WO2009077668A2 - Système d'alimentation de machine électrique - Google Patents

Système d'alimentation de machine électrique Download PDF

Info

Publication number
WO2009077668A2
WO2009077668A2 PCT/FR2008/001361 FR2008001361W WO2009077668A2 WO 2009077668 A2 WO2009077668 A2 WO 2009077668A2 FR 2008001361 W FR2008001361 W FR 2008001361W WO 2009077668 A2 WO2009077668 A2 WO 2009077668A2
Authority
WO
WIPO (PCT)
Prior art keywords
switch
circuit
capacitor
power supply
transistor
Prior art date
Application number
PCT/FR2008/001361
Other languages
English (en)
Other versions
WO2009077668A3 (fr
Inventor
Yann Le Pecheur
Mickael Tihy
Original Assignee
Valeo Systemes De Controle Moteur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes De Controle Moteur filed Critical Valeo Systemes De Controle Moteur
Priority to US12/680,870 priority Critical patent/US20100259205A1/en
Priority to JP2010527488A priority patent/JP2010541534A/ja
Priority to BRPI0817921 priority patent/BRPI0817921A2/pt
Priority to EP08861897A priority patent/EP2206232A2/fr
Publication of WO2009077668A2 publication Critical patent/WO2009077668A2/fr
Publication of WO2009077668A3 publication Critical patent/WO2009077668A3/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/26Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual polyphase induction motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/46Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual synchronous motor

Definitions

  • the present invention relates to an electric machine supply system.
  • a particularly interesting application of the invention lies in the field of supply of electric motors used in motor vehicles.
  • a power supply system of an electric machine such as an electric motor used in a motor vehicle comprises a power circuit for transmitting the voltage of the vehicle battery to an electronic card managing the power supply of said motor. .
  • FIG. 1 An example of such a feed system 1 is shown schematically in FIG. 1.
  • the system 1 comprises:
  • the power circuit 3 comprises. o two capacitors 4 and 5 connected in parallel, o an inductor 6 connected between the positive terminal + Bat of the battery 2 and a first common terminal of the two capacitors 4 and 5.
  • the function of the power circuit 3 is to transmit the voltage of the battery 2 to the electronic supply circuit 8.
  • the power circuit is for example composed of several "bus-bar" ("bus bars" in French) unrepresented copper.
  • the electronic supply circuit 8 is composed of a switching power supply circuit comprising three bridge arms 9, 10 and 11 each comprising two transistors 12 and 13 connected in series, each transistor being provided with an antiparallel diode (the antiparallel diode is often present by construction on the field effect transistors of the MOSFET type ).
  • Each of the three stator windings of the motor M is therefore powered by a bridges 9, 10 and 11.
  • the control circuits of the transistors have not been shown.
  • the chopping of the voltage caused by the electronic supply circuit 8 can disturb the entire on-board network and the battery voltage 2.
  • the filter formed by the inductor 6 and the capacitors 4 and 5 is intended to stabilize the battery voltage 2
  • the filter makes it possible, in a way, to smooth the corrugated voltage.
  • the value of the filtering capacitance is generally high: this is why, as in the example presented here, two parallel capacitors 4 and 5 discrete are often used, these capacitors 4 and 5 being preferably electrochemical capacitors of which the common positive pole is connected to the inductor 6.
  • FIG. 1 An example of a feed system 20 having such a configuration is shown in FIG.
  • the system 20 is identical to the system 1 of Figure 1 with the difference that it comprises a switch 21 for selectively connecting the battery to the power circuit and the electronic supply circuit.
  • a switch 21 for selectively connecting the battery to the power circuit and the electronic supply circuit.
  • Such a switch 21 requires the presence of a pre-charge circuit
  • Capacitors said pre-charge circuit belonging to the power circuit; the pre-charge circuit is designed to avoid inrush currents which could occur if the switch 21 is closed on capacitors initially discharged. Inrush currents that can reach 100 A (or 200 A) can adversely affect the battery, the various connectors, the relay contact, the chemical capacitors and even the fuses.
  • the pre-charging circuit 22 comprises, for example, a field effect transistor 23 of the power MOSFET type: this transistor is for example controlled with pulses more frequently until it closes completely.
  • Such a pre-charge circuit makes it possible to ensure a progressive charge of the electrochemical capacitors, the transistor 23 acting as a resistive load and forming with the capacitors an RC circuit: once the capacitors are charged, the transistor is held in position closed.
  • the major disadvantage of this configuration lies in the modification of the power circuit and more particularly in the addition of an impedance (for example the power MOSFET transistor) in the filter contained in this power circuit.
  • an impedance for example the power MOSFET transistor
  • the presence of this impedance requires new connections, decreases the overall efficiency of the circuit and can have consequences in terms of EMC (Electro-Magnetic Compatibility) insofar as the filter was intended to function satisfactorily (without added impedance) in its electromagnetic environment without causing itself electromagnetic disturbances.
  • the present invention aims to provide a power supply system for an electric machine comprising a pre-charge circuit, said system making it possible to overcome the above-mentioned EMC problems and having a high electrical efficiency and a relatively high overhead. low compared to systems without pre-charge circuit.
  • the invention proposes a power supply system for an electric machine comprising:
  • At least one capacitor connected in parallel with said voltage source when said first switch is in the closed position
  • a pre-charge circuit of said capacitor said system being characterized in that it comprises a second switch, said pre-charge circuit being connected to said voltage source when said second switch is closed and said first switch being controlled for close after pre-charging said capacitor.
  • Pre-charge circuit is understood to mean a circuit enabling the capacitor to charge more slowly than in the absence of a pre-charge circuit and thus to avoid an excessive current draw of the capacitor discharged at the moment of closing.
  • first switch Thanks to the invention, a second switch is used which makes it possible to pre-charge the capacitor before closing the first switch serving to supply the electronic supply circuit of the electrical machine. This second switch makes it possible to separate the precharge function of the capacitor from the supply of the electronic supply circuit.
  • the pre-charge circuit is external to the power circuit and does not introduce additional impedance which would lead to loss of efficiency and EMC problems.
  • the second switch is only used to pre-charge the capacitor and is not used in the context of the power supply of the electronic circuit; therefore, it is quite possible to employ a switch operating at low power and having a higher on-resistance than that of the transistors used in the aforementioned known solutions.
  • said pre-charge circuit and said second switch are mounted, for example, in series between the terminals of said first switch.
  • the system according to the invention may also have one or more of the following characteristics, considered individually or in any technically possible combination: said source of voltage is the battery of a motor vehicle.
  • said second switch is formed by the device for feeding after contact + APC.
  • said at least one capacitor is an electrochemical capacitor.
  • said pre-charge circuit comprises a transistor, the control of said transistor ensuring the pre-charge of said capacitor.
  • said transistor is controlled to open before the closing of said first switch.
  • said pre-charge circuit comprises a resistor in parallel with a transistor.
  • the system according to the invention comprises a second capacitor connected in parallel on said first capacitor.
  • said electronic supply circuit is a supply circuit of an electric motor.
  • said electronic supply circuit is formed by a switching power supply circuit.
  • said system comprises means for controlling said first closing switch after pre-charging said capacitor.
  • the invention also relates to the use of said system, as mentioned above, in which it controls closing said first switch after the pre-charge of said capacitor.
  • FIG. 1 is a simplified schematic representation of a first power system of an electric machine according to the prior art
  • FIG. 2 is a simplified schematic representation of a second power system of an electric machine according to the prior art
  • FIG. 3 is a simplified schematic representation of a power system of an electric machine according to the invention.
  • Figures 1 and 2 have been described above with reference to the prior art.
  • FIG. 3 is a simplified schematic representation of a system 100 according to the invention.
  • the system 100 comprises:
  • the power circuit 103 comprises.
  • a switch 101 such as an electromechanical relay for selectively connecting the battery 102 to the power circuit 103 and to the electronic supply circuit 108,
  • an inductor 106 connected between the positive terminal + Bat of the battery 102 and the common positive terminal of the two electrochemical capacitors 4 and 5.
  • the function of the power circuit 103 is to transmit the voltage of the battery 102 to the electronic supply circuit 108.
  • the power circuit is for example composed of several "bus bars” ("bus bars” in French) of copper not represented.
  • the electronic supply circuit 108 is generally formed by an electronic card of the SMI type (Isolated Metal Substrate) composed of a switching power supply circuit comprising three bridge arms 109, 110 and 111 each comprising two transistors 112 and 113 connected in series, each transistor being provided with an antiparallel diode (the antiparallel diode is often present by construction on field effect transistors of the MOSFET type).
  • SMI System Independent Metal Substrate
  • Each of the three stator windings of the motor M is therefore powered by one of the bridges 109, 110 and 111.
  • the control circuits of the transistors have not been represented.
  • the electronic supply circuit 108 further comprises a pre-charge circuit 114 formed for example by a bipolar transistor 115 (the presence of the relay 101 requires the presence of the pre-charge circuit 114 of the capacitors 104 and 105 to avoid This bipolar transistor is connected between the positive terminal of the electrochemical capacitors 104 and 105 and the vehicle after-ignition power supply device APC of the vehicle
  • the + APC of the vehicle vehicle sends a power signal to pass some electronic systems of the vehicle from their standby state or stop, to their nominal wakeup state. + APC after contact to connect the transistor 115 to the battery voltage source 102.
  • the filter formed by the inductor 106 and the electrochemical capacitors 104 and 105 is intended to stabilize the battery voltage 102, which can be chopped by the electronic circuit 108.
  • the value of the filtering capacitance is generally high: this is why, two electrochemical capacitors 104 and 105 are used discretely connected in parallel.
  • the value of the capacitance of each of the electrochemical capacitors 104 and 105 in an application of this type is of the order of 3300 ⁇ F with an inductance 106 of 0.6 ⁇ H.
  • the signal + APC and the relay 101 are for example controlled by the on-board computer.
  • the operation of the system 100 is as follows: after putting the + APC into contact (connection to the battery voltage via the ignition key which actuates a relay), the control electronics (not shown) controls the closing of the pre-charge transistor 115 (for example via more and more frequent pulses) so that the capacitors 104 and 105 are gradually charged. Once the capacitors 104 and 105 have been loaded, the control electronics (not shown) controls the opening of the pre-charge transistor 115, then the on-board computer controls the closing of the relay 101, thus enabling the power circuits 103 to be powered. and 108 by the battery 102.
  • the duration, imposed by the on-board computer, separating the + APC and the closing of the relay 101 must be sufficient to allow correct pre-charging of the capacitors 104 and 105. Thanks to the system 100 according to the invention, the pre-charge circuit does not come between the battery 102 and the motor M affecting the electrical efficiency. All the voltage delivered by the battery goes directly into the electronic circuit 108 via the power circuit 103 sized to have a minimum of losses (use of copper bus bar with low ohmic losses).
  • the bipolar transistor 115 used in the precharging circuit 114 is used only for the pre-charge of the capacitors and can therefore be a transistor having a lower performance (especially in terms of on-state impedance). (and therefore lower cost) than power transistors used in known pre-charge circuits.
  • the pre-charge circuit 114 belongs to the electronic card 108 and not to the power circuit 103 so that the pre-charge circuit does not modify the structure of the power circuit 103 and has no impact on the terms of EMC on the power circuit 103.
  • precharge circuit composed of a bipolar transistor. It is however possible to use any type of transistor such as a field effect transistor for example.
  • the pre-charge circuit may also be formed by a transistor in parallel with a resistor.

Abstract

La présente invention concerne un système (100) d'alimentation de machine électrique (M). Une application particulièrement intéressante de l'invention se situe dans le domaine de l'alimentation des moteurs électriques utilisés dans les véhicules automobiles. Le système (100) comporte une source de tension (102), un circuit électronique (108) d'alimentation de la machine électrique (M), un premier interrupteur (101), la source de tension (102) ali¬ mentant le circuit électronique (108) lorsque le premier interrupteur (101) est en position fermée, au moins un condensateur (104, 105) monté en parallèle sur la source de tension (102) lorsque le premier interrupteur (101) est en position fermée et un circuit de pré-charge (114) du condensateur (104, 105). Le système (100) comporte en outre un deuxième interrupteur (+APC), le circuit de pré-charge (114) étant connecté à la source de tension (102) lorsque le deuxième interrupteur (+APC) est fermé et le premier interrupteur (101) étant commandé pour se fermer après la pré-charge du condensateur (104, 105).

Description

Système d'alimentation de machine électrique
La présente invention concerne un système d'alimentation de machine électrique. Une application particulièrement intéressante de l'invention se situe dans le domaine de l'alimentation des moteurs électriques utilisés dans les véhicules automobiles. De façon générale, un système d'alimentation d'une machine électrique tel qu'un moteur électrique utilisé dans un véhicule automobile comporte un circuit de puissance visant à transmettre la tension de la batterie du véhicule vers une carte électronique gérant l'alimentation dudit moteur.
Un exemple d'un tel système d'alimentation 1 est représenté schéma- tiquement en figure 1. Le système 1 comporte :
- une source de tension 2 formée par la batterie du véhicule,
- un circuit de puissance 3
- un circuit électronique d'alimentation 8 visant à alimenter un moteur M. Le circuit de puissance 3 comprend. o deux condensateurs 4 et 5 montés en parallèle, o une inductance 6 reliée entre la borne positive +Bat de la batterie 2 et une première borne commune des deux condensateurs 4 et 5. La fonction du circuit de puissance 3 est de transmettre la tension de la batterie 2 vers le circuit électronique d'alimentation 8. Le circuit de puissance est par exemple composé de plusieurs « bus-bar » (« barres omnibus » en français) en cuivre non représentées.
Dans le cas d'un moteur M de type « brushless » (« sans balais» en français) tel que celui utilisé dans une direction assistée électrique, le circuit électronique d'alimentation 8 est composé d'un circuit d'alimentation à découpage comportant trois bras de pont 9, 10 et 11 comprenant chacun deux transistors 12 et 13 montés en série, chaque transistor étant muni d'une diode en antiparallèle (la diode en antiparallèle est souvent présente par construction sur les transistors à effet de champ du type MOSFET). Chacun des trois enroulements statoriques du moteur M est donc alimenté par un des ponts 9, 10 et 11. Par souci de clarté, les circuits de commande des transistors n'ont pas été représentés.
Le hachage de la tension provoquée par le circuit électronique d'alimentation 8 peut perturber l'ensemble du réseau de bord et la tension batterie 2. Le filtre formé par l'inductance 6 et les condensateurs 4 et 5 vise à stabiliser la tension batterie 2. Le filtre permet, en quelque sorte, de lisser la tension ondulée. La valeur de la capacité de filtrage est généralement élevée : c'est pourquoi, comme dans l'exemple présenté ici, deux condensateurs 4 et 5 discrets montés en parallèle sont souvent utilisés, ces conden- sateurs 4 et 5 étant préférentiellement des condensateurs électrochimiques dont le pôle positif commun est relié à l'inductance 6.
Une telle configuration pose cependant un problème dans la mesure où la batterie est toujours connectée à la fois au circuit de puissance et au circuit électronique d'alimentation. Cette connexion permanente peut impli- quer des courants de fuite susceptible d'entraîner un échauffement non souhaité.
Dès lors, certains constructeurs exigent la présence d'un interrupteur permettant de couper l'alimentation des circuits. Un exemple de système d'alimentation 20 présentant une telle configuration est représentée en fi- gure 2.
Le système 20 est identique au système 1 de la figure 1 à la différence qu'il comporte un interrupteur 21 permettant de connecter sélectivement la batterie au circuit de puissance et au circuit électronique d'alimentation. Un tel interrupteur 21 nécessite la présence d'un circuit de pré-charge
22 des condensateurs, ledit circuit de pré-charge appartenant au circuit de puissance; le circuit de pré-charge vise à éviter les courants d'appel (« in- rush current » en anglais) qui pourraient survenir en cas de fermeture de l'interrupteur 21 sur des condensateurs initialement déchargés. Les courants d'appel qui peuvent atteindre 100 A (voire 200 A) peuvent nuire à la batterie, aux différents connecteurs, au contact du relai, aux condensateurs chimiques et même aux fusibles. Le circuit de pré-charge 22 comporte par exemple un transistor 23 à effet de champ du type MOSFET de puissance : ce transistor est par exemple commandé avec des impulsions de plus en fréquentes jusqu'à se fermer complètement. Un tel circuit de pré-charge permet d'assurer une charge progressive des condensateurs électrochimiques, le transistor 23 jouant le rôle d'une charge résistive et formant avec les condensateurs un circuit RC : une fois les condensateurs chargés, le transistor est maintenu en position fermé.
Cependant, la mise en œuvre de la configuration telle que représen- tée en figure 2 pose également certaines difficultés.
Ainsi, l'inconvénient majeur de cette configuration réside dans la modification du circuit de puissance et plus particulièrement dans l'ajout d'une impédance (par exemple le transistor MOSFET de puissance) dans le filtre contenu dans ce circuit de puissance. La présence de cette impédance exige de nouvelles connexions, diminue le rendement global du circuit et peut avoir des conséquences en termes de CEM (Compatibilité Electro-Magnétique) dans la mesure où le filtre était prévu pour fonctionner de façon satisfaisante (sans impédance rajouté) dans son environnement électromagnétique sans provoquer lui- même de perturbations électromagnétiques.
En outre, l'ajout de cette impédance entraîne un surcoût non négligeable dans la mesure où il nécessite l'utilisation d'un composant de type transistor fonctionnant à forte puissance et présentant une impédance faible à l'état passant. Dans ce contexte, la présente invention vise à fournir un système d'alimentation d'une machine électrique comportant un circuit de pré-charge, ledit système permettant de s'affranchir des problèmes de CEM précités et présentant un rendement électrique performant et un surcoût relativement faible par rapport aux systèmes sans circuit de pré-charge. A cette fin, l'invention propose un système d'alimentation d'une machine électrique comportant :
- une source de tension,
- un circuit électronique d'alimentation de ladite machine électrique, - un premier interrupteur, ladite source de tension alimentant ledit circuit électronique lorsque ledit premier interrupteur est en position fermée,
- au moins un condensateur monté en parallèle sur ladite source de tension lorsque ledit premier interrupteur est en position fermée,
- un circuit de pré-charge dudit condensateur, ledit système étant caractérisé en ce qu'il comporte un deuxième interrupteur, ledit circuit de pré-charge étant connecté à ladite source de tension lorsque ledit deuxième interrupteur est fermé et ledit premier interrupteur étant commandé pour se fermer après la pré-charge dudit condensateur.
On entend par circuit de pré-charge un circuit permettant au condensateur de se charger plus lentement qu'en l'absence de circuit de pré-charge et d'éviter ainsi un appel de courant trop important du condensateur déchargé au moment de la fermeture du premier interrupteur. Grâce à l'invention, on utilise un deuxième interrupteur qui permet de pré-charger le condensateur avant la fermeture du premier interrupteur servant à alimenter le circuit électronique d'alimentation de la machine électrique. Ce deuxième interrupteur permet de bien séparer la fonction de précharge du condensateur de l'alimentation du circuit électronique d'alimentation. Ainsi, le circuit de pré-charge est extérieur au circuit de puissance et n'introduit pas d'impédance supplémentaire qui entraînerait une perte de rendement et des problèmes de CEM.
En outre, le deuxième interrupteur sert uniquement à pré-charger le condensateur et n'est pas utilisé dans le cadre de l'alimentation du circuit électronique ; en conséquence, il est tout à fait possible d'employer un interrupteur fonctionnant à faible puissance et présentant une résistance à l'état passant plus élevée que celle des transistors utilisés dans les solutions connues précitées.
A cette fin, ledit circuit de pré-charge et ledit second interrupteur sont montés, par exemple, en série entre les bornes dudit premier interrupteur.
Le système selon l'invention peut également présenter une ou plusieurs des caractéristiques ci-dessous, considérées individuellement ou selon toutes les combinaisons techniquement possibles : - ladite source de tension est la batterie d'un véhicule automobile.
- ledit deuxième interrupteur est formé par le dispositif d'alimentation après contact +APC.
- ledit au moins un condensateur est un condensateur électrochimi- que.
- ledit circuit de pré-charge comporte un transistor, la commande dudit transistor assurant la pré-charge dudit condensateur.
- ledit transistor est commandé pour s'ouvrir avant la fermeture dudit premier interrupteur. - ledit circuit de pré-charge comporte une résistance en parallèle avec un transistor.
- Le système selon l'invention comporte un deuxième condensateur monté en parallèle sur ledit premier condensateur.
- ledit circuit électronique d'alimentation est un circuit d'alimentation d'un moteur électrique.
- ledit circuit électronique d'alimentation est formé par un circuit d'alimentation à découpage.
- ledit système comporte des moyens pour commander ledit premier interrupteur en fermeture après la pré-charge dudit conden- sateur.
L'invention concerne aussi l'utilisation dudit système, tel qu'évoqué plus haut, dans laquelle on commande en fermeture ledit premier interrupteur après la pré-charge dudit condensateur.
D'autres caractéristiques et avantages de l'invention ressortiront clai- rement de la description qui en est donnée ci-dessous, à titre indicatif et nullement limitatif, en référence aux figures annexées, parmi lesquelles :
- la figure 1 est une représentation schématique simplifiée d'un premier système d'alimentation d'une machine électrique selon l'art antérieur;
- la figure 2 est une représentation schématique simplifiée d'un second système d'alimentation d'une machine électrique selon l'art antérieur;
- la figure 3 est une représentation schématique simplifiée d'un système d'alimentation d'une machine électrique selon l'invention. Les figures 1 et 2 ont été décrites plus haut en référence à l'art antérieur.
La figure 3 est une représentation schématique simplifiée d'un système 100 selon l'invention. Le système 100 comporte :
- une source de tension 102 formée par la batterie du véhicule,
- un circuit de puissance 103
- un circuit électronique d'alimentation 108 visant à alimenter un moteur M. Le circuit de puissance 103 comprend.
- Un interrupteur 101 tel qu'un relai électromécanique permettant de connecter sélectivement la batterie 102 au circuit de puissance 103 et au circuit électronique d'alimentation 108,
- deux condensateurs électrochimiques 104 et 105 montés en pa- rallèle,
- une inductance 106 reliée entre la borne positive +Bat de la batterie 102 et la borne positive commune des deux condensateurs électrochimiques 4 et 5.
La fonction du circuit de puissance 103 est de transmettre la tension de la batterie 102 vers le circuit électronique d'alimentation 108. Le circuit de puissance est par exemple composé de plusieurs « bus-bar » (« barres omnibus » en français) en cuivre non représentées.
Dans le cas d'un moteur M de type « brushless » (« sans balais» en français) triphasé tel que celui typiquement utilisé dans une direction assis- tée électrique, le circuit électronique d'alimentation 108 est généralement formé par une carte électronique du type SMI (Substrat Métal Isolé) composée d'un circuit d'alimentation à découpage comportant trois bras de pont 109, 110 et 111 comprenant chacun deux transistors 112 et 113 montés en série, chaque transistor étant muni d'une diode en antiparallèle (la diode en antiparallèle est souvent présente par construction sur les transistors à effet de champ du type MOSFET). Chacun des trois enroulements statoriques du moteur M est donc alimenté par un des ponts 109, 110 et 111. Par souci de clarté, les circuits de commande des transistors n'ont pas été représentés. Le circuit électronique d'alimentation 108 comporte en outre un circuit de pré-charge 114 formé par exemple par un transistor bipolaire 115 (la présence du relai 101 nécessite la présence du circuit de pré-charge 114 des condensateurs 104 et 105 afin d'éviter des courants d'appel trop importants. Ce transistor bipolaire est relié entre la borne positive des condensateurs électrochimiques 104 et 105 et le dispositif d'alimentation après contact +APC du véhicule. Lors de l'activation du contact du véhicule, le +APC du véhicule envoie un signal d'alimentation permettant de faire passer certains systèmes électroniques du véhicule de leur état de veille ou d'arrêt, à leur état de réveil nominal. Le +APC après contact permet de relier le transistor 115 à la source de tension batterie 102.
Le filtre formé par l'inductance 106 et les condensateurs électrochimiques 104 et 105 vise à stabiliser la tension batterie 102 qui peut subir un hachage provoqué par le circuit électronique 108. La valeur de la capacité de filtrage est généralement élevée : c'est pourquoi, on utilise souvent deux condensateurs électrochimiques 104 et 105 discrets montés en parallèle. A titre d'exemple, la valeur de la capacité de chacun des condensateurs électrochimiques 104 et 105 dans une application de ce type est de l'ordre de 3300 μF avec une inductance 106 de 0,6 μH. Le signal +APC et le relai 101 sont par exemple commandés par le calculateur de bord.
Le fonctionnement du système 100 est le suivant : après mise sous contact du +APC (connexion à la tension batterie via la clef de contact qui actionne un relai) l'électronique de commande non représentée commande la fermeture du transistor de pré-charge 115 (par exemple via des impulsions de plus en plus fréquentes) de sorte que les condensateurs 104 et 105 se chargent progressivement. Une fois les condensateurs 104 et 105 chargés, l'électronique de commande non représentée commande l'ouverture du transistor de pré-charge 115 puis le calculateur de bord commande la ferme- ture du relai 101 autorisant ainsi l'alimentation des circuits de puissance 103 et 108 par la batterie 102. La durée, imposée par le calculateur de bord, séparant le +APC et la fermeture du relais 101 doit être suffisante pour permettre une pré-charge correcte des condensateurs 104 et 105. Grâce au système 100 selon l'invention, le circuit de pré-charge ne vient pas s'interposer entre la batterie 102 et le moteur M en affectant le rendement électrique. Toute la tension délivrée par la batterie va directement dans le circuit électronique 108 via le circuit de puissance 103 dimen- sionné pour présenter un minimum de pertes (utilisation de bus-bar de cuivre avec peu de pertes ohmiques).
En outre, le transistor bipolaire 115 utilisé dans le circuit de précharge 114 n'est utilisé que pour la pré-charge des condensateurs et peut donc être un transistor présentant des performances (notamment en termes d'impédance à l'état passant) moins importantes (et donc un coût moindre) que les transistors de puissance utilisés dans les circuits de pré-charge connus.
Enfin, le circuit de pré-charge 114 appartient à la carte électronique 108 et non au circuit de puissance 103 de sorte que le circuit de pré-charge ne modifie pas la structure du circuit de puissance 103 et n'a pas d'impact en termes de CEM sur le circuit de puissance 103.
Bien entendu, l'invention n'est pas limitée au mode de réalisation qui vient d'être décrit.
Notamment, nous avons décrit à titre illustratif un circuit de pré- charge composé d'un transistor bipolaire. Il est toutefois possible d'employer tout type de transistor tel qu'un transistor à effet de champ par exemple.
En outre, le circuit de pré-charge peut également être formé par un transistor en parallèle sur une résistance.
Enfin, on pourra remplacer tout moyen par un moyen équivalent.

Claims

REVENDICATIONS
1. Système (100) d'alimentation d'une machine électrique (M) comportant : - une source de tension (102),
- un circuit électronique (108) d'alimentation de ladite machine électrique (M),
- un premier interrupteur (101), ladite source de tension (102) alimentant ledit circuit électronique (108) lorsque ledit premier inter- rupteur (101) est en position fermée,
- au moins un condensateur (104, 105) monté en parallèle sur ladite source de tension (102) lorsque ledit premier interrupteur (101) est en position fermée,
- un circuit de pré-charge (114) dudit condensateur (104, 105), ledit système (100) étant caractérisé en ce qu'il comporte un deuxième interrupteur (+APC), ledit circuit de pré-charge (114) étant connecté à ladite source de tension (102) lorsque ledit deuxième interrupteur (+APC) est fermé et ledit premier interrupteur (101) étant commandé pour se fermer après la pré-charge dudit condensateur (104, 105).
2. Système (100) d'alimentation selon la revendication précédente caractérisé en ce que ladite source de tension (102) est la batterie (+BAT) d'un véhicule automobile.
3. Système (100) d'alimentation selon la revendication précédente caractérisé en ce que ledit deuxième interrupteur est formé par le dispositif d'alimentation après contact +APC.
4. Système (100) d'alimentation selon l'une des revendications précédentes caractérisé en ce que ledit au moins un condensateur (104, 105) est un condensateur électrochimique.
5. Système (100) d'alimentation selon l'une des revendications pré- cédentes caractérisé en ce que ledit circuit de pré-charge (114) comporte un transistor (115), la commande dudit transistor (115) assurant la pré-charge dudit condensateur (104, 105).
6. Système (100) d'alimentation selon la revendication précédente caractérisé en ce que ledit transistor (115) est commandé pour s'ouvrir avant la fermeture dudit premier interrupteur (101).
7. Système d'alimentation selon l'une des revendications 1 à 4 carac- térisé en ce que ledit circuit de pré-charge comporte une résistance en parallèle avec un transistor.
8. Système (100) d'alimentation selon l'une des revendications précédentes caractérisé en ce qu'il comporte un deuxième condensateur (104) monté en parallèle sur ledit premier condensateur (105).
9. Système (100) d'alimentation selon l'une des revendications précédentes caractérisé en ce que ledit circuit électronique (108) d'alimentation est un circuit d'alimentation d'un moteur électrique (M).
10. Système (100) selon l'une des revendications précédentes caractérisé en ce que ledit circuit électronique d'alimentation (108) est formé par un circuit d'alimentation à découpage (109, 110, 111).
11. Système (100) selon l'une des revendications précédentes comprenant des moyens pour commander ledit premier interrupteur (101) en fermeture après la pré-charge dudit condensateur (104,105).
12. Utilisation du système (100) selon l'une des revendications précé- dentés dans laquelle on commande en fermeture ledit premier interrupteur
(101) après la pré-charge dudit condensateur (104,105).
PCT/FR2008/001361 2007-10-01 2008-09-30 Système d'alimentation de machine électrique WO2009077668A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/680,870 US20100259205A1 (en) 2007-10-01 2008-09-30 System for powering an electric machine
JP2010527488A JP2010541534A (ja) 2007-10-01 2008-09-30 電気機械のための電力供給システム
BRPI0817921 BRPI0817921A2 (pt) 2007-10-01 2008-09-30 Sistema de alimentação de uma máquina elétrica e utilização do sistema
EP08861897A EP2206232A2 (fr) 2007-10-01 2008-09-30 Système d'alimentation de machine électrique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0706878A FR2921771B1 (fr) 2007-10-01 2007-10-01 Systeme d'alimentation de machine electrique.
FR0706878 2007-10-01

Publications (2)

Publication Number Publication Date
WO2009077668A2 true WO2009077668A2 (fr) 2009-06-25
WO2009077668A3 WO2009077668A3 (fr) 2009-11-05

Family

ID=39365851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/001361 WO2009077668A2 (fr) 2007-10-01 2008-09-30 Système d'alimentation de machine électrique

Country Status (6)

Country Link
US (1) US20100259205A1 (fr)
EP (1) EP2206232A2 (fr)
JP (1) JP2010541534A (fr)
BR (1) BRPI0817921A2 (fr)
FR (1) FR2921771B1 (fr)
WO (1) WO2009077668A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010038446A1 (de) 2010-07-27 2012-02-02 Robert Bosch Gmbh Elektromotor mit Filterelementbefestigung
WO2014202879A1 (fr) 2013-06-18 2014-12-24 Renault S.A.S Procédé de gestion d'une charge alimentée par un convertisseur lui-même alimenté par une batterie, et système correspondant

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9831482B2 (en) 2013-09-06 2017-11-28 Johnson Controls Technology Company Battery module lid system and method
FR3094697B1 (fr) * 2019-04-02 2021-03-19 Safran Helicopter Engines Installation propulsive hybride pour un aéronef

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11240454A (ja) * 1998-02-23 1999-09-07 Nippon Seiko Kk 電動パワ−ステアリング装置の制御装置
JPH11245829A (ja) * 1998-03-04 1999-09-14 Honda Motor Co Ltd 電動機駆動装置および電動パワーステアリング装置
DE10057156A1 (de) * 1999-12-06 2001-06-07 Mannesmann Vdo Ag Verfahren und Schaltungsanordnung zum Einschalten einr Leistungsendstufe
US20030034761A1 (en) * 2001-06-06 2003-02-20 Naomi Goto Air conditioner

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3524661B2 (ja) * 1995-12-08 2004-05-10 本田技研工業株式会社 電動車両の電源制御装置
JP3330049B2 (ja) * 1997-03-07 2002-09-30 本田技研工業株式会社 電気自動車の制御装置
JP3540209B2 (ja) * 1999-08-25 2004-07-07 本田技研工業株式会社 ハイブリッド車両の制御装置
EP1107440B1 (fr) * 1999-12-06 2007-07-18 Siemens Aktiengesellschaft Méthode et circuit pour mise en circuit d'un étage de puissance
JP4023171B2 (ja) * 2002-02-05 2007-12-19 トヨタ自動車株式会社 負荷駆動装置、負荷駆動装置における電力貯蔵装置の充電制御方法および充電制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
JP3943056B2 (ja) * 2003-07-18 2007-07-11 本田技研工業株式会社 ハイブリット車両の制御装置
JP2006280109A (ja) * 2005-03-29 2006-10-12 Mitsubishi Fuso Truck & Bus Corp 電気自動車用電圧変換回路
JP2007076514A (ja) * 2005-09-14 2007-03-29 Jtekt Corp 電源装置及び車両用操舵制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11240454A (ja) * 1998-02-23 1999-09-07 Nippon Seiko Kk 電動パワ−ステアリング装置の制御装置
JPH11245829A (ja) * 1998-03-04 1999-09-14 Honda Motor Co Ltd 電動機駆動装置および電動パワーステアリング装置
DE10057156A1 (de) * 1999-12-06 2001-06-07 Mannesmann Vdo Ag Verfahren und Schaltungsanordnung zum Einschalten einr Leistungsendstufe
US20030034761A1 (en) * 2001-06-06 2003-02-20 Naomi Goto Air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010038446A1 (de) 2010-07-27 2012-02-02 Robert Bosch Gmbh Elektromotor mit Filterelementbefestigung
WO2012013489A1 (fr) 2010-07-27 2012-02-02 Robert Bosch Gmbh Moteur électrique avec fixation d'élément filtrant
WO2014202879A1 (fr) 2013-06-18 2014-12-24 Renault S.A.S Procédé de gestion d'une charge alimentée par un convertisseur lui-même alimenté par une batterie, et système correspondant

Also Published As

Publication number Publication date
FR2921771B1 (fr) 2014-12-12
FR2921771A1 (fr) 2009-04-03
US20100259205A1 (en) 2010-10-14
WO2009077668A3 (fr) 2009-11-05
BRPI0817921A2 (pt) 2015-04-07
JP2010541534A (ja) 2010-12-24
EP2206232A2 (fr) 2010-07-14

Similar Documents

Publication Publication Date Title
EP2352661B1 (fr) Boitier d'interconnexion pour vehicule automobile
EP3105845B1 (fr) Systeme d'alimentation a tension continue configure pour precharger un condensateur de filtrage avant l'alimentation d'une charge
US8729864B2 (en) Method and device for limiting the starting current and for discharging the DC voltage intermediate circuit
EP1790071B1 (fr) Module de commande et de puissance pour une machine electrique tournante
EP2794356B1 (fr) Dispositif de maintien de tension au demarrage pour vehicule automobile
FR2792469A1 (fr) Ensemble d'alimentation pour un vehicule
WO2013093273A1 (fr) Dispositif de connexion/deconnexion de charge pour unite de stockage d'energie dans un vehicule automobile
WO2009077668A2 (fr) Système d'alimentation de machine électrique
WO2009000989A2 (fr) Procede de commande d'une machine electrique tournante en cas de delestage de charge, et module de commande et de puissance correspondant
EP1331716A1 (fr) Système d'alimentation en énergie électrique d'un véhicule automobile
EP2053720A1 (fr) Dispositif d'interface de compensation de tension à base de stockage de l'energie sous forme capacitive et réseau electrique comprenant ce dispositif
WO2016128643A1 (fr) Systeme d'alimentation electrique des equipements electriques d'un vehicule automobile par une batterie a hautes performances, dispositif de limitation de courant correspondant et demarreur equipe
FR2775137A1 (fr) Dispositif de commutation de charges inductives
EP2154359A1 (fr) Dispositif électrique auxiliaire, notamment pour véhicule automobile
EP3593429B1 (fr) Circuit électrique de décharge d'une capacité, système électrique et véhicule automobile comportant un tel circuit électrique de décharge
EP3179597A1 (fr) Dispositif de fourniture d'electricite monophasee et triphasee ameliore
EP2882094B1 (fr) Procédé d'évacuation de l'énergie stockée dans un stator d'un moteur électrique
EP1481163B1 (fr) Systeme de demarrage
FR3020902A3 (fr) Dispositif de stockage d'energie haute tension securitaire
FR3000625A1 (fr) Dispositif d'alimentation electrique d'un moteur electrique d'entrainement d'un element mobile de portail et procede de fonctionnement d'un tel dispositif
EP1176692A1 (fr) Dispositif pour lisser les transitoires de courant et de tension lors de la connexion ou de la déconnexion d'une batterie
FR2886600A1 (fr) Installation electrique de bord de vehicule automobile
FR2867910A1 (fr) Procede et dispositif pour proteger un dispositif de commutation commande par un dispositif de commande
FR3040571A1 (fr) Dispositif et procede de commande d'un onduleur, systeme electrique comportant un tel dispositif de commande
FR2478397A1 (fr) Circuit electrique comprenant des moyens d'isolation pour charges alimentees par la meme source et controlables par un disjoncteur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08861897

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2008861897

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010527488

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12680870

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0817921

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100331