WO2009070090A1 - Thermal solar energy collector for producing heat and/or cooling - Google Patents
Thermal solar energy collector for producing heat and/or cooling Download PDFInfo
- Publication number
- WO2009070090A1 WO2009070090A1 PCT/SE2008/000675 SE2008000675W WO2009070090A1 WO 2009070090 A1 WO2009070090 A1 WO 2009070090A1 SE 2008000675 W SE2008000675 W SE 2008000675W WO 2009070090 A1 WO2009070090 A1 WO 2009070090A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat pump
- active substance
- chemical heat
- pump according
- matrix
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S60/00—Arrangements for storing heat collected by solar heat collectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
- F28D20/003—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using thermochemical reactions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S90/00—Solar heat systems not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B17/00—Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
- F25B17/08—Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B30/00—Heat pumps
- F25B30/06—Heat pumps characterised by the source of low potential heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B27/00—Machines, plants or systems, using particular sources of energy
- F25B27/002—Machines, plants or systems, using particular sources of energy using solar energy
- F25B27/007—Machines, plants or systems, using particular sources of energy using solar energy in sorption type systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E70/00—Other energy conversion or management systems reducing GHG emissions
- Y02E70/30—Systems combining energy storage with energy generation of non-fossil origin
Definitions
- the present invention relates to a thermal solar energy collector for producing heating and/or cooling.
- the economic and technical challenges are generally known, which exist in collecting the freely accessible solar energy.
- Technically such a solution has to manage big and swift variations of temperature, varying air humidity and mechanical stress.
- the device i.e. the solar energy collector, should also in an economically justifiable way move the solar energy from a relatively large area to a point, where it can be used.
- liquid active substance that the substance all the time, during the whole process and all cycles, remains in a liquid state, i.e. both with and without a volatile medium absorbed therein.
- hybrid that the active substance during the process in the heat pump is alternating between a solid state and a liquid state.
- advantages are obtained that include that the cooling temperature in the system in which the heat pump is incorporated remains constant during the whole discharging process and that a relatively large storage capacity can be obtained.
- Another advantage associated with the use of a solid substance is that no moving components are required in the system. Heat is supplied to or drawn from the substance through a lamellar heat exchanger or a plate heat exchanger that is in a homogeneous contact with the substance. Hence, in the chemical heat pump described in the cited patent application WO 00/31206 no moving components are provided on the process side.
- the disadvantage associated with a solid substance is the limited power that can be obtained due to the generally low heat conductivity of solid substances.
- a method for solving the problem associated with the bad heat conductivity of solid substances and the low power/efficiency resulting therefrom.
- the method includes that the solid substance is silted up in the sorbate to form a slurry having such a consistency that it can be easily filled around or into a heat exchanger.
- the amount of sorbate in the slurry should exceed the concentration of sorbate that will later exist in the discharged state of the heat pump. Thereafter, when the substance is charged it obtains a final sintered shape, a so called matrix, which is not dissolved in the normal absorption of sorbate in the operation of the heat pump.
- the advantage of a high power is obtained since the substance can be sprayed over the heat exchanger in both the charging and the discharging processes and hence be efficiently cooled and heated, respectively.
- the disadvantage associated with a solid substance is that the cooling capacity decreases as a function of the dilution of the absorbent. Actually, it limits strongly the operating interval within which the substance can be used, this in turn reducing the storage capacity, taken as above as cooling energy per litre substance.
- Most of the liquid substances for use in chemical heat pumps are solutions of strongly hygroscopic inorganic salts in preferably water and similarly water is used as the absorbent. This gives another limitation due the fact that the dissolved substance cannot be allowed to crystallize. Crystallization creates problems in spray nozzles and pumps.
- the chemical heat pump disclosed in this patent application operates according to a special procedure that can be called the hybrid principle, the hybrid method or the hybrid process.
- the substance exists both in a solid and a liquid state during the process, the solid phase being used for storing energy, with as large an energy density as in solid systems whereas the heat exchange to and from the substance is only made in the liquid phase of the substance with as large an efficiency as in common liquid systems. Only the liquid phase is used for heat exchange to the surroundings. A condition thereof is that the solid and liquid phases can be kept separated during the process.
- a separation can be obtained by filtering using a separating means of a suitable kind, such as a net or a filter or in some other way.
- the liquid phase often called the "solution”
- the liquid phase is pumped and sprayed over a heat exchanger.
- a solution i.e. with a substance that all time is liquid, it is important that the pumps, valves and spray nozzles of hybrid systems are not blocked by crystals in the circulation path.
- a chemical heat pump is generally shown in a schematic way.
- the heat pump designed for producing cooling or heat and working according to the hybrid process described in the cited International patent application WO 00/37864.
- the heat pump includes a first container 1 or accumulator including a more or less dissolved substance 2 that can exothermically absorb or endothermically desorb a sorbate.
- the first container 1 is connected to a second container 3, also called condenser/evaporator, through a pipe 4.
- the second container 3 works as a condenser for condensing gaseous sorbate 6 to form liquid sorbate 5 during endothermic desorption of the substance 2 in the first container 1 and as an evaporator of liquid sorbate 5 to fo ⁇ n gaseous sorbate 6 during exothermal absorption of the sorbate in the substance 2 in the first container 1.
- the substance 2 in the accumulator 1 is in heat conducting contact with a first heat exchanger 7 located therein which can in turn through a liquid flow 8 be supplied with heat from or deliver heat to the surroundings.
- the liquid 5 in the evaporator/condenser part 3 is similarly in a heat conducting contact with a second heat exchanger 9 located therein to or from which heat can be supplied or delivered from or to the surroundings, respectively, through a heat flow 10.
- a second heat exchanger 9 located therein to or from which heat can be supplied or delivered from or to the surroundings, respectively, through a heat flow 10.
- the first heat exchanger 7 together with the substance 2 in the solid state thereof is enclosed in a fine-meshed net or filter 1 1 .
- Solution that is the liquid state of the substance exists in the lower portion of the accumulator 1 and is there collected in a free space 12 located beneath the first heat exchanger 7. From this space solution can through a conduit 13 and a pump 14 be sprayed over the first heat exchanger 7.
- the accumulator unit or reactor unit is integrated with a solar energy collector, so that the heating of the active substance in an efficient way is obtained from solar radiation, which hits the solar energy collector.
- the reactor thus includes a vessel or a container, which is delimited by different walls or sides, and at least part of such a wall or side is arranged as a solar energy collector.
- chemical heat pump works according to the hybrid principle and has a particularly efficient design.
- chemical heat pumps working with a solid substance has the disadvantage associated with a very low heat conductivity and hence a low power or efficiency and the advantages of having the ability of working without any moving parts, a high storage capacity and a constant reaction pressure.
- Chemical heat pumps working with a hybrid substance has the advantages of a high power or efficiency due to the higher heat conductivity and additionally, the fact that they can also work without any moving parts and that they have a high storage capacity and a constant reaction pressure.
- a chemical heat pump working with a hybrid substance if the solution of the active substance is used to increase the heat conduction between the active substance and the heat exchanger in the accumulator, which can for example be achieved by the fact that the active substance is not submitted to any displacement during the total process in the chemical heat pump. i.e. so that the active substance all the time is stationary or located in a stationary way, a chemical heat pump having a so called "solid" hybrid substance can be obtained.
- the solution of the active substance can be sucked into and/or be bonded in a passive substance, here called a matrix or a earner, that generally should be in a good heat conducting contact with the heat exchanger in the accumulator and can be arranged as of one or more bodies which in turn can be closely integrated with each other. That the substance is passive means that it does not cooperate in the absorption and releasing of the volatile medium by the active substance.
- the function of the matrix is to maintain the solution of the active substance at the location thereof and thereby increase the heat conduction between the heat exchanger and the active substance when the active substance is changing from its liquid to its solid state in the charging process and from its solid to its liquid state dining the discharging process.
- the matrix is formed from a substance that is inert to the process in the heat pump and may generally have an ability of binding the solution phase of the active substance to itself and in same time allow the active substance to interact with the volatile medium.
- the body or the bodies from which the matrix is formed should be efficiently capable of absorbing and/or be capable of binding the solution phase of the active substance in a capillary way.
- the matrix may include more or less separate particles, such as powders of for example varying granular sizes and comprising grains of varying shapes, fibres having for example varying diameters and varying fibre lengths, and/or a sintered mass having a suitable porosity, that for example does not have to be uniform but can vary within the formed matrix bodies.
- the size and shape of the particles i.e. in the special cases grain size, diameter and porosity, and porosity in the case of a solid matrix and the choice of material in the matrix bodies influence in the respective case the storing capacity and power and efficiency of the finished accumulator.
- the thickness of the layer can influence the power or efficiency of the accumulator.
- the ability of the matrix to suck liquid into it so that the liquid forms the heat carrying medium and the ability thereof of still allowing gas transport through the matrix are equally applicable to the condenser/evaporator unit in a chemical heat pump.
- gas is being transported through the matrix to be condensed at the surface of the heat exchanger and then be absorbed by the matrix, after which the absorbed liquid increases the heat conduction of the matrix, so that more gas can be cooled, condensed and absorbed.
- discharging the chemical heat pump the matrix releases water vapour, this cooling the absorbed volatile liquid that due to the its good heat conductivity transports heat for evaporation from the surface of the heat exchanger through the liquid to the evaporation zone.
- the processes in the heat pump can be said to be perfo ⁇ ned with the active substance sucked into a body or wick of fibres or powder which has turned out to result in a high power or efficiency.
- the power or efficiency has little to do with heat conduction in the body or wick but depends on the reaction in the liquid phase, i.e. among other things the fact that the active substance in its finely divided state changes to a solution that conducts heat better than the finely divided solid material.
- the matrix that may be said to be a sucking or absorbing material can be chosen among a plurality of different materials. For example, successful tests have been performed using fabrics of silicon dioxide as a matrix and a matrix including sand and glass powders in different fractions.
- the heat pump works by the fact that heat is conducted in the liquid phase at the same time as the structure of the matrix is sufficiently permeable to allow transport of the vapour phase of the volatile medium. It is also possible to produce the matrix by sintering a powder or fibres to form a more solid structure.
- a chemical heat pump also called an absorption machine, including a matrix as described above at least in the reactor, which is built together with a thermal solar energy collector, can at least in certain cases provide particular advantages.
- Such a heat pump can for example be built to have an efficient and simple exchange of heat with a medium from a heat sink such as the ambient air.
- a chemical heat pump including a matrix can be implemented in a very robust and resistant way, so that it can endure the hard environment, in which a thermal solar energy collector is usually working.
- the thermal energy collector is integrated in the absorption machine, it is not necessary to move the input of solar energy radiation from a relatively large area to a smaller region, since the absorption machine can be implemented so that its reactor part or the reactor parts of a set of absorption machines is/are distributed over the entire large area. By those means cost gains can be achieved.
- the thermal solar energy collector By integrating the thermal solar energy collector with the absorption machine, the consumption of material for manufacturing the solar energy collector and the absorption machine can be reduced and thus in certain cases the cost of a system including a solar energy collector and an absorption machine can even be halved.
- the outer covering of the absorption machine can be design to include one or more of following features:
- the surface of the outer covering is made energy receiving such as in a thermal solar energy collector.
- the surface of the outer covering can be used as an air cooler in a heat sink.
- the outer covering forms at the same time the outer vacuum protection as well as a heat exchanger for the enclosed matrix structure.
- a chemical heat pump comprising a matrix can be produced at a relatively low cost for example as closed smaller units, which are combined to form a battery for heat exchange with outer media.
- a chemical heat pump can be included in a solar energy cooling/solar energy heating system, which mainly includes four parts: absorption machine, solar energy collector, heat sink and a distribution system, i.e. various pipes for heat carrying media, typically water, and pumps.
- - Fig. I a is a schematic of a chemical heat pump according to prior art working according to the hybrid principle
- - Figs Ib - Id are schematics illustrating geneially the principle of a chemical heat pump
- Fig 2a is a schematic similar to Fig I a but of a chemical heat pump in which the active substance is absoibed in a carrier,
- Fig. 2b is a schematic similar to Fig. 2a of an alternative embodiment of a chemical heat pump
- FIG. 5 - Fig 3 is a diagram of the charging process in a chemical heat pump according to Fig. 2 using LiCl as the acti ⁇ e substance,
- Fig. 4 is a diagiam similar to Fig. 3 but of the discharging process
- Fig. 2 is a schematic of an accumulator tank for the chemical heat pump shown in Fig. 2,
- Figs 6a, 6b and 6c are cross-sectional detail views of a matrix material placed at a heat ex- o changer surface
- - Fig 6d is a cross sectional detail view of a matrix material located at a heat exchanger surface from which a flange projects,
- - Fig 7a is a schematic of a unit tube or unit cell that has a function similar to that of the chemical heat pump of Fig 2a but having a different structure and exte ⁇ or heat exchanger sui faces
- 5 - Fig. 7b is a schematic similar to Fig 7a but of a unit tube having a function similar to that of the chemical heat pump of Fig 2b,
- Figs. 8a and 8b are a side view and a perspective view, respectively, of a chemical heat pump
- Figs. 8c and 8d are views similar to Figs. 8a and 8b, but the chemical heat pump is built into a specially designed box, 0 - Figs. 9a and 9b are end views of a tubulai chemical heat pump including inner and outer heat exchangers.
- Fig 9c is a side view of the chemical heat pump according to Figs 9a and 9b.
- Figs. 10a and 10b are views similai to Figs 8c and 8d but for another design of the box for forming a built-in heat sink 5 DETAILED DESCRIPTION
- a chemical heat pump heie also called absorption machine
- a solai eneigy collector in various ways
- a reactoi 1 contains an active substance, which can exothermi- cally absorb and endothermically desoib a gaseous sorbate.
- the ieactoi 1 is connected to a con-0 denser/evapoiator 3 thiough a pipe oi a channel 4
- the second containei 3 works as a condenser for condensing gaseous sorbate to form liquid sorbate and as an evapoiator of liquid sorbate to form gaseous sorbate
- the substance in accumulator 1 is in heat exchanging contact with an external medium, which is symbolically indicated by the arrows 41 foi the supply or lemoval of heat
- the liquid in the evapoiator/condensei 3 is likewise in heat exchanging contact with a second external medium, which is symbolically indicated by the arrows 42, to or from which heat can be supplied and removed.
- a solar energy collector 43 can here be used, see Fig. Ic.
- a side or a surface of the reactor container 1 can serve as a solar energy collector for the supply of heat, see the arrows 44.
- Heat removal can be executed using inner or outer heat exchange as through another side or surface of the reactor vessel and for example the surrounding or ambient air. see the arrows 45 in Fig. I d, or through an inner coil of a heat exchanger, compare Fig. I a, or an outer coil of a heat exchanger.
- the active substance changes between a solid and a liquid state.
- the active substance has always to remain in the reactor 1.
- One way of achieving this is to limit the mobility of the substance in its solid form using a net 1 1 as is shown in Fig. 1 a. Another way will be described below.
- a chemical heat pump that works with an active substance, which all the time is in a solid state, this is not a problem.
- Fig. 2a a modified chemical heat pump will now be generally described, which can be suitable to be integrated with the solar energy collector according to the discussion above.
- the modified chemical heat pump utilizes the hybrid process using a matrix for holding and/or carrying the active substance and it also utilizes a matrix for holding and/or binding the condensate, usually water.
- the modified chemical heat pump includes in a conventional way a first container 1 , also called accumulator or reactor, containing an active substance 2, herein also called only “substance” .
- the substance can exothennically absorb and endothermically desorb a sorbate, also called the absorbent, the liquid form of which is often called “volatile liquid” herein and which can usually be water.
- volatile liquid and “water” are herein used to denote the liquid form of the sorbate, so that is to be understood that even if only water is mentioned, other liquids can be used.
- the substance 2 is here illustrated to be held by or earned by or sucked into a matrix or earner 13 that generally fo ⁇ ns or is at least one porous body which has open pores and is made from a suitable inert substance.
- the matrix can in a typical case consist of a finely divided powder of for example aluminium oxide, applied in a layer having a suitable thickness, for example a relatively thin layer such as a layer having a thickness of 5 - 10 mm.
- the matrix in the first container 2 is applied only at the interior surfaces of this container that are located at a first heat exchanger 7, as shown particularly only at the vertical interior surfaces of the first container.
- the first container 1 is connected to another container 3, also called condenser/evaporator, through a fixed or stationary gas connection 4 having the shape of a pipe that at its ends is connected to the top sides of the containers 1 , 3.
- the second container works as a condenser for condensing gaseous sorbate 6 to form liquid sorbate 5 in an endothermic desorption of the substance 2 in the first container 1 and as an evaporator of liquid sorbate 5 to form gaseous sorbate 6 in an exothermic absorption of sorbate in the substance in the first container.
- the second container 3 is here illustrated to have half the portion of its interior surface, which is in contact with a second heat exchanger 9.
- the various components of the chemical heat pump also called the system, i.e. the interior spaces in the first and second containers 1 , 3 and the gas conduit 4 that are in fluid connection with each other, are entirely gas tight and evacuated from all other gases than the gas 6 participating in the chemical process, also called the volatile medium or absorbent, that usually is water vapour.
- the active substance 2 in the accumulator 1 is in a direct heat conducting contact with surfaces of the first heat exchanger 7 that in this embodiment is located at the vertical interior surfaces enclosing the accumulator 1, and that thus also can be said to enclose the accumu- lator, and that can be supplied with heat from or deliver heat to the surroundings through a first liquid flow 8.
- the liquid 5 in the evaporator/condenser part 3 is in a similar way in a direct heat conducting contact with surfaces of the second heat exchanger 9 that in this embodiment is placed at the vertical interior surfaces of the evaporator/condenser part and hence also can be said to enclose the evaporator/condenser part and to and from which heat can be supplied or transported from or to the surroundings, respectively, through a second liquid flow 1 1.
- the active substance 2 in the chemical heat pump is selected so that it at the temperatures for which the heat pump is intended can operate so that it changes between a solid and a liquid state in the discharging and charging processes of the heat pump.
- the reaction in the accumulator 1 occurs between two phases, a solid phase state and a liquid phase state, of the active substance.
- the first phase is solid whereas the second phase is liquid and then a constant reaction pressure is maintained for the absorbent.
- the substance will then successively change from a solid to a liquid state at the same time as a constant cooling temperature is obtained.
- the process continues with a constant reaction pressure until substantially all of the active substance has changed from its solid to its liquid state.
- the reaction pressure in the charging process is constant while the substance is changing from its liquid to its solid state.
- a normal hybrid substance see the patent application WO 00/37864 mentioned above, can advantageously be used that is diluted to a desired concentration in the solution of the sorbate and thereafter is sucked into a matrix consisting of an inert powder, i.e. a powder of a material that is not to any substantial extent changed during the operation of the chemical heat pump.
- the material should have a solid state during the changing conditions in the heat pump and it should not chemically interact with, i.e. not chemically influence or be affected by. any of the substances or media that change their aggregate states during operation of the heat pump.
- this powder has for example been aluminium oxide and the active substance LiCl.
- the granular size of the powder can here be of importance and also the capability thereof to suck or absorb in a capillary way.
- suitable bodies of the matrix such a powder can first be applied to one or more surfaces of a heat exchanger as a layer having a suitable thickness, for example with a thickness between 5 and 10 mm.
- a net- structure of some kind, not shown, must be applied to the heat exchanger to hold the respective layer in order to form a body from the powder.
- tests have been perfo ⁇ ned using layers, having a thickness of 10 mm applied to the outside of pipes, inside pipes and to the bottom of the container.
- the solution i.e. the active substance diluted by the volatile medium, also called the sorbate, in its liquid state, is then sucked into the powder in the layers and is allowed to run out of it, until all of the remaining solution is bonded in a capillary way in the powder in the layers.
- the reactor can be used in the same way as a reactor for a solid substance is used, see e.g. the International patent application WO 00/31206 mentioned above.
- the matrix together with the substance held therein is in this case not a solid body but a loose mass similar to wet sand in the discharged state of the heat pump. However, in the charged state of the heat pump the matrix is hard.
- the solution of the active substance has a significantly better heat conducting capability than the substance in the solid state thereof. Heat from the first heat exchanger 7 can then be efficiently transported to or away from the active substance. If for example a matrix consisting of aluminium oxide is filled with a 3 molar LiCl solution, a very rapid and efficient charging of the system is perfo ⁇ ned down to about a 1 molar solution. Thereafter the power decreases since the active substance now does not any longer contain any solution, i.e.
- directly acting heat exchanger or a directly acting heat exchange between heat exchanger and active substance/solution means that the substance/solution exists at the outer surface of a smooth, simple wall of the heat exchanger while the heat carrying/cooling medium or the fluid in the heat exchanger is circulating at the interior surface of the same wall. i.e. the substance/solution has a substantially direct contact with the heat exchanger medium, through only a relatively thin and flat wall in the heat exchanger.
- heat exchanger or a heat exchange with en enlarged surface means that the substance/fluid exists at a surface of the heat exchanger that has been given an enlarged effective heat exchanging area by for example being corrugated and/or provided with protruding portions of some suitable kind, such as flanges. For a hybrid system using a solution sucked into a matrix it means that also the matrix is located at such a surface of the heat exchanger.
- Tests that have been performed at a laboratory scale and then have been recalculated for a full scale have provided data for charging and discharging, respectively, that appear from the diagrams of Figs. 3 and 4. These tests have been performed using accumulators 1 having the shape of circular cylindrical vessels of 1 litre of the diameter 100 mm and height 130 mm, in which a layer 13 having a thickness of 10 mm of an inert material with a substance contained therein is located at the cylindrical interior surface of the vessel, i.e. at the interior side of its envelope surface.
- the matrix material and the substance are in this embodiment held at their places by a net structure including a net 15 having an exterior covering of a more fine meshed structure such as a cotton cloth 16 or a fine meshed net, see Fig. 5. Any changes of the structure or function of the layer including an inert earner and the substance have not been observed during the tests performed.
- the general structure of the matrix is schematically shown in Fig. 6a.
- the layer or the body 13 of a porous matrix material is applied to one side of a heat exchanger wall 23 and has pores 24.
- the pores have generally such a cross section that they allow transport and absorption of the gaseous sorbate.
- the matrix can cany active substance 2 on the walls in the pores that can interact with gaseous sorbate in the remaining channels 25 that can exist in some stages of the operation of the heat pump.
- the pores can also be completely filled as shown at 26 with solution or with condensate, respectively.
- the matrix material is chosen so that it at its surface can bind active substance/solution/condensate and hence it can suitably be hydrophilic or at least have a hydrophilic surface, if water is used as the fluid in the system.
- materials which have no hydrophilic surface or generally no surface that is wet by the active substance in the solution phase thereof or at which the active substance in its solution phase is not significantly bonded provided that the active substance is introduced into the matrix, such as by mixing or stirring it together with it, before it is applied at the heat exchanger walls, even if a chemical heat pump having such a matrix often works satisfactorily only during a few cycles of the operation of the heat pump.
- the size of the pores can be selected for example so that they are capillary sucking for the liquid phase that they are to absorb which can be particularly suitable for a matrix placed in the condenser/ evaporator.
- Typical cross-sectional dimensions of the pores 24 can be in the range of 10 - 60 ⁇ m. It may be disadvantageous to have too narrow pores since they can make the interaction of the volatile medium with all parts of the active substance more difficult.
- the volume of the pores can be for example at least 20 % and preferably at least 40 %, even at least 50 % of the bulk volume of the matrix body.
- the matrix can as has been mentioned above alternatively be of a sintered or equivalent material, i.e. form a substantially solid, connected body.
- the matrix can also be formed from particles of different shapes, such as more or less spherical particles, see Fig. 6b, or from elongated particles, for example from fibre pieces that can be relatively short having a length/thickness ratio in e.g. the range of 1 :2 to 1 : 10, see Fig. 6c.
- the heat exchanger wall 23 can be provided with flanges 27 as shown in Fig. 6d.
- a material suitable as a matrix material is produced from a powder of Al 2 (X The density of the powder grains is 2.8 kg/cm 3 and their diameter is 2 - 4 ⁇ m.
- the powder is applied in layers with a solution of active substance contained therein according to the description above and the dry matrix material in the layers has a bulk density of about 0.46 kg/ cm 3 which gives an average filling rate or degree of the finished matrix material of 0.45, i.e. almost half the volume is taken by the powder grains.
- the channels between the powder grains in the produced layers have a diameter of the magnitude of order of 60 ⁇ m.
- Example 2 of matrix material A material suitable as a matrix material is produced by moulding a mixture of 1 (weight) part of Portland cement and 5 (weight) parts of powder Of ANO 3 as in Example 1. This material can approximately be considered as "sintered”.
- a fibre material suitable as a matrix material is produced from fibres which consist of 54 % SiCb and 47 % Al 2 O 3 and have a melting point of about 1700° C.
- the density of the fibres is
- the fibres are compressed in a wet state to increase their packing density.
- the bulk density after drying the compressed material is about
- the channels between the fibres in the compressed material have diameters of between about 5 and 10 ⁇ m.
- the matrix layer 13 is applied in the simplest possible way, such as to a substantially smooth interior surface of a heat exchanger.
- unit tubes 29 are provided in which the reactor 1 and the condenser
- the reactor part 1 then has its matrix 2 located around the bottom portion of the interior surface of the walls, see Fig. 7a.
- the top portion of the tube that forms the condenser/evaporator part 3 is separated by a diaphragm 30 from which the gas channel
- unit tubes 31 in an interior tube 32 passes to the topmost portion 33 of the tube from which vapour then can be condensed and collected in the space 34 between the gas channel and the upper wall surfaces in the unit tube and be evaporated from this space.
- unit tubes can be manufactured totally hermetically from glass or enamelled steel.
- the unit tube 29 can also have matrix substance 14 placed in its condenser/evaporator part
- FIGs. 8a - 8d an absorption machine including a reactor 1 , a condenser/evaporator 3 and a gas channel 4 is built together with a solar energy collector placed in a box or a casing 61.
- the box has an inner separating wall 62, which divides the inside of the box into a front space 63, in which the reactor is placed, and a rear space 64, in which the condenser/evaporator 3 is placed.
- the gas channel 4 extends through the separating wall.
- Both the reactor 1 and the condenser/evaporator 3 can be designed to have a flat shape or plate-shape similar to that of panels, so that they have a relatively small thickness in relation to their lateral extent.
- the gas channel 4 may be connected to for example the middle of the panel-shaped parts.
- the box 61 has on its front a wall or a plate 65 that is transparent to sun light, so that sun radiation can penetrate into the front space. The sun can then in the daytime illuminate, through the transparent wall, the surface 66 of the absorption machine which is facing said wall and which is made up of the parts of the wall of the reactor 1 which are directed forwards. This surface, i.e.
- said parts of the walls that are directed forwards can then be a part of the vacuum tight outer wall of the reactor and may for example be made from a metal or a ceramic material.
- Said surface 66 is also designed as a thermal solar energy collector having solar energy collecting properties, in which is included the property typical of thermal solar energy collectors to be capable of receiving solar energy and at the same time not or at least not in any significant degree radiating thermal energy, this being conventionally achieved by having an optically selective layer applied to the surface thereof. Other heat losses can to some extent be avoided by applying some heat insulation to the other walls of the box 61.
- the function in the charging process is as follows.
- the reactor part 1 of the absorption machine can in the daytime be heated. This occurs by solar radiation passing the transparent wall 65 and then hitting the surface/wall parts 66.
- This surface is constructed so that it converts the incoming solar radiation into heat, which is conducted by the material in the surface/wall parts into the interior of the reactor and there brings about the vaporization of the sorbate bound by the active substance, producing for example water vapour.
- the water vapour travels through the channel 4 to the evaporator/condenser 3 of the absorption machine, in which the water vapour is condensed and can in the case where a matrix is used be bonded as water in the matrix.
- This charging process continues as long as the active substance has a temperature that is sufficiently high compared to the temperature of the condensed sorbate.
- the condensate is cooled by heat exchange with a heat sink and can for example be held at a temperature approximately 40° C lower relative to the active substance.
- a heat sink can for example be held at a temperature approximately 40° C lower relative to the active substance.
- heating or cooling can be earned out. If heating is desired it is achieved by the fact that water is circulating in the pipe coil 67 at the evaporator/condenser 3, the water being connected to a heat sink, not shown, of a suitable temperature, bringing the condensate to a temperature for example corresponding to the current temperature of the ambient air. Condensed sorbate will then be vaporized and pass to the active substance in reactor 1 to be absorbed therein. The active substance with the sorbate contained therein can then become about 40° C warmther than the condensate.
- the temperature of the hygroscopic salt matrix i.e. the active substance with contained sorbate, can become about 45° C.
- pipe coils are for example applied to the rear side of the reactor 1 , they can be coupled to an existing waterborne heating system, not shown. The water in these pipe coils is then being pumped to the pipes of the waterborne heating system. Instead, if cooling is desired, the pipe coils 67 at the evaporator/condenser 3 are connected to a waterborne cooling system, not shown, for the transport of cold to the place where it is wanted.
- pipe coils 68 at the reactor 1 are connected to a heat sink, not shown, maintaining the reactor for example at the current temperature of the ambient air.
- the pipe coils 67, 68 can be arranged at the rear side of corresponding parts. Then, if the active substance is maintained at a temperature of for example 45° C, water from the pipe coils 67 having a temperature of approximately 4° C can be delivered to the waterborne cooling system.
- Solar energy collector built together with an absorption machine (SaDr) of tubular type In this embodiment a unit tube or a unit cell is used of a type similar to the unit tube according to Fig. 7b but having another design.
- An absorption machine which is built together with a solar energy collector includes a vacuum tight space fo ⁇ ned between an exterior glass tube 71 and an interior glass tube 72, which are concentrically arranged, see Figs. 9a and 9b.
- the different parts, the reactor, the evaporator/ condenser and the connecting gas channel of the absorption machine are arranged in this vacuum tight space.
- An aluminium plate 73 is applied to the surface of the interior glass tube 72.
- the aluminium plate forming an aluminium flange heat exchanger and also passing around and being in good heat conducting contact with axially extending parts of an interior copper pipe coil 74.
- the copper pipe coil and the bent aluminium plate together form an interior heat exchanger.
- an aluminium plate 75 extends around the major part of or the main body of the exterior glass tube 71.
- the aluminium plate can have the shape of a cylinder from which a strip-shaped area parallel to the cylinder axis has been removed.
- the aluminium plate 75 is in good heat conducting contact with axially extending parts of an exterior copper pipe coil 76.
- the copper pipe coil and the bent aluminium plate together form an exterior heat exchanger.
- the exterior aluminium plate can have axially extending, relatively broad, strip- shaped areas 77 that are suitable for attaching the entire absorption machine.
- the free surface of the exterior heat exchanger is built as a solar energy collecting surface having the typical property of thermal solar energy collectors of being capable of receiving solar energy and at the same time not in any mentionable degree radiating heat energy, where it can be achieved using a so called optically selective layer, not shown, which is applied to the surface.
- the absorption machine is of hybrid type comprising a matrix in both the reactor and the evaporator/condenser a particular implementation can be obtained, which can be advantageous at least in certain cases.
- the matrix of the absorption machine for holding the condensate i.e. usually water
- the matrix 79 for holding/carrying the active substance is formed as a layer on the inside of the outer glass tube 71 and thus also has a tubular shape.
- both matrices have the shape of relatively thick tubes, which are suitably concentric with the glass tubes and the cylindrical walls of the inner and outer aluminium plates. Between the matrices there is a room or intermediate space 80, which serves as the gas channel (4) described above and also has the shape of a relatively thick tube.
- glass tubes together with the matrices and the active substance and the sorbate arranged therein can be used together with heat exchangers of other types than those shown in the drawings. Thus, they can be used for example without any own solar energy collecting surface or without being in direct contact with a solar energy collector.
- absorption machines of tubular type can be placed close to one another in the form of a battery, not shown, to form for example a flat assembly.
- the function in the charging process is as follows.
- the absorption machine including a vacuum tight space limited by concentric glass tubes with an exterior heat exchanger having properties favourable to receiving the ⁇ nal solar energy is placed so that a surface of the exterior heat exchanger is in daytime illuminated by the sun.
- the inner copper pipe coil 74 of the absorption machine is connected to a waterborne cooling system, not shown, where cooling is delivered.
- the outer coil of copper pipes 76 is connected to a heat sink, not shown, in such a way that the outer matrix 79 and the salt contained therein is maintained at for example the current
- water from the inner matrix 78 containing water can, through of the inner copper pipe coil 76, be delivered at a temperature of approximately 5° C to the waterbome cooling system.
- An absorption machine built together with a solar energy collector can be constructed and placed in a box 61 in the same way as the absorption machine according to Figs. 8a - 8d.
- the box is open at its top and bottom sides, i.e. generally at two opposite sides, which are connected by the separating wall 62.
- the box has also been provided with a flap 91 , see Figs. 10a - 10b, which is articulated at an edge of the separating wall at the first of the open sides.
- the flap can be opened forwards and backwards, permitting the ambient air to cool either the surfaces of the reactor 1 or the surfaces of evaporator/condenser 3, allowing air to be freely flowing from the second of the open sides and over respective surfaces by setting the flap so that a free passage is allowed through the front and rear space 63, 64, respectively, in the box 61. 5 Thus, a heat sink is obtained from the ambient air, flowing over respective surfaces.
- the function in the charging process is as follows.
- the reactor part 1 of the absorption machine can be heated at daytime. It occurs by solar radiation passing through the transparent wall 65 and then hitting the surface/wall parts 66. This surface is of such a nature, that it converts the incoming solar radiation into heat, which is
- the 15 substance has a temperature that is sufficiently high compared to the temperature of the condensed sorbate.
- the condensate is cooled by heat exchange with a heat sink and can for example be maintained at a temperature about 40° C lower relative to the temperature of the active substance.
- a heat sink In this machine that is built together with a heat sink it is achieved by holding the flap 91 open, so that relatively cold ambient air can be freely flowing over the
- a heat sink of an adequate temperature so that the condensate assumes for example a temperature corresponding to the current temperature of the ambient air.
- this machine which is built together with a heat sink, it is done by holding the flap 91 open, so that air can be freely flowing over the evaporator/condenser 3, cooling it and in the special case the matrix containing water.
- Condensed sorbate i.e. typically water, will then be evaporated and pass to the active substance in the reactor 1 to be absorbed therein.
- the active substance together with the sorbate contained therein can then become for example about 40° C warmer than the condensate.
- the temperature of the hygroscopic salt matrix i.e. the active substance together with the sorbate contained therein, can become approximately 45° C.
- pipe coils 68 are arranged at for example the rear side of reactor 1. they can be connected to an existing waterbo ⁇ ie heating system, not shown. Then, the water in these coils of pipes is being pumped to the pipes of the waterbo ⁇ ie heating system.
- pipe coils 67 at the evaporator/condenser 3 are connected to a waterbome cooling system, not shown, for conveying cooling to the locations where it is desired.
- the pipe coils 68 at the reactor 1 are connected to the heat sink, maintaining the temperature of reactor 1 at for example the current temperature of the ambient air.
- this machine which is built together with a heat sink, it can be achieved by holding the flap 91 open, so that relatively cold air can be freely flowing over the reactor, cooling the hygroscopic salt and in the special case its holding matrix. If then the active substance is held at a temperature of for example 45° C. water at a temperature of approximately 4° C from the pipe coils 67 can be delivered to the waterbome cooling system.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Combustion & Propulsion (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Sorption Type Refrigeration Machines (AREA)
Abstract
Description
Claims
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2008330258A AU2008330258B2 (en) | 2007-11-29 | 2008-11-28 | Thermal solar energy collector for producing heat and/or cooling |
EP08853895.4A EP2225500B1 (en) | 2007-11-29 | 2008-11-28 | Thermal solar energy collector for producing heat and/or cooling |
CN2008801182194A CN101878400B (en) | 2007-11-29 | 2008-11-28 | Thermal solar energy collector for producing heat and/or cooling |
JP2010535911A JP5406849B2 (en) | 2007-11-29 | 2008-11-28 | Solar thermal energy collector for generating heating and / or cooling |
KR1020107009010A KR101532295B1 (en) | 2007-11-29 | 2008-11-28 | Chemical heat pump for collecting ihermal solar energy and for producing heat and/or cooling |
MX2010001703A MX2010001703A (en) | 2007-11-29 | 2008-11-28 | Thermal solar energy collector for producing heat and/or cooling. |
DE08853895T DE08853895T1 (en) | 2007-11-29 | 2008-11-28 | THERMAL SOLAR COLLECTOR FOR THE PRODUCTION OF HEAT AND / OR COOLING |
US12/672,430 US8839642B2 (en) | 2007-11-29 | 2008-11-28 | Thermal solar energy collector for producing heat and/or cooling |
BRPI0817553 BRPI0817553A2 (en) | 2007-11-29 | 2008-11-28 | Chemical heat pump |
RU2010104608/06A RU2479801C2 (en) | 2007-11-29 | 2008-11-28 | Solar heat energy collector to generate heat and/or for cooling purposes |
IL203947A IL203947A (en) | 2007-11-29 | 2010-02-14 | Thermal solar energy collector for producing heat and/or cooling |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE0702648A SE532504C2 (en) | 2007-11-29 | 2007-11-29 | Thermal solar collector for supply of heat and / or cooling |
SE0702648-7 | 2007-11-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2009070090A1 true WO2009070090A1 (en) | 2009-06-04 |
WO2009070090A8 WO2009070090A8 (en) | 2010-03-25 |
Family
ID=40678822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/SE2008/000675 WO2009070090A1 (en) | 2007-11-29 | 2008-11-28 | Thermal solar energy collector for producing heat and/or cooling |
Country Status (13)
Country | Link |
---|---|
US (1) | US8839642B2 (en) |
EP (1) | EP2225500B1 (en) |
JP (1) | JP5406849B2 (en) |
KR (1) | KR101532295B1 (en) |
CN (1) | CN101878400B (en) |
AU (1) | AU2008330258B2 (en) |
BR (1) | BRPI0817553A2 (en) |
DE (1) | DE08853895T1 (en) |
IL (1) | IL203947A (en) |
MX (1) | MX2010001703A (en) |
RU (1) | RU2479801C2 (en) |
SE (1) | SE532504C2 (en) |
WO (1) | WO2009070090A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011159236A1 (en) * | 2010-06-18 | 2011-12-22 | Climatewell Ab (Publ) | Chemical heat pump working according to the absorption or adsorption principle |
JP2012145252A (en) * | 2011-01-11 | 2012-08-02 | Daihatsu Motor Co Ltd | Chemical heat pump |
WO2012118437A1 (en) | 2011-03-02 | 2012-09-07 | Climatewell Ab (Publ) | Salt coated with nanoparticles |
JP2013513779A (en) * | 2009-12-09 | 2013-04-22 | クライメイトウエル エービー(パブル) | Solar panel with integrated chemical heat pump |
US8695363B2 (en) | 2011-03-24 | 2014-04-15 | General Electric Company | Thermal energy management system and method |
DE102013222045A1 (en) | 2013-08-05 | 2015-02-05 | Vaillant Gmbh | sorption |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE530959C2 (en) * | 2006-05-29 | 2008-11-04 | Climatewell Ab Publ | Chemical heat pump with hybrid substance |
CN102563981A (en) * | 2012-01-12 | 2012-07-11 | 胡连方 | Evaporator with absorption type core filled with carbon fibers or materials with high water absorbability |
EP2888535B1 (en) * | 2012-07-31 | 2021-01-06 | University Of Ulster | A solar water heater |
GB201309141D0 (en) * | 2013-05-21 | 2013-07-03 | Europ Thermodynamics Ltd | Energy Storage |
DE102013226158A1 (en) * | 2013-12-17 | 2015-06-18 | Robert Bosch Gmbh | Adsorption chiller, arrangement and motor vehicle |
CN103912999B (en) * | 2014-04-04 | 2016-02-17 | 江苏启能新能源材料有限公司 | A kind of phase-change thermal storage solar water heater with new radiator structure |
CN107110613B (en) * | 2015-01-27 | 2019-08-13 | 古河电气工业株式会社 | Heat storage container and regenerative apparatus including heat storage container |
RU187165U1 (en) * | 2018-07-27 | 2019-02-21 | федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ) | Simplified Mounted Heat Exchanger Panel |
CN109372388B (en) * | 2018-11-26 | 2023-09-22 | 北方工业大学 | Absorption type photo-thermal independent automatic adjusting light-transmitting structure, glass curtain wall and outer wall window |
CN109443065B (en) * | 2018-12-01 | 2023-12-26 | 中节能城市节能研究院有限公司 | Large concentration difference absorption type energy storage device based on active crystallization technology |
CN109506377B (en) * | 2018-12-29 | 2020-06-19 | 北方工业大学 | Absorption type solar energy light-gathering automatic temperature-adjusting radiation system for hot area, roof and wall |
CN111781239B (en) * | 2020-05-29 | 2023-07-18 | 郑州轻工业大学 | Efficient closed thermochemical adsorption heat storage test system |
RU204589U1 (en) * | 2021-02-12 | 2021-06-01 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный технический университет" (ВГТУ) | Semiconductor photovoltaic device |
KR102586302B1 (en) * | 2021-08-13 | 2023-10-18 | 고려대학교 산학협력단 | Cooling unit for application in solar panels and use thereof |
US11970652B1 (en) * | 2023-02-16 | 2024-04-30 | Microera Power Inc. | Thermal energy storage with actively tunable phase change materials |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4231772A (en) | 1978-10-10 | 1980-11-04 | Owens-Illinois, Inc. | Solar powered heat pump construction |
WO1999008052A1 (en) * | 1997-08-12 | 1999-02-18 | Saskia Solar- Und Energietechnik Gmbh | Solar thermal installation with solar collector and heat store |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH609140A5 (en) * | 1976-05-18 | 1979-02-15 | Sulzer Ag | |
DE2712552C2 (en) * | 1977-03-22 | 1979-05-17 | Joachim Dipl.-Ing. 4630 Bochum Teichmann | Magnetic piston pump for pumping fluids |
DE3342985A1 (en) * | 1983-11-28 | 1985-06-13 | Fritz Dipl.-Ing. Kaubek | CONTINUOUSLY SORPTION APPARATUS AND METHOD FOR THEIR OPERATION |
FR2574530B1 (en) * | 1984-12-06 | 1987-01-16 | Jeumont Schneider | THERMAL ENERGY SENSOR AND DEVICE INCLUDING SUCH A SENSOR. |
SU1477999A1 (en) * | 1986-03-18 | 1989-05-07 | Институт технической теплофизики АН УССР | Method of operation intermittent sorption refrigerating system |
US4993239A (en) * | 1987-07-07 | 1991-02-19 | International Thermal Packaging, Inc. | Cooling device with improved waste-heat handling capability |
US4949549A (en) * | 1987-07-07 | 1990-08-21 | International Thermal Packaging, Inc. | Cooling device with improved waste-heat handling capability |
FR2620048B1 (en) * | 1987-09-07 | 1989-12-22 | Elf Aquitaine | PROCESS FOR CONDUCTING A THERMOCHEMICAL REACTION AND PLANT FOR CARRYING OUT THIS PROCESS |
US5048301A (en) * | 1989-01-05 | 1991-09-17 | International Thermal Packaging | Vacuum insulated sorbent driven refrigeration device |
NL9102072A (en) * | 1991-12-11 | 1993-07-01 | Beijer Raadgevend Tech Bureau | HEAT ACCUMULATOR, METHOD FOR THE PRODUCTION THEREOF, AND ENERGY SYSTEM INCLUDED WITH SUCH A HEAT ACCUMULATOR. |
DE4237991A1 (en) * | 1992-11-11 | 1994-05-19 | Schloemann Siemag Ag | Cooling hot-rolled products, rails - using appts. with carrier elements allowing rails to be suspended with their top downwards |
GB9403260D0 (en) * | 1994-02-21 | 1994-04-13 | Ici Plc | Absorbents |
BR9610753A (en) * | 1995-09-20 | 1999-07-13 | Fmc Corp | Cooling system by absorbent pair |
US6082353A (en) * | 1996-10-18 | 2000-07-04 | Van Doorn; Andrew | Solar panel and method of manufacturing thereof |
SE513178C2 (en) * | 1998-11-24 | 2000-07-24 | Suncool Ab | Chemical Heat Pump with solid substance |
SE515688C2 (en) * | 1998-12-18 | 2001-09-24 | Suncool Ab | Chemical heat pump and process for cooling and / or heating |
DE10016352A1 (en) * | 2000-04-03 | 2001-10-04 | Zeolith Tech | Sorption cooler |
US6539738B2 (en) * | 2000-06-08 | 2003-04-01 | University Of Puerto Rico | Compact solar-powered air conditioning systems |
JP2002031426A (en) * | 2000-07-18 | 2002-01-31 | Matsushita Electric Ind Co Ltd | Heat storage device |
US6438992B1 (en) * | 2000-10-18 | 2002-08-27 | Thermal Products Development, Inc. | Evacuated sorbent assembly and cooling device incorporating same |
JP2003014330A (en) * | 2001-06-28 | 2003-01-15 | Osaka Gas Co Ltd | Adsorption refrigeration machine |
RU2263859C2 (en) * | 2003-03-07 | 2005-11-10 | Астраханский государственный технический университет (АГТУ) | Reactor of generator-absorber of solar power refrigerating plant (versions) |
SE527721C2 (en) * | 2003-12-08 | 2006-05-23 | Climatewell Ab | Chemical heat pump operating according to the hybrid principle |
CN1641295A (en) * | 2004-01-18 | 2005-07-20 | 罗鸣 | Solar energy and heat pump combined refrigerating and heating system |
-
2007
- 2007-11-29 SE SE0702648A patent/SE532504C2/en not_active IP Right Cessation
-
2008
- 2008-11-28 CN CN2008801182194A patent/CN101878400B/en not_active Expired - Fee Related
- 2008-11-28 US US12/672,430 patent/US8839642B2/en not_active Expired - Fee Related
- 2008-11-28 DE DE08853895T patent/DE08853895T1/en active Pending
- 2008-11-28 AU AU2008330258A patent/AU2008330258B2/en not_active Ceased
- 2008-11-28 EP EP08853895.4A patent/EP2225500B1/en not_active Not-in-force
- 2008-11-28 MX MX2010001703A patent/MX2010001703A/en active IP Right Grant
- 2008-11-28 BR BRPI0817553 patent/BRPI0817553A2/en not_active Application Discontinuation
- 2008-11-28 WO PCT/SE2008/000675 patent/WO2009070090A1/en active Application Filing
- 2008-11-28 JP JP2010535911A patent/JP5406849B2/en not_active Expired - Fee Related
- 2008-11-28 RU RU2010104608/06A patent/RU2479801C2/en not_active IP Right Cessation
- 2008-11-28 KR KR1020107009010A patent/KR101532295B1/en active IP Right Grant
-
2010
- 2010-02-14 IL IL203947A patent/IL203947A/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4231772A (en) | 1978-10-10 | 1980-11-04 | Owens-Illinois, Inc. | Solar powered heat pump construction |
WO1999008052A1 (en) * | 1997-08-12 | 1999-02-18 | Saskia Solar- Und Energietechnik Gmbh | Solar thermal installation with solar collector and heat store |
Non-Patent Citations (1)
Title |
---|
ARISTOV ET AL., CHEMICAL ENGINEERING JOURNAL, vol. 134, no. 1-3, 30 August 2007 (2007-08-30), pages 58 - 65 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2510290A4 (en) * | 2009-12-09 | 2017-05-10 | Climatewell AB (publ) | Thermal solar panel with integrated chemical heat pump |
JP2013513779A (en) * | 2009-12-09 | 2013-04-22 | クライメイトウエル エービー(パブル) | Solar panel with integrated chemical heat pump |
CN102971595B (en) * | 2010-06-18 | 2015-08-05 | 克莱米特威尔上市有限公司 | According to absorbing or the chemical heat pump of absorption principle work |
US20120079844A1 (en) * | 2010-06-18 | 2012-04-05 | Climatewell Ab (Publ) | Chemical heat pump working according to the absorption or adsorption principle |
CN102971595A (en) * | 2010-06-18 | 2013-03-13 | 克莱米特威尔上市有限公司 | Chemical heat pump working according to the absorption or adsorption principle |
WO2011159236A1 (en) * | 2010-06-18 | 2011-12-22 | Climatewell Ab (Publ) | Chemical heat pump working according to the absorption or adsorption principle |
JP2012145252A (en) * | 2011-01-11 | 2012-08-02 | Daihatsu Motor Co Ltd | Chemical heat pump |
EP2681501A1 (en) * | 2011-03-02 | 2014-01-08 | Climatewell AB (publ) | Salt coated with nanoparticles |
EP2681501A4 (en) * | 2011-03-02 | 2014-09-17 | Climatewell Ab Publ | Salt coated with nanoparticles |
US9459026B2 (en) | 2011-03-02 | 2016-10-04 | Climatewell Ab | Salt coated with nanoparticles |
WO2012118437A1 (en) | 2011-03-02 | 2012-09-07 | Climatewell Ab (Publ) | Salt coated with nanoparticles |
US9845974B2 (en) | 2011-03-02 | 2017-12-19 | Climatewell Ab | Salt coated with nanoparticles |
US8695363B2 (en) | 2011-03-24 | 2014-04-15 | General Electric Company | Thermal energy management system and method |
DE102013222045A1 (en) | 2013-08-05 | 2015-02-05 | Vaillant Gmbh | sorption |
Also Published As
Publication number | Publication date |
---|---|
KR101532295B1 (en) | 2015-06-29 |
SE532504C2 (en) | 2010-02-09 |
CN101878400B (en) | 2012-05-30 |
AU2008330258B2 (en) | 2013-08-15 |
EP2225500B1 (en) | 2018-02-14 |
KR20100098495A (en) | 2010-09-07 |
WO2009070090A8 (en) | 2010-03-25 |
SE0702648L (en) | 2009-05-30 |
RU2010104608A (en) | 2012-01-10 |
US20110056234A1 (en) | 2011-03-10 |
DE08853895T1 (en) | 2010-12-30 |
EP2225500A4 (en) | 2015-08-05 |
CN101878400A (en) | 2010-11-03 |
JP2011505538A (en) | 2011-02-24 |
EP2225500A1 (en) | 2010-09-08 |
US8839642B2 (en) | 2014-09-23 |
AU2008330258A1 (en) | 2009-06-04 |
BRPI0817553A2 (en) | 2015-03-31 |
MX2010001703A (en) | 2010-03-15 |
IL203947A (en) | 2013-07-31 |
RU2479801C2 (en) | 2013-04-20 |
JP5406849B2 (en) | 2014-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8839642B2 (en) | Thermal solar energy collector for producing heat and/or cooling | |
US8695374B2 (en) | Chemical heat pump working with a hybrid substance | |
US20100205981A1 (en) | Storing/transporting energy | |
US20110000245A1 (en) | Absorption machine having a built-in energy storage working according to the matrix method | |
JP2002530619A (en) | Chemical heat pump using solid substance | |
CN102753907A (en) | Thermal solar panel with integrated chemical heat pump | |
US20120060537A1 (en) | Chemical heat pump comprising an active surface | |
WO2024065057A1 (en) | Sorption heat transformer and thermal storage | |
Vasiliev | Heat pipes to increase the adsorption technology efficiency |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880118219.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08853895 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2010/001703 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 203947 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1330/DELNP/2010 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010535911 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008330258 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 20107009010 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12672430 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: DZP2010000251 Country of ref document: DZ |
|
ENP | Entry into the national phase |
Ref document number: 2008330258 Country of ref document: AU Date of ref document: 20081128 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010050865 Country of ref document: EG |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008853895 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010104608 Country of ref document: RU |
|
ENP | Entry into the national phase |
Ref document number: PI0817553 Country of ref document: BR Kind code of ref document: A2 Effective date: 20100409 |