WO2009078492A1 - セルロース誘導体およびそのハイドロゲル - Google Patents

セルロース誘導体およびそのハイドロゲル Download PDF

Info

Publication number
WO2009078492A1
WO2009078492A1 PCT/JP2008/073500 JP2008073500W WO2009078492A1 WO 2009078492 A1 WO2009078492 A1 WO 2009078492A1 JP 2008073500 W JP2008073500 W JP 2008073500W WO 2009078492 A1 WO2009078492 A1 WO 2009078492A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
cellulose derivative
cellulose
reaction
gel
Prior art date
Application number
PCT/JP2008/073500
Other languages
English (en)
French (fr)
Inventor
Hiroaki Kaneko
Nobuyuki Endo
Masaya Ito
Original Assignee
Teijin Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Limited filed Critical Teijin Limited
Priority to US12/808,613 priority Critical patent/US8709450B2/en
Priority to AU2008339362A priority patent/AU2008339362B2/en
Priority to JP2009546306A priority patent/JP5204786B2/ja
Priority to CA2707786A priority patent/CA2707786A1/en
Priority to CN2008801209750A priority patent/CN101903407B/zh
Priority to EP08860912.8A priority patent/EP2236522A4/en
Publication of WO2009078492A1 publication Critical patent/WO2009078492A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • C08B15/04Carboxycellulose, e.g. prepared by oxidation with nitrogen dioxide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/716Glucans
    • A61K31/717Celluloses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/042Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/145Hydrogels or hydrocolloids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/02Alkyl or cycloalkyl ethers
    • C08B11/04Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals
    • C08B11/10Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals
    • C08B11/12Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals substituted with carboxylic radicals, e.g. carboxymethylcellulose [CMC]

Definitions

  • the present invention relates to a cellulose derivative substituted with a substituent having a specific carboxyl group strength of carboxymethyl cellulose, which is a cellulose derivative, and a hydrogel thereof.
  • the cell mouth inducing of the present invention forms a hyde mouth gel in water.
  • the powerful Hyde Mouth Gel is excellent in viscoelasticity and can form an indeterminate injectable gel that can be injected into a predetermined place with an injector such as a syringe. It can be preferably used.
  • Carboxymethylcellulose derived from cellulose which is a natural biomass, is a water-soluble derivative and has good dispersibility and water retention, so it is used in various fields such as food and cosmetics.
  • carboxymethylcellulose is inexpensive, it is used in the medical field as a raw material for poultices, X-ray cranes, bulk disintegrants, medicinal syrups, and anti-adhesion materials.
  • Examples in which the carboxyl group of carboxymethylcellulose is modified to form an insoluble derivative are known.
  • the international publication mWO O 1/0 4 6 2 6 5 describes polyanion containing carboxymethylcellulose.
  • a water-insoluble inducement of a polyanionic polysaccharide comprising mixing a water-soluble polysaccharide, a nucleophile, and an activator in an aqueous mixture and an i3 ⁇ 4g method thereof are described.
  • the temptation described here is insoluble in water, and is water-soluble when present at low concentrations in water, such as the gel of the present invention, and flows even when tilted at high concentrations. There is no description of gels with no viscoelasticity.
  • International Publication No. WO 8 9/1 0 9 40 includes an acidic polysaccharide selected from the group consisting of carboxymethyl cellulose, carboxymethyl starch, and carboxymethyl chitin. All esters and partial esters with monocyclic and monocyclic alcohols, and salts with inorganic or organic bases of the partial esters are described. However, these polysaccharide incentives form an eight-sided gel. There is no description about this, and there is no suggestion of giving an injector Kalegel like the present invention.
  • Japanese Patent Application Publication No. 2 0 0 0-5 1 3 4 3 has a polysaccharide polymer and one polysaccharide-rich chain attached to the liver, from a gel state to a solution state, and vice versa. Discloses a natural wound healing product that reversibly changes its state.
  • a problem to be solved by the present invention is to provide a biodigestible cellulose derivative useful as an injectable gel that has high viscoelasticity but can be injected into a predetermined place with an injector such as a syringe. is there.
  • an injector such as a syringe.
  • a local drug delivery system can be created by impregnating the drug into the gel. Furthermore, if it has the property that it will eventually be decomposed or absorbed when injected into a living body, it can be preferably used as a scaffold material for regenerative medicine, etc.
  • the inventors of the present invention have conducted intensive research for the purpose of finding an injectable gel that can be used in a living body and is excellent in safety and handleability. As a result, carboxymethyl cellulose has a specific functional group. As a result of the chemical modification, it was found that an injectable gel having high viscoelasticity and excellent handleability can be obtained, and the present invention has been achieved.
  • the present invention is a cellulose derivative having a chemical structure represented by the following formula (1) as a repeating unit.
  • RR 2 and R 3 are each independently represented by the following formulas (a), (b), and
  • M is a hydrogen atom, alkali metal, or alkaline earth explosion
  • X is a divalent hydrocarbon group having 1 to 10 carbon atoms
  • Y is a divalent polyalkylene oxide having both oxygen atoms
  • Z is 1 carbon atom. ⁇ 24 hydrocarbon group or one CO—R 4 (wherein R 4 is a hydrocarbon group having 1 to 23 carbon atoms).
  • this invention is a hydrogel containing this cellulose derivative.
  • the present invention is a medical material containing such a cellulose derivative.
  • the present invention is an anti-adhesion material containing such cellulose attraction.
  • the cellulose derivative #: of the present invention is a force having the chemical structure represented by the above formula (1) as a repeating unit.
  • the same repeating unit; Also included in the present invention is a polymer formed by concatenating various repeating units based on the various RR 2 and R 3 pairs ⁇ "allowed in the above.” Best Mode for Carrying Out the Invention "
  • the present invention is a cellulose derivative having as a repeating unit the chemical structure represented by the above formula (1).
  • M is a hydrogen atom, an alkali pan, or an alkaline earth metal.
  • the alkali metal include sodium, potassium, and lithium
  • examples of the alkaline earth pot include magnesium and calcium.
  • Sodium is preferred.
  • X in the formula (c) is a divalent hydrocarbon group having 1 to 10 carbon atoms. Specific examples include a methylene group, an ethylene group, an n-propylene group, an isopropylene group, an n-butylene group, and an isoptylene group. A methylene group is preferred.
  • Y is a divalent group derived from polyalkyleneoxide having oxygen atoms on both sides.
  • the polyalkylene oxide specifically refers to polyalkylene ethers exemplified by polyethylene glycol, polypropylene glycol, polybutylene glycol and the like.
  • the term “having oxygen atoms at both ends” refers to a structure that is involved in bonding with a group obtained by removing hydrogen atoms from hydroxyl groups at both ends of polyalkylene oxide.
  • examples include groups derived from 1,3-polypropylene glycols represented by —O—, polyethylene glycols represented by — (O—CH 2 —CH 2 —) n —O—, and the like. Further, it may be a group derived from a copolymer of the above polyethylene glycol and polypropylene glycol, for example, a copolymer represented by PEO-PPO.
  • n represents the number of repeating units.
  • the number of repeating units n is preferably 2 to 100, more preferably 3 to 70.
  • Z is a carbon number of 1 to 2 4 hydrocarbon group or - C_ ⁇ - R is 4, R 4 is 1 to 2 carbon atoms
  • hydrocarbon group having 1 to 24 carbon atoms of Z include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, octyl group, nonyl group, lauryl group, stearyl group, etc.
  • An aromatic hydrocarbon group can be illustrated. Of these, stearyl and oleyl groups are preferred.
  • R 4 is a hydrocarbon group having 1 to 23 carbon atoms.
  • R 4 include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, octyl group, nonyl group, heptade deca Nyl, Heptodecenyl, Lauryl, Stearyl and other linear alkyl groups, Cyclohexyl, Cyclopentyl, Cyclohexylnonyl, Cholesteryl and other alkyl groups, Unoleyl alkyls such as oleyl Examples thereof include aromatic hydrocarbon groups such as a group, a phenyl group, a naphthyl group, and a benzyl group. Among these, heptodecyl group and heptodecenyl group are strong.
  • Z—CO—R 4 is an acyl group derived from a fatty acid.
  • the sacyl group include lauroyl group, palmitoyl group, stearoyl group and oleoyl group.
  • —CO—R 4 of Z is an acyl group derived from Yoshika 3 ⁇ 41 ⁇ ⁇ .
  • Preferred examples thereof include a benzoyl group and a naphthoyl group. Among these, stearoyl group and oleoyl group energetics are used.
  • the degree of substitution means the equivalent of each substituent when the sum of the equivalents of substituent (a), substituent (b) and substituent (c) is 3.
  • the sum of the difficulty of substitution (b) and the substitution of substituent (c) is preferably 0.3 to 2.0, more preferably 0.5 to 1.8, and even more preferably 0. 6 ⁇ : 1.2.
  • the ratio between the degree of substitution of the substituent (b) and the displacement of the substituent (c) is not particularly limited, but it is preferable that the substituent (b) exists more than the substituent (c).
  • RcZb which is a ratio of carrying the substituent (c) to the degree of substitution of the substituent (b)
  • RcZb which is a ratio of carrying the substituent (c) to the degree of substitution of the substituent (b)
  • the degree of substitution of the substituent (c) is 0.001 to 0.50, preferably 0.005 to 0.40. By controlling the degree of substitution of the substituent (c) within this range, it is possible to obtain an injectable gel having an appropriate viscoelasticity and using a device having a capillary such as a syringe.
  • the degree of substitution of the substituent (c) can be determined from the ratio of carbon content and nitrogen content by elemental analysis.
  • the weight average molecular weight of the cellulose derivative is 1 X 10 3 ⁇ 5 X 10 6, is preferably 5 X 10 4 ⁇ 5X 10 6, more preferably a 5X 10 4 ⁇ 1 X 10 6.
  • the weight average hepatic amount of the cellulose derivative changes due to the introduction of the substituent (c) introduced into the cellulose, and the amount increases compared to the cellulose derivative before the introduction of the substituent (c).
  • a cellulose derivative #f having the desired amount can be obtained by appropriately using the raw material carboxymethylcellulose.
  • the raw material carboxymethylcellulose is derived from cellulose.
  • the cellulose may be plant-derived cellulose or bacterial cellulose produced by a fermentation method, and is not particularly limited.
  • Carboxymethyl cellulose is obtained by reacting cellulose with monochloroacetic acid or its sodium salt in a strong alkaline solution such as sodium fibrosis.
  • the position of substitution of the carboxymethyl group in the cellulose skeleton is not particularly ⁇ , but is preferably mainly at the C-16 position.
  • the cellulose derivative of the present invention can be obtained from the condensation reaction (i) of carboxymethylcellulose and (ii) component P represented by the following formula (2).
  • the component P is a compound represented by the following formula (2) and having an amino group on one side.
  • Such an amino group may form a salt with an appropriate acid or may be an amino group of I, and is not particularly limited.
  • the compound of formula (2) is preferably migable by the following reaction.
  • A represents a protecting group for an amino group.
  • Reaction 1 is a coupling reaction between an amino group-protected amino acid derivative represented by A—NH—X—COO— and a compound having a H—Y—Z structure and a hydroxyl group at one end.
  • a condensing agent that forms an ester bond is used, and a condensing agent such as carbodiimide is used.
  • Preferred examples include dicyclohexyl carpositimide.
  • protecting group A for the amino group specifically, known protecting groups such as a benzyl group, a t-butyloxy group sulfonyl group (Boc group) and the like can be used. Of these, the Boc group is preferred.
  • A—NH—X—CO—Y—Z obtained by the reaction 1) is not limited to the above-mentioned coupling reaction (reaction 1)), and any synthetic method can be used.
  • the amino group is protected Forced Lupoxyl Basic Amino acid induction that is a lingual ester may be synthesized by ester interaction with a compound having a H—Y—Z structure and a hydroxyl group.
  • Reaction 2 is a deprotection reaction of an amino group, and any reaction can be used as long as it is a known reaction used in ordinary peptide synthesis.
  • A is a Boc group
  • the deprotection reaction using an acid is good, and an acid such as trifluoroacetic acid is preferably used.
  • the method for purifying the reaction product is not particularly limited, but may be separated and purified by chromatography if desired.
  • Reactions 1) and 2) may be either liquid phase synthesis or solid phase synthesis.
  • the reaction method and purification method are particularly limited.
  • the cellulose derivative of the present invention is obtained by a coupling reaction between the one-terminal amino group of H 2 N—X—CO—Y—Z, which is a compound obtained by the above reaction, and the carboxyl group of carboxylmethylcellulose.
  • H 2 N—X—CO—Y—Z should be introduced into the reaction system so that the amount of H 2 N—X—CO—Y—Z is 0.01 to 0.4 equivalents relative to the molar equivalent of the force lpoxyl group in the starting material, carboxymethylcellulose. Yes. At this time, the charging amount of H 2 N—X—CO—Y—Z may be set to 3 ⁇ 3 ⁇ 4 considering the reaction efficiency.
  • the coupling reaction should be carried out in a solution containing water due to the properties of carboxymethylcellulose; ⁇ ! In this case, the reaction may be water alone, an organic solvent compatible with water may be mixed, or a two-layer reaction using an organic solvent incompatible with water may be performed.
  • the organic compatibility with water includes alcohols such as methanol and ethanol, tetrahydrofurans such as tetrahydrofuran, cyclic ethers such as dioxane, ethers such as polyethylene oxide compounds, amides such as dimethylformamide and dimethylacetamide, Examples thereof include organic bases such as pyridine and piperidine, dialkyl sulfones such as dimethyl sulfoxide, and ketones such as acetone.
  • the reaction between force lpoxymethyl cellulose and ⁇ 2 ⁇ — X— CO— ⁇ — ⁇ is carried out in a homogeneous reaction system in which water and an organic solvent compatible with water are mixed. Tetrahydrofuran is preferred as the organic compatible with water.
  • any known compound may be used, and a carboxyl activator or a condensing agent is preferably used.
  • Carboxyl activators include N-hydroxysuccinimide, p-nitrophenol, N-hydroxybenzotriazol, N-hydroxypiperidine, 2,4,5-triclonal phenol, N, N-dimethylamino Examples include pyridine.
  • the condensing agent 1-ethyl-1-3-dimethyldimethylpropyl carbonate And its hydrochloride, diisopropyl carpositimide, dicyclohexyl carpositimide, N-hydroxy-1,5-norbornene-1,3-dicarboximide and the like.
  • N-hydroxybenzotriazole is used as a carboxy activator
  • 1-ethyl-1-3-dimethylaminopropyl salt is used as a condensing agent.
  • the reaction temperature is preferably 0 to 60. In order to suppress by-products, it is more preferable to carry out the reaction at 0 to 10.
  • the reaction environment is sexually weak, and more preferably pH 6-7.
  • the hydrogel of the present invention is a hard-mouthed gel formed by containing the cellulose derivative of the present invention: key, and has a chemical structure represented by the formula (1) with respect to 100 parts by weight of water.
  • Hyde mouth gel containing 0.05 to 3.0 parts by weight of cellulose as a repeating unit, preferably 0.3 to 2.0 parts by weight, and more preferably 0.3 to 1.0 parts by weight. is there.
  • the hydrogels of the present invention has a viscoelasticity that does not flow down even when the container containing the gel is tilted. It can be easily deformed when touched with a spatula or other metal spatula. It can be easily applied to the skin and can be injected with a device having a thin tube such as a syringe.
  • the viscoelasticity of the hide-mouthed gel of the present invention can be adjusted by changing the content of the cellulose-induced difficulty of the present invention with respect to water, so that it can be tailored to the purpose of use.
  • the hide-mouthed gel of the present invention is non-feature, and it is capable of detecting when foreign matter such as dust is mixed in the process, and has an advantage in industrial production.
  • the hide-opening gel of the present invention is diluted with water, the gel absorbs water and the gel wrinkles become larger as the hydraulic power S increases. Further diluting with water will eventually solubilize in water, lose the properties of the gel, and become an aqueous solution.
  • the complex elastic modulus of the cellulose derivative according to the present invention is preferably 0.5% by weight in water. 3 With the conditions of 7 and using a dynamic viscoelasticity measuring device (Rheome), the angle 3 ⁇ 43 ⁇ 4 1 0 f A power of 50 to 90 ONZm 2 when measured at ad / sec is preferable, and a power of 100 to 70 ON / m 2 is more preferable.
  • the complex modulus is a constant that represents the ratio of the stress and strain of the elastic body.
  • the cellulose derivative of the present invention and its hide mouth gel can be used for medical applications including medical materials, daily necessities such as hair care products and skin moisturizers, and cosmetic applications.
  • the Hyde Mouth Gel of the present invention can be used for low fi «medical applications because it can be 3 ⁇ 4 ⁇ through a syringe, and particularly retains humoral factors such as cell carriers and growth factors for regenerative medicine.
  • ⁇ Sustained release carrier, low molecular weight compounds that can be used as pharmaceuticals ⁇ Sustained release carrier, anti-adhesion materials can be preferably used as medical materials such as sialants.
  • it is preferably used for cell culture carriers, microorganism culture carriers, dental implant materials, and the like.
  • a molded product obtained by culturing cells and a complex of the cells can be preferably used for sensing purposes such as cell chips.
  • the cellulose derivative and its hydrogel of the present invention can be sterilized by any known sterilization method.
  • Sterilization methods preferably used are electron beam irradiation, gas sterilization with ethylene oxide, high-pressure steam sterilization, and the like.
  • Oleyl alcohol polyethylene glycol ether H— (0-CH 2 CH 2 ) 7 -0- C 18 H 35 , Wakuyaku Co., Ltd. M
  • 1 mmol against N-butyloxycarbonylglycine Boc-Gl y-OH, Sumitomo Pharma Co., Ltd. ⁇
  • the reaction solution was filtered to remove the by-product dioxygen hexylurea, concentrated and dried, and the amino group protected intermediate (Boc-NH-CH 2 -CO 1 (0-CH 2 CH 2 ) 7 — O—C 18 H 35 ) was obtained.
  • To this intermediate was added about 1 to 2 ml of trifluoroacetic acid (Wakudoku Co., Ltd. M), and a de-Boc reaction by iri was performed at room temperature for 2 hours. The progress of the reaction was confirmed by TLC.
  • the reaction solution was concentrated under reduced pressure to remove the reverse trifluoroacetic acid to obtain the target compound, trifluoroacetate of the amine compound.
  • the product was confirmed by ⁇ -NMR.
  • CMC—Na carboxymethylcellulose
  • EDC (1-Ethyl-1-3- [3- (Dimethylamino) propyl] carbopositimide-HC 1, manufactured by Wago Yakuhin Kogyo Co., Ltd., and HOB t ⁇ ⁇ 2 0 (1-hydroxybenzotriazol '17 ⁇ , Waku Kogyo Co., Ltd.
  • the cellulose-derived Omg obtained in Example 2 was dissolved in 199 Omg of ion-exchanged water to prepare a hyde mouth gel having a concentration of 0.5% by weight.
  • the resulting Hyde Mouth Gel is beta-free and the container is tilted. It was a hydrogel that could be easily inserted through a 25 G needle, with a spatula or other metal spatula inserted easily.
  • the complex elastic modulus of the obtained hide-mouthed gel was measured and found to be 177 N / m 2 .
  • the complex modulus of Hyde Mouth Gel is measured by Rheometer RFIII (TA
  • An intraperitoneal adhesion model was made using Sprague—Dawley (SD) rats (10 rats) from Nippon Chiarus-Ribaichi Co., Ltd. according to the method of Bucke dish aier CC 3rd et al.
  • Example 2 1 Omg of the cellulose derivative obtained in Example 2 was dissolved in 99 Omg of distilled water for injection at the site where the abdominal wall was missing, and Hyde Mouth Gel (1 ml) prepared at a concentration of 1.0% by weight was applied. After the muscle layers of the incision were joined, the skin was joined in 4-5 slant boxes. The wound was disinfected with isodine disinfectant and returned to the cage. Four weeks after the model was prepared, the animals were laparotomized under pentobarbi anesthesia and anatomical anesthesia, and the degree of intraperitoneal adhesion was visually evaluated and scored according to the criteria shown below.
  • Score 1 A state of weak adhesion that can be broken by mild traction
  • the adhesion score and strength were 0.8 ⁇ 1.3 and 1 2 2. 6 ⁇ 2 0 3.5 gf, respectively (mean soil standard deviation).
  • Example 4 As a control, the same operation as in Example 4 was carried out without applying a hide mouth gel, and the degree of adhesion and strength were evaluated. As a result, the adhesion score and strength were 1.4 ⁇ 1.5 and 3 3 1.2 ⁇ 3 6 4.9 gf, respectively (average score «difference). As described above, after 4 weeks, a strong adhesion occurred in a ratio, whereas in Example 4, the degree and strength of adhesion were remarkably suppressed. From this, it is recognized that the cellulose-derived gel obtained in Example 2 has the effect of remarkably suppressing adhesion in vivo, and can effectively prevent post-adhesion adhesion. Powerful. Industrial applicability
  • the cellulose derivative of the present invention forms a hyde mouth gel having high viscoelasticity, it becomes possible to remain in a specific part of the body, so that the wound is protected and the physical separation between ⁇ is reduced. Used to form a key.
  • a local drug delivery system can be realized by impregnating the drug in the hide-mouthed gel of the present invention.
  • the hide-mouthed gel of the present invention has a property that either or when it is injected into a living body, it can be preferably used as a scaffold material for regenerative medicine.
  • it can be used for daily products such as hair care products and skin moisturizers, and cosmetics. Furthermore, it is also used for cell culture carriers, microorganism culture carriers, and implant materials for Fantasy A composite of a molded product obtained by culturing cells and cells is also used for applications such as sensing such as cell chips.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Vascular Medicine (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Dispersion Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Materials For Medical Uses (AREA)
  • Medicinal Preparation (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

 本発明は、セルロース誘導体であるカルボキシメチルセルロースのもつ複数のカルボキシル基のうち、一部のものを−CO−NH−X−CO−Y−Zで置換したセルロース誘導体、ならびにそのハイドロゲルである。ここで、Xは炭素数1~10の2価の炭化水素基であり、Yは両末端に酸素原子を有する、ポリアルキレンオキシドから導かれる2価の基であり、Zは炭素数1~24の炭化水素基または−CO−R4であり、R4は炭素数1~23の炭化水素基である。 かかるハイドロゲルは粘弾性に優れ、かつ注射器などの注入器で所定の場所に注入することができるため、医療用ゲルや癒着防止材として利用できる。

Description

明 細 書 セルロース誘導体およびそのハイド口ゲル 技術分野
本発明は、 セルロース誘 であるカルボキシメチルセルロースのカルボキシル基力特定 の置換基で置換されたセルロース誘導体およびそのハイドロゲルに関する。 本発明のセル口 —ス誘難は、 水中でハイド口ゲルを形成する。 力 るハイド口ゲルは粘弾性に優れ、 かつ 注射器などの注入器で所定の場所に注入することができる不定形のィンジェクタブルゲルを 形成することができ、 医療用ゲレや癒着防止材として好ましく利用できる。 背景技術
天然由来のバイオマスであるセルロースより誘導されるカルボキシメチルセルロースは水 溶性を示す誘導体であり、 分散性や保水性がよいことから、 食品や化粧品など様々な分野で 禾 IJ用されている。 またカルポキシメチルセルロースは安^ 14カ犒いため、 医 野において はパップ材、 X線鶴剤、 纏の崩壊材、 薬用シロップ、 癒着防止材の原料などに利用され ている。
カルボキシメチルセルロースのカルボキシル基を修飾し、 不溶性の誘導体を形成した例は 知られており、 例えば国際公開 mWO O 1 /0 4 6 2 6 5号明細書にはカルポキシメチルセ ルロースを含むポリア二オン性多糖、 求核剤、 および活性化剤を水性混合液中で混合するこ とからなるポリア二オン性多糖の非水溶性誘 およびその i¾g方法が記載されている。 ここで記載されてレ、る誘難は非水溶性であり、 本発明のゲルのような、 水に対して低濃 度 在するときは水溶性を示し、 高濃度のときは傾けても流れない粘弾性を有するゲルに ついてはなんら記載がない。
国際公開第 WO 8 9 / 1 0 9 4 0号明細書には、 カルボキシメチルセルロース、 カルポキ シメチルスターチ、 およびカルボキシメチルキチンからなる群から選択される酸性ポリサッ カライドの、 脂赚、 ァリール脂肪族、 )1旨環式、 およ 素環式系列のアルコールとの全ェ ステルおよび部分エステル類、 ならびに該部分エステル類の無機塩基または有機塩基との塩 類が記載されている。 しかしながら、 これらの多糖誘難が八イド口ゲルを形成することに 関してはなんら記載がなく、 本発明のようなィンジェクタカレゲルを与えることについては 示唆もされていない。
日本特許出願公開第 2 0 0 0 - 5 1 3 4 3号公報には、 多糖類高分子および 1つの多糖高 肝に付着した脂離鎖を有する、 ゲル状態から溶液状態に、 およびその逆方向に、 可逆的 に状態変化するようにした天然の傷治療製品が開示されている。
しかしながら、 これらの文献で開示されている多糖類は、 水 夜中での粘弾性に乏しく、 注射針のような細い管を経由して体内に注入可能なハイド口ゲルとして用いることは困難で ある。 発明の開示
本発明が嫩しょうとする課題は、 高粘弾性を有するが、 注射器などの注入器で所定の場 所に注入できるィンジェクタブルゲルとして有用な生体内消化性のセルロース誘導体を提供 することにある。 これまで開示された技術では、 高い粘弾性を有するゲルを得ようとして置 換基の導入割合 (置換度) を高めようとすると凝集や沈殿が起こり、 粘弾性の高いゲルが得 られなかった。 しカゝし、 高粘弾性のゲルが得られれば、 体内の特定の箇所に一定期間、 任意 に留らせることができるため、 傷口の保護や、 β間の物理的な隔離バリアー形成に有用で ある。 また、 力、かるゲルに薬物を含浸させることで、 局所的なドラッグデリバリ一システム を できる。 さらに、 生体内に注入するといずれは分解または吸収されてしまう特性があ れば、 外科手術時に用いる注入用ゲル材ゃ再生医療の足場材料などに好ましく利用できる。 本発明の発明者らは、 生体内に用いることができて安^ に優れ、 取り扱い性に優れたィ ンジェクタブルゲルを見出すことを目的に鋭意研究した結果、 カルポキシメチルセルロース を特定の官能基で化学修飾することによって、 高い粘弾性を有しながら取り扱い性にも優れ たインジェク夕ブルゲルが得られることを見出し、 本発明を するに至つた。
すなわち、 本発明は下記式 (1 ) で表される化学構造を繰り返し単位とするセルロース誘 導体である。
Figure imgf000004_0001
式(1 ) 中、 R R2、 および R 3はそれぞれ独立に、 下記式 (a) 、 (b) 、 および
(c ) からなる群より選ばれ、
-H (a)
- CH2 - COOM (b)
— CH2— CO - NH— X— CO— Y— Z ( c )
式 (b) 中、 Mは水素原子、 アルカリ金属、 またはアルカリ土類爆であり、
式 (c ) 中、 Xは炭素数 1〜: 1 0の 2価の炭化水素基であり、 Yは両 に酸素原子を有す る 2価のポリアルキレンォキシドであり、 Zは炭素数 1〜2 4の炭化水素基または一 CO— R4である (ここで、 R 4は炭素数 1〜2 3の炭化水素基である) 。
また、 本発明はかかるセルロース誘導体を含有するハイドロゲルである。
また、 本発明はかかるセルロース誘 を含有する医療用材料である。
さらに、 本発明はかかるセルロース誘難を含有する癒着防止材である。
なお、 本発明のセルロース誘 ¾#:は、 上記式 ( 1 ) で表される化学構造を繰り返し単位と している力 全く同一の繰り返し単位; ^連結してできるポリマーに限られず、 上記した範囲 で許容される種々の R R2、 R 3の組 ^"に基づく多様な繰り返し単位が連結してできる ポリマ一も本発明に含まれる。 発明を実施するための最良の形態
本発明は、 上記式 ( 1 ) で表される化^ #造を繰り返し単位とするセルロース誘 であ る。 ここで、 Mは水素原子、 アルカリ鍋、 またはアルカリ土類金属であるが、 アルカリ金属 としては、 ナトリウム、 カリウム、 リチウムなどが挙げられ、 アルカリ土類鍋としては、 マグネシウム、 カルシウムなど力 げられる。 好ましくはナトリウムである。
式 (c ) 中の Xは、 炭素数 1〜; 1 0の 2価の炭化水素基である。 具体的には、 メチレン基、 エチレン基、 n—プロピレン基、 イソプロピレン基、 n—ブチレン基、 イソプチレン基など 力挙げられる。 好ましくはメチレン基である。
Yは、 両«に酸素原子を有する、 ポリアルキレンォキシドから導かれる 2価の基である。 ポリアルキレンォキシドとは、 具体的にはポリエチレングリコール、 ポリプロピレングリコ ール、 ポリブチレンダリコールなどで例示されるポリアルキレンエーテル類をいう。 両末端 に酸素原子を有するとは、 ポリアルキレンォキシドの両末端の水酸基から水素原子を除去し たものカ鳞接する基との結合に関与している構造をいう。 具体的には、 一 (O— CH2— C H (CH3) -) n— O—で表される 1, 2—ポリプロピレングリコール類、 一 (O— CH2 - CH2 - CH2 -) n— O—で表される 1 , 3—ポリプロピレングリコール類、 - (O- C H 2— C H 2—) n— O—で表されるポリエチレングリコ一ル類などから導かれる基が挙げら れる。 また、 上記ポリエチレングリコールとポリプロピレングリコールとの共重合体、 例え ば P E O— P P Oなどで表される共重合体から導かれる基であってもよい。 ここで nは繰り 返し単位数を表す。
かかる繰り返し単位数 nは、 好ましくは 2 ~ 1 0 0がよく、 さらに好ましくは 3〜7 0で ある。
Zは、 炭素数 1から 2 4の炭化水素基または、 — C〇— R4であり、 R4は炭素数 1〜2
3の炭化水素基である。
Zの炭素数 1から 2 4の炭化水素基としては、 具体的にはメチル基、 ェチル基、 プロピル 基、 ブチル基、 ペンチル基、 へキシル基、 ォクチル基、 ノニル基、 ラウリル基、 ステアリル 基などの直鎖状アルキル基、 シクロへキシル基、 シクロペンチル基、 シクロへキシルノニル 基、 コレステリル基などの環状構造を有するアルキル基、 ォレイル基などの不飽和アルキル 基、 フエニル基、 ナフチル基、 ベンジル基などの芳香族炭化水素基が例示できる。 これらの 中ではステアリル基、 ォレイル基など力好ましレ。
R4は、 炭素数 1〜2 3の炭化水素基である。 R4の具体例としては、 メチル基、 ェチル 基、 プロピル基、 ブチル基、 ペンチル基、 へキシル基、 ォクチル基、 ノニル基、 ヘプ夕デカ ニル基、 ヘプ夕デセニル基、 ラウリル基、 ステアリル基などの直鎖状アルキル基、 シクロへ キシル基、 シクロペンチル基、 シクロへキシルノニル基、 コレステリル どの環状構造を 有するアルキル基、 ォレイル基などの不飽和アルキル基、 フエニル基、 ナフチル基、 ベンジ ル¾¾どの芳香族炭化水素基が例示できる。 これらの中ではへプ夕デカニル基、 ヘプ夕デセ ニル基など力 子ましい。
R 4が脂肪族アルキル基の場合、 Zの— CO— R4は、 脂肪酸に由来するァシル基となる。 力、かるァシル基の好ましい具体例としては、 ラウロイル基、 パルミトイル基、 ステアロイル 基、 ォレオイル基カ举げられる。 一方、 R4が芳鶴基のときは、 Zの— CO— R4は、 芳 香 ¾1旨賺に由来するァシル基となる。 その好ましい具体例としては、 ベンゾィル基、 ナフ トイル基を例示することができる。 これらの中では、 ステアロイル基、 ォレオイル基力 子ま しく用いられる。
置換度とは、 置換基 (a) 、 置換基(b) 、 および置換基 (c) の当量の合計を 3とした 場合の、 それぞれの置換基の当量をいう。 置換基 (b) の置難と置換基 (c) の置髓の 合計は、 好ましくは 0. 3〜2. 0であり、 より好ましくは 0. 5〜1. 8であり、 さらに 好ましくは 0. 6〜: 1. 2である。
置換基 (b) の置換度と、 置換基 (c) の置離との割合は特に限定されないが、 置換基 (b) が置換基 (c) よりも多く存 ffiTるほう力 ましい。 特に、 置換基 (c) の置搬の、 置換基 (b) の置換度に対する比である RcZbが 0. 01〜0. 4であるもの力ゲルとし て好ましい。
置換基(c) の置換度は、 0. 001〜0. 50、 好ましくは 0. 005~0. 40であ る。置換基 (c) の置換度をこの範囲に制御することにより、 適度な粘弾性を有し、 注射器 などの細管を有する器具を用いて注入可能なゲルを得ることができる。 置換基(c) の置換 度は元素分析による炭 量と窒 量の比から求めることができる。
また、 セルロース誘導体の重量平均分子量は 1 X 103〜 5 X 106であり、 好ましくは 5 X 104〜5X 106、 より好ましくは 5X 104〜1 X 106である。 セルロース誘導体 の重量平均肝量は、 セルロースに導入される置換基 (c) の導入による分 の変化が起 こり、 置換基 (c) を導入する前のセルロース誘導体よりも 量が増えることとなる。 原 料となるカルポキシメチルセルロースの を適切に することによって目的の^ 量 を有するセルロース誘 #f本を得ることができる。 原料となるカルボキシメチルセルロースは、 セルロースから誘導される。 セルロースとし ては、 植物由来のセルロースであっても発酵法により製造されたバクテリァセルロースであ つてもよく、 特に限定されない。 セルロースを維化ナトリウムなどの強アルカリ水職に てアル力リセルロースとし、 これにモノクロロ酢酸やそのナトリゥム塩と反応させることに よりカルボキシメチルセルロース力得られる。 セルロース骨格におけるカルボキシメチル基 の置換位置は特に ^はないが、 主に C一 6位にあることが好ましい。
本発明のセルロース誘導体は、 (i ) カルポキシメチルセルロースと、 (Π) 下記式 ( 2 ) で表される成分 Pの縮合反応 (こより得ることができる。
ここで成分 Pとは、 下記式 (2 ) で表される、 片 にアミノ基を有する化合物である。 H2N - X - CO Y - Z ( 2 )
ここで、 X、 Y、 および Ζの定義は、 前記式 ( 1 ) における定義と同一である。
かかるアミノ基は、 適切な酸類と塩を形成しても «Iのァミノ基であってもよく、 特に制 限はない。 式 (2) の化合物は、 好ましく 下の反応により Migすることができる。
反応 1 ) :
A-NH- X- COOH + H-Y- Z → A— NH— X— CO— Y— Z 反応 2 ) :
A-NH-X- CO-Y- Z → H2N-X- CO-Y- Z
ここで、 Aはァミノ基の保護基を表す。
反応 1 ) は、 A— NH— X— COO—で表されるアミノ基カ褓護されたアミノ酸誘 と、 H— Y— Zの構造を有する片末端が水酸基の化合物とのカップリング反応である。 反応には エステル結合を形成させる縮合剤を用いること力 子ましく、 カルボジィミド類などの縮合剤 カ 子ましく用いられる。 好ましい具体例として、 ジシクロへキシルカルポジイミドを挙げる ことができる。
ァミノ基の保護基 Aとしては、 具体的にはべンジル基、 t—ブチルォキシ力ルポニル基 (B o c基) などの公知の保護基を用いること力できる。 これらの中でも B o c基カ好まし い。
反応 1 ) により得られる、 A— NH— X— C O— Y— Zは、 上記カップリング反応 (反応 1 ) ) に限定されず、 のあらゆる合成方法を利用できる。 例えば、 ァミノ基が保護され 力ルポキシル基力 舌性エステルになっているアミノ酸誘難と、 H— Y— Zの構造を有する 片«が水酸基の化合物とのエステル交贩応で合成してもよい。
反応 2) はァミノ基の脱保護反応であり、 通常のペプチド合成で用いられる公知の反応で あれば、 いずれの反応も用いることができる。 Aが B o c基の場合は、 酸を用いた脱保護反 応がよく、 トリフルォロ酢酸などの酸が好ましく利用される。 反応物の精製方法も特に限定 さ よいが、 所望に応じてクロマトグラフィーによる分離精製を行ってもよい。
上記反応 1 ) と 2) は、 液相合成でも固相合成でもよぐ 反応方法や精製方法は特に制限 さ lよい。
上記反応で得られた化合物である H2 N -X- CO-Y- Zの片末端ァミノ基と、 カルボ キシメチルセルロースのカルボキシル基とのカツプリング反応により、 本発明のセルロース 誘 ¾ ^が得られる。
H2N— X— CO— Y— Zは、 出発物質たるカルポキシメチルセルロースの力ルポキシル 基のモル当量に対して 0. 0 1〜0. 4当量となるように反応系に導入すること力 ましい。 このとき、 反応効率を考慮して H2N— X— CO— Y— Zの仕込み量を 3§¾にしてもよい。 カップリング反応は、 カルポキシメチルセルロースの特性から、 水を含む溶液で反応させ ること;^!子ましい。 この場合、 反応 を水だけとしても、 水と相溶する有機溶媒を混合し てもよく、 水と相溶しない有機溶媒を用いた 2層系の反応で行ってもよい。 水と相溶する有 機 としては、 メタノール、 エタノールなどのアルコール類ゃテトラヒドロフラン、 ジォ キサンなどの環状エーテル類、 ポリエチレンォキシド化合物などのエーテル類、 ジメチルホ ルムアミドゃジメチルァセトアミドなどのアミド類、 ピリジンゃピペリジンなどの有機塩基 類、 ジメチルスルホキシドなどのジアルキルスルホン類、 アセトンなどのケトン類を挙げる ことができる。 好ましくは、 水および水と相溶する有機溶媒を混合した均一な反応系で、 力 ルポキシメチルセルロースと Η2Ν— X— CO— Υ— Ζとの反応を行うことカ^!子ましく、 水 と相溶する有機 »としてはテトラヒドロフランが好ましい。
カップリングに用いる触媒は、 公知のいずれの化合物を使ってもよく、 カルボキシル活性 化剤や縮合剤が好ましく用いられる。 カルボキシル活性化剤として、 N—ヒドロキシスクシ ンイミド、 p—ニトロフエノール、 N—ヒドロキシベンゾトリアゾ一ル、 N—ヒドロキシピ ペリジン、 2 , 4, 5—トリクロ口フエノール、 N, N—ジメチルァミノピリジンなどが挙 げられる。 縮合剤としては、 1—ェチル一 3— (ジメチルァミノプロピル) 一カルポジイミ ドやその塩酸塩、 ジイソプロピルカルポジイミド、 ジシクロへキシルカルポジイミドゃ N— ヒドロキシ一 5—ノルポルネン一 2, 3—ジカルボキシイミドなど力挙げられる。
これらの中でも、 カルポキシ活性化剤として N—ヒドロキシベンゾトリアゾールを、 縮合 剤として 1一ェチル一 3— (ジメチルァミノプロピル) 一カルポジイミドの «塩を用いる の力 子ましい。
反応温度は、 好ましくは 0〜6 0でである。 副生成物を抑えるためには、 反応を 0〜1 0でに行うのがより好ましい。 反応環境は 性下力軒ましく、 さらに好ましくは p H 6〜 7である。
本発明のハイドロゲルは、 本発明のセルロース誘 :カ冰を含むことにより形成されるハ ィド口ゲルであり、 水 1 0 0重量部に対し、 式 ( 1 ) で表される化学構造を繰り返し単位と するセルロース誘 を 0. 0 5〜3. 0重量部、 好ましくは 0. :!〜 2. 0重量部、 さら に好ましくは 0. 3〜: 1 . 0重量部含むハイド口ゲルである。
本発明のハイドロゲルのうち、 ゲルの入った容器を傾けても流れ落ちない程度の粘弾性を 有するもの力 fましく、 スパテルなどの金属へらで触ると容易に変形することが可能で、 患 部に塗布することが容易な状態であり、 また注射器など細管を有する器具で注入することが 可能なもの力^ましい。 本発明のハイド口ゲルの粘弾性は、 本発明のセルロース誘難の水 に対する含量を変えることにより調整できるので、 使用目的に合わせて 化できる。 また、 本発明のハイド口ゲルは無 fe¾明であり、 の過程でごみなどの異物が混入した 場合、 これを検知することカ坷能であり、 工業生産する上でのメリットを有する。
また、 本発明のハイド口ゲルを水で希釈しても水を吸収し、 ゲルの籠は水力 S増えた分大 きくなる。 さらに水で希釈していくと、 いずれは水に可溶化し、 ゲルの性状を失い、 水溶液 となる特徴を有する。
本発明のハイドロゲル中に含まれる水 の他の成分としては、 触媒として用いた縮合剤 類、 縮合剤力^?定の化学反応を経由することで生成するゥレアなどの副産物類、 カルボキシ ル活性化剤、 未反応のアミン類、 反応の各段階で混入する可能性のある異物、 ρ Ηの調整に 用いたイオン類などが含まれるが、 これらの成分はいずれの化合物も、 生体内に入れたとき に異物反応として認識されない程度の含有量以下の低いレベルに抑えてあること力 子ましレ 本発明のセルロース誘 ·の好ましい複素弾性率としては、 水中におけるポリマー «が 0. 5重量%、 3 7 の条件で、 動的粘弾性測定装置 (レオメ一夕一) で角 ¾¾ 1 0 f ad/s e cにて測定したときに、 50~90 ONZm2であるもの力好ましく、 より好ま しくは 100〜70 ON/m2のものである。 ここで、 複素弾性率とは弾性体の応力とひず みの比を表す定数のことである。
また、 本発明のセルロース誘 およびそのハイド口ゲルの用途としては、 医用材料を含 めた医療用途、 ヘアケア製品や肌の保湿剤などの日用品用途、 化粧品用途などへの使用が 能である。 その中でも、 本発明のハイド口ゲルは注射器を通して ¾Λ可能であることから低 fi«医療用途に用いることが可能であり、 特に再生医療のための細胞の担体、 成長因子など の液性因子を保持 ·徐放する担体、 医薬品として利用できる低分子化合物を保持 ·徐放する 担体、 癒着防止材ゃシ一ラントなどの医用材料として好ましく利用できる。 さらには、 細胞 培養担体、 微生物の培養担体、 歯科用のインプラント材料などに好ましく用いられる。 細胞 を培養させた成型品と細胞との複合体は、 セルチップなどのセンシングゃ診断などの用途に も好ましく用いることができる。
本発明のセルロース誘導体およびそのハイドロゲルは、 公知のあらゆる滅菌方法で滅菌処 理することができる。 好ましく用いられる滅菌方法は、 電子線照射やエチレンォキシドによ るガス滅菌、 高圧蒸気滅菌などである。 実施例
以下、 実施例により本発明の実施の形態を説明するが、 これらは本発明の範囲を制限する ものではない。
[実施例 1 ]
H9N - CHリー CO— (O-CH.CH.) 7 - O - C, sH の合成
ォレイルアルコールポリエチレングリコールエーテル (H— (0-CH2CH2) 7-0- C18H35、 和麓薬 (株) M) 1ミリモルに対し、 N—ブチルォキシカルボニルグリシン (Boc-Gl y-OH, 和 ¾ 薬 (株) Μ) 1ミリモルをジクロロメタンに溶解し、 縮合 剤として、 ジシクロへキシルカルポジイミド (和^ Φ薬 (株) 製) 1ミリモルを含むジクロ ロメ夕ン溶液を室温で滴下した。 反応液をろ過して副生成物であるジシク口へキシルゥレア を取り除き、 濃縮、 乾燥させ、 アミノ基カ保護された中間体 (Boc-NH-CH2-CO 一 (0-CH2CH2) 7— O— C18H35) を得た。 この中間体に、 1〜 2ml程度のトリフルォロ酢酸 (和 «薬 (株) M) を加え、 瞧理 による脱 B o c反応を室温で 2時間行つた。 反応の進行は T L Cで確認した。 反応液を減圧 濃縮し、 翻のトリフルォロ酢酸を取り除き、 目的物であるアミン化合物のトリフルォロ酢 酸塩を得た。 生成物は、 ,Η— NMRで確認した。
[実施例 2]
カルボキシメチルセルロース (CMC— Na) と、 Hヮ N— CH?— CO— (Q-CH9CH ?) 7— O— C H^とのカップリング
CMC— Na (日本 ¾ケミカル (株) 製、 F600MC、 置 ^SO. 69) 20 Omg を水 40mlに溶解し、 さらにテトラヒドロフラン 40mlを加えて混合し、 均一な^を 得た。 この激夜に、 実施例 1で合成した H2N— CH2— CO— (0-CH2CH2) 7— O— C18H35のトリフルォ口塩酸塩を、 CMC— N aの力ルポキシル基 1当量に対して 0. 2 当量を力!]え、 混合した。
EDC (1—ェチル一 3— [3- (ジメチルァミノ) プロピル] カルポジイミド - HC 1、 和雇薬工業 (株) 製) 、 および HOB t ·Η20 (1—ヒドロキシベンゾトリアゾ一ル' 17娥物、 和 薬工業 (株) をそれぞれ H2N— CH2— CO— (0-CH2CH2) 7 —〇一C1 8H35に対して 1. 1当量、 10mlのテトラヒドロフラン/水 =1 1に溶解 し、 反応系に添加した後、 終夜勝した。 勝後、 反応液をロータリーエバポレーターで濃 縮することによりテトラヒドロフランを除去し、 水を蒸発させ、 全体量を約 1 3にまで濃 縮したところでエタノール中に反応激夜を加え、 沈殿を形成させた。 をろ別し、 その沈 殿物をエタノール中に懸濁させて 24時間 »し、 «物を回収して真空乾燥することでセ ルロース誘導体を得た。 得られたセルロース誘導体の元素分析を行い、 炭素と窒素の比率か ら置換度を算出した。 その結果、 置難は 0. 16であった。 [実施例 3]
ハイドロゲルの調製
実施例 2で得られたセルロース誘 Omgをイオン交換水 199 Omgに溶解し、 濃 度 0. 5重量%のハイド口ゲルを調製した。 得られたハイド口ゲルは無 β¾明で、 容器を傾 けても »することはなく、 スパテルなどの金属へらを簡単に挿入することができ、 25 G の注射針を通して容易に押し出すことができるハイドロゲルであった。
また、 得られたハイド口ゲルの複素弾性率を測定したところ、 177N/m2であった。 ハイド口ゲルの複素弾性率は、 動的粘弾性測定装置である Rheometer RFIII (TA
Instrument) を使用し、 37t:、 角速度 10 r ad/s e cで測定した。
[実施例 4]
腹腔内癒着試験
日本チヤ一ルス ·リバ一 (株) の Sp r ague— Dawl ey (SD) 系ラット (10 匹) を使用し、 Bucke皿 aier CC 3rdらの方法に従って腹腔内癒着モデルを作製した
[Buckemaier CC 3rd, Pusateri AE, Harris RA, Hetz SP: Am Surg 65 (3) :274-82, 1999] 。 す なわち、 ラットをベントバルピタールナトリウムの離内投与麻酔下で1 W位に固定し、 腹部 を剃毛した後、 消毒用エタノールで消毒した。 さらにイソジン消 #^で«領域を消毒した 後、 腹部正中線に沿って 3〜4 cm切開して盲腸を露出させた。 露出させた盲腸の一定の面 積 (l〜2cm2) について、 滅菌ガーゼを用いて点状出血が生じるまで擦過した。 盲腸を 元に戻し、 さらに相対する腹壁に欠損 (8mmX16mm) を作製した。 その後、 腹壁の欠 損部位に実施例 2で得られたセルロース誘導体 1 Omgを注射用蒸留水 99 Omgに溶解し、 濃度 1. 0重量%で調製したハイド口ゲル(1ml) を塗布した。 切開部の筋層を連賺合 した後、 皮膚を 4〜5斜箱合した。 創傷部をイソジン消毒液で消毒した後、 ケージに戻した。 モデル作製 4週間後に動物をペントバルビ夕一ルナトリゥム麻酔下で開腹し、 腹腔内癒着の 程度を肉眼的に «し、 以下に示す基準に従ってスコア化した。
(スコア分翁
スコア 0:癒着力認められない状態
スコア 1 :軽度の牽引で切れる程度の弱い癒着がある状態
スコア 2:軽度の牽引に耐えられ得る中程度の癒着がある状態
スコア 3:かなりしつかりとした癒着がある状態
さらに、 癒着が認められた場合、 盲腸にゼムクリップを縫合糸にて縫い付け、 それを Metric Gauges (0H3953- 05、 Cole- Parmer機) で引っ張り、 盲腸が腹壁からは力れる最大 強度 (単位は g f 、 1 g f = 0. 0 0 9 8 1 N) を測定し、 その値を癒着の強度として IWffi した。 癒着がない場合、 0 g fとして扱った。
その結果、 癒着のスコア、 強度はそれぞれ、 0. 8 ± 1 . 3、 1 2 2. 6 ± 2 0 3. 5 g f となった (平均値土標準偏差) 。
[比較例 1 ]
コントロールとして、 ハイド口ゲルを塗布せずに実施例 4と同様の操作を行い、 癒着の程 度、 強度を評価した。 その結果、 癒着のスコア、 強度はそれぞれ、 1 . 4 ± 1 . 5、 3 3 1 . 2 ± 3 6 4. 9 g fとなった (平均値士標 «差) 。 以上、 4週間後において、 比 で強固な癒着が発生していたのに対し、 実施例 4では 癒着の程度、 強度が著しく抑制されていた。 このことから、 実施例 2で得られたセルロース 誘^:より得られるハイド口ゲルには、 生体内において癒着を著しく抑制する効果があるこ とカ镳認され 稍後の癒着を効果的に防止できること力わかつた。 産業上の利用可能性
本発明のセルロース誘導体は、 高い粘弾性を有するハイド口ゲルを形成することで、 体内 の特定の箇所に留まらせることが可能となるため、 傷口保護や、 β間の物理的な隔¾1 'リ ァー形成のために用いられる。
また、 本発明のハイド口ゲルに薬物を含浸させることで、 局所的なドラッグデリバリ一シ ステムを実現できる。 .
また、 本発明のハイド口ゲルは生体内に注入すると、 いずれは または吸収されてしま う特性があり、 外禾样麟に用いる注入用ゲル材ゃ再生医療の足場材料などに好ましく利用 できる。
その他の用途としては、 ヘアケア製品や肌の保湿剤などの日用品用途、 化粧品用途などへ の使用が可能である。 さらに、 細胞培養担体、 微生物の培養担体、 »用のインプラント材 料などにも用いられる。 細胞を培養させた成型品と細胞との複合体は、 セルチップなどのセ ンシングゃ,などの用途にも用いられる。

Claims

請 求 の 範 囲 下記式 (1) で表される化学構造を繰り返し単位とするセルロース誘 。
Figure imgf000014_0001
式 (1) 中、 R'、 R2、 および R 3はそれぞれ独立に、 下記式 (a) 、 (b) 、 および (c) カ^なる群より選ばれ、
一 H (a)
-CH2-COOM (b)
一 CH2 - CO - NH - X - CO - Y - Z (c)
式 (b) 中、 Mは水素原子、 アルカリ金属、 またはアルカリ土類金属であり、
式 (c) 中、 Xは炭素数 1〜10の 2価の炭化水素基であり、 Yは両*¾に酸素原子を有す る、 ポリアルキレンォキシドから導力^!る 2価の基であり、 Zは炭素数 1〜24の炭化水素 基または— CO— R4である (ここで、 R 4は炭素数 1~23の炭化水素基である) 。
2. 置換基 (c) の置換度と置換基(b) の置換度の比である RcZbが 0. 01〜0. 4である請求項 1に記載のセルロース誘導体。
3. Yのポリアルキレンォキシドの繰り返し単位が 2〜 100である請求項 1または請求 項 2に記載のセルロース誘導体。
4. 水 1 0 0重量部に対し、 請求項 1から請求項 3のいずれかに記載のセルロース誘 を 0. :!〜 2. 0重量部含むハイド口ゲル。
5 . 請求項 1から請求項 3のいずれかに記載のセルロース誘 を含 る医療用材料。
6. 請求項 1から請求項 3のいずれかに記載のセルロース誘導体を含 WTる癒着防止材。
PCT/JP2008/073500 2007-12-17 2008-12-17 セルロース誘導体およびそのハイドロゲル WO2009078492A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US12/808,613 US8709450B2 (en) 2007-12-17 2008-12-17 Cellulose derivative and hydrogel thereof
AU2008339362A AU2008339362B2 (en) 2007-12-17 2008-12-17 Cellulose derivative and hydrogel thereof
JP2009546306A JP5204786B2 (ja) 2007-12-17 2008-12-17 セルロース誘導体およびそのハイドロゲル
CA2707786A CA2707786A1 (en) 2007-12-17 2008-12-17 Cellulose derivative and hydrogel thereof
CN2008801209750A CN101903407B (zh) 2007-12-17 2008-12-17 纤维素衍生物及其水凝胶
EP08860912.8A EP2236522A4 (en) 2007-12-17 2008-12-17 CELLULOSE DERIVATIVE AND HYDROGEL THEREOF

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007-324570 2007-12-17
JP2007324570 2007-12-17
JP2008047753 2008-02-28
JP2008-047753 2008-02-28

Publications (1)

Publication Number Publication Date
WO2009078492A1 true WO2009078492A1 (ja) 2009-06-25

Family

ID=40795602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073500 WO2009078492A1 (ja) 2007-12-17 2008-12-17 セルロース誘導体およびそのハイドロゲル

Country Status (8)

Country Link
US (1) US8709450B2 (ja)
EP (1) EP2236522A4 (ja)
JP (1) JP5204786B2 (ja)
KR (1) KR20100093086A (ja)
CN (1) CN101903407B (ja)
AU (1) AU2008339362B2 (ja)
CA (1) CA2707786A1 (ja)
WO (1) WO2009078492A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099770A1 (ja) * 2011-12-28 2013-07-04 花王株式会社 ポリエステル樹脂組成物
JP2013151661A (ja) * 2011-12-28 2013-08-08 Kao Corp ポリエステル樹脂組成物からなる成形体
US8871922B2 (en) 2009-03-20 2014-10-28 Fpinnovations Cellulose materials with novel properties
WO2018008700A1 (ja) * 2016-07-07 2018-01-11 日本製紙株式会社 変性セルロースナノファイバーおよびこれを含むゴム組成物
US9962469B2 (en) 2014-02-05 2018-05-08 University Of Tsukuba Adhesion-preventing preparation comprising composition comprising polycationic triblock copolymer and polyanionic polymer

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6885611B2 (ja) 2015-12-18 2021-06-16 ユニバーシティ オブ カンタベリー 分離媒体
US10590257B2 (en) 2016-09-26 2020-03-17 The Board Of Trustees Of The Leland Stanford Junior University Biomimetic, moldable, self-assembled cellulose silica-based trimeric hydrogels and their use as viscosity modifying carriers in industrial applications
US11969526B2 (en) 2017-04-03 2024-04-30 The Board Of Trustees Of The Leland Stanford Junior University Adhesion prevention with shear-thinning polymeric hydrogels
JP2020526618A (ja) * 2017-07-07 2020-08-31 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se アルコキシル化エステルアミンおよびその塩
US11975123B2 (en) 2018-04-02 2024-05-07 The Board Of Trustees Of The Leland Stanford Junior University Adhesion prevention with shear-thinning polymeric hydrogels

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62112604A (ja) * 1985-11-11 1987-05-23 Hoechst Gosei Kk 水性ゲルの製造方法
WO1989010940A1 (en) 1988-05-13 1989-11-16 Fidia S.P.A. New polysaccharide esters
JP2000051343A (ja) 1998-07-31 2000-02-22 Les Lab Brothier 傷治療製品
WO2001046265A1 (en) 1999-12-22 2001-06-28 Genzyme Corporation Water insoluble derivatives of polyanionic polysaccharides
JP2007002063A (ja) * 2005-06-22 2007-01-11 Teijin Ltd カルボキシメチルセルロース化合物

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3609928A1 (de) * 1985-03-27 1986-10-09 Hoechst Gosei K.K., Tokio/Tokyo Waessrige gelzusammensetzung, verfahren zu ihrer herstellung und ihre verwendung in der metallbearbeitung
US6174999B1 (en) * 1987-09-18 2001-01-16 Genzyme Corporation Water insoluble derivatives of polyanionic polysaccharides
US20030124087A1 (en) * 2001-12-26 2003-07-03 Amitie Co. Ltd. Anti-adhesion barrier
CN1370539A (zh) 2002-03-15 2002-09-25 中国科学院长春应用化学研究所 预防腹腔术后粘连的隔离剂的制备方法
JP2004051531A (ja) 2002-07-19 2004-02-19 Denki Kagaku Kogyo Kk 水難溶性化したカルボキシメチルセルロースを含有する癒着防止材
US20050187137A1 (en) * 2002-08-14 2005-08-25 Ulrich Pegelow Portioned cleaning agents or detergents containing phosphate
JP4500263B2 (ja) 2003-07-28 2010-07-14 帝人株式会社 温度応答性ハイドロゲル
CN1220528C (zh) * 2003-08-19 2005-09-28 大连永兴医用材料有限公司 羧甲基壳聚糖/羧甲基纤维素防手术粘连膜及其制备方法
CN1325125C (zh) * 2004-12-23 2007-07-11 中国人民解放军第二军医大学 一种防粘连生物膜
CN101238151B (zh) 2005-08-04 2011-11-16 帝人株式会社 纤维素衍生物
WO2010016611A1 (ja) 2008-08-05 2010-02-11 帝人株式会社 ハイドロゲル

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62112604A (ja) * 1985-11-11 1987-05-23 Hoechst Gosei Kk 水性ゲルの製造方法
WO1989010940A1 (en) 1988-05-13 1989-11-16 Fidia S.P.A. New polysaccharide esters
JP2000051343A (ja) 1998-07-31 2000-02-22 Les Lab Brothier 傷治療製品
WO2001046265A1 (en) 1999-12-22 2001-06-28 Genzyme Corporation Water insoluble derivatives of polyanionic polysaccharides
JP2007002063A (ja) * 2005-06-22 2007-01-11 Teijin Ltd カルボキシメチルセルロース化合物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BUCKENMAIER CC 3RD; PUSATERI AE; HARRIS RA; HETZ SP, AM SURG., vol. 65, no. 3, 1999, pages 274 - 82
See also references of EP2236522A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8871922B2 (en) 2009-03-20 2014-10-28 Fpinnovations Cellulose materials with novel properties
WO2013099770A1 (ja) * 2011-12-28 2013-07-04 花王株式会社 ポリエステル樹脂組成物
JP2013151636A (ja) * 2011-12-28 2013-08-08 Kao Corp ポリエステル樹脂組成物
JP2013151661A (ja) * 2011-12-28 2013-08-08 Kao Corp ポリエステル樹脂組成物からなる成形体
US10093798B2 (en) 2011-12-28 2018-10-09 Kao Corporation Polyester resin composition
US9962469B2 (en) 2014-02-05 2018-05-08 University Of Tsukuba Adhesion-preventing preparation comprising composition comprising polycationic triblock copolymer and polyanionic polymer
WO2018008700A1 (ja) * 2016-07-07 2018-01-11 日本製紙株式会社 変性セルロースナノファイバーおよびこれを含むゴム組成物
JP6276489B1 (ja) * 2016-07-07 2018-02-07 日本製紙株式会社 変性セルロースナノファイバーおよびこれを含むゴム組成物
US11261302B2 (en) 2016-07-07 2022-03-01 Nippon Paper Industries Co., Ltd. Modified cellulose nanofiber and rubber composition including the same

Also Published As

Publication number Publication date
US8709450B2 (en) 2014-04-29
CN101903407A (zh) 2010-12-01
JP5204786B2 (ja) 2013-06-05
CA2707786A1 (en) 2009-06-25
KR20100093086A (ko) 2010-08-24
AU2008339362B2 (en) 2013-01-10
AU2008339362A1 (en) 2009-06-25
EP2236522A1 (en) 2010-10-06
EP2236522A4 (en) 2013-04-17
US20110129505A1 (en) 2011-06-02
JPWO2009078492A1 (ja) 2011-05-06
CN101903407B (zh) 2012-07-11

Similar Documents

Publication Publication Date Title
WO2009078492A1 (ja) セルロース誘導体およびそのハイドロゲル
JP5059787B2 (ja) セルロース誘導体およびその製造方法
JP5406281B2 (ja) 多糖類誘導体およびそのハイドロゲル
ES2440240T3 (es) Derivado de celulosa
CN109053928A (zh) 一种基于改性壳聚糖的生物大分子及其制备方法和应用
JP5469065B2 (ja) ハイドロゲル
JP2010209130A (ja) アルギン酸誘導体およびその製造方法
US10603404B2 (en) Phosphazene-based polymer for tissue adhesion, a method for preparing the same, and use thereof
WO2004004794A1 (ja) 体液適合性および生体適合性を有する樹脂
JP2010035744A (ja) 癒着防止材
WO2022164336A1 (ru) Способ получения нетоксичных гелей на основе модифицированной карбоксиметилцеллюлозы
JP2011099029A (ja) 多糖類誘導体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880120975.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08860912

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009546306

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2707786

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 3606/CHENP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20107013247

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12808613

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2008339362

Country of ref document: AU

Date of ref document: 20081217

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2008860912

Country of ref document: EP