27 | 2018-02-06 | De-Sta-Co Europe Gmbh | Boom utilized in a geometric end effector system |
US10202902B2 (en) | 2013-08-30 | 2019-02-12 | United Technologies Corporation | Geared architecture gas turbine engine with oil scavenge |
US9038779B2 (en) | 2013-08-30 | 2015-05-26 | United Technologies Corporation | Geared architecture gas turbine engine with oil scavenge |
US9283048B2 (en) | 2013-10-04 | 2016-03-15 | KB Medical SA | Apparatus and systems for precise guidance of surgical tools |
US9817019B2 (en) | 2013-11-13 | 2017-11-14 | Intuitive Surgical Operations, Inc. | Integrated fiber bragg grating accelerometer in a surgical instrument |
EP3079608B8 (en) | 2013-12-11 | 2020-04-01 | Covidien LP | Wrist and jaw assemblies for robotic surgical systems |
US9241771B2 (en) | 2014-01-15 | 2016-01-26 | KB Medical SA | Notched apparatus for guidance of an insertable instrument along an axis during spinal surgery |
GB2522472B (en) * | 2014-01-27 | 2017-09-06 | Epsilon Optics Aerospace Ltd | A method and apparatus for a structural monitoring device adapted to be locatable within a tubular structure |
US10039605B2 (en) | 2014-02-11 | 2018-08-07 | Globus Medical, Inc. | Sterile handle for controlling a robotic surgical system from a sterile field |
US10004562B2 (en) | 2014-04-24 | 2018-06-26 | Globus Medical, Inc. | Surgical instrument holder for use with a robotic surgical system |
US10175127B2 (en) | 2014-05-05 | 2019-01-08 | Covidien Lp | End-effector force measurement drive circuit |
US11428591B2 (en) | 2014-05-05 | 2022-08-30 | Covidien Lp | End-effector force measurement drive circuit |
US9987095B2 (en) * | 2014-06-26 | 2018-06-05 | Covidien Lp | Adapter assemblies for interconnecting electromechanical handle assemblies and surgical loading units |
US10357257B2 (en) | 2014-07-14 | 2019-07-23 | KB Medical SA | Anti-skid surgical instrument for use in preparing holes in bone tissue |
US10470796B2 (en) | 2014-07-29 | 2019-11-12 | Intuitive Surgical Operations, Inc. | Cannula with sensors to measure patient bodywall forces |
EP3179954A4 (en) | 2014-08-12 | 2018-03-14 | Intuitive Surgical Operations Inc. | Detecting uncontrolled movement |
CN106659538B (en) | 2014-08-13 | 2019-05-10 | 柯惠Lp公司 | The clamping with mechanical dominance of robot control |
GB201421421D0 (en) * | 2014-12-02 | 2015-01-14 | Ge Oil & Gas Uk Ltd | Angular displacement of flexible pipe |
WO2016126821A1 (en) * | 2015-02-03 | 2016-08-11 | Stryker Corporation | Force/torque transducer and method of operating the same |
US10013808B2 (en) | 2015-02-03 | 2018-07-03 | Globus Medical, Inc. | Surgeon head-mounted display apparatuses |
WO2016131903A1 (en) | 2015-02-18 | 2016-08-25 | KB Medical SA | Systems and methods for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique |
AU2016220501B2 (en) | 2015-02-19 | 2020-02-13 | Covidien Lp | Repositioning method of input device for robotic surgical system |
US10716639B2 (en) | 2015-03-10 | 2020-07-21 | Covidien Lp | Measuring health of a connector member of a robotic surgical system |
US10564057B2 (en) | 2015-03-23 | 2020-02-18 | Farrokh Janabi-Sharifi | Temperature invariant force and torque sensor assemblies |
US10959788B2 (en) | 2015-06-03 | 2021-03-30 | Covidien Lp | Offset instrument drive unit |
AU2016279993B2 (en) | 2015-06-16 | 2021-09-09 | Covidien Lp | Robotic surgical system torque transduction sensing |
AU2016284040B2 (en) | 2015-06-23 | 2020-04-30 | Covidien Lp | Robotic surgical assemblies |
US10052761B2 (en) | 2015-07-17 | 2018-08-21 | Deka Products Limited Partnership | Robotic surgery system, method, and apparatus |
US10646298B2 (en) | 2015-07-31 | 2020-05-12 | Globus Medical, Inc. | Robot arm and methods of use |
US10058394B2 (en) | 2015-07-31 | 2018-08-28 | Globus Medical, Inc. | Robot arm and methods of use |
US10080615B2 (en) | 2015-08-12 | 2018-09-25 | Globus Medical, Inc. | Devices and methods for temporary mounting of parts to bone |
US11351001B2 (en) | 2015-08-17 | 2022-06-07 | Intuitive Surgical Operations, Inc. | Ungrounded master control devices and methods of use |
EP3344179B1 (en) | 2015-08-31 | 2021-06-30 | KB Medical SA | Robotic surgical systems |
US10034716B2 (en) | 2015-09-14 | 2018-07-31 | Globus Medical, Inc. | Surgical robotic systems and methods thereof |
CN108024835B (en) | 2015-09-25 | 2021-08-31 | 柯惠Lp公司 | Robotic surgical assembly and instrument drive connector therefor |
US9771092B2 (en) | 2015-10-13 | 2017-09-26 | Globus Medical, Inc. | Stabilizer wheel assembly and methods of use |
US10912449B2 (en) | 2015-10-23 | 2021-02-09 | Covidien Lp | Surgical system for detecting gradual changes in perfusion |
DE102015122296A1 (en) * | 2015-12-18 | 2017-06-22 | Sandvik Materials Technology Deutschland Gmbh | Sensor for a high-pressure line and method for its production |
KR20180101597A (en) * | 2016-02-02 | 2018-09-12 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | Instrument force sensor using strain gage of Faraday cage |
US11058378B2 (en) | 2016-02-03 | 2021-07-13 | Globus Medical, Inc. | Portable medical imaging system |
US10842453B2 (en) | 2016-02-03 | 2020-11-24 | Globus Medical, Inc. | Portable medical imaging system |
US10117632B2 (en) | 2016-02-03 | 2018-11-06 | Globus Medical, Inc. | Portable medical imaging system with beam scanning collimator |
US11883217B2 (en) | 2016-02-03 | 2024-01-30 | Globus Medical, Inc. | Portable medical imaging system and method |
US10448910B2 (en) | 2016-02-03 | 2019-10-22 | Globus Medical, Inc. | Portable medical imaging system |
US10866119B2 (en) | 2016-03-14 | 2020-12-15 | Globus Medical, Inc. | Metal detector for detecting insertion of a surgical device into a hollow tube |
WO2017173524A1 (en) | 2016-04-07 | 2017-10-12 | Titan Medical Inc. | Camera positioning method and apparatus for capturing images during a medical procedure |
EP3241518B1 (en) | 2016-04-11 | 2024-10-23 | Globus Medical, Inc | Surgical tool systems |
WO2017205576A1 (en) | 2016-05-26 | 2017-11-30 | Covidien Lp | Instrument drive units |
AU2017269271B2 (en) | 2016-05-26 | 2021-07-08 | Covidien Lp | Robotic surgical assemblies |
US11612446B2 (en) | 2016-06-03 | 2023-03-28 | Covidien Lp | Systems, methods, and computer-readable program products for controlling a robotically delivered manipulator |
CN107735040B (en) | 2016-06-03 | 2021-06-18 | 柯惠Lp公司 | Control arm for robotic surgical system |
EP3463163A4 (en) | 2016-06-03 | 2020-02-12 | Covidien LP | Robotic surgical system with an embedded imager |
CN114504387A (en) | 2016-06-03 | 2022-05-17 | 柯惠Lp公司 | Passive shaft system for robotic surgical system |
CN106264719B (en) * | 2016-07-29 | 2019-07-23 | 上海微创电生理医疗科技股份有限公司 | Electrophysiologicalcatheter catheter |
US10345165B2 (en) * | 2016-09-08 | 2019-07-09 | Covidien Lp | Force sensor for surgical devices |
US20180071009A1 (en) * | 2016-09-12 | 2018-03-15 | Biosense Webster (Israel) Ltd. | Ablation catheter with strain gauges |
WO2018122946A1 (en) * | 2016-12-27 | 2018-07-05 | オリンパス株式会社 | Shape acquisition method and control method for medical manipulator |
EP3360502A3 (en) * | 2017-01-18 | 2018-10-31 | KB Medical SA | Robotic navigation of robotic surgical systems |
AU2018221456A1 (en) | 2017-02-15 | 2019-07-11 | Covidien Lp | System and apparatus for crush prevention for medical robot applications |
US11071594B2 (en) | 2017-03-16 | 2021-07-27 | KB Medical SA | Robotic navigation of robotic surgical systems |
CN106955130B (en) * | 2017-05-10 | 2023-07-28 | 佛山衡生医疗自动化有限公司 | Minimally invasive surgical instrument with force feedback |
US10792119B2 (en) | 2017-05-22 | 2020-10-06 | Ethicon Llc | Robotic arm cart and uses therefor |
CN110650705B (en) | 2017-05-24 | 2023-04-28 | 柯惠Lp公司 | Presence detection of electrosurgical tools in robotic systems |
US11839441B2 (en) | 2017-05-25 | 2023-12-12 | Covidien Lp | Robotic surgical system with automated guidance |
US11510747B2 (en) | 2017-05-25 | 2022-11-29 | Covidien Lp | Robotic surgical systems and drapes for covering components of robotic surgical systems |
US11553974B2 (en) | 2017-05-25 | 2023-01-17 | Covidien Lp | Systems and methods for detection of objects within a field of view of an image capture device |
US10856948B2 (en) | 2017-05-31 | 2020-12-08 | Verb Surgical Inc. | Cart for robotic arms and method and apparatus for registering cart to surgical table |
US10485623B2 (en) * | 2017-06-01 | 2019-11-26 | Verb Surgical Inc. | Robotic arm cart with fine position adjustment features and uses therefor |
US10913145B2 (en) | 2017-06-20 | 2021-02-09 | Verb Surgical Inc. | Cart for robotic arms and method and apparatus for cartridge or magazine loading of arms |
US11135015B2 (en) | 2017-07-21 | 2021-10-05 | Globus Medical, Inc. | Robot surgical platform |
WO2019212583A2 (en) * | 2017-08-04 | 2019-11-07 | Intuitive Surgical Operations, Inc. | Computer-assisted tele-operated surgery systems and methods |
EP3678572A4 (en) | 2017-09-05 | 2021-09-29 | Covidien LP | Collision handling algorithms for robotic surgical systems |
JP2020533061A (en) | 2017-09-06 | 2020-11-19 | コヴィディエン リミテッド パートナーシップ | Boundary scaling of surgical robots |
JP6931420B2 (en) * | 2017-09-20 | 2021-09-01 | シャンハイ マイクロポート メドボット(グループ)カンパニー,リミティッド | Surgical robot system |
EP3492032B1 (en) | 2017-11-09 | 2023-01-04 | Globus Medical, Inc. | Surgical robotic systems for bending surgical rods |
US11794338B2 (en) | 2017-11-09 | 2023-10-24 | Globus Medical Inc. | Robotic rod benders and related mechanical and motor housings |
US11357548B2 (en) | 2017-11-09 | 2022-06-14 | Globus Medical, Inc. | Robotic rod benders and related mechanical and motor housings |
US11134862B2 (en) | 2017-11-10 | 2021-10-05 | Globus Medical, Inc. | Methods of selecting surgical implants and related devices |
US11460360B2 (en) | 2017-11-14 | 2022-10-04 | Intuitive Surgical Operations, Inc. | Split bridge circuit force sensor |
EP3709924A4 (en) | 2017-11-15 | 2021-12-15 | Intuitive Surgical Operations, Inc. | Master control device and methods therefor |
US10675107B2 (en) | 2017-11-15 | 2020-06-09 | Intuitive Surgical Operations, Inc. | Surgical instrument end effector with integral FBG |
EP3716882A4 (en) | 2017-12-01 | 2021-08-25 | Covidien LP | Drape management assembly for robotic surgical systems |
CN111556735A (en) | 2018-01-04 | 2020-08-18 | 柯惠Lp公司 | Systems and assemblies for mounting surgical accessories to robotic surgical systems and providing access therethrough |
EP3737326B1 (en) | 2018-01-10 | 2024-10-16 | Covidien LP | Determining positions and conditions of tools of a robotic surgical system utilizing computer vision |
US12102403B2 (en) | 2018-02-02 | 2024-10-01 | Coviden Lp | Robotic surgical systems with user engagement monitoring |
US20190254753A1 (en) | 2018-02-19 | 2019-08-22 | Globus Medical, Inc. | Augmented reality navigation systems for use with robotic surgical systems and methods of their use |
US11189379B2 (en) | 2018-03-06 | 2021-11-30 | Digital Surgery Limited | Methods and systems for using multiple data structures to process surgical data |
JP2021514220A (en) | 2018-03-08 | 2021-06-10 | コヴィディエン リミテッド パートナーシップ | Surgical robot system |
US10573023B2 (en) | 2018-04-09 | 2020-02-25 | Globus Medical, Inc. | Predictive visualization of medical imaging scanner component movement |
US11647888B2 (en) | 2018-04-20 | 2023-05-16 | Covidien Lp | Compensation for observer movement in robotic surgical systems having stereoscopic displays |
US11986261B2 (en) | 2018-04-20 | 2024-05-21 | Covidien Lp | Systems and methods for surgical robotic cart placement |
WO2019217882A1 (en) * | 2018-05-11 | 2019-11-14 | Intuitive Surgical Operations, Inc. | Master control device with finger grip sensing and methods therefor |
WO2019227032A1 (en) | 2018-05-25 | 2019-11-28 | Intuitive Surgical Operations, Inc. | Fiber bragg grating end effector force sensor |
US10422706B1 (en) * | 2018-06-28 | 2019-09-24 | United States of America as Represented by the Adminstrator of the National Aeronautics and Space Adminstration | Fiber optic temperature sensors within inert gas for cryogenic environments |
WO2020009830A1 (en) | 2018-07-03 | 2020-01-09 | Covidien Lp | Systems, methods, and computer-readable media for detecting image degradation during surgical procedures |
KR102136625B1 (en) * | 2018-07-12 | 2020-07-23 | 한국과학기술연구원 | FBG-based torsion sensor device |
US12042238B2 (en) * | 2018-08-02 | 2024-07-23 | Intuitive Surgical Operations, Inc. | Computer-assisted tele-operated surgery systems and methods |
CN108871632A (en) * | 2018-08-16 | 2018-11-23 | 长春理工大学 | A kind of optical fibre grating three-dimensional power feels probe and manufacturing method |
US11998288B2 (en) | 2018-09-17 | 2024-06-04 | Covidien Lp | Surgical robotic systems |
US10874850B2 (en) | 2018-09-28 | 2020-12-29 | Medtronic, Inc. | Impedance-based verification for delivery of implantable medical devices |
US11109746B2 (en) | 2018-10-10 | 2021-09-07 | Titan Medical Inc. | Instrument insertion system, method, and apparatus for performing medical procedures |
US11337742B2 (en) | 2018-11-05 | 2022-05-24 | Globus Medical Inc | Compliant orthopedic driver |
CN113038900A (en) * | 2018-11-15 | 2021-06-25 | 直观外科手术操作公司 | Surgical instrument with sensor alignment cable guide |
US11815412B2 (en) | 2018-11-15 | 2023-11-14 | Intuitive Surgical Operations, Inc. | Strain sensor with contoured deflection surface |
US11278360B2 (en) | 2018-11-16 | 2022-03-22 | Globus Medical, Inc. | End-effectors for surgical robotic systems having sealed optical components |
US11602402B2 (en) | 2018-12-04 | 2023-03-14 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
US11744655B2 (en) | 2018-12-04 | 2023-09-05 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
US11586106B2 (en) | 2018-12-28 | 2023-02-21 | Titan Medical Inc. | Imaging apparatus having configurable stereoscopic perspective |
US11717355B2 (en) | 2019-01-29 | 2023-08-08 | Covidien Lp | Drive mechanisms for surgical instruments such as for use in robotic surgical systems |
US11576733B2 (en) | 2019-02-06 | 2023-02-14 | Covidien Lp | Robotic surgical assemblies including electrosurgical instruments having articulatable wrist assemblies |
US11484372B2 (en) | 2019-02-15 | 2022-11-01 | Covidien Lp | Articulation mechanisms for surgical instruments such as for use in robotic surgical systems |
CN113453642A (en) | 2019-02-22 | 2021-09-28 | 奥瑞斯健康公司 | Surgical platform having motorized arms for adjustable arm supports |
US11918313B2 (en) | 2019-03-15 | 2024-03-05 | Globus Medical Inc. | Active end effectors for surgical robots |
US11317978B2 (en) | 2019-03-22 | 2022-05-03 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US11382549B2 (en) | 2019-03-22 | 2022-07-12 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
US11571265B2 (en) | 2019-03-22 | 2023-02-07 | Globus Medical Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US20200297357A1 (en) | 2019-03-22 | 2020-09-24 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US11806084B2 (en) | 2019-03-22 | 2023-11-07 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
US11419616B2 (en) | 2019-03-22 | 2022-08-23 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
FR3095269B1 (en) * | 2019-04-17 | 2021-11-26 | Mavic Sas | Force measurement sensor |
US11331475B2 (en) | 2019-05-07 | 2022-05-17 | Medtronic, Inc. | Tether assemblies for medical device delivery systems |
US11045179B2 (en) | 2019-05-20 | 2021-06-29 | Global Medical Inc | Robot-mounted retractor system |
US11690624B2 (en) * | 2019-06-21 | 2023-07-04 | Covidien Lp | Reload assembly injection molded strain gauge |
US11058429B2 (en) | 2019-06-24 | 2021-07-13 | Covidien Lp | Load sensing assemblies and methods of manufacturing load sensing assemblies |
US11628023B2 (en) | 2019-07-10 | 2023-04-18 | Globus Medical, Inc. | Robotic navigational system for interbody implants |
CN110455455A (en) * | 2019-08-02 | 2019-11-15 | 华中科技大学 | A kind of cylinder six-dimension force sensor perceiving tractive force |
US12050143B2 (en) | 2019-09-17 | 2024-07-30 | Intuitive Surgical Operations, Inc. | Symmetric trimming of strain gauges |
US11571171B2 (en) | 2019-09-24 | 2023-02-07 | Globus Medical, Inc. | Compound curve cable chain |
US11864857B2 (en) | 2019-09-27 | 2024-01-09 | Globus Medical, Inc. | Surgical robot with passive end effector |
US11890066B2 (en) | 2019-09-30 | 2024-02-06 | Globus Medical, Inc | Surgical robot with passive end effector |
US11426178B2 (en) | 2019-09-27 | 2022-08-30 | Globus Medical Inc. | Systems and methods for navigating a pin guide driver |
US11510684B2 (en) | 2019-10-14 | 2022-11-29 | Globus Medical, Inc. | Rotary motion passive end effector for surgical robots in orthopedic surgeries |
USD946432S1 (en) | 2019-10-15 | 2022-03-22 | FUTEK Advanced Sensor Technology | Guide jacket force sensor |
US11079292B2 (en) * | 2019-10-15 | 2021-08-03 | Futek Advanced Sensor Technology, Inc. | Guide jacket force sensor |
US11992373B2 (en) | 2019-12-10 | 2024-05-28 | Globus Medical, Inc | Augmented reality headset with varied opacity for navigated robotic surgery |
US12064189B2 (en) | 2019-12-13 | 2024-08-20 | Globus Medical, Inc. | Navigated instrument for use in robotic guided surgery |
US11382699B2 (en) | 2020-02-10 | 2022-07-12 | Globus Medical Inc. | Extended reality visualization of optical tool tracking volume for computer assisted navigation in surgery |
US11207150B2 (en) | 2020-02-19 | 2021-12-28 | Globus Medical, Inc. | Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment |
CN111811681A (en) * | 2020-02-27 | 2020-10-23 | 重庆大学 | Air-breathing type fiber bragg grating total temperature probe and measuring system thereof |
US11253216B2 (en) | 2020-04-28 | 2022-02-22 | Globus Medical Inc. | Fixtures for fluoroscopic imaging systems and related navigation systems and methods |
TWI755797B (en) * | 2020-04-28 | 2022-02-21 | 國立中央大學 | High-brightness single-polarized output surface-emitting laser array |
US11153555B1 (en) | 2020-05-08 | 2021-10-19 | Globus Medical Inc. | Extended reality headset camera system for computer assisted navigation in surgery |
US11510750B2 (en) | 2020-05-08 | 2022-11-29 | Globus Medical, Inc. | Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications |
US11382700B2 (en) | 2020-05-08 | 2022-07-12 | Globus Medical Inc. | Extended reality headset tool tracking and control |
US20210353373A1 (en) * | 2020-05-18 | 2021-11-18 | Intuitive Surgical Operations, Inc. | Hard stop that produces a reactive moment upon engagement for cantilever-based force sensing |
US20230225817A1 (en) * | 2020-05-18 | 2023-07-20 | Intuitive Surgical Operations, Inc. | Devices and methods for stress/strain isolation on a force sensor unit |
US12030195B2 (en) | 2020-05-27 | 2024-07-09 | Covidien Lp | Tensioning mechanisms and methods for articulating surgical instruments such as for use in robotic surgical systems |
US11317973B2 (en) | 2020-06-09 | 2022-05-03 | Globus Medical, Inc. | Camera tracking bar for computer assisted navigation during surgery |
US11382713B2 (en) | 2020-06-16 | 2022-07-12 | Globus Medical, Inc. | Navigated surgical system with eye to XR headset display calibration |
US11877807B2 (en) | 2020-07-10 | 2024-01-23 | Globus Medical, Inc | Instruments for navigated orthopedic surgeries |
USD963851S1 (en) | 2020-07-10 | 2022-09-13 | Covidien Lp | Port apparatus |
US11793588B2 (en) | 2020-07-23 | 2023-10-24 | Globus Medical, Inc. | Sterile draping of robotic arms |
US11737831B2 (en) | 2020-09-02 | 2023-08-29 | Globus Medical Inc. | Surgical object tracking template generation for computer assisted navigation during surgical procedure |
CN111991088B (en) * | 2020-09-10 | 2022-02-11 | 苏州大学 | Minimally invasive surgery robot and tail end clamp holder thereof |
CN111991089B (en) * | 2020-09-10 | 2022-02-11 | 苏州大学 | Minimally invasive surgery robot and tail end integrated clamp holder thereof |
CN111991087B (en) * | 2020-09-10 | 2022-02-11 | 苏州大学 | Minimally invasive surgery robot and end effector thereof |
CN112168351B (en) * | 2020-09-22 | 2022-07-12 | 哈尔滨工业大学 | Robot joint force sensing system based on FBG optical fiber and optimization method thereof |
US11523785B2 (en) | 2020-09-24 | 2022-12-13 | Globus Medical, Inc. | Increased cone beam computed tomography volume length without requiring stitching or longitudinal C-arm movement |
CN112301536B (en) * | 2020-09-29 | 2022-08-09 | 北京机科国创轻量化科学研究院有限公司 | Device is implanted to automatic of combined material preform Z to fibre |
US11911112B2 (en) | 2020-10-27 | 2024-02-27 | Globus Medical, Inc. | Robotic navigational system |
US12076091B2 (en) | 2020-10-27 | 2024-09-03 | Globus Medical, Inc. | Robotic navigational system |
US11941814B2 (en) | 2020-11-04 | 2024-03-26 | Globus Medical Inc. | Auto segmentation using 2-D images taken during 3-D imaging spin |
US11717350B2 (en) | 2020-11-24 | 2023-08-08 | Globus Medical Inc. | Methods for robotic assistance and navigation in spinal surgery and related systems |
US12070286B2 (en) | 2021-01-08 | 2024-08-27 | Globus Medical, Inc | System and method for ligament balancing with robotic assistance |
US11948226B2 (en) | 2021-05-28 | 2024-04-02 | Covidien Lp | Systems and methods for clinical workspace simulation |
US11857273B2 (en) | 2021-07-06 | 2024-01-02 | Globus Medical, Inc. | Ultrasonic robotic surgical navigation |
US11439444B1 (en) | 2021-07-22 | 2022-09-13 | Globus Medical, Inc. | Screw tower and rod reduction tool |
US11819209B2 (en) | 2021-08-03 | 2023-11-21 | Covidien Lp | Hand-held surgical instruments |
US11911115B2 (en) | 2021-12-20 | 2024-02-27 | Globus Medical Inc. | Flat panel registration fixture and method of using same |
US12103480B2 (en) | 2022-03-18 | 2024-10-01 | Globus Medical Inc. | Omni-wheel cable pusher |
US12048493B2 (en) | 2022-03-31 | 2024-07-30 | Globus Medical, Inc. | Camera tracking system identifying phantom markers during computer assisted surgery navigation |
DE102022120725A1 (en) * | 2022-08-17 | 2024-02-22 | Universität Rostock, Körperschaft des öffentlichen Rechts | Laparoscopic surgical tool as a needle holder |
WO2024107653A1 (en) * | 2022-11-15 | 2024-05-23 | Intuitive Surgical Operations, Inc. | Force sensing medical instrument |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5513536A (en) | 1993-01-28 | 1996-05-07 | Robert Bosch Gmbh | Pressure, force and torque measuring device |
US5631973A (en) | 1994-05-05 | 1997-05-20 | Sri International | Method for telemanipulation with telepresence |
US6491701B2 (en) | 1998-12-08 | 2002-12-10 | Intuitive Surgical, Inc. | Mechanical actuator interface system for robotic surgical tools |
US6622575B1 (en) | 1999-07-07 | 2003-09-23 | Agency Of Industrial Science And Technology | Fingertip-mounted six-axis force sensor |
US6770081B1 (en) | 2000-01-07 | 2004-08-03 | Intuitive Surgical, Inc. | In vivo accessories for minimally invasive robotic surgery and methods |
DE202007010974U1 (en) | 2007-03-13 | 2007-10-18 | Sirona Dental Systems Gmbh | Dental processing machine |
WO2007120329A2 (en) * | 2005-12-30 | 2007-10-25 | Intuitive Surgical, Inc. | Modular force sensor |
Family Cites Families (216)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2927292A (en) | 1956-06-18 | 1960-03-01 | Coal Industry Patents Ltd | Electrical resistance strain gauge cells or capsules |
CH371907A (en) | 1957-12-18 | 1963-09-15 | Maschf Augsburg Nuernberg Ag | Equipment for the electrical measurement of the test devices during material testing |
DE1147411B (en) | 1961-10-13 | 1963-04-18 | Schenck Gmbh Carl | Load cell |
GB1209590A (en) | 1968-05-04 | 1970-10-21 | Zeiss Stiftung | Improvements in or relating to glass |
FR2190266A5 (en) | 1972-06-20 | 1974-01-25 | Aquitaine Petrole | |
US3878713A (en) | 1973-11-16 | 1975-04-22 | Gen Dynamics Corp | Wind tunnel balance for supplying compressed fluid to the model |
US3985025A (en) * | 1975-01-20 | 1976-10-12 | Ormond Alfred N | Shear measuring flexure isolated load cells |
JPS51127776A (en) | 1975-04-30 | 1976-11-08 | Hino Motors Ltd | Adjusting method of a slight amount of fine grain sample for x-ray dif eraction |
US4094192A (en) * | 1976-09-20 | 1978-06-13 | The Charles Stark Draper Laboratory, Inc. | Method and apparatus for six degree of freedom force sensing |
US4107986A (en) | 1977-04-04 | 1978-08-22 | Mcdonnell Douglas Corporation | Five component strain gauge balance |
DE2802176C3 (en) | 1978-01-19 | 1983-11-24 | Hottinger Baldwin Messtechnik Gmbh, 6100 Darmstadt | Force measuring device in strain gauge technology, especially for the investigation of material testing machines |
FR2435329A1 (en) * | 1978-07-10 | 1980-04-04 | Ass Ouvriers Instr Precision | Jack-driven robot arm for applying paint - memorises initial manually imparted movements, using detection handle load to operate jack |
JPS5612526A (en) | 1979-07-11 | 1981-02-06 | Matsushita Electric Ind Co Ltd | Load transducer |
US4428976A (en) | 1979-11-13 | 1984-01-31 | Gould Inc. | Geometric balance adjustment of thin film strain gage sensors |
IT1129409B (en) | 1980-03-07 | 1986-06-04 | Fiat Ricerche | SIX DEGREE TRANSDUCER OF FREEDOM TO CONVERT INTO ELECTRIC SIGNALS THE FORCES AND MOMENTS APPLIED TO A MOBILE BODY PARTICULARLY TO THE MOBILE ARM OF A ROBOT |
US4343198A (en) | 1980-12-09 | 1982-08-10 | The United States Of America As Represented By The United States Department Of Energy | Fluid force transducer |
JPS57169643A (en) * | 1981-04-13 | 1982-10-19 | Yamato Scale Co Ltd | Load cell for multiple components of force |
US4430895A (en) | 1982-02-02 | 1984-02-14 | Rockwell International Corporation | Piezoresistive accelerometer |
US4509370A (en) | 1982-09-30 | 1985-04-09 | Regents Of The University Of California | Pressure-sensitive optrode |
EP0117334A3 (en) * | 1982-11-09 | 1986-01-15 | EMI Limited | Arrangement for sensing several components of force |
DE3405168A1 (en) | 1984-02-14 | 1985-08-22 | M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München | Tactile sensor carrier for elastomechanical structures |
CA1259816A (en) * | 1984-09-29 | 1989-09-26 | Kazuo Asakawa | Force-detecting apparatus |
JPS6190895A (en) | 1984-10-09 | 1986-05-09 | 株式会社日立製作所 | Transform-matrix detection method of force sensor |
US4620436A (en) | 1984-10-09 | 1986-11-04 | Hitachi, Ltd. | Method and apparatus for calibrating transformation matrix of force sensor |
US4580551A (en) * | 1984-11-02 | 1986-04-08 | Warner-Lambert Technologies, Inc. | Flexible plastic tube for endoscopes and the like |
US4640138A (en) * | 1985-03-06 | 1987-02-03 | Mts Systems Corporation | Multiple axis load sensitive transducer |
DE3611336A1 (en) * | 1986-04-04 | 1987-10-15 | Deutsche Forsch Luft Raumfahrt | FORCE TORQUE SENSOR |
JP2713899B2 (en) | 1987-03-30 | 1998-02-16 | 株式会社日立製作所 | Robot equipment |
US4799752A (en) | 1987-09-21 | 1989-01-24 | Litton Systems, Inc. | Fiber optic gradient hydrophone and method of using same |
US4932253A (en) * | 1989-05-02 | 1990-06-12 | Mccoy James N | Rod mounted load cell |
EP0415416B1 (en) | 1989-09-01 | 1995-08-09 | Andronic Devices Ltd. | Advanced surgical retractor |
DE69116903T2 (en) * | 1990-03-08 | 1996-10-02 | Ivac Corp | Thermally insulated probe |
USRE40891E1 (en) * | 1991-11-26 | 2009-09-01 | Sandio Technology Corp. | Methods and apparatus for providing touch-sensitive input in multiple degrees of freedom |
JP3117769B2 (en) | 1991-12-25 | 2000-12-18 | 大和製衡株式会社 | Fault diagnosis device for force or load detection sensor and self-recovery device thereof |
FR2693397B1 (en) * | 1992-07-09 | 1994-09-02 | Cogema | Sensory feedback device representative of the effort exerted on a remote manipulator by its user. |
DE4232785A1 (en) | 1992-09-30 | 1994-03-31 | Philips Patentverwaltung | Circular plate spring for a load cell |
JPH06174565A (en) | 1992-12-03 | 1994-06-24 | Ishida Co Ltd | Load cell |
US5625576A (en) | 1993-10-01 | 1997-04-29 | Massachusetts Institute Of Technology | Force reflecting haptic interface |
US5450746A (en) * | 1993-10-12 | 1995-09-19 | The University Of North Carolina | Constant force stylus profiling apparatus and method |
US5488475A (en) | 1994-03-31 | 1996-01-30 | The United States Of America As Represented By The Secretary Of The Navy | Active fiber cavity strain sensor with temperature independence |
AU694225B2 (en) * | 1994-08-02 | 1998-07-16 | Ethicon Endo-Surgery, Inc. | Ultrasonic hemostatic and cutting instrument |
US5784542A (en) | 1995-09-07 | 1998-07-21 | California Institute Of Technology | Decoupled six degree-of-freedom teleoperated robot system |
US5855583A (en) | 1996-02-20 | 1999-01-05 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive cardiac procedures |
JPH09257601A (en) | 1996-03-21 | 1997-10-03 | Tec Corp | Load cell |
JPH09269258A (en) | 1996-04-01 | 1997-10-14 | Tec Corp | Load cell |
US5792135A (en) | 1996-05-20 | 1998-08-11 | Intuitive Surgical, Inc. | Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity |
US5807377A (en) * | 1996-05-20 | 1998-09-15 | Intuitive Surgical, Inc. | Force-reflecting surgical instrument and positioning mechanism for performing minimally invasive surgery with enhanced dexterity and sensitivity |
US5767840A (en) * | 1996-06-28 | 1998-06-16 | International Business Machines Corporation | Six-degrees-of-freedom movement sensor having strain gauge mechanical supports |
DE19627385A1 (en) * | 1996-07-06 | 1998-01-08 | Bayerische Motoren Werke Ag | Wheel hub |
US7666191B2 (en) | 1996-12-12 | 2010-02-23 | Intuitive Surgical, Inc. | Robotic surgical system with sterile surgical adaptor |
US5892860A (en) | 1997-01-21 | 1999-04-06 | Cidra Corporation | Multi-parameter fiber optic sensor for use in harsh environments |
EP1595855A3 (en) | 1997-02-14 | 2005-11-30 | Nippon Telegraph and Telephone Corporation | Tellurite glass, optical amplifier, and light source |
KR100413807B1 (en) * | 1997-02-17 | 2004-03-26 | 삼성전자주식회사 | Parallel type 6-axis force-moment measuring device |
KR100199691B1 (en) * | 1997-05-19 | 1999-06-15 | 김동진 | 6-component load cell |
AUPO745897A0 (en) | 1997-06-19 | 1997-07-10 | Uniphase Fibre Components Pty Limited | Temperature stable bragg grating package with post tuning for accurate setting of center frequency |
US5969268A (en) * | 1997-07-15 | 1999-10-19 | Mts Systems Corporation | Multi-axis load cell |
US6038933A (en) * | 1997-07-15 | 2000-03-21 | Mts Systems Corporation | Multi-axis load cell |
EP1015944B1 (en) | 1997-09-19 | 2013-02-27 | Massachusetts Institute Of Technology | Surgical robotic apparatus |
US6949106B2 (en) | 1998-02-24 | 2005-09-27 | Endovia Medical, Inc. | Surgical instrument |
US6197017B1 (en) | 1998-02-24 | 2001-03-06 | Brock Rogers Surgical, Inc. | Articulated apparatus for telemanipulator system |
JP3713391B2 (en) * | 1998-10-12 | 2005-11-09 | アルプス電気株式会社 | Input device |
IT1302736B1 (en) * | 1998-10-15 | 2000-09-29 | Carraro Spa | OSCILLATING AXLE SUSPENSION SYSTEM, IN PARTICULAR TRACTORS. |
US6459926B1 (en) | 1998-11-20 | 2002-10-01 | Intuitive Surgical, Inc. | Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery |
US6422084B1 (en) | 1998-12-04 | 2002-07-23 | Weatherford/Lamb, Inc. | Bragg grating pressure sensor |
US6322567B1 (en) | 1998-12-14 | 2001-11-27 | Integrated Surgical Systems, Inc. | Bone motion tracking system |
US6394998B1 (en) * | 1999-01-22 | 2002-05-28 | Intuitive Surgical, Inc. | Surgical tools for use in minimally invasive telesurgical applications |
US6424885B1 (en) | 1999-04-07 | 2002-07-23 | Intuitive Surgical, Inc. | Camera referenced control in a minimally invasive surgical apparatus |
US8944070B2 (en) | 1999-04-07 | 2015-02-03 | Intuitive Surgical Operations, Inc. | Non-force reflecting method for providing tool force information to a user of a telesurgical system |
US6594552B1 (en) | 1999-04-07 | 2003-07-15 | Intuitive Surgical, Inc. | Grip strength with tactile feedback for robotic surgery |
US6435030B1 (en) | 1999-06-25 | 2002-08-20 | Weatherford/Lamb, Inc. | Measurement of propagating acoustic waves in compliant pipes |
US8004229B2 (en) | 2005-05-19 | 2011-08-23 | Intuitive Surgical Operations, Inc. | Software center and highly configurable robotic systems for surgery and other uses |
US6532830B1 (en) * | 1999-09-20 | 2003-03-18 | Ut-Battelle, Llc | High payload six-axis load sensor |
JP2001153735A (en) | 1999-11-30 | 2001-06-08 | Kyocera Corp | Load cell |
DE10011790B4 (en) * | 2000-03-13 | 2005-07-14 | Siemens Ag | Medical instrument for insertion into an examination subject, and medical examination or treatment device |
DE10013059C2 (en) | 2000-03-19 | 2002-01-31 | Deutsch Zentr Luft & Raumfahrt | Force-torque sensor |
US6494882B1 (en) | 2000-07-25 | 2002-12-17 | Verimetra, Inc. | Cutting instrument having integrated sensors |
US6668105B2 (en) | 2000-07-27 | 2003-12-23 | Systems Planning & Analysis, Inc. | Fiber optic strain sensor |
US6902560B1 (en) * | 2000-07-27 | 2005-06-07 | Intuitive Surgical, Inc. | Roll-pitch-roll surgical tool |
US6994708B2 (en) | 2001-04-19 | 2006-02-07 | Intuitive Surgical | Robotic tool with monopolar electro-surgical scissors |
US6783524B2 (en) * | 2001-04-19 | 2004-08-31 | Intuitive Surgical, Inc. | Robotic surgical tool with ultrasound cauterizing and cutting instrument |
US7824401B2 (en) | 2004-10-08 | 2010-11-02 | Intuitive Surgical Operations, Inc. | Robotic tool with wristed monopolar electrosurgical end effectors |
US6795599B2 (en) | 2001-05-11 | 2004-09-21 | Vasilii V. Spirin | Differential fiber optical sensor with interference energy analyzer |
US6817974B2 (en) * | 2001-06-29 | 2004-11-16 | Intuitive Surgical, Inc. | Surgical tool having positively positionable tendon-actuated multi-disk wrist joint |
DE60231067D1 (en) * | 2001-07-10 | 2009-03-19 | Commissariat Energie Atomique | A tire incorporating a force measuring device |
US6676684B1 (en) * | 2001-09-04 | 2004-01-13 | Intuitive Surgical, Inc. | Roll-pitch-roll-yaw surgical tool |
US6587750B2 (en) * | 2001-09-25 | 2003-07-01 | Intuitive Surgical, Inc. | Removable infinite roll master grip handle and touch sensor for robotic surgery |
JP3734733B2 (en) | 2001-09-27 | 2006-01-11 | 日本電信電話株式会社 | Polarization-maintaining optical fiber and absolute single-polarization optical fiber |
US6835173B2 (en) * | 2001-10-05 | 2004-12-28 | Scimed Life Systems, Inc. | Robotic endoscope |
US6584248B2 (en) | 2001-10-09 | 2003-06-24 | Corning Incorporated | Temperature-compensated optical grating device |
WO2003036037A2 (en) | 2001-10-24 | 2003-05-01 | Shell Internationale Research Maatschappij B.V. | Installation and use of removable heaters in a hydrocarbon containing formation |
US6871552B2 (en) * | 2002-04-12 | 2005-03-29 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Force moment sensor |
US6836356B2 (en) | 2002-04-18 | 2004-12-28 | Np Photonics, Inc. | Alkali-metal-free phosphate glass with dn/dT ≈ 0 for use in fiber amplifiers |
EP1496805B1 (en) | 2002-04-25 | 2012-01-11 | Tyco Healthcare Group LP | Surgical instruments including micro-electromechanical systems (mems) |
US6987895B2 (en) | 2002-07-02 | 2006-01-17 | Intel Corporation | Thermal compensation of waveguides by dual material core having positive thermo-optic coefficient inner core |
US7194913B2 (en) * | 2002-08-26 | 2007-03-27 | Shell Oil Company | Apparatuses and methods for monitoring stress in steel catenary risers |
US7083615B2 (en) * | 2003-02-24 | 2006-08-01 | Intuitive Surgical Inc | Surgical tool having electrocautery energy supply conductor with inhibited current leakage |
US8118732B2 (en) | 2003-04-01 | 2012-02-21 | Boston Scientific Scimed, Inc. | Force feedback control system for video endoscope |
ITMI20031500A1 (en) * | 2003-07-22 | 2005-01-23 | Milano Politecnico | DEVICE AND METHOD FOR THE MEASUREMENT OF FORCES AND MOMENTS |
GB0321181D0 (en) * | 2003-09-10 | 2003-10-08 | Peach Innovations Ltd | Device to measure rowing performance |
US7173696B2 (en) | 2003-09-26 | 2007-02-06 | Weatherford/Lamb, Inc. | Polarization mitigation technique |
JP3727937B2 (en) | 2003-09-30 | 2005-12-21 | 株式会社東芝 | Force detection device and manipulator |
JP2005106679A (en) * | 2003-09-30 | 2005-04-21 | Nitta Ind Corp | Multiaxial sensor unit and multiaxial sensor using the same |
US20050096502A1 (en) | 2003-10-29 | 2005-05-05 | Khalili Theodore M. | Robotic surgical device |
JP4303091B2 (en) * | 2003-11-10 | 2009-07-29 | ニッタ株式会社 | Strain gauge type sensor and strain gauge type sensor unit using the same |
US20050103123A1 (en) | 2003-11-14 | 2005-05-19 | Newman Kenneth R. | Tubular monitor systems and methods |
US8052636B2 (en) | 2004-03-05 | 2011-11-08 | Hansen Medical, Inc. | Robotic catheter system and methods |
JP4337595B2 (en) | 2004-03-25 | 2009-09-30 | 株式会社島津製作所 | Load cell |
KR100845181B1 (en) * | 2004-05-14 | 2008-07-10 | 한국과학기술연구원 | Monitoring device for rotating body |
FR2871363B1 (en) | 2004-06-15 | 2006-09-01 | Medtech Sa | ROBOTIZED GUIDING DEVICE FOR SURGICAL TOOL |
CN103050872A (en) | 2004-06-24 | 2013-04-17 | Nkt光子学有限公司 | Improvements to articles comprising an optical fibre with a fibre Bragg grating and methods of their production |
US7551950B2 (en) | 2004-06-29 | 2009-06-23 | O2 Medtech, Inc,. | Optical apparatus and method of use for non-invasive tomographic scan of biological tissues |
EP1788371A1 (en) | 2004-07-14 | 2007-05-23 | Nagano Keiki Co., Ltd. | Load sensor and manufacturing method of the same |
US9072535B2 (en) | 2011-05-27 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments with rotatable staple deployment arrangements |
GB0417683D0 (en) * | 2004-08-09 | 2004-09-08 | C13 Ltd | Sensor |
US7174792B2 (en) * | 2004-08-09 | 2007-02-13 | Xinetics, Inc. | Multi-axis transducer |
DE602004021377D1 (en) * | 2004-08-27 | 2009-07-16 | Schlumberger Holdings | Sensor and measuring device for determining the bending radius and the shape of a pipeline |
US7068869B1 (en) | 2005-01-10 | 2006-06-27 | Francisco Manuel Moita Araujo | Passive athermal fiber bragg grating strain gage |
US7000478B1 (en) | 2005-01-31 | 2006-02-21 | Texas Instruments Incorporated | Combined pressure and temperature transducer |
US8075498B2 (en) | 2005-03-04 | 2011-12-13 | Endosense Sa | Medical apparatus system having optical fiber load sensing capability |
US8182433B2 (en) | 2005-03-04 | 2012-05-22 | Endosense Sa | Medical apparatus system having optical fiber load sensing capability |
JP4585900B2 (en) * | 2005-03-28 | 2010-11-24 | ファナック株式会社 | 6-axis force sensor |
US8496647B2 (en) | 2007-12-18 | 2013-07-30 | Intuitive Surgical Operations, Inc. | Ribbed force sensor |
US8463439B2 (en) | 2009-03-31 | 2013-06-11 | Intuitive Surgical Operations, Inc. | Optic fiber connection for a force sensing instrument |
US8375808B2 (en) | 2005-12-30 | 2013-02-19 | Intuitive Surgical Operations, Inc. | Force sensing for surgical instruments |
US7752920B2 (en) * | 2005-12-30 | 2010-07-13 | Intuitive Surgical Operations, Inc. | Modular force sensor |
US8945095B2 (en) | 2005-03-30 | 2015-02-03 | Intuitive Surgical Operations, Inc. | Force and torque sensing for surgical instruments |
US8465474B2 (en) | 2009-05-19 | 2013-06-18 | Intuitive Surgical Operations, Inc. | Cleaning of a surgical instrument force sensor |
WO2006124485A1 (en) * | 2005-05-12 | 2006-11-23 | The Timken Company | Wheel end with load sensing capabilities |
JP4203051B2 (en) * | 2005-06-28 | 2008-12-24 | 本田技研工業株式会社 | Force sensor |
EP3028645B1 (en) | 2005-08-01 | 2019-09-18 | St. Jude Medical International Holding S.à r.l. | Medical apparatus system having optical fiber load sensing capability |
US8190292B2 (en) | 2005-08-29 | 2012-05-29 | The Board Of Trustees Of The Leland Stanford Junior University | High frequency feedback in telerobotics |
US8800838B2 (en) | 2005-08-31 | 2014-08-12 | Ethicon Endo-Surgery, Inc. | Robotically-controlled cable-based surgical end effectors |
CA2520942C (en) | 2005-09-23 | 2013-03-19 | Queen's University At Kingston | Tactile amplification instrument and method of use |
US20070078484A1 (en) | 2005-10-03 | 2007-04-05 | Joseph Talarico | Gentle touch surgical instrument and method of using same |
US20080297808A1 (en) | 2005-12-06 | 2008-12-04 | Nabeel Agha Riza | Optical Sensor For Extreme Environments |
US8182470B2 (en) | 2005-12-20 | 2012-05-22 | Intuitive Surgical Operations, Inc. | Telescoping insertion axis of a robotic surgical system |
US8628518B2 (en) | 2005-12-30 | 2014-01-14 | Intuitive Surgical Operations, Inc. | Wireless force sensor on a distal portion of a surgical instrument and method |
US7930065B2 (en) | 2005-12-30 | 2011-04-19 | Intuitive Surgical Operations, Inc. | Robotic surgery system including position sensors using fiber bragg gratings |
US7382957B2 (en) | 2006-01-30 | 2008-06-03 | Corning Incorporated | Rare earth doped double clad optical fiber with plurality of air holes and stress rods |
US8186555B2 (en) | 2006-01-31 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with mechanical closure system |
EP1815950A1 (en) | 2006-02-03 | 2007-08-08 | The European Atomic Energy Community (EURATOM), represented by the European Commission | Robotic surgical system for performing minimally invasive medical procedures |
EP3545815A1 (en) | 2006-03-22 | 2019-10-02 | Koninklijke Philips Electronics N.V. | Fiber optic instrument sensing system |
US7578219B2 (en) | 2006-03-31 | 2009-08-25 | Proxene Tools Co., Ltd. | Adjustable spanner with electronic strain gauge function |
WO2007136784A2 (en) | 2006-05-17 | 2007-11-29 | Nuvasive, Inc. | Surgical trajectory monitoring system and related methods |
ITMI20061000A1 (en) * | 2006-05-22 | 2007-11-23 | Milano Politecnico | ELASTIC COUPLING WITH SPHERICAL HINGE TRANSLATOR AND SENSOR OF FORCES AND MOMENTS PERFECTED WITH THIS JOINT |
US8567265B2 (en) | 2006-06-09 | 2013-10-29 | Endosense, SA | Triaxial fiber optic force sensing catheter |
US8048063B2 (en) | 2006-06-09 | 2011-11-01 | Endosense Sa | Catheter having tri-axial force sensor |
US8062211B2 (en) | 2006-06-13 | 2011-11-22 | Intuitive Surgical Operations, Inc. | Retrograde instrument |
DE102006030407A1 (en) | 2006-06-29 | 2008-01-03 | Werthschützky, Roland, Prof. Dr.-Ing. | Force sensor with asymmetric basic body for detecting at least one force component |
US7736254B2 (en) | 2006-10-12 | 2010-06-15 | Intuitive Surgical Operations, Inc. | Compact cable tension tender device |
US20080132893A1 (en) | 2006-11-08 | 2008-06-05 | Gyrus Group Plc | Electrosurgical system |
US7935130B2 (en) | 2006-11-16 | 2011-05-03 | Intuitive Surgical Operations, Inc. | Two-piece end-effectors for robotic surgical tools |
US9456877B2 (en) | 2006-12-01 | 2016-10-04 | Boston Scientific Scimed, Inc. | Direct drive instruments and methods of use |
DE102006059952B3 (en) * | 2006-12-19 | 2008-06-19 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | robot structure |
KR100778387B1 (en) | 2006-12-26 | 2007-11-28 | 한국과학기술원 | Surgery robot for laparoscope with multi-degree of freedoms and force measurement method thereof |
US8684253B2 (en) | 2007-01-10 | 2014-04-01 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
US7302139B1 (en) | 2007-01-25 | 2007-11-27 | The United States Of America Represented By The Secretary Of The Navy. | Thermally compensated fiber bragg grating mount |
KR100703861B1 (en) | 2007-01-30 | 2007-04-04 | 김학선 | Weigher |
US8893946B2 (en) | 2007-03-28 | 2014-11-25 | Ethicon Endo-Surgery, Inc. | Laparoscopic tissue thickness and clamp load measuring devices |
US8157789B2 (en) | 2007-05-24 | 2012-04-17 | Endosense Sa | Touch sensing catheter |
US8620473B2 (en) | 2007-06-13 | 2013-12-31 | Intuitive Surgical Operations, Inc. | Medical robotic system with coupled control modes |
US9096033B2 (en) | 2007-06-13 | 2015-08-04 | Intuitive Surgical Operations, Inc. | Surgical system instrument sterile adapter |
US8444631B2 (en) | 2007-06-14 | 2013-05-21 | Macdonald Dettwiler & Associates Inc | Surgical manipulator |
US7706000B2 (en) | 2007-07-18 | 2010-04-27 | Immersion Medical, Inc. | Orientation sensing of a rod |
US8224484B2 (en) | 2007-09-30 | 2012-07-17 | Intuitive Surgical Operations, Inc. | Methods of user interface with alternate tool mode for robotic surgical tools |
SA08290691B1 (en) | 2007-10-31 | 2012-02-22 | شل انترناشيونال ريسيرش ماتشابيج بى . فى | Pressure Sensor Assembly and Method of Using the Assembly |
US8561473B2 (en) | 2007-12-18 | 2013-10-22 | Intuitive Surgical Operations, Inc. | Force sensor temperature compensation |
WO2009079781A1 (en) | 2007-12-21 | 2009-07-02 | Macdonald Dettwiler & Associates Inc. | Surgical manipulator |
US8573465B2 (en) | 2008-02-14 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical end effector system with rotary actuated closure systems |
US9895813B2 (en) | 2008-03-31 | 2018-02-20 | Intuitive Surgical Operations, Inc. | Force and torque sensing in a surgical robot setup arm |
US7743672B2 (en) | 2008-06-06 | 2010-06-29 | Kulite Semiconductor Products, Inc. | Multiple axis load cell controller |
US7720322B2 (en) | 2008-06-30 | 2010-05-18 | Intuitive Surgical, Inc. | Fiber optic shape sensor |
US9204923B2 (en) | 2008-07-16 | 2015-12-08 | Intuitive Surgical Operations, Inc. | Medical instrument electronically energized using drive cables |
US8771270B2 (en) | 2008-07-16 | 2014-07-08 | Intuitive Surgical Operations, Inc. | Bipolar cautery instrument |
US9386983B2 (en) | 2008-09-23 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Robotically-controlled motorized surgical instrument |
US8306656B1 (en) | 2009-01-12 | 2012-11-06 | Titan Medical Inc. | Method and system for performing medical procedure |
US20100210975A1 (en) | 2009-01-21 | 2010-08-19 | SwimSense, LLC | Multi-state performance monitoring system |
US8491574B2 (en) | 2009-03-30 | 2013-07-23 | Intuitive Surgical Operations, Inc. | Polarization and temperature insensitive surgical instrument force transducer |
US8551115B2 (en) | 2009-09-23 | 2013-10-08 | Intuitive Surgical Operations, Inc. | Curved cannula instrument |
US8888789B2 (en) | 2009-09-23 | 2014-11-18 | Intuitive Surgical Operations, Inc. | Curved cannula surgical system control |
CN102792185A (en) | 2009-10-23 | 2012-11-21 | 美国地震系统有限公司 | Fiber optic microseismic sensing systems |
US8374670B2 (en) | 2010-01-22 | 2013-02-12 | Biosense Webster, Inc. | Catheter having a force sensing distal tip |
EP2534598A4 (en) | 2010-02-09 | 2017-07-12 | The Trustees Of The University Of Pennsylvania | Systems and methods for providing vibration feedback in robotic systems |
WO2011163442A1 (en) | 2010-06-23 | 2011-12-29 | Vishay Precision Group, Inc. | Strain gage resistance calibration using shunts |
FR2963397B1 (en) | 2010-07-27 | 2014-05-02 | Bernard Faivre | FAST ATTACHING DEVICE |
US9782214B2 (en) | 2010-11-05 | 2017-10-10 | Ethicon Llc | Surgical instrument with sensor and powered control |
US9055960B2 (en) | 2010-11-15 | 2015-06-16 | Intuitive Surgical Operations, Inc. | Flexible surgical devices |
JP5612526B2 (en) | 2011-03-31 | 2014-10-22 | リズム時計工業株式会社 | Battery box |
EP2713910B1 (en) | 2011-05-31 | 2022-06-22 | Intuitive Surgical Operations, Inc. | Grip force control in a robotic surgical instrument |
KR101839444B1 (en) | 2011-10-31 | 2018-04-27 | 삼성전자 주식회사 | Force sensing apparatus and robot arm including the force sensing apparatus |
JP6165780B2 (en) | 2012-02-10 | 2017-07-19 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | Robot-controlled surgical instrument |
US9028494B2 (en) | 2012-06-28 | 2015-05-12 | Ethicon Endo-Surgery, Inc. | Interchangeable end effector coupling arrangement |
US9125662B2 (en) | 2012-06-28 | 2015-09-08 | Ethicon Endo-Surgery, Inc. | Multi-axis articulating and rotating surgical tools |
US9204879B2 (en) | 2012-06-28 | 2015-12-08 | Ethicon Endo-Surgery, Inc. | Flexible drive member |
US9226751B2 (en) | 2012-06-28 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Surgical instrument system including replaceable end effectors |
US10201365B2 (en) | 2012-10-22 | 2019-02-12 | Ethicon Llc | Surgeon feedback sensing and display methods |
US9572626B2 (en) | 2013-02-15 | 2017-02-21 | Intuitive Surgical Operations, Inc. | Actuated cannula seal |
US9839481B2 (en) | 2013-03-07 | 2017-12-12 | Intuitive Surgical Operations, Inc. | Hybrid manual and robotic interventional instruments and methods of use |
AU2014236718B2 (en) | 2013-03-14 | 2018-07-05 | Sri International | Compact robotic wrist |
CN105939647B (en) | 2013-10-24 | 2020-01-21 | 奥瑞斯健康公司 | Robotically-assisted endoluminal surgical systems and related methods |
US9817019B2 (en) | 2013-11-13 | 2017-11-14 | Intuitive Surgical Operations, Inc. | Integrated fiber bragg grating accelerometer in a surgical instrument |
WO2015148901A1 (en) | 2014-03-28 | 2015-10-01 | President And Fellows Of Harvard College | Printed strain gauges for force measurement |
CN107532961B (en) | 2015-07-31 | 2019-09-03 | 住友理工株式会社 | The manufacturing method of capacitive type sensor, sensor chip and capacitive type sensor |
ITUB20155057A1 (en) | 2015-10-16 | 2017-04-16 | Medical Microinstruments S R L | Robotic surgery set |
GB201521809D0 (en) | 2015-12-10 | 2016-01-27 | Cambridge Medical Robotics Ltd | Symmetrically arranged surgical instrument articulation |
US20170215944A1 (en) | 2016-01-29 | 2017-08-03 | Covidien Lp | Jaw aperture position sensor for electrosurgical forceps |
EP3236226B1 (en) | 2016-04-20 | 2019-07-24 | Sensata Technologies, Inc. | Method of manufacturing a pressure sensor |
US10595951B2 (en) | 2016-08-15 | 2020-03-24 | Covidien Lp | Force sensor for surgical devices |
US20190094084A1 (en) | 2017-09-26 | 2019-03-28 | Intuitive Surgical Operations, Inc. | Fluid pressure based end effector force transducer |
US10959744B2 (en) | 2017-10-30 | 2021-03-30 | Ethicon Llc | Surgical dissectors and manufacturing techniques |
US10849630B2 (en) | 2017-12-13 | 2020-12-01 | Covidien Lp | Reposable multi-fire surgical clip applier |
US10695081B2 (en) | 2017-12-28 | 2020-06-30 | Ethicon Llc | Controlling a surgical instrument according to sensed closure parameters |
US11197734B2 (en) | 2018-10-30 | 2021-12-14 | Covidien Lp | Load sensing devices for use in surgical instruments |
WO2020102780A1 (en) | 2018-11-15 | 2020-05-22 | Intuitive Surgical Operations, Inc. | Cable drive limited slip capstan and shaft |
US12050143B2 (en) | 2019-09-17 | 2024-07-30 | Intuitive Surgical Operations, Inc. | Symmetric trimming of strain gauges |
WO2021097386A1 (en) | 2019-11-15 | 2021-05-20 | Intuitive Surgical Operations, Inc. | Spread bridge xy force sensor |
-
2007
- 2007-12-18 US US11/958,772 patent/US8496647B2/en active Active
-
2008
- 2008-12-10 WO PCT/US2008/086240 patent/WO2009079301A1/en active Application Filing
- 2008-12-10 EP EP08861934A patent/EP2231050B1/en active Active
-
2013
- 2013-07-01 US US13/932,128 patent/US8621939B2/en active Active
- 2013-12-09 US US14/100,924 patent/US9952107B2/en active Active
-
2016
- 2016-03-31 US US15/087,558 patent/US10620066B2/en active Active
-
2020
- 2020-03-23 US US16/827,243 patent/US11650111B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6574355B2 (en) | 1992-01-21 | 2003-06-03 | Intuitive Surigical, Inc. | Method and apparatus for transforming coordinate systems in a telemanipulation system |
US5513536A (en) | 1993-01-28 | 1996-05-07 | Robert Bosch Gmbh | Pressure, force and torque measuring device |
US5631973A (en) | 1994-05-05 | 1997-05-20 | Sri International | Method for telemanipulation with telepresence |
US6491701B2 (en) | 1998-12-08 | 2002-12-10 | Intuitive Surgical, Inc. | Mechanical actuator interface system for robotic surgical tools |
US6622575B1 (en) | 1999-07-07 | 2003-09-23 | Agency Of Industrial Science And Technology | Fingertip-mounted six-axis force sensor |
US6770081B1 (en) | 2000-01-07 | 2004-08-03 | Intuitive Surgical, Inc. | In vivo accessories for minimally invasive robotic surgery and methods |
WO2007120329A2 (en) * | 2005-12-30 | 2007-10-25 | Intuitive Surgical, Inc. | Modular force sensor |
DE202007010974U1 (en) | 2007-03-13 | 2007-10-18 | Sirona Dental Systems Gmbh | Dental processing machine |
Non-Patent Citations (1)
Title |
---|
F. CEPOLINA; R.C. MICHELINI: "Review of Fixtures for Low-Invasiveness Surgery", INT'L JOURNAL OF MEDICAL ROBOTICS AND COMPUTER ASSISTED SURGERY, vol. 1, no. 1, pages 58 |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2942027A1 (en) | 2012-07-03 | 2015-11-11 | KUKA Roboter GmbH | Surgical instrumentation and drivetrain assembly for a surgical instrument, in particular a robot-controlled instrument and surgical instrument |
EP2881073A1 (en) | 2012-07-03 | 2015-06-10 | KUKA Laboratories GmbH | Surgical instrumentation and drivetrain assembly for a surgical instrument, in particular a robot-controlled instrument and surgical instrument |
WO2014005689A2 (en) | 2012-07-03 | 2014-01-09 | Kuka Laboratories Gmbh | Surgical instrument arrangement and drive train arrangement for a surgical instrument, in particular a robot-guided surgical instrument, and surgical instrument |
US9775678B2 (en) | 2012-07-03 | 2017-10-03 | Kuka Roboter Gmbh | Surgical instrument arrangement and drive train arrangement for a surgical instrument, in particular a robot-guided surgical instrument, and surgical instrument |
EP2881067A1 (en) | 2012-07-03 | 2015-06-10 | KUKA Laboratories GmbH | Surgical instrumentation and drivetrain assembly for a surgical instrument, in particular a robot-controlled instrument and surgical instrument |
EP2883511A1 (en) | 2012-07-03 | 2015-06-17 | KUKA Laboratories GmbH | Surgical instrument arrangement and drive train arrangement for a surgical instrument, in particular a robot-guided surgical instrument, and surgical instrument |
EP2891466A1 (en) | 2012-07-03 | 2015-07-08 | KUKA Laboratories GmbH | Surgical instrumentation and drivetrain assembly for a surgical instrument, in particular a robot-controlled instrument and surgical instrument |
EP2896382A1 (en) | 2012-07-03 | 2015-07-22 | KUKA Laboratories GmbH | Surgical instrumentation and drivetrain assembly for a surgical instrument, in particular a robot-controlled instrument and surgical instrument |
US10390900B2 (en) | 2012-07-03 | 2019-08-27 | Kuka Deutschland Gmbh | Surgical instrument arrangement and drive train arrangement for a surgical instrument, in particular a robot-guided surgical instrument, and surgical instrument |
US10258421B2 (en) | 2012-07-03 | 2019-04-16 | Kuka Deutschland Gmbh | Surgical instrument, arrangement and drive train arrangement for a surgical instrument, in particular a robot-guided surgical instrument, and surgical instrument |
EP2881072A1 (en) | 2012-07-03 | 2015-06-10 | KUKA Laboratories GmbH | Surgical instrumentation and drivetrain assembly for a surgical instrument, in particular a robot-controlled instrument and surgical instrument |
US9782225B2 (en) | 2012-07-03 | 2017-10-10 | Kuka Roboter Gmbh | Surgical instrument arrangement and drive train arrangement for a surgical instrument, in particular a robot-guided surgical instrument, and surgical instrument |
US10117715B2 (en) | 2012-07-03 | 2018-11-06 | Kuka Deutschland Gmbh | Surgical instrument arrangement and drive train arrangement for a surgical instrument, in particular a robot-guided surgical instrument, and surgical instrument |
DE102013004487A1 (en) | 2013-03-11 | 2014-09-11 | Kuka Laboratories Gmbh | Drive train arrangement for a, in particular robot-guided, surgical instrument |
US11779413B2 (en) | 2015-11-19 | 2023-10-10 | Covidien Lp | Optical force sensor for robotic surgical system |
US10660714B2 (en) | 2015-11-19 | 2020-05-26 | Covidien Lp | Optical force sensor for robotic surgical system |
WO2017087439A1 (en) * | 2015-11-19 | 2017-05-26 | Covidien Lp | Optical force sensor for robotic surgical system |
WO2019174496A1 (en) | 2018-03-16 | 2019-09-19 | 微创(上海)医疗机器人有限公司 | Surgical robot system and surgical instrument thereof |
Also Published As
Publication number | Publication date |
---|---|
EP2231050B1 (en) | 2012-06-20 |
US8621939B2 (en) | 2014-01-07 |
US20090157092A1 (en) | 2009-06-18 |
EP2231050A1 (en) | 2010-09-29 |
US20160216167A1 (en) | 2016-07-28 |
US20200240861A1 (en) | 2020-07-30 |
US9952107B2 (en) | 2018-04-24 |
US11650111B2 (en) | 2023-05-16 |
US10620066B2 (en) | 2020-04-14 |
US20140137667A1 (en) | 2014-05-22 |
US20130291654A1 (en) | 2013-11-07 |
US8496647B2 (en) | 2013-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11650111B2 (en) | Ribbed force sensor | |
US11571264B2 (en) | Force sensor temperature compensation | |
US11497580B2 (en) | Cleaning of a surgical instrument force sensor | |
US8281670B2 (en) | Modular force sensor | |
US7752920B2 (en) | Modular force sensor | |
EP1965711B1 (en) | Force and torque sensing for surgical instruments |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08861934 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008861934 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |