WO2009071602A2 - Réseaux de capteurs et dispositif de surveillance d'état pour un aéronef, ainsi que procédé de surveillance d'état - Google Patents

Réseaux de capteurs et dispositif de surveillance d'état pour un aéronef, ainsi que procédé de surveillance d'état Download PDF

Info

Publication number
WO2009071602A2
WO2009071602A2 PCT/EP2008/066741 EP2008066741W WO2009071602A2 WO 2009071602 A2 WO2009071602 A2 WO 2009071602A2 EP 2008066741 W EP2008066741 W EP 2008066741W WO 2009071602 A2 WO2009071602 A2 WO 2009071602A2
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
sensor network
acceleration
measured
aircraft
Prior art date
Application number
PCT/EP2008/066741
Other languages
German (de)
English (en)
Other versions
WO2009071602A3 (fr
Inventor
Thomas Becker
Jordi Sabater
Peter Sollberger
Original Assignee
Eads Deutschland Gmbh
Hochschule für Technik und Architektur Luzern
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eads Deutschland Gmbh, Hochschule für Technik und Architektur Luzern filed Critical Eads Deutschland Gmbh
Publication of WO2009071602A2 publication Critical patent/WO2009071602A2/fr
Publication of WO2009071602A3 publication Critical patent/WO2009071602A3/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0016Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of aircraft wings or blades
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0041Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0066Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by exciting or detecting vibration or acceleration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom

Definitions

  • the invention relates to a sensor network for measuring environmental parameters on the structure of an aircraft. Moreover, the invention relates to a condition monitoring device provided with such a sensor network. Furthermore, the invention relates to an aircraft provided with it. Finally, the invention relates to a condition monitoring method for an aircraft.
  • the structure of an aircraft is subject to various forces that can cause stretching, cracking or other damage.
  • the structure of aircraft is investigated by various non-destructive methods to safeguard aviation. These methods include in particular the visual inspection, but also ultrasound or, if possible, radiographic measurements.
  • a sensor system which has a multiplicity of sensors which deliver data to a main computer by means of a communication bus.
  • the sensor system includes, among other things, a bus conversion device which converts the signals between two such communication bus systems.
  • WO 01/61301 A1 discloses a method for the determination of mechanical stresses, for example in ships and aircraft. To determine these mechanical stresses sensors for measuring the mechanical stress, such as strain gauges, attached to the surface to be measured. The measurement results of the sensors are transmitted to a central unit via a digital measurement bus.
  • the DE 10 2006 020 341 A1 the expert takes a sensor for a measuring point and a method for its verification.
  • the sensor can transmit the measured data wirelessly to a tester.
  • the sensors are connected via wire cables.
  • WO 98/44400 shows a method for automatic assignment of addresses in a bus system, in particular FireWire.
  • a system control unit maintains a list showing which devices are are orders. This list is updated when the connected device is relocated to another port.
  • DE 10 2004 025 319 A1 discloses a seat status display system for passenger spaces of aircraft and vehicles.
  • a sensor arrangement is provided in each seat, which serves to detect the state of a seat.
  • the sensor arrangements can have, for example, an occupancy sensor and a belt sensor.
  • An operating and display unit is electrically connected to the sensor arrangements via a bus and can graphically represent the states of the individual seats.
  • the expert takes an air data system for aircraft in which a pressure measurement is performed at different locations of the aircraft. The data obtained is used for engine control.
  • the object is to provide a device and a method by means of which a distribution of mechanical loads on a structure can be reliably determined in a simple manner.
  • a sensor network for measuring parameters on the structure of an aircraft which has a plurality of sensor devices, which are designed for attachment to a structure of the aircraft, wherein the sensor devices are associated with identifiers for locating the sensor devices.
  • a state monitoring device provided with such a sensor network and an aircraft provided therewith and / or with such a sensor network and a method for monitoring the state of a structure of an aircraft are the subject matter of the subsidiary claims.
  • the sensor network according to the invention has the advantage that it enables an immediate measurement of parameters, such as acceleration, at different points of the structure of the aircraft with pinpoint accuracy. Furthermore, the measured parameters can be assigned to exact positions on the structure by the unique identifier of the sensor devices.
  • the sensor devices have communication devices with which the measured parameters can be read out. Furthermore, these communication devices are advantageously designed for wireless information transmission. This has the advantage that the sensor devices can also be arranged at locations where a cable routing would be difficult to realize.
  • the communication devices can be designed to transmit the identifier together with the measured environmental parameters.
  • a transmission of the measured parameters an assignment of the received parameters to a sensor device and thus to a location on the structure is possible directly.
  • the sensor devices have temperature sensor units.
  • the sensor devices advantageously have acceleration sensor units. With the aid of the acceleration values, deflections of the structure can be calculated.
  • the sensor network and / or the monitoring device are designed such that by means of the acceleration sensors, the current deflection and / or the current location of the sensors can be detected.
  • the detected location or the detected deflection can be combined with the those of other sensors.
  • a detection of the current location or the current deflection can in particular be obtained from the acceleration measurements by integration, in particular with the aid of the identifiers associated with the respective sensors and the information contained therein about the original location in the state without load
  • the acceleration sensor units may be designed to measure an acceleration in all three spatial directions. Thus, not only the amount of acceleration but also its direction can be detected.
  • the sensor devices advantageously have signal processing units for preprocessing signals from the sensor units. This can significantly reduce the amount of data to be transmitted.
  • the signal processing units can be designed to correlate the signals of the sensor units.
  • the signal processing units have tables for storing material data, by means of which the signals of the sensor units can be correlated.
  • the sensor devices can be designed to measure the distance from each other. This allows the detection of strains or compressions of the structure. To measure the distance, the current acceleration measurements in the individual sensors are used in a preferred embodiment.
  • a method according to the invention comprises the following steps: using the sensor network or the condition monitoring device; Reading the values measured by the sensor devices as well as the identifiers;
  • the method according to the invention has the advantage that parameters of the structure can be measured locally with little wiring effort. Low wiring costs result in a lower weight of the sensor system.
  • acceleration sensors in the sensor devices one of the most important parameters of the structural load can be measured.
  • the strain of the structure can be derived therefrom.
  • the correlation of measured temperature and deflection measured values allows adaptation of the maximum values for the load to temperature-dependent material properties.
  • Deciding whether damage to the structure is likely due to the correlated temperature and acceleration measurements allows for a targeted impact on the length of the maintenance interval and can help pinpoint damage.
  • a distance between the sensor means located by means of identification By measuring a distance between the sensor means located by means of identification, and a comparison of the measured distance with a stored reference value for these sensor devices, material deformations in the structure can be detected.
  • the current distance can be detected by integration in a preferred embodiment using current acceleration measurements.
  • a load distribution can be determined via the sensor network.
  • a comparison of two load distributions recorded at the same time offset under the same conditions and an estimation of the probability of damage to the structure due to the differences in the load distributions advantageously brings about early warning of damage.
  • maintenance intervals can be shortened or extended.
  • FIG. 1 shows an aircraft, here an aircraft, with a sensor network
  • FIG. 2 is a block diagram of a wireless sensor device
  • FIG. 3 is a block diagram of a condition monitoring device provided with the sensor device
  • FIG. 4 shows a schematic illustration of a fuselage of the aircraft with a wing monitored by means of the condition monitoring device
  • Fig. 5 is a detail view of the detail C of Fig. 4 in a normal load condition
  • Fig. 6 shows detail C of Fig. 4 in an overload condition.
  • FIG. 1 the example of an aircraft 10 as an aircraft shows how sensor devices 12 are distributed on such an aircraft, here aircraft 10 can.
  • the sensor devices 12 in this way form a sensor network 31 for monitoring the structure of the aircraft 10.
  • the sensor device 12 has a communication device 14 which comprises an antenna 24 with high-frequency electronics 26, a signal processing unit 16, an acceleration sensor unit 18 and a temperature sensor unit 20.
  • the antenna 24 and the high-frequency electronics 26 are designed for example for radio frequencies (RF part of the sensor device 12).
  • the acceleration sensor units 18 are preferably triaxial devices that cover the typical load range during operation of the aircraft 10.
  • the temperature sensor units 20 cover typical temperature ranges for aircraft. Here the measuring range extends from -70 0 C to 50 0 C.
  • Load and stress profiles can be used during the flight or at maintenance intervals. This leads to an on-board, real-time capable condition monitoring system that reduces maintenance costs and increases the usual maintenance intervals.
  • FIG. 3 shows a state monitoring device 30 forming such a condition monitoring system with a sensor network 31 formed from a plurality of the sensor devices 12 and a central computer 32.
  • the sensor units 18, 20 transmit measured signals 18a, 20a to the signal processing unit 16.
  • the signals 18a, 20a are analyzed and processed.
  • the value 22, which is transmitted from the signal processing unit 16 to the communication unit 14, contains information about the magnitude of the acceleration in each spatial direction, which are correlated with the temperature.
  • a measured acceleration value is weighted or scored based on stored allowable acceleration-temperature curves or matrices (or tables). For example, the value could indicate the corresponding fraction of the maximum acceleration assumed as a limit at the measured temperature.
  • the value 22 is sent to a central computer 32.
  • the high-frequency electronics add an identifier, for example a node number, to the value 22.
  • sensors are added to a network node so as to form a sensor device 12 in the form of a wireless network node.
  • Information about parameters influencing the state of the structure can be obtained with the sensor devices 12.
  • Typical parameters that indicate congestion situations are acceleration and temperature, and the combination of these parameters.
  • the wireless sensor network 31 which is equipped with sensor devices 12, is used to collect basic information about the state of the (aircraft) structure.
  • the sensor devices 12 are distributed throughout the structure so that critical areas can be more intensively monitored by a denser network, whereas less critical areas have less sensor device 12 distribution.
  • An exemplary distribution is shown in FIG.
  • the mechanical load of the wing 42 can be calculated. If the displacement exceeds certain reference values, an indication of weakening of the structure or even a defect is obtained.
  • the sensor devices 12 have a wireless communication interface, electronics, at least one supply device and at least one sensor.
  • the electronics have, for example, a sensor control, a memory device, a signal processing device and / or a data processing device.
  • the supply device supplies the sensor device 12 with energy.
  • batteries, energy collection devices and / or energy converters are provided.
  • acceleration or temperature sensor devices 18, 20 come into consideration as sensors. Furthermore, moisture, gas or other advantageous sensors can be provided.
  • the communication can be realized by means of different network topologies.
  • the network does not play an important role. Even point-to-point connections could be possible. To that However, using the system in flight uses a low-consumption, secure and fault-tolerant architecture.
  • the communication device 14 is accordingly designed so that the desired topologies can be used. If point-to-point connections are desired, these must be provided in the electronics.
  • the sensor devices 12 In order for the sensor devices 12 to be located, it is provided that they have an identifier which is unique for each sensor device 12.
  • This identifier can be, for example, a code number, a location or - as mentioned above - node number.
  • the central computer 32 which reads out the information from the sensor devices 12, has an allocation unit 34 for localization, by means of which the identifiers can be assigned to locations on the aircraft 10 or to its structure. This makes it possible to have the central computer 32 calculate a load distribution, in particular a local load distribution.
  • the communication device 14 transmits its identifier with each data record that is transmitted.
  • Another interesting factor of the system proposed here is that the network allows the measurement of a load and stress profile over the aircraft structure by means of direct signal and data processing in flight.
  • the amount of computations performed in the signal processing unit 16 is highly dependent on the available power. If the sensor device 12 is wired (which is possible, but less preferred due to the need for cabling), then enough power could be available to perform a large number of calculations using an internal database of material information. In contrast, an ultra-sparse same wireless sensor device 12 mainly reduce and store signals. The data is only transmitted to the central computer 32 upon request, where it is additionally processed to create a general load profile.
  • the data can be linked to other information, such as an exact distance measurement between the nodes. This makes it possible to measure the change in position or the deviation of the structure. This could increase the value of records relating to congestion situations in parts of the structure.
  • condition monitoring device 30 determines the structure of an aircraft, e.g. of the aircraft 10 can monitor.
  • Fig. 4 the hull 40 and a wing 42 of the aircraft 10 is shown schematically.
  • Fig. 5 which shows a detail of the wing 42, and also in Fig. 1, several of the sensor means 12 are provided on the wing 42 at some distance from each other which measure the acceleration and temperature at the individual locations .
  • the individual deflections and thus the current locations or location differences of the sensor devices 12 are determined relative to one another.
  • Fig. 5 shows a case of normal deflection in a healthy structure under load.
  • damage has occurred in an intermediate region 44 between the sensor devices 12.
  • By detecting the load distribution, impermissible loads can also be detected at an early stage at the intermediate areas between the sensor devices and appropriate countermeasures initiated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

Réseaux de capteurs permettant de mesurer des paramètres environnementaux sur la structure d'un aéronef. A cet effet, une pluralité de dispositifs capteurs (12) est fixée sur la structure de l'aéronef, une identification étant associée à chacun de ces dispositifs capteurs (12) en vue de leur localisation.
PCT/EP2008/066741 2007-12-03 2008-12-03 Réseaux de capteurs et dispositif de surveillance d'état pour un aéronef, ainsi que procédé de surveillance d'état WO2009071602A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007058102.7 2007-12-03
DE102007058102.7A DE102007058102B4 (de) 2007-12-03 2007-12-03 Zustandsüberwachungssystem für ein Luftfahrzeug

Publications (2)

Publication Number Publication Date
WO2009071602A2 true WO2009071602A2 (fr) 2009-06-11
WO2009071602A3 WO2009071602A3 (fr) 2009-08-06

Family

ID=40638069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/066741 WO2009071602A2 (fr) 2007-12-03 2008-12-03 Réseaux de capteurs et dispositif de surveillance d'état pour un aéronef, ainsi que procédé de surveillance d'état

Country Status (2)

Country Link
DE (1) DE102007058102B4 (fr)
WO (1) WO2009071602A2 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2481488A (en) * 2010-06-21 2011-12-28 Boeing Co Integrated aeroelasticity measurement for vehicle health management
DE102010049909A1 (de) 2010-10-28 2012-05-03 Eads Deutschland Gmbh Instandhaltungsinformationsvorrichtung, Zustandssensor zur Verwendung darin sowie damit durchführbares Verfahren zur Entscheidungsfindung für oder gegen eine Instandhaltung
DE102013021066A1 (de) 2013-12-18 2015-06-18 Airbus Defence and Space GmbH Herstellverfahren zum Herstellen eines tragenden Rumpfpaneels sowie damit herstellbares Rumpfpaneel
AT519490A1 (de) * 2016-12-30 2018-07-15 Avl List Gmbh Kommunikation eines Netzwerkknotens in einem Datennetz
US20220063839A1 (en) * 2020-09-01 2022-03-03 Ge Aviation Systems Llc System and method for performing enhanced maintenance of aircraft
DE102019218887A1 (de) 2018-12-05 2022-09-15 Nabtesco Corporation Materialermüdungsgradberechnungsvorrichtung, materialermüdungsgradberechnungsverfahren, stellglied, stellgliedsteuervorrichtung und flugzeug

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009039431B4 (de) 2009-08-31 2014-05-22 Eads Deutschland Gmbh Kollisionsverringerungsverfahren sowie Verwendung desselben
DE102021109700A1 (de) * 2021-04-16 2022-10-20 Airbus Operations Gmbh Flugzustandsermittlungsvorrichtung und verfahren zum ermitteln eines flugzustandes eines flugzeugs

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4240600C1 (de) * 1992-12-03 1994-06-09 Deutsche Aerospace Verfahren zum Erkennen von Strukturschwächen von Flugzeugen
US6415242B1 (en) * 1999-07-23 2002-07-02 Abnaki Information Systems, Inc. System for weighing fixed wing and rotary wing aircraft by the measurement of cross-axis forces
US20030063585A1 (en) * 2001-08-03 2003-04-03 Honeywell International Inc. Energy aware network management
US20050242943A1 (en) * 2004-04-28 2005-11-03 Kazuhiko Matsumoto Method for inspecting and monitoring building, structure, or facilities accompanying them
US20070096979A1 (en) * 2005-11-01 2007-05-03 The Boeing Company Integrated aeroelasticity measurement system
US20070265790A1 (en) * 2006-05-09 2007-11-15 Lockheed Martin Corporation System to monitor the health of a structure, program product and related methods

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5001638A (en) * 1989-04-18 1991-03-19 The Boeing Company Integrated aircraft air data system
US6013108A (en) * 1997-03-18 2000-01-11 Endevco Corporation Intelligent sensor system with network bus
US6131119A (en) * 1997-04-01 2000-10-10 Sony Corporation Automatic configuration system for mapping node addresses within a bus structure to their physical location
FI20000325A0 (fi) * 2000-02-15 2000-02-15 Koivisto Marja Liisa Menetelmä rakenteen rasituksen määrittämiseksi
DE102004025319A1 (de) * 2004-05-19 2005-12-22 Airbus Deutschland Gmbh Sitzstatus-Anzeigesystem für Passagierräume von Flugzeugen und Fahrzeugen, Sitz für Passagiere von Flugzeugen und Fahrzeugen, sowie Bedien- und Anzeigeeinheit
DE102006020341A1 (de) * 2006-04-28 2007-10-31 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Sensor für eine Messstelle und Verfahren zur Überprüfung eines Sensors für eine Messstelle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4240600C1 (de) * 1992-12-03 1994-06-09 Deutsche Aerospace Verfahren zum Erkennen von Strukturschwächen von Flugzeugen
US6415242B1 (en) * 1999-07-23 2002-07-02 Abnaki Information Systems, Inc. System for weighing fixed wing and rotary wing aircraft by the measurement of cross-axis forces
US20030063585A1 (en) * 2001-08-03 2003-04-03 Honeywell International Inc. Energy aware network management
US20050242943A1 (en) * 2004-04-28 2005-11-03 Kazuhiko Matsumoto Method for inspecting and monitoring building, structure, or facilities accompanying them
US20070096979A1 (en) * 2005-11-01 2007-05-03 The Boeing Company Integrated aeroelasticity measurement system
US20070265790A1 (en) * 2006-05-09 2007-11-15 Lockheed Martin Corporation System to monitor the health of a structure, program product and related methods

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2481488A (en) * 2010-06-21 2011-12-28 Boeing Co Integrated aeroelasticity measurement for vehicle health management
DE102010049909A1 (de) 2010-10-28 2012-05-03 Eads Deutschland Gmbh Instandhaltungsinformationsvorrichtung, Zustandssensor zur Verwendung darin sowie damit durchführbares Verfahren zur Entscheidungsfindung für oder gegen eine Instandhaltung
WO2012055699A1 (fr) 2010-10-28 2012-05-03 Eads Deutschland Gmbh Système d'information de maintenance, capteur d'état à utiliser dans ce système et procédé pouvant être mis en oeuvre au moyen de ce système pour décider de la nécessité d'effectuer une maintenance
DE102013021066A1 (de) 2013-12-18 2015-06-18 Airbus Defence and Space GmbH Herstellverfahren zum Herstellen eines tragenden Rumpfpaneels sowie damit herstellbares Rumpfpaneel
WO2015090263A1 (fr) 2013-12-18 2015-06-25 Airbus Defence and Space GmbH Procédé de fabrication d'un panneau de fuselage porteur ainsi que panneau de fuselage pouvant être fabriqué par ce procédé
AT519490A1 (de) * 2016-12-30 2018-07-15 Avl List Gmbh Kommunikation eines Netzwerkknotens in einem Datennetz
AT519490B1 (de) * 2016-12-30 2020-01-15 Avl List Gmbh Kommunikation eines Netzwerkknotens in einem Datennetz
US11310667B2 (en) 2016-12-30 2022-04-19 Avl List Gmbh Communication by a network node in a data network
DE102019218887A1 (de) 2018-12-05 2022-09-15 Nabtesco Corporation Materialermüdungsgradberechnungsvorrichtung, materialermüdungsgradberechnungsverfahren, stellglied, stellgliedsteuervorrichtung und flugzeug
US20220063839A1 (en) * 2020-09-01 2022-03-03 Ge Aviation Systems Llc System and method for performing enhanced maintenance of aircraft
US11753187B2 (en) * 2020-09-01 2023-09-12 Ge Aviation Systems Llc System and method for performing enhanced maintenance of aircraft

Also Published As

Publication number Publication date
DE102007058102B4 (de) 2016-02-04
WO2009071602A3 (fr) 2009-08-06
DE102007058102A1 (de) 2009-07-09

Similar Documents

Publication Publication Date Title
DE102007058102B4 (de) Zustandsüberwachungssystem für ein Luftfahrzeug
EP1499508B1 (fr) Procede pour surveiller un pneu d'un vehicule; procede pour generer un modele d'interaction vehicule-pneu ou une caracteristique de fiabilite vehicule-pneu; systeme de diagnose du pneu; systeme de diagnose du vehicule
DE102008003609B4 (de) Pedalwegprüfsystem
EP1383667B2 (fr) Dispositif et procede pour la detection et le traitement de forces de poids agissant sur un siege de vehicule
EP1677070B1 (fr) Procédé et dispositif destinés à la détermination de la flexion d'un élément de liaison
DE10017572A1 (de) Wälzlager mit fernabfragbaren Erfassungseinheiten
WO2007003173A2 (fr) Dispositif et procede de surveillance d'une structure porteuse elastomecanique
DE102016215083A1 (de) Vorrichtung und Verfahren zum Überwachen zumindest einer Fahrwerkskomponente
DE60023257T2 (de) Verfahren zur vorhersage der biegung eines elektrischen drahtes oder elektrischen drahtbündels
DE102017118230A1 (de) Verfahren zur Analyse und/oder Überwachung von Brücken sowie entsprechendes System und Verwendung
DE102017108363B4 (de) Achsüberwachungssystem eines Fahrwerkes eines Nutzfahrzeuges und Verwendung eines Achsüberwachungssystems
DE10144362B4 (de) Verfahren und System zur Detektion einer Zustandsänderung eines Reifens
DE102013213219B4 (de) Vorrichtung zur Bestimmung einer Verformungsinformation für ein mit einer Last beaufschlagtes Brett
DE102013208553A1 (de) Verfahren und Vorrichtung zur Erfassung von Zuständen in Reifen
EP3871906A1 (fr) Méthode de surveillance de changement d'une épaisseur de profil d'un pneumatique
DE102021004114A1 (de) Verfahren zur Erkennung eines strukturellen Mangels eines Straßenbrückenbauwerks
DE102018008724A1 (de) Messverfahren zur Bestimmung eines Struktur- und Verschleißzustandes eines Bauteils sowie Verwendung einer Messung im Oberflächenbereich eines metallischen elektrischen Leiters
DE102010007384B4 (de) Einrichtung zur Anordnung an Tragkonstruktionen, insbesondere an nicht stationären Brücken oder an Teilen derartiger Brücken
WO2019029969A1 (fr) Procédé d'adaptation à commande sensorielle de paramètres de mesure odométriques à des conditions météorologiques
EP3103537B1 (fr) Procede et systeme de mesure destine au diagnostic de dispositifs destines a transporter des charges, utilisation du systeme de mesure
DE102015113357B4 (de) Verfahren zur Analyse und/oder Überwachung von Brücken sowie ein entsprechendes System
DE202010010111U1 (de) Kraftmessmodul, Verbindungseinheit für eine modulare Kraftmessvorrichtung und entsprechende Kraftmessvorrichtung
DE102015017237B3 (de) Verfahren zur Analyse und/oder Überwachung von Brücken sowie entsprechendes System
DE102018133010A1 (de) Faserverbundkomponente mit einer integrierten strukturellen Zustandssensoranordnung
EP1992429A1 (fr) Outil de pose doté de moyens de contrôle du processus de pose

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08857375

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 08857375

Country of ref document: EP

Kind code of ref document: A2