WO2009077314A1 - Gyrolaser multioscillateur a etat solide utilisant un milieu a gain cristallin coupe a <100> - Google Patents

Gyrolaser multioscillateur a etat solide utilisant un milieu a gain cristallin coupe a <100> Download PDF

Info

Publication number
WO2009077314A1
WO2009077314A1 PCT/EP2008/066510 EP2008066510W WO2009077314A1 WO 2009077314 A1 WO2009077314 A1 WO 2009077314A1 EP 2008066510 W EP2008066510 W EP 2008066510W WO 2009077314 A1 WO2009077314 A1 WO 2009077314A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
gyrolaser
mode
modes
laser
Prior art date
Application number
PCT/EP2008/066510
Other languages
English (en)
Inventor
Sylvain Schwartz
Gilles Feugnet
Jean-Paul Pocholle
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Priority to RU2010129828/28A priority Critical patent/RU2504732C2/ru
Priority to CN2008801213135A priority patent/CN101903741B/zh
Priority to EP08861203A priority patent/EP2232200A1/fr
Priority to US12/808,582 priority patent/US20100265513A1/en
Publication of WO2009077314A1 publication Critical patent/WO2009077314A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/66Ring laser gyrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/66Ring laser gyrometers
    • G01C19/667Ring laser gyrometers using a multioscillator ring laser

Definitions

  • the field of the invention is that of gyrolasers, which are rotation sensors used for inertial navigation. While the majority of gyrolasers currently available on the market use as a gain medium a gaseous mixture of helium and neon, it has recently been shown the possibility of substituting a solid medium, for example an Nd-YAG crystal ( Neodymium-Yttrium-Aluminum-Garnet) pumped by laser diode. Such a device is called a solid state laser gyro.
  • Nd-YAG crystal Neodymium-Yttrium-Aluminum-Garnet
  • blind zone the problem of the synchronization of the modes at low speeds
  • rotation which makes it impossible to measure over a range of speed, called a blind zone.
  • this problem is solved by the mechanical activation of the cavity, that is to say by printing it back and forth about its axis, this which makes it possible to maintain it as often as possible outside the blind zone.
  • a transposition of this technique to the case of the solid state laser gyrolaser, taking into account the specific problems related to the homogeneity of the gain medium, can be achieved by coupling the amplifying medium to an electromechanical device providing said amplifying medium with a periodic translational movement according to a axis substantially parallel to the propagation direction of the optical modes propagating in the cavity.
  • an electromechanical device providing said amplifying medium with a periodic translational movement according to a axis substantially parallel to the propagation direction of the optical modes propagating in the cavity.
  • the quality of the inertial performance of devices made according to this principle depends directly on how the initially introduced frequency bias is subtracted from the measurement signal.
  • the measurement signal constituted by the difference between the frequencies of the beats coming from the two pairs of counter-rotating modes, is then independent of the value of the bias, and therefore particularly insensitive to fluctuations and drifts thereof.
  • This type of device has been widely described and studied in its helium-neon version.
  • US Pat. No. 3,741,657 (1973) to K. Andringa "Laser gyroscope” or the publication of W. Chow, J. Hambenne, T. Hutchings, V. Sanders, M. Sargent III and M Scully, entitled “Multioscillator Laser Gyros", IEEE Journal of Quantum Electronics 16 (9), 918 (1980).
  • Northrop Grumman (formerly Litton) is currently marketing a high performance laser gyrolaser based on this "Zero-Lock" principle.
  • the problem of bidirectional emission instability for a solid-state ring laser can be solved by setting up a feedback loop to enslave around a fixed value the difference between the current intensities. two counter-propagating modes.
  • This loop acts on the laser either by making its losses dependent on the direction of propagation, for example in by means of a reciprocating element, a non-reciprocating element and a polarizing element (FR Patent No. 03 03645), or by making its gain dependent on the direction of propagation, for example by means of a reciprocating element, a non-reciprocating element and a polarized emission crystal (FR Patent No. 03 14598).
  • the laser emits two counter-propagating beams whose intensities are stable and can be used as a laser gyro.
  • the laser gyro according to the invention comprises a medium with particular gain making it possible to reduce the competition between orthogonal modes.
  • the subject of the invention is a "multi-oscillator" gyrolaser which makes it possible to measure the angular velocity or the relative angular position along a determined axis of rotation, comprising at least one annular optical cavity and an amplifying medium in the state solid, and a measuring device, arranged such that a first linearly polarized propagation mode and a second polarization mode linearly polarized perpendicular to the first mode can propagate in a first direction in the cavity and a third linearly polarized propagation mode parallel to the first mode and a fourth propagation mode polarized linearly parallel to the second mode can propagate in the opposite direction in the cavity, characterized in that the amplifying medium is a crystal with cubic symmetry having a face d an entrance and an exit face, the crystal being cut so that said faces nt substantially perpendicular to the crystallographic direction ⁇ 100>, the incidences of the different modes on said faces being substantially perpendicular to said faces.
  • the amplifying medium
  • the gyrolaser comprises, at least, two laser diodes, realizing the population inversion of the amplifying medium, each emitting a beam of light, each beam being polarized linearly along one of the axes of the laser cavity, the polarization direction of the first beam being perpendicular to the polarization direction of the second beam.
  • the gyrolaser comprises a device for controlling the intensity of the counter-propagative modes, comprising at least:
  • a first optical assembly consisting of a first non-reciprocal optical rotator and an optical element, said optical element being either a reciprocal optical rotator or a birefringent element, at least one of the effects or the birefringence being adjustable;
  • a second optical assembly consisting of a first spatial filtering device and a first optical polarization separation element;
  • a third optical assembly consisting of a second spatial filtering device and a second optical polarization separation element, the second optical assembly and the third optical assembly being disposed on either side of the first optical assembly, the third an optical assembly being symmetrically disposed at the second optical assembly; and the laser gyro also comprises a device for suppressing the blind zone comprising:
  • a fourth optical assembly successively consisting of a first quarter-wave plate, a second non-reciprocal optical rotator and a second quarter-wave plate whose main axes are perpendicular to those of the first quarter plate; wave, the main axes of the first quarter wave plate and the second quarter blade wavelengths are inclined by about 45 degrees with respect to the linear polarization directions of the four propagation modes, the optical frequencies of the four modes being all different.
  • the invention also relates to a system for measuring angular velocities or relative angular positions according to three different axes, comprising three "multi-oscillator" gyrolasers having one of the preceding characteristics, the three gyrolasers being oriented in different directions and mounted on a common mechanical structure.
  • FIG. 1 shows different sections of a cubic crystal
  • FIG. 2 represents a general block diagram of a "multi-oscillator" gyrolaser according to the invention
  • FIG. 3 represents a first mode of optical pumping of an amplifier according to the invention
  • FIG. 4 represents a second mode of optical pumping of an amplifier according to the invention
  • FIG. 5 represents a general synoptic of a gyrolaser
  • Multi-oscillator comprising a device for controlling the intensity of the counter-propagative modes and a second device for suppressing the blind zone.
  • the fundamental principle of the laser gyro according to the invention is the correlation which exists, in a doped crystalline medium, between the orientations of the axes of the crystal on the one hand and the dipoles of the doping ions on the other hand.
  • This correlation has already been demonstrated, for different applications, in the case of saturable absorbent media.
  • the publications of H. Eilers, K. Hoffman, W. Dennis, S. Jacobsen and W. Yen Appl. Phys. Lett. 61 (25), 2958 (1992) and M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand and E. Molva, Phys.
  • the gain medium used is cubic and cut so that its faces are perpendicular to the direction ⁇ 100>, direction marked with respect to the axes of the crystal, according to the notation of Miller's indices (we will refer to this subject to H. Miller, A Treatise on Crystallography, Oxford University (1839)), the coupling between modes is significantly reduced compared to an ordinary cut, made perpendicular to the ⁇ 11> direction.
  • Figure 1 shows two sections of a cubic crystal, the drawing on the left represents a section along the axis ⁇ 1 1 1> and the drawing on the right represents a section along the axis ⁇ 100>.
  • the cube represents the crystalline mesh of the crystal, the section planes are represented by dashed surfaces, the direction of propagation of the laser beams is indicated by a double arrow.
  • the laser gyro according to the invention comprises a cubic crystal gain medium cut according to ⁇ 100> to increase the stability of the measurement signals. It should be noted that the vast majority of commercially available crystalline amplifying media are cut at ⁇ 1 1 1>. Only a small number of specialized industrialists, such as the German company FEE, are able to supply ⁇ 100> cut crystals.
  • FIG. 2 represents a general block diagram of a "multi-oscillator" gyrolaser according to the invention. It basically includes:
  • An amplifying medium 2 in the solid state An amplifying medium 2 in the solid state
  • the assembly is arranged in such a way that a first linearly polarized propagation mode and a second linearly polarized propagation mode perpendicular to the first mode can propagate in a first direction in the cavity and a third propagation mode polarized linearly parallel to the first mode and a fourth linearly polarized propagation mode parallel to the second mode can propagate in the opposite direction in the cavity.
  • the polarization directions of these modes are represented by arrows in bold lines in FIG.
  • the amplifying medium may be a neodymium-doped YAG crystal cut such that the input and output faces of the light are perpendicular to the crystallographic direction ⁇ 100> or, equivalently, ⁇ 010> or ⁇ 001>.
  • the crystal is oriented to minimize coupling between orthogonal modes.
  • Optical pumping can be provided for example by one or two laser diodes 5 emitting in the near infra-red (typically at 808 nm).
  • a first embodiment illustrated in FIG. 3 it is possible to use a single pumping diode 5 linearly polarized in a direction determined by the bisector of the angle formed by the directions of the polarization states of the eigenmodes of the laser cavity.
  • a second embodiment illustrated in FIG. 4 it is possible to use two laser diodes 5 emitting in opposite directions, each being polarized linearly along one of the proper axes of the laser cavity.
  • the polarization directions of the beams emitted by the diodes are represented in bold lines.
  • FIG. 5 represents a general block diagram of a "multi-oscillator" gyrolaser according to the invention comprising a device for controlling the intensity of the counter-propagating modes and a second device for suppressing the blind zone using a phase-shifter.
  • the phase-shifter system 4 may for example consist of a Faraday medium 41 (for example a "TGG" crystal placed in the magnetic field of a magnet), surrounded by two half-wave plates 42 at the wavelength d laser emission. In any case, it must have linear eigenstates, between which it induces a non-reciprocal phase shift.
  • a Faraday medium 41 for example a "TGG" crystal placed in the magnetic field of a magnet
  • the intensity stabilization system 3 serves to overcome the problem of competition between counter-rotating modes, ensuring the existence and stability of the beat regime over the entire operating range of the multi-oscillator laser gyro. It may, for example, consist of two polarization-separating crystals 31 (uniaxial birefringent crystals cut at 45 ° from their optical axis, such as rutile or I ⁇ VO4), which surround a Faraday rotator 32 (for example a TGG or YAG crystal placed in a solenoid) and a reciprocal rotator 33 (for example a natural optical rotator crystal, such as quartz).
  • a Faraday rotator 32 for example a TGG or YAG crystal placed in a solenoid
  • a reciprocal rotator 33 for example a natural optical rotator crystal, such as quartz.
  • a control loop 35 which measures the intensities of the counter-rotating modes by means of two photodiodes, and which injects into the solenoid surrounding the Faraday rotator a current proportional to the difference of the measured intensities, as described in the French patent of S.Schwartz, G. Feugnet and JP Pocholle No. 04 02706.
  • the use of diaphragms 36 may be necessary for the proper functioning of this type of device even if they are not strictly necessary.
  • the detection system 6 may be a detection system equivalent to those existing on the conventional multi-oscillator gyrolasers. K. Andringa, US Patent 3,741,657 (1973), Laser Gyroscope, and in the publication of W. Chow, J. Hambenne, T. Hutchings, V. Sanders, M. Sargent III and M. Scully, Gyros Laser Multioscillator, IEEE Journal of Quantum Electronics 16 (9), 918 (1980) further information on this topic.
  • the detection system comprises:
  • Optical means making it possible to interfere on the one hand with the first propagation mode with the third propagation mode and on the other hand with the second propagation mode with the fourth propagation mode;
  • Opto-electronic means for determining firstly a first optical frequency difference between the first propagation mode and the third propagation mode and secondly a second frequency difference between the second propagation mode and the fourth propagation mode. propagation mode;
  • Electronic means for realizing the difference between said first frequency difference and said second frequency difference.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)
  • Lasers (AREA)

Abstract

Gyrolaser = multioscillateur= permettant la mesure de la vitesseangulaire ou de la position angulaire relative selon un axe de rotation, comportant au moins une cavité optique (1) en anneau et un milieu amplificateur (2) à l'état solide, et un dispositif de mesure (6); agencés de telle sorte qu'un premier mode de propagation polarisé linéairement et qu'un second mode de propagation polarisé linéairement perpendiculairement au premier mode puissent se propager dans un premier sens dans la cavité et qu'un troisième mode de propagation polarisé linéairement parallèlement au premier mode et qu'un quatrième mode de propagation polarisé linéairement parallèlement au second mode puissent se propager en sens inverse dans la cavité. Le milieu amplificateur est un cristal à symétrie cubique comportant une face d'entrée et une face de sortie, lesdites faces étant sensiblement perpendiculaires à la direction cristallographique <100>, les différents modes se propageant dans des directions sensiblement perpendiculaires aux dites faces.

Description

Gyrolaser multioscillateur à état solide utilisant un milieu à gain cristallin coupé à <100>
Le domaine de l'invention est celui des gyrolasers, qui sont des capteurs de rotation utilisés pour la navigation inertielle. Si la majorité des gyrolasers actuellement disponibles sur le marché utilisent comme milieu à gain un mélange gazeux d'hélium et de néon, il a été démontré récemment la possibilité de substituer à ce dernier un milieu solide, par exemple un cristal de Nd-YAG (Néodyme-Yttrium-Aluminium-Grenat) pompé par diode laser. Un tel dispositif est appelé gyrolaser à état solide.
L'un des points déterminants pour la qualité des performances inertielles d'un gyrolaser est la façon dont est contourné le problème dit de la « zone aveugle », c'est-à-dire le problème de la synchronisation des modes aux faibles vitesses de rotation, qui rend impossible la mesure sur toute une plage de vitesse, appelée zone aveugle. Dans la version usuelle du gyrolaser à hélium-néon, ce problème est résolu par l'activation mécanique de la cavité, c'est-à-dire en imprimant à cette dernière un mouvement de va-et- vient autour de son axe, ce qui permet de la maintenir le plus souvent possible en-dehors de la zone aveugle.
Une transposition de cette technique au cas du gyrolaser à état solide, tenant compte des problèmes spécifiques liés au caractère homogène du milieu à gain, peut être réalisée en accouplant le milieu amplificateur à un dispositif électromécanique assurant audit milieu amplificateur un mouvement de translation périodique selon un axe sensiblement parallèle à la direction de propagation des modes optiques se propageant dans la cavité. Il existe une autre possibilité pour contourner le problème de la zone aveugle, sans utiliser de mouvement mécanique. Il s'agit d'introduire un biais en fréquence magnéto-optique, afin de simuler une rotation permettant de placer le gyrolaser dans une zone de fonctionnement linéaire. La qualité des performances inertielles des dispositifs réalisés selon ce principe dépend directement de la façon dont le biais en fréquence initialement introduit est retranché du signal de mesure. Comme cela a déjà été remarqué par le passé dans le cadre de travaux portant sur le gyrolaser à gaz, une simple soustraction de la valeur moyenne de ce biais ne peut conduire qu'à un gyrolaser de basse ou de moyenne performance, en raison des fluctuations et des dérives du biais qui se reportent directement sur le signal. Il existe un procédé pour conserver le bénéfice d'un biais magnéto-optique tout en s'affranchissant de ses fluctuations et de ses dérives. Le principe mis en oeuvre, connue sous le nom de « gyrolaser multioscillateur » ou « gyrolaser à 4 modes », consiste à faire coexister dans la cavité deux paires de modes contrarotatifs oscillant sur des états de polarisation orthogonaux, et de faire en sorte que les deux paires soient sensibles au même biais magnéto- optique mais avec des signes opposés. Le signal de mesure, constitué par la différence entre les fréquences des battements issus des deux paires de modes contrarotatifs, est alors indépendant de la valeur du biais, donc en particulier insensible aux fluctuations et aux dérives de celui-ci. Ce type de dispositif a été largement décrit et étudié dans sa version à hélium-néon. On citera, par exemple, le brevet US 3 741 657 (1973) de K. Andringa, « Laser gyroscope » ou la publication de W. Chow, J. Hambenne, T. Hutchings, V. Sanders, M. Sargent III and M. Scully, intitulée « Multioscillator Laser Gyros », IEEE Journal of Quantum Electronics 16 (9), 918 (1980). La société Northrop Grumman (anciennement Litton) commercialise actuellement un gyrolaser à hautes performances fondé sur ce principe dit « Zero-Lock ».
La transposition des technologies « Zero-Lock » de Litton au cas du gyrolaser à état solide est possible et permet de résoudre le problème de la « zone aveugle ». Cependant, les lasers à état solide ont d'autres problèmes. La condition d'observation du battement, et donc de fonctionnement du gyrolaser, est la stabilité et la relative égalité des intensités émises dans les deux directions. Son obtention n'est pas a priori chose aisée en raison du phénomène de compétition entre modes, qui fait que l'un des deux modes contre-propageants peut avoir tendance à monopoliser le gain disponible, au détriment de l'autre mode. Le problème de l'instabilité de l'émission bidirectionnelle pour un laser en anneau à état solide peut être résolu par la mise en place d'une boucle de contre-réaction destinée à asservir autour d'une valeur fixée la différence entre les intensités des deux modes contre-propageants. Cette boucle agit sur le laser soit en rendant ses pertes dépendantes du sens de propagation, par exemple au moyen d'un élément à rotation réciproque, d'un élément à rotation non réciproque et d'un élément polarisant (brevet FR N ° 03 03645), soit en rendant son gain dépendant du sens de propagation, par exemple au moyen d'un élément à rotation réciproque, d'un élément à rotation non réciproque et d'un cristal à émission polarisée (brevet FR N° 03 14598). Une fois asservi, le laser émet deux faisceaux contre-propageants dont les intensités sont stables et peut être utilisé en tant que gyrolaser.
Cependant les techniques mentionnées ci-avant ne résolvent pas le problème de compétition entre les modes orthogonaux.
Expérimentalement, cette insuffisance limite en pratique la stabilité du battement obtenu à quelques dizaines de secondes sur le gyrolaser
« multioscillateur à état solide », comme décrit dans la thèse de doctorat de
S.Schwartz intitulée « Gyrolaser à état solide. Application des lasers à atomes à la gyrométrie » et publiée en 2006.
Le gyrolaser selon l'invention comporte un milieu à gain particulier permettant de réduire la compétition entre modes orthogonaux.
Plus précisément, l'invention a pour objet un gyrolaser « multioscillateur » permettant la mesure de la vitesse angulaire ou de la position angulaire relative selon un axe de rotation déterminé, comportant au moins une cavité optique en anneau et un milieu amplificateur à l'état solide, et un dispositif de mesure, agencés de telle sorte qu'un premier mode de propagation polarisé linéairement et qu'un second mode de propagation polarisé linéairement perpendiculairement au premier mode puissent se propager dans un premier sens dans la cavité et qu'un troisième mode de propagation polarisé linéairement parallèlement au premier mode et qu'un quatrième mode de propagation polarisé linéairement parallèlement au second mode puissent se propager en sens inverse dans la cavité, caractérisé en ce que le milieu amplificateur est un cristal à symétrie cubique comportant une face d'entrée et une face de sortie, le cristal étant taillé de façon que lesdites faces soient sensiblement perpendiculaires à la direction cristallographique <100>, les incidences des différents modes sur lesdites faces étant sensiblement perpendiculaires aux dites faces. Dans un premier mode possible de réalisation, le gyrolaser comporte, au moins, une diode laser réalisant l'inversion de population du milieu amplificateur, ladite diode émettant un faisceau de lumière traversant le cristal, le faisceau étant polarisé linéairement selon une direction déterminée par la bissectrice de l'angle formé par les directions des états de polarisation des modes propres de la cavité optique.
Dans un second mode possible de réalisation, le gyrolaser comporte, au moins, deux diodes laser, réalisant l'inversion de population du milieu amplificateur, émettant chacune un faisceau de lumière, chaque faisceau étant polarisé linéairement selon l'un des axes propres de la cavité laser, la direction de polarisation du premier faisceau étant perpendiculaire à la direction de polarisation du second faisceau.
Avantageusement, le gyrolaser comporte un dispositif d'asservissement de l'intensité des modes contre-propagatifs, comprenant au moins :
• un premier ensemble optique constitué d'un premier rotateur optique à effet non réciproque et d'un élément optique, ledit élément optique étant soit un rotateur optique à effet réciproque, soit un élément biréfringent, au moins l'un des effets ou la biréfringence étant réglable ; • un second ensemble optique constitué d'un premier dispositif de filtrage spatial et d'un premier élément optique de séparation de polarisation ;
• un troisième ensemble optique constitué d'un second dispositif de filtrage spatial et d'un second élément optique de séparation de polarisation, le second ensemble optique et le troisième ensemble optique étant disposés de part et d'autre du premier ensemble optique, le troisième ensemble optique étant disposé symétriquement au second ensemble optique ; et le gyrolaser comporte également un dispositif de suppression de la zone aveugle comprenant :
• un quatrième ensemble optique constitué successivement d'une première lame quart d'onde, d'un second rotateur optique à effet non réciproque et d'une seconde lame quart d'onde dont les axes principaux sont perpendiculaires à ceux de la première lame quart d'onde, les axes principaux de la première lame quart d'onde et de la seconde lame quart d'onde étant inclinés d'environ 45 degrés par rapport aux directions de polarisation linéaires des quatre modes de propagation, les fréquences optiques des quatre modes étant toutes différentes.
Enfin, l'invention concerne également un système de mesure de vitesses angulaires ou des positions angulaires relatives selon trois axes différents, comportant trois gyrolasers « multioscillateur » ayant l'une des caractéristiques précédentes, les trois gyrolasers étant orientés selon des directions différentes et montés sur une structure mécanique commune.
L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description qui va suivre donnée à titre non limitatif et grâce aux figures annexées parmi lesquelles :
La figure 1 représente différentes coupes d'un cristal cubique ; La figure 2 représente un synoptique général d'un gyrolaser « multioscillateur » selon l'invention ;
La figure 3 représente un premier mode de pompage optique d'un amplificateur selon l'invention ;
La figure 4 représente un second mode de pompage optique d'un amplificateur selon l'invention ; La figure 5 représente un synoptique général d'un gyrolaser
« multioscillateur » selon l'invention comportant un dispositif d'asservissement de l'intensité des modes contre-propagatifs et un second dispositif de suppression de la zone aveugle.
Le principe fondamental du gyrolaser selon l'invention est la corrélation qui existe, dans un milieu cristallin dopé, entre les orientations des axes du cristal d'une part et les dipôles des ions dopants d'autre part. Cette corrélation a déjà été mise en évidence, pour des applications différentes, dans le cas de milieux absorbants saturables. On citera, par exemple, les publications de H. Eilers, K. Hoffman, W. Dennis, S. Jacobsen and W. Yen, Appl. Phys. Lett. 61 (25), 2958 (1992) et de M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand and E. Molva, Phys. Rev. A 60 (5), 4052 (1999) sur ce sujet. En orientant convenablement les axes du cristal servant de milieu à gain par rapport aux états propres de polarisation du laser, il est ainsi possible de faire en sorte que chaque état de polarisation interagisse préférentiellement avec certains dipôles, ce qui a pour effet de diminuer le couplage entre les états propres orthogonaux, et donc le phénomène de compétition entre modes.
En particulier, lorsque le milieu à gain utilisé est cubique et taillé de telle sorte que ses faces soient perpendiculaires à la direction <100>, direction repérée par rapport aux axes du cristal, selon la notation des indices de Miller (on se reportera sur ce sujet à H. Miller, A Treatise on Crystallography, Oxford University (1839)), le couplage entre les modes est significativement diminué par rapport à une coupe ordinaire, effectuée perpendiculairement à la direction <1 11 >. Ainsi, si l'on mesure dans une cavité laser utilisant comme milieu à gain un cristal de YAG dopé aux ions Néodyme, la force du couplage entre modes orthogonaux d'une part avec un cristal coupé selon l'axe <1 1 1 > et d'autre part avec un cristal coupé selon l'axe <100>, il est possible d'obtenir un couplage quinze fois inférieur dans le second cas que dans le premier, ce qui se traduit, dans une configuration de type « gyrolaser à état solide multioscillateur », par une stabilité accrue des signaux de battements. La figure 1 représente deux coupes d'un cristal cubique, le dessin de gauche représente une coupe selon l'axe <1 1 1 > et le dessin de droite représente une coupe selon l'axe <100>. Sur ces coupes, le cube représente la maille cristalline du cristal, les plans de coupe sont représentés par des surfaces en pointillés, la direction de propagation des faisceaux laser est indiquée par une flèche double.
Par conséquent, le gyrolaser selon l'invention comprend un milieu à gain cristallin cubique taillé selon <100> pour accroître la stabilité des signaux de mesure. Il convient de noter que la très grande majorité des milieux amplificateurs cristallins disponibles commercialement sont coupés à <1 1 1 >. Seul un petit nombre d'industriels spécialisés, comme la société allemande FEE, est capable de fournir des cristaux coupés à <100>.
L'effet d'un cristal coupé à <100> par rapport à un cristal coupé à <1 11 > sur le couplage entre les modes propres orthogonaux d'un laser peut être illustré par le modèle simplifié suivant, qui offre l'avantage de présenter une vision intuitive du phénomène physique mis en jeu. On suppose pour cela que les axes des dipôles des ions dopants soient orientés selon les axes cristallographiques du milieu à gain, supposé cubique et défini par les vecteurs unitaires et deux à deux orthogonaux ex, ey et ez. Les ions dopants peuvent donc être répartis selon trois familles de dipôles, notés dex, dey et dez. On considère tout d'abord le cas où le cristal est taillé selon l'axe <1 1 1 >. Le vecteur d'onde k d'un faisceau incident perpendiculairement aux faces du cristal s'écrit alors k = k (ex +ey + e.)/V3. On note Eu et Ev les deux états propres de polarisation linéaires du laser, qui vérifient naturellement les relations suivantes :
Eu - E^ = O ; Eu . k = 0 et E^ k = O.
On suppose alors (par l'absurde) que les familles de dipôles soient découplées, c'est-à-dire que si un mode interagit avec une famille, alors l'autre mode n'interagit pas avec celle-ci. Avec nos notations, cela se traduit par le fait que si une composante selon ex, ey ou ez de Eu n'est pas nulle, alors la composante correspondante de Ev doit être nulle. Le vecteur Eu n'étant pas nul, au moins l'une de ses composantes n'est pas nulle. On suppose, sans perte de généralité, que ce soit la composante correspondant à l'axe des x, à savoir (Eu . ex). Cela implique, d'après l'hypothèse de découplage des familles de dipôles, que la composante (Ev. ex) est nulle. On déduit alors facilement de l'égalité Ev. k = 0 la relation suivante :
Ev. ey = - Ev. ez≠ 0 car Ev≠ 0.
Celle-ci permet à son tour, en utilisant l'égalité Eu . Ev = 0, d'établir la relation :
Eu . ey = Eu . ez = 0 d'après l'hypothèse de découplage des dipôles.
On en déduit alors, en considérant le fait que Eu . k = 0, l'égalité
Eu . ex = 0, ce qui est en contradiction avec l'hypothèse de départ. La conclusion de ce raisonnement par l'absurde est qu'il n'est pas possible de découpler totalement les deux modes orthogonaux lorsque le cristal est taillé selon l'axe <1 1 1 >. On considère maintenant le cas opposé dans lequel le cristal est taillé selon l'axe <100>. Le vecteur d'onde de l'onde incidente s'écrit alors k = k ex , et les polarisations des modes propres orthogonaux prennent la forme :
Eu= Eu0 ( ey cos α + ez sin α ) et Ev= Ev0 { - ey sin α + ez cos α )
où l'angle α dépend de l'orientation des axes ey et ez par rapport aux polarisations des axes propres de la cavité. En particulier, lorsque le cristal est orienté de telle sorte que α = 0, le système se trouve dans une situation où le mode Eu n'interagit qu'avec la famille de dipôle dey, tandis que le mode
E^ n'interagit qu'avec la famille de dipôle dez. On a alors un découplage total des deux modes, ce qui n'est pas possible avec un cristal taillé selon l'axe <11 1 >. En conclusion, ce modèle simple illustre l'intérêt d'une coupe selon l'axe <100> pour découpler les modes de polarisation orthogonaux dans le milieu à gain.
La figure 2 représente un synoptique général d'un gyrolaser « multioscillateur » selon l'invention. Il comprend essentiellement :
• une cavité optique 1 en anneau ;
• un milieu amplificateur 2 à l'état solide,
• un dispositif de mesure 6 ;
• un dispositif d'asservissement 3 de l'intensité des modes contre-propagatifs
• un dispositif de suppression de la zone aveugle 4. L'ensemble est agencé de telle sorte qu'un premier mode de propagation polarisé linéairement et qu'un second mode de propagation polarisé linéairement perpendiculairement au premier mode puissent se propager dans un premier sens dans la cavité et qu'un troisième mode de propagation polarisé linéairement parallèlement au premier mode et qu'un quatrième mode de propagation polarisé linéairement parallèlement au second mode puissent se propager en sens inverse dans la cavité. Les directions de polarisation de ces modes sont représentées par des flèches en traits gras sur la figure 2. Le milieu amplificateur peut être un cristal de YAG dopé Néodyme taillé de telle sorte que les faces d'entrée et de sortie de la lumière soient perpendiculaires à la direction cristallographique <100> ou, de façon équivalente, <010> ou <001 >. Le cristal est orienté de façon à minimiser le couplage entre les modes orthogonaux.
Le pompage optique peut être assuré par exemple par une ou deux diodes laser 5 émettant dans le proche infra-rouge (typiquement à 808 nm). Dans un premier mode de réalisation illustré en figure 3, on peut utiliser une diode 5 de pompage unique, polarisée linéairement selon une direction déterminée par la bissectrice de l'angle formé par les directions des états de polarisation des modes propres de la cavité laser. Dans un second mode de réalisation illustré en figure 4, on peut utiliser deux diodes laser 5 émettant dans des directions opposées, chacune étant polarisée linéairement selon l'un des axes propres de la cavité laser. Sur ces figures, les directions de polarisation des faisceaux émis par les diodes sont représentées en traits gras.
La figure 5 représente un synoptique général d'un gyrolaser « multioscillateur » selon l'invention comportant un dispositif d'asservissement de l'intensité des modes contre-propagatifs et un second dispositif de suppression de la zone aveugle utilisant un déphaseur.
Le système déphaseur 4 peut par exemple être constitué d'un milieu Faraday 41 (par exemple un cristal de « TGG » placé dans le champ magnétique d'un aimant), entouré de deux lames demi-onde 42 à la longueur d'onde d'émission laser. En tout état de cause, il doit avoir des états propres linéaires, entre lesquels il induit un déphasage non réciproque.
Le système de stabilisation des intensités 3 sert à s'affranchir du problème de la compétition entre modes contrarotatifs, en garantissant l'existence et la stabilité du régime de battement sur toute la plage de fonctionnement du gyrolaser multioscillateur. Il peut par exemple être constitué de deux cristaux séparateurs de polarisation 31 (cristaux biréfringents uniaxes taillés à 45° de leur axe optique, comme du rutile ou de IΥVO4), qui entourent un rotateur Faraday 32 (par exemple un cristal de TGG ou de YAG placé dans un solénoïde) et un rotateur réciproque 33 (par exemple un cristal rotateur optique naturel, comme le quartz). La stabilisation des intensités est alors assurée par une boucle d'asservissement 35, qui mesure les intensités des modes contrarotatifs à l'aide de deux photodiodes, et qui injecte dans le solénoïde entourant le rotateur Faraday un courant proportionnel à la différence des intensités mesurées, comme décrit dans le brevet français de S.Schwartz, G. Feugnet et J. P. Pocholle de N° 04 02706. L'utilisation de diaphragmes 36 (comme représentés sur la figure 5) peut s'avérer nécessaire au bon fonctionnement de ce type de dispositif, même s'ils ne sont en toute rigueur pas indispensables.
Le système de détection 6 peut être un système de détection équivalent à ceux qui existent sur les gyrolasers multioscillateurs habituels. On trouvera dans le brevet US 3 741 657 (1973) de K. Andringa, Laser gyroscope ainsi que dans la publication de W. Chow, J. Hambenne, T. Hutchings, V. Sanders, M. Sargent III and M. Scully, Multioscillator Laser Gyros, IEEE Journal of Quantum Electronics 16 (9), 918 (1980) des informations complémentaires sur ce sujet. Généralement, le système de détection comporte :
• des moyens optiques permettant de faire interférer d'une part le premier mode propagation avec le troisième mode de propagation et d'autre part le second mode de propagation avec le quatrième mode de propagation ; • des moyens opto-électroniques permettant de déterminer d'une part une première différence de fréquence optique entre le premier mode de propagation et le troisième mode de propagation et d'autre part une seconde différence de fréquence entre le second mode de propagation et le quatrième mode de propagation ; • des moyens électroniques permettant de réaliser la différence entre ladite première différence de fréquence et ladite seconde différence de fréquence.

Claims

REVENDICATIONS
1. Gyrolaser « multioscillateur » permettant la mesure de la vitesse angulaire ou de la position angulaire relative selon un axe de rotation déterminé, comportant au moins une cavité optique (1 ) en anneau et un milieu amplificateur (2) à l'état solide, et un dispositif de mesure (6), agencés de telle sorte qu'un premier mode de propagation polarisé linéairement et qu'un second mode de propagation polarisé linéairement perpendiculairement au premier mode puissent se propager dans un premier sens dans la cavité et qu'un troisième mode de propagation polarisé linéairement parallèlement au premier mode et qu'un quatrième mode de propagation polarisé linéairement parallèlement au second mode puissent se propager en sens inverse dans la cavité, caractérisé en ce que le milieu amplificateur est un cristal à symétrie cubique comportant une face d'entrée et une face de sortie, le cristal étant taillé de façon que lesdites faces soient sensiblement perpendiculaires à la direction cristallographique <100>, les incidences des différents modes sur lesdites faces étant sensiblement perpendiculaires aux dites faces.
2. Gyrolaser « multioscillateur » selon la revendication 1 , caractérisé en ce que le gyrolaser comporte, au moins, une diode laser (5) réalisant l'inversion de population du milieu amplificateur, ladite diode émettant un faisceau de lumière traversant le cristal, le faisceau étant polarisé linéairement selon une direction déterminée par la bissectrice de l'angle formé par les directions des états de polarisation des modes propres de la cavité optique.
3. Gyrolaser « multioscillateur » selon la revendication 1 , caractérisé en ce que le gyrolaser comporte, au moins, deux diodes laser (5), réalisant l'inversion de population du milieu amplificateur, émettant chacune un faisceau de lumière, le premier faisceau traversant le milieu amplificateur dans un sens opposé au second faisceau, chaque faisceau étant polarisé linéairement selon l'un des axes propres de la cavité laser, la direction de polarisation du premier faisceau étant perpendiculaire à la direction de polarisation du second faisceau.
4. Gyrolaser « multioscillateur » selon la revendication 1 , caractérisé en ce que le gyrolaser comporte un dispositif d'asservissement (3) de l'intensité des modes contre-propagatifs, comprenant au moins : « un premier ensemble optique constitué d'un premier rotateur optique (32) à effet non réciproque et d'un élément optique (33), ledit élément optique étant soit un rotateur optique à effet réciproque, soit un élément biréfringent, au moins l'un des effets ou la biréfringence étant réglable ; • un second ensemble optique constitué d'un premier dispositif de filtrage spatial (36) et d'un premier élément optique (31 ) de séparation de polarisation ;
• un troisième ensemble optique constitué d'un second dispositif de filtrage spatial (36) et d'un second élément optique de séparation de polarisation (31 ), le second ensemble optique et le troisième ensemble optique étant disposés de part et d'autre du premier ensemble optique, le troisième ensemble optique étant disposé symétriquement au second ensemble optique ; et que le gyrolaser comporte également un dispositif (4) de suppression de la zone aveugle comprenant :
• un quatrième ensemble optique constitué successivement d'une première lame quart d'onde(42), d'un second rotateur optique à effet non réciproque (41 ) et d'une seconde lame quart d'onde (42) dont les axes principaux sont perpendiculaires à ceux de la première lame quart d'onde, les axes principaux de la première lame quart d'onde et de la seconde lame quart d'onde étant inclinés d'environ 45 degrés par rapport aux directions de polarisation linéaires des quatre modes de propagation, les fréquences optiques des quatre modes étant toutes différentes.
5. Système de mesure de vitesses angulaires ou des positions angulaires relatives selon trois axes différents, caractérisé en ce qu'il comporte trois gyrolasers « multioscillateur » selon l'une des revendications précédentes, orientés selon des directions différentes et montés sur une structure mécanique commune.
PCT/EP2008/066510 2007-12-18 2008-12-01 Gyrolaser multioscillateur a etat solide utilisant un milieu a gain cristallin coupe a <100> WO2009077314A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2010129828/28A RU2504732C2 (ru) 2007-12-18 2008-12-01 Твердотельный лазерный гироскоп-мультигенератор с использованием кристаллической среды усиления со срезом на <100>
CN2008801213135A CN101903741B (zh) 2007-12-18 2008-12-01 使用<100>切割晶体增益介质的固态多振荡器环形激光陀螺仪
EP08861203A EP2232200A1 (fr) 2007-12-18 2008-12-01 Gyrolaser multioscillateur a etat solide utilisant un milieu a gain cristallin coupe a<100>
US12/808,582 US20100265513A1 (en) 2007-12-18 2008-12-01 Solid-state multioscillator ring laser gyro using a <100>-cut crystalline gain medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0708843A FR2925153B1 (fr) 2007-12-18 2007-12-18 Gyrolaser multioscillateur a etat solide utilisant un milieu a gain cristallin coupe a 100
FR0708843 2007-12-18

Publications (1)

Publication Number Publication Date
WO2009077314A1 true WO2009077314A1 (fr) 2009-06-25

Family

ID=39666094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/066510 WO2009077314A1 (fr) 2007-12-18 2008-12-01 Gyrolaser multioscillateur a etat solide utilisant un milieu a gain cristallin coupe a <100>

Country Status (6)

Country Link
US (1) US20100265513A1 (fr)
EP (1) EP2232200A1 (fr)
CN (1) CN101903741B (fr)
FR (1) FR2925153B1 (fr)
RU (1) RU2504732C2 (fr)
WO (1) WO2009077314A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2385345A1 (fr) 2010-05-07 2011-11-09 Thales Gyrolaser a etat solide multioscillateur stabilise passivement par un dispositif a cristal doubleur de frequence
CN102347590A (zh) * 2011-08-18 2012-02-08 西南交通大学 一种能隐藏反馈时延特征的激光混沌信号产生装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9651379B2 (en) * 2014-11-17 2017-05-16 Honeywell International Inc. Eliminating ring laser gyro backscatter
US10180325B2 (en) * 2016-04-22 2019-01-15 The Regents Of The University Of California Orthogonal-mode laser gyroscope
US11476633B2 (en) 2020-07-20 2022-10-18 Honeywell International Inc. Apparatus and methods for stable bidirectional output from ring laser gyroscope

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0007826A1 (fr) * 1978-07-10 1980-02-06 Thomson-Csf Gyromètre interférométrique à fibre optique
FR2554596A1 (fr) * 1983-11-04 1985-05-10 Thomson Csf Dispositif interferometrique de mesure d'une vitesse de rotation angulaire
FR2658366A1 (fr) * 1990-02-12 1991-08-16 Litton Systems Inc Gryolaser a anneau a multioscillateur utilisant un coin optique compense.
EP0828139A2 (fr) * 1996-09-05 1998-03-11 Daimler-Benz Aerospace Aktiengesellschaft Gyroscope à l'état solide
US20050058165A1 (en) * 2003-09-12 2005-03-17 Lightwave Electronics Corporation Laser having <100>-oriented crystal gain medium
FR2863702A1 (fr) * 2003-12-12 2005-06-17 Thales Sa Gyrolaser a etat solide stabilise et a milieu laser anisotrope
FR2876447A1 (fr) * 2004-03-16 2006-04-14 Thales Sa Gyrolaser a etat solide stabilise a quatre modes sans zone aveugle

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3741657A (en) * 1971-03-03 1973-06-26 Raytheon Co Laser gyroscope
SU698468A1 (ru) * 1978-07-15 1985-10-23 Ордена Трудового Красного Знамени Институт Физики Ан Бсср Кольцевой лазер
GB9003097D0 (en) * 1990-02-12 1990-04-11 Scient Generics Ltd Solid state laser diode light source
US5875206A (en) * 1996-09-10 1999-02-23 Mitsubishi Chemical America, Inc. Laser diode pumped solid state laser, printer and method using same
RU2112926C1 (ru) * 1996-10-28 1998-06-10 Научно-производственный комплекс "Электрооптика" Способ определения пространственной угловой ориентации подвижного объекта и лазерный измерительный блок
US5960025A (en) * 1997-10-06 1999-09-28 Honeywell Inc. Device and method for achieving beam path alignment of an optical cavity
FR2853061B1 (fr) * 2003-03-25 2006-01-20 Thales Sa Gyrolaser a etat solide stabilise
FR2854947B1 (fr) * 2003-05-16 2005-07-01 Thales Sa Gyrolaser a etat solide stabilise par des dispositifs acousto-optiques
FR2876448B1 (fr) * 2004-03-16 2007-11-02 Thales Sa Gyrolaser a etat solide stabilise sans zone aveugle
FR2876449B1 (fr) * 2004-10-08 2006-12-29 Thales Sa Gyrolaser a etat solide a facteur d'echelle stabilise
FR2877775B1 (fr) * 2004-11-05 2008-06-06 Thales Sa Gyrolaser a milieu solide semi-conducteur a structure verticale
FR2894662B1 (fr) * 2005-12-13 2008-01-25 Thales Sa Gyrolaser a etat solide a modes contre-propagatifs orthogonaux
CN101008568A (zh) * 2006-01-27 2007-08-01 泰勒斯公司 无盲区四模式稳定固态激光陀螺仪
CN101008567A (zh) * 2006-01-27 2007-08-01 泰勒斯公司 无盲区稳定固态激光陀螺仪
JP2007218864A (ja) * 2006-02-20 2007-08-30 Thales 不感域のない4モード安定化半導体レーザジャイロ
FR2905005B1 (fr) * 2006-08-18 2008-09-26 Thales Sa Gyrolaser a etat solide avec milieu a gain active mecaniquement.
FR2938641B1 (fr) * 2008-11-18 2010-11-26 Thales Sa Gyrolaser a etat solide a pompage optique controle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0007826A1 (fr) * 1978-07-10 1980-02-06 Thomson-Csf Gyromètre interférométrique à fibre optique
FR2554596A1 (fr) * 1983-11-04 1985-05-10 Thomson Csf Dispositif interferometrique de mesure d'une vitesse de rotation angulaire
FR2658366A1 (fr) * 1990-02-12 1991-08-16 Litton Systems Inc Gryolaser a anneau a multioscillateur utilisant un coin optique compense.
EP0828139A2 (fr) * 1996-09-05 1998-03-11 Daimler-Benz Aerospace Aktiengesellschaft Gyroscope à l'état solide
US20050058165A1 (en) * 2003-09-12 2005-03-17 Lightwave Electronics Corporation Laser having <100>-oriented crystal gain medium
FR2863702A1 (fr) * 2003-12-12 2005-06-17 Thales Sa Gyrolaser a etat solide stabilise et a milieu laser anisotrope
FR2876447A1 (fr) * 2004-03-16 2006-04-14 Thales Sa Gyrolaser a etat solide stabilise a quatre modes sans zone aveugle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2385345A1 (fr) 2010-05-07 2011-11-09 Thales Gyrolaser a etat solide multioscillateur stabilise passivement par un dispositif a cristal doubleur de frequence
CN102347590A (zh) * 2011-08-18 2012-02-08 西南交通大学 一种能隐藏反馈时延特征的激光混沌信号产生装置

Also Published As

Publication number Publication date
CN101903741A (zh) 2010-12-01
CN101903741B (zh) 2012-08-15
FR2925153B1 (fr) 2010-01-01
EP2232200A1 (fr) 2010-09-29
FR2925153A1 (fr) 2009-06-19
RU2010129828A (ru) 2012-01-27
US20100265513A1 (en) 2010-10-21
RU2504732C2 (ru) 2014-01-20

Similar Documents

Publication Publication Date Title
EP0462002B1 (fr) Magnétomètre à résonance et à pompage optique utilisant une polarisation séquentielle
EP0462000B1 (fr) Magnétomètre à résonance et à pompage optique utilisant une pluralite de faisceaux multiplexes
FR2894662A1 (fr) Gyrolaser a etat solide a modes contre-propagatifs orthogonaux
FR2533714A1 (fr) Dispositif coupleur optique integre non lineaire et oscillateur parametrique comprenant un tel dispositif
FR2853061A1 (fr) Gyrolaser a etat solide stabilise
WO2009077314A1 (fr) Gyrolaser multioscillateur a etat solide utilisant un milieu a gain cristallin coupe a &lt;100&gt;
FR2905005A1 (fr) Gyrolaser a etat solide avec milieu a gain active mecaniquement.
FR2636133A1 (fr) Gyroscope a laser en anneau et miroir magnetique pour ce gyroscope
EP0081412A2 (fr) Tête de mesure pour magnétomètre
CA2497205A1 (fr) Gyrolaser a etat solide stabilise a quatre modes sans zone aveugle
EP2385345B1 (fr) Gyrolaser a etat solide multioscillateur stabilise passivement par un dispositif a cristal doubleur de frequence
US3927946A (en) Ring laser frequency biasing mechanism
FR2500154A1 (fr) Procede et dispositif d&#39;absorption d&#39;ondes electromagnetiques reflechies dans un gyroscope a laser
CA2497202A1 (fr) Gyrolaser a etat solide stabilise sans zone aveugle
FR2492522A1 (fr) Gyroscope a laser en anneau comportant une egalisation de dispersion
FR2854947A1 (fr) Gyrolaser a etat solide stabilise par des dispositifs acousto-optiques
FR2605101A1 (fr) Interferometre en anneau a fibres optiques a trois axes
FR2863702A1 (fr) Gyrolaser a etat solide stabilise et a milieu laser anisotrope
WO2006048398A2 (fr) Gyrolaser a milieu solide semi-conducteur a structure verticale
JPH103099A (ja) 光スイッチ
FR2947047A1 (fr) Gyrolaser a etat solide stabilise
WO2007068652A1 (fr) Gyrolaser a etat solide active optiquement par biais alternatif
FR2504270A1 (fr) Capteur de vitesse angulaire realise sur la base d&#39;un laser en anneau
FR2549246A1 (fr) Isolateur optique
EP3702797B1 (fr) Magnétomètre scalaire isotrope et tout optique

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880121313.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08861203

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008861203

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12808582

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010129828

Country of ref document: RU