WO2009068775A2 - Systeme de raccordement de tuyauteries sous-marines en grandes profondeurs - Google Patents

Systeme de raccordement de tuyauteries sous-marines en grandes profondeurs Download PDF

Info

Publication number
WO2009068775A2
WO2009068775A2 PCT/FR2008/051988 FR2008051988W WO2009068775A2 WO 2009068775 A2 WO2009068775 A2 WO 2009068775A2 FR 2008051988 W FR2008051988 W FR 2008051988W WO 2009068775 A2 WO2009068775 A2 WO 2009068775A2
Authority
WO
WIPO (PCT)
Prior art keywords
envelope
thickness
connection
pressure
pipes
Prior art date
Application number
PCT/FR2008/051988
Other languages
English (en)
Other versions
WO2009068775A3 (fr
Inventor
Joseph Toupin
Original Assignee
Joseph Toupin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joseph Toupin filed Critical Joseph Toupin
Priority to US12/740,243 priority Critical patent/US20100253077A1/en
Priority to EP08854976A priority patent/EP2215391A2/fr
Priority to CN200880114735XA priority patent/CN101855485B/zh
Priority to CA2704703A priority patent/CA2704703A1/fr
Publication of WO2009068775A2 publication Critical patent/WO2009068775A2/fr
Publication of WO2009068775A3 publication Critical patent/WO2009068775A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L17/00Joints with packing adapted to sealing by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L37/00Couplings of the quick-acting type
    • F16L37/002Couplings of the quick-acting type which can be controlled at a distance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L37/00Couplings of the quick-acting type
    • F16L37/62Couplings of the quick-acting type pneumatically or hydraulically actuated

Definitions

  • the present invention relates to a subsea piping connection system specially designed for use at great depth.
  • a subsea piping connection system specially designed for use at great depth.
  • the object of the present invention is therefore to provide a device and an associated method for connecting at least two pipes, in a marine environment or equivalent at great depth, easier to implement than the devices and processes of the prior art. described above.
  • the device or connection system for connecting at least two ends of pipes according to the present invention comprises an envelope composed of an elastic structure and a sleeve passing right through and in its axis. the envelope, said envelope has a variable thickness and defines a sealed volume, so that a pressure outside the sealed volume greater than the pressure inside the sealed volume causes an elastic deformation of the elastic structure tending to reduce the thickness of the envelope to a thickness under maximum stress.
  • said connecting system connects said pipes being disposed between the two ends of each pipe and balancing the pressure inside the sealed volume with the pressure outside the sealed volume by means of a triggering member. so that the thickness of the casing is reduced to a tight connection thickness between the non-stressed thickness and the maximum stress thickness.
  • the clamping connection is achieved by the force resulting from the elastic deformation of the casing exerted by the casing on the ends of the pipes. This allows that large clamping forces are implemented between the ends of the pipes and the connection system without significant input of energy (or power). The power to bring to trigger these forces is of the order of a few watts (or hundreds of watts).
  • the sleeve is a variable thickness element intended to ensure the connection and continuity of the internal volumes of the pipes to be connected.
  • the elastic structure is the outer part of the casing and defines, with the sleeve, the sealed volume.
  • the inner part of the envelope is the sleeve.
  • connection means the distance separating the two free ends of the sleeve, that is to say the distance between the two ends which are intended to make the connection with the pipes to be connected.
  • connection system generates clamping forces adapted to pipe connections at great depth underwater. These clamping forces are generally important.
  • the control body trigger the implementation of these forces.
  • the triggering organ is itself controlled by a command requiring a low energy input.
  • the clamping forces are controlled by low energy controls, and a power of a few watts can trigger or not, the actual connection of the pipes together, and the tightening of the connection.
  • the connection is made between counter-flanges secured to the end of the pipes to be connected.
  • the system further comprises a stirrup for immobilizing the ends of the pipes to be connected.
  • the triggering member is a valve for communicating or separating the sealed volume with the external environment.
  • the connection system further comprises a reservoir constituting a low-pressure source, making it possible, in communication with the sealed volume, to bring the sealed volume under low pressure in order to loosen the connection and allow the system to be dismantled. connection by bringing the thickness of the envelope to the thickness under maximum stress.
  • the elastic structure is constituted by at least two elastic flanges of frustoconical shape arranged head to tail and secured to their large base by screws or welding, and the sleeve at their small base.
  • the elastic structure further comprises additional springs.
  • the ends of the pipes to be connected have a countersink on which bearing surfaces of the sleeve are supported.
  • the retrier further comprises sliding sleeves.
  • the connection system makes it possible to connect with the stirrup one end of piping with the sleeve equipped with a plug, to ensure the closing of said end of piping.
  • the invention also relates to a method for connecting underwater pipelines, characterized in that it uses two pressures, one "high pressure” environmental and natural, the other "low pressure” artificially provided and contained in a system, a work originating from the above indicated differential pressure is stored in an elastic structure of deformable parts of the system, which may return, if nothing opposes it in the form of an engine work, all of the energy stored , which restitution, partial or total is remote controlled by a trigger member neutralizing the differential pressure by balancing the internal and external pressure acting on said envelope.
  • the method consists first of all in putting a sealed volume defined by an envelope (comprising an elastic structure) at a first pressure, for example the ambient pressure at sea level. envelope in an environment where the surrounding pressure is greater than the first pressure, for example the ambient pressure in the sea at two thousand meters (2000m) deep.
  • a first pressure for example the ambient pressure at sea level.
  • envelope in an environment where the surrounding pressure is greater than the first pressure, for example the ambient pressure in the sea at two thousand meters (2000m) deep.
  • the internal pressure of the sealed volume defined by the casing being lower than the pressure that exerts the external environment on the envelope, the latter is deformed.
  • the sealed volume contains a compressible fluid, for example air.
  • a triggering member for example a valve placing in communication the sealed volume and the external environment.
  • the shell is designed so that deformations do not fall within the plastic range, so that the deformations of the housing are reversible.
  • the method consists in limiting or curbing the return to the initial shape of the envelope, for example by positioning it between two free but essentially immobile ends of two pipes. So, when the envelope tends to return to its original shape, it rests on the free ends of the pipes and thus performs the connection of the two pipes. Thereafter, when the pressure balance between the interior volume of the envelope and the outside environment is effective, the envelope exerts a clamping force that clamps (latches) the connection between the pipe and the casing.
  • This clamping force is proportional to the elastic deformation in which the envelope is clamped. In other words, when the envelope is clamped, the latter is deformed, the greater the clamping force is important.
  • connection and clamping helicoid system represented for example by an assembly consisting of a screw and a nut, a system jointly using environmental hydrostatic pressure and the elastic property of elements made from certain materials having the property of storing during their deformation a potential energy.
  • the technique used for the implementation of the system which is the subject of the invention therefore makes use of material elements that for some use the "elasticity-stiffness" couple capable of absorbing and restoring a work-material elements that make up a set referred to in FIG. describes for the others their properties refractory to the deformation of material elements composing a set referred to as the "stirrup (A)" which opposes reaction forces to the action forces developed. by the envelope (B) under certain conditions explained in the paragraph "operation of the system”.
  • this force modifies all the dimensions of its framework by compression, traction or bending.
  • These types of deformation have in the design of the envelope an influence perfectly controlled by machining operations. For example, aiming to make the action due to compression and its control predominant by reducing the thickness of the structure of the envelope in certain zones by improving its flexibility or, on the contrary, by increasing the thickness by favoring stiffness. This stiffness limiting the deformation is likely to be reinforced by security elements becoming joined when the decrease in the thickness of the envelope reaches its optimum value.
  • the deep water projects can be located on several levels, therefore the envelopes (B) deformable are adjusted during their manufacture on the one hand according to the hydrostatic pressure corresponding to the immersion depth, on the other hand according to the intensity of the desired clamping at the flange joint planes by appropriate sizing of the surface involved in the deformation.
  • the adaptation of the shell (B) at a given end is directly related to: a) the choice of the (or) material (s) its component structure (flexibility, stiffness, modulus, yield strength b) to the thicknesses of the structure composing the walls of the envelope (B) including zones of lesser resistance as indicated above or else extra thicknesses favoring the stiffness of said zones.
  • a particular type of structure of an envelope intended for a given immersion level can be adapted to a higher level of immersion and this by means of additional adjustable loads, which additional charges being for example made of spring-type spring washers capable of being mounted in columns or packets (these two methods of combination can be combined with each other during assembly in the workshop).
  • additional adjustable loads which additional charges being for example made of spring-type spring washers capable of being mounted in columns or packets (these two methods of combination can be combined with each other during assembly in the workshop).
  • a low energy source medium represented by the internal volume of the envelope (B) under low air pressure (of the order of atmospheric pressure),
  • This set of judiciously combined means forms the basis of operation of the underwater piping connection system, object of the invention.
  • FIG. 1A shows a partial sectional view of a first embodiment of the invention at a thickness e 1
  • FIG. 1B represents two half-sections with a thickness e 2 and e 3
  • FIG. 1C represents a section along the plane F of FIG. 1B
  • FIG. 2 shows a half section of a second embodiment of the invention
  • FIG. 3A shows a front view partially in section. of a third embodiment of the invention
  • Figure 3B shows a partially sectional view along the plane IIIB of Figure 3A
  • Figure 4A shows a front view partially in section of a fourth embodiment of the invention.
  • Figure 4B shows a collapsed cross-sectional view according to the plane FF of FIG 4A.
  • Figures 5A, 5B and 5C show three phases of an implementation method of a fifth embodiment of the invention
  • Figure 5D shows a section along the VD plane of Figure 5C
  • Figure 6 shows a partial section of a fifth embodiment of the invention
  • Ia 7A shows a partial front view of a sixth embodiment of the invention
  • Figure 7B shows two half-sections (of different thicknesses) of the embodiment of Figure 7A according VIIB plane
  • Figures 8A and 8B represent two phases (respectively closed valve and open valve) of a method of implementation of the invention
  • FIGS. 9A, 9B (closed valve) and 9C represent three phases of a variant of FIG.
  • FIG. 10 represents a load / deformation diagram
  • FIG. 11 represents in a diagram the evolution of the charges as a function of the height of water.
  • the system which is the subject of the invention comprises:
  • a rigid and closed envelope (B) consisting of two frustoconical elastic flanges (1) and (2) arranged "head-to-tail" and secured to their large base by screws or welding (5), at their small base by a sleeve (8).
  • Said sleeve passes right through and in its axis the said envelope (B); it has at its center one (or more) annular part (s) folding (s) previously formed (s) bellows (9) while at its ends are erected by machining and perpendicular to the axis XZ circular parts (16) and (18).
  • the envelope (B) comprising the sleeve (8) and the flanges (1) and (2), has a symmetry of revolution with respect to the axis XZ, the flanges (1) and (2) and the sleeve (8) being mounted coaxially.
  • the flanges (1) and (2) correspond to the elastic structure of the invention, that is to say the part that generates the clamping force by elastic deformation.
  • the sleeve (8) dugeonné or chucked to the small base of the truncated cones (36) determines a volume of annular shape (10) sealingly but capable of being brought into communication with the environment outside the casing by opening the valve (15) which is fixed to the large base of the assembled flanges secured as indicated by screwing positioning the axis of the valve (15) perpendicular to the XZ axis. It is therefore understood that the annular shape volume is delimited on the one hand by the sleeve (8) and on the other by the flanges (1) and (2). In addition, it is also understood that the sleeve (8) is elastically deformable, the latter is therefore suitable for storing energy by elastic deformation, and thus participate in the clamping force.
  • each frustoconical flange comprises machining and extra thickness a boss of circular shape (13) having the center axis X, Z.
  • the said perfectly symmetrical bosses are opposite to the inside of the annular volume
  • (B) has a maximum deformation, that is to say a deformation along the axis XZ such that the distance between the two ends of the sleeve is minimal and equal to ⁇ 2
  • the system comprises a welded stirrup (A) constituted by a frame in the form of "U” deformable in which are placed the two counter-flanges (30) integral with the end of the tubes. connected. These counter-flanges are pre-interwoven in the annular milling operations (27).
  • This stirrup (A) is able to block the pipes at their counter-flange (30) in the direction of their mutual distance in the direction XZ.
  • This stirrup serves to take up clamping forces generated by the envelope (B).
  • the stirrup (A) blocks the envelope (B) via the counter-flanges (30) so that the envelope (B) generates a clamping force resulting from its elastic deformation.
  • Figures IA, IB and IC (first embodiment) represent:
  • FIG. 1B shows in section the envelope (B) subjected to the hydrostatic pressure (thickness under maximum stress 2 ), whereas FIG. the unstressed thickness t e, the value of Ia maximum strain is equal to (C] - e 2).
  • said envelope (B) of thickness (ei) is of thickness (e 2) this that allows its introduction into the free space defined by the flanges, against the surfaces (30) being vis-à-vis.
  • the envelope (B) flattened progressively during its descent by the force developed by the hydrostatic pressure reaches at this stage its maximum deformation, which is limited by the annular bosses (13) become joined and acting as a safety device.
  • the strength determining this variation in thickness corresponding to its flatness is set to the hydrostatic pressure per square centimeter (cm 2) times the surface corresponding to the outer diameter of the envelope (0 2) which is subtracted the area corresponding to the diameter inside the envelope (0i).
  • envelope (B) considered as a real system of springs.
  • the envelope (B) being positioned as indicated above and with axis coinciding with the axis XZ (that is to say the envelope (B) being positioned coaxially with the pipes), the tightening of the connection can then be controlled by opening the valve (15) balancing the internal and external pressures of said envelope; which envelope, in its expansion, comes to embed forcefully the circular bearing surfaces (16) and (18) in counterbores countersink (30).
  • the sleeve (8) of the envelope (B) has a distance between its ends (said intermediate distance) equal to e ? (thickness of tight connection), this thickness ⁇ 3 being lower than the maximum thickness ej (envelope (B) at rest) and greater than or equal to the minimum thickness 6 3 (envelope (B) deformed at the maximum), it is to say: e 2 ⁇ e 3 ⁇ ei.
  • FIG. 2 (second embodiment), identical as to its principle of operation in the first embodiment (FIGS. 1A, 1B and 1C), differs in that the envelope (B) consists of four frustoconical flanges (1) (2) (3) and (4) assembled "head-to-tail" two by two and secured on the one hand to their large base by the screws (5) supporting the annular seals (6); on the other hand, at their small base by a sleeve (8) hydro or thermo-formed before fitting, which is applied to the rounded bases of the frustoconical flanges (1) and (4).
  • the envelope (B) consists of four frustoconical flanges (1) (2) (3) and (4) assembled "head-to-tail" two by two and secured on the one hand to their large base by the screws (5) supporting the annular seals (6); on the other hand, at their small base by a sleeve (8) hydro or thermo-formed before fitting, which is applied to the rounded bases of the frustoconical f
  • the two annular volumes (10) are put in communication for example by the channel (16) or by a longitudinal milling machined in the sleeve (8) (not shown).
  • a longitudinal milling machined in the sleeve (8) not shown.
  • additional loads (14) which are presented as indicated in the form of springs of the conical washer type, which conical washers crossed and immobilized at their small base by the axes (37) on which the sleeves (38) slide are distributed symmetrically on a circle concentric with the axis ZZ 'and this, according to an angular deviation of a value determined during assembly workshop.
  • the set of additional removable and adjustable loads makes it possible for the system which is the subject of the invention to easily adapt a basic structure of the envelope (B) to different heights of water, thus likely to face different construction sites and depths.
  • the frustoconical flange (1) comprises laterally screwed the balancing valve (15) isolating the annular volumes (10) of the external environment (closed position) or otherwise allowing communication between these two media (open position).
  • This member allowing or prohibiting the balancing of the annular volumes (10) with the pressure environmental can be the needle type, or ultra-sonic electric hydrovalve type of low power and remotely controlled from a ROV or by a ship located at zero.
  • connection system The main advantages of the above-described variant of the connection system lie on the one hand in the increase of the value of the arrow which is multiplied by two for the same load, on the other hand in the possibility of increase of the said load is set to the desired value by means of the springs of the conical washer type (14).
  • the elastic structure corresponds to the four flanges (1) (2) (3) and (4) combined with the additional charges (14).
  • additional charges 14
  • FIGS. 3A and 3B (third embodiment) have a shape of envelope slightly different from the biconical form represented by FIG. 1A and in which is formed a groove (7) at the periphery of the annular volume (10) and orienting the deformation of said envelope, the neutral fiber being located on the axis UU '.
  • FIG. 3A shows the positioning of the additional loads (14) arranged on a circle concentric with the axis of the pipe sections to be connected, the circular bosses (13), and finally the circular millings (27) interleaving the counter-flanges. (30) in the stirrup (A).
  • FIGS. 4A and 4B present another variant enabling the system according to the invention to simultaneously connect several pipes of diameter 01, 02, 03 and 04.
  • the annular space (10) has the same functions as in the previous descriptions (balancing valve not shown).
  • the annular milling (27) nests the counter-flanges (30) in the rear (A).
  • FIGS. 5A, 5B, 5C and 5D represent the "guillotine blade" mounting phases of the envelope (B) in the stirrup (A), that is to say the mounting of the envelope ( B) between two ends of pipes clamped by Aetier (A) (the envelope B being that of a fifth embodiment described later with reference to Figure 6).
  • Phase 3 corresponds to the elastic expansion of the envelope and to the tightening of the connection system by opening the valve (15) which ensures the balancing of the internal and external pressures of the envelope (B ). Note, in phases 1 and 2, the erased position of the sliding bushes (21) and (22) and the covering they provide after clamping in phase 3 (variant explained in Figure 6).
  • FIG. 6 presents the system that is the subject of the invention connecting two pipe sections positioned in the stirrup (A).
  • the rigidity of the connection is thus reinforced by the sliding sleeve (21) covering the end of the sleeve (8) and the sliding sleeve (22) from covering and immobilizing the nut (17).
  • Solidarity of the stirrup (A) by welding, a reservoir (24) resistant to the highest hydrostatic pressures is the low-pressure energy source required to dismantle the connection system object of the invention.
  • Loosening and disassembly ensuring the return to the initial pressure conditions before tightening by placing the reservoir (24) in communication with the annular volumes (10) when the valve (23) is open.
  • Disconnection of the stirrup (A) of the casing (B) becomes possible only after sliding of the bushes (21) and (22) for their return to initial position before recovery.
  • This disassembly device incorporating the assembly "caliper-envelope" low pressure source advantageously limits the action (of a ROV for example) to the junction by piping valves (23) and (15) positioned to isolate the annular volumes (10) of the environmental pressure and subjecting said annular volumes to the low pressure source of said reservoir (24).
  • the capacity of the reservoir (24) will be at least equal to all the volumes represented by the annular volume (s) (10) and that of the connection piping.
  • the adoption of this system is advantageous for the junction of underwater piping admitting sections of great length allowed by the low specific weight of said sections (next use of flexible risers).
  • the reservoir (24) reinforces the rigidity of the bracket (A) with which it forms an integral assembly.
  • FIGS. 7A and 7B present an alternative operating according to the same principles as the system that is the subject of the invention and specifically designed for closing off the ends of submarine pipe sections during disassembly operations, when these are filled (after abandonment of an oil field for example) of pollutants such as liquid hydrocarbons.
  • stirrup (A) is secured to the casing (B) by means of the sleeve (8) deformable threaded (43).
  • the monobloc assembly thus designed to cap and imprison the end-of-descent counter-flange (30) as imaged by the sectional view (upper part) of the envelope and the stirrup positioned before clamping; and after tightening by the sectional view (lower part) representing the sealing provided by the bearing surface (16) which bears against the circular counter-flange of the counter-flange (30).
  • FIGS. 7A and 7B show a lifting ring (33), a screwed cap (34) allowing unscrewing the emptying of the pipe section when said section reaches the zero level while the other end (not shown) provided the same set allows the injection of a surfactant or water vapor under pressure by the threaded connection (35) for the fluidification of the remainder of the product contained in the pipe and its recovery.
  • valve in all other descriptions is replaced by a breakable tube (39) capable of balancing the annular volume (10) with the environmental hydrostatic pressure by rotation of a quarter turn of the lever (31) printing the torsion and then breaking the breakable tube (39) immobilized at one end by threading into the wall of the frustoconical flange (2) and closed at the other end.
  • a lead-shaped forked part (32) ensures immobilization of the lever (31).
  • FIGS. 8A (closed valve) and 8B (open valve) represent the on-site assembly of the connection system that is the subject of the invention.
  • the positioning of the envelope (B) in the caliper (A) is "guillotine blade" - identical process to that described in Figures 5A, 5B. 5C and 5D.
  • FIGS. 9A and 9B (closed valve) and 9C (open valve) represent an alternative embodiment of the connection system that is the subject of the invention.
  • This variant consists of making integral before their descent and by welding (S) of the stirrup (A) with the end (45) of the tube to be connected and to ensure the removal of the assembly on the bottom while the envelope (B) itself secured before its descent with the other end of the tube to be connected by the weld (Si) is lowered and nested in the annular milling (27). Said envelope is in the position corresponding to the tightening of the connection system object of the invention.
  • FIG. 11 represents in a diagram the evolution of the charges as a function of the differential surfaces adopted.
  • the loads in tons on the ordinate the heights of water corresponding to the level of the underwater shipyard.
  • the power allowing us to trigger these forces by a remote control is a few watts (W). Notations (definitions) see Fig, IA and IB

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Earth Drilling (AREA)
  • Quick-Acting Or Multi-Walled Pipe Joints (AREA)
  • Mutual Connection Of Rods And Tubes (AREA)
  • Safety Valves (AREA)

Abstract

Système de raccordement de tuyauteries sous-marines en grandes profondeurs composé d'une enveloppe (B) rigide et élastique dont l'épaisseur devient e2 lorsque immergée la pression hydrostatique agissant sur sa surface extérieure est supérieure à celle agissant sur sa paroi. Cette diminution d'épaisseur permet l'introduction de l'enveloppe entre deux contre-brides (30) soudées à l'extrémité des tubes à raccorder, lesquels sont immobilisés dans des logements (27) usinés dans un étrier (A). Lorsque la pression différentielle à l'origine de la déformation élastique de l'enveloppe est neutralisée au moyen de la valve d'équilibrage, l'étrier oppose une force réactive égale et opposée à la force élastique développée par l'enveloppe, laquelle ne peut reprendre son épaisseur initiale qui se trouve limitée à l'épaisseur e3. La différence d'épaisseur correspond à l'énergie potentielle élastique emmagasinée au cours de la descente par l'enveloppe et représentant l'intensité de la force de serrage du système de raccordement dans l'étrier.

Description

Système de raccordement de tuyauteries sous-marines en grandes profondeurs
La présente invention concerne un système de raccordement de tuyauteries sous-marines spécialement étudié pour une utilisation à grande profondeur. II existe de nombreux moyens d'assemblage de tubes. On connaît l'assemblage par soudure ou soudo-brasure, par raccords et manchons filetés ou encore par brides mobiles susceptibles d'être fixées par dudgeonnage ou mandrinage aux extrémités des tronçons de tube à raccorder.
La particularité commune aux modes de raccordements ci-dessus énoncés est la nécessité de disposer pour réaliser ces différents types d'assemblage d'un système énergétique susceptible de se présenter sous diverses formes :
- Thermique ou électrique (soudure ou brasure)
- Mécanique afin de provoquer par couple moteur appliqué aux écrous, vis, raccords ou manchons, leur déformation élastique, lesquelles pièces emmagasinent l'énergie potentielle nécessaire au serrage.
Si cette particularité commune aux différents systèmes de jonction ne pose aucun problème pour les chantiers situés à l'air libre et au niveau terrestre, il n'en n'est pas de même pour les installations de tuyauteries dans un milieu où les conditions environnementales extrêmement sévères présentent un obstacle insurmontable à l'intervention humaine directe. Celle-ci ne peut se faire dans les grands fonds marins qu'à partir d'un engin habité, équipé d'outillages limités dans leurs possibilités et à autonomie réduite ou encore au moyen d'un robot sous-marin télécommandé à partir de la surface via un R. O. V. (« Remotly Operated Véhicule » ou véhicule télécommandé) par exemple. En toute logique, nous sommes amenés à observer que les systèmes de raccordement utilisés au niveau aérien, c'est-à-dire du sol, ont été intégralement transposés au niveau sous-marin, alors que nous nous trouvons en présence d'un environnement totalement différent. Les fonds marins constituent un environnement hostile, eu égard à l'intensité des forces pressantes à grande profondeur, mais providentiel si nous utilisons celles-ci à des opérations ponctuelles nécessitant un travail W, travail qui est le produit d'une force F par la longueur de son déplacement L (W=FxL), lequel travail couvre, compte tenu de l'intensité des forces susceptibles d'être mises en œuvre dans le domaine de la mécanique, un vaste champ d'applications possibles : telles que des opérations d'emboutissage ou de perforation de tôles de fortes épaisseurs par exemple, ou de mise sous contraintes d'éléments assurant l'étanchéité telles que les brides et contre brides de raccordement de tuyauteries notamment.
Notons que le travail utilisé lors de ces différentes opérations peut être différé dans le temps par son accumulation dans un système élastique sous forme d'énergie potentielle disponible à tout instant par simple action sur un organe de commande.
Le but de la présente invention est donc de fournir un dispositif et un procédé associé permettant de raccorder au moins deux tuyauteries, dans un milieu marin ou équivalent en grande profondeur, plus aisés à mettre en œuvre que les dispositifs et procédés de l'art antérieur décrits ci-dessus. Ce but est atteint par le fait que le dispositif ou système de raccordement pour raccorder au moins deux extrémités de tuyauteries selon la présente invention, comprend une enveloppe composée d'une structure élastique et d'un manchon traversant de part en part et dans son axe l'enveloppe, ladite enveloppe présente une épaisseur variable et définit un volume étanche, de sorte qu'une pression à l'extérieur du volume étanche supérieure à la pression à l'intérieur du volume étanche entraine une déformation élastique de la structure élastique tendant à diminuer l'épaisseur de l'enveloppe jusqu'à une épaisseur sous contrainte maximale. En outre, ledit système de raccordement raccorde lesdites tuyauteries en étant disposé entre les deux extrémités de chaque tuyauterie et en équilibrant la pression à l'intérieur du volume étanche avec la pression à l'extérieur du volume étanche au moyen d'un organe déclencheur de sorte que l'épaisseur de l'enveloppe est ramenée à une épaisseur de raccordement serré comprise entre l'épaisseur hors contrainte et l'épaisseur sous contrainte maximale. Le serrage de raccordement est réalisé par la force résultant de la déformation élastique de l'enveloppe exercée par l'enveloppe sur les extrémités des tuyauteries. Ceci permet que des forces de serrages importantes soient mises en œuvre entre les extrémités des tuyauteries et le système de raccordement sans apport sensible d'énergie (ou de puissance). La puissance à amener permettant de déclencher ces forces est de l'ordre de quelques watts (ou centaines de watts).
Le manchon est un élément à épaisseur variable destiné à assurer le raccordement et la continuité des volumes intérieurs des tuyauteries à connecter. La structure élastique est la partie extérieure de l'enveloppe et délimite, avec le manchon, le volume étanche. La partie intérieure de l'enveloppe est le manchon.
En outre par « épaisseur » on entend la distance séparant les deux extrémités libres du manchon, c'est-à-dire la distance qui sépare les deux extrémités qui sont destinées à réaliser la connexion avec les tuyauteries à connecter. On comprend également que le système de raccordement génère des forces de serrage adaptées aux raccordements de tuyauteries en grande profondeur sous marine. Ces forces de serrages sont généralement importantes. L'organe déclencheur commande la mise en œuvre de ces forces. L'organe déclencheur est lui-même piloté par une commande nécessitant un faible apport d'énergie. Ainsi les forces de serrages sont pilotées par des commandes faiblement énergétiques, et une puissance de quelques watts permet de déclencher, ou pas, le raccord effectif des tuyauteries entre elles, ainsi que le serrage du raccord. Avantageusement, le raccordement est effectué entre des contre -brides solidaires de l'extrémité des tuyauteries à raccorder.
De préférence, le système comprend en outre un étrier permettant d'immobiliser les extrémités des tuyauteries à raccorder.
Avantageusement, l'organe déclencheur est une valve permettant de mettre en communication ou en séparation le volume étanche avec l'environnement extérieur. Selon une première variante, le système de raccordement comprend en outre un réservoir constituant une source basse pression, permettant en étant en communication avec le volume étanche d'amener le volume étanche en basse pression afin de desserrer le raccordement et autoriser le démontage du système de raccordement en amenant l'épaisseur de l'enveloppe à l'épaisseur sous contrainte maximale. Préférentiellement, la structure élastique est constituée par au moins deux flasques élastiques de forme tronconique disposés tête-bêche et rendus solidaires à leur grande base par visserie ou soudure, et par le manchon à leur petite base.
Par « grande base » on entend l'extrémité radiale du flasque qui présente le plus grand diamètre, et par « petite base » on entend l'extrémité radiale du flasque qui présente le plus petit diamètre. En outre, par « disposés tête-bêche », on comprend que les grandes bases des flasques sont en appui l'une sur l'autre, et que chaque flasque s'étend depuis cette grande base à l'opposé l'une de l'autre, de sorte que les petites bases de chaque flasque sont situées de part et d'autre du plan défini pas la zone de contact des grandes bases. Selon une seconde variante, la structure élastique comprend en outre des ressorts additionnels.
Avantageusement, les extrémités des tuyauteries à raccorder présentent un lamage sur lequel des portées du manchon prennent appui.
Par « portée » du manchon on entend une zone ou relief du manchon destiné à prendre appui sur les extrémités des tuyauteries. Par « lamage » on entend une zone ou relief de forme complémentaire à une portée, de sorte que le lamage et la portée s'épousent afin de réaliser le raccord entre le manchon du système de raccordement et les tuyauteries. Préférentiellement, rétrier comporte en outre des douilles coulissantes. Selon une troisième variante, le système de raccordement permet de raccorder à l'aide de l'étrier une extrémité de tuyauterie avec le manchon équipé d'un bouchon, pour assurer l'obturation de ladite extrémité de tuyauterie.
L'invention concerne également un procédé de raccordement de tuyauteries sous-marines caractérisé en qu'il utilise conjointement deux pressions l'une «haute pression» environnementale et naturelle, l'autre «basse pression» artificiellement apportée et contenue dans un système, un travail ayant pour origine la pression différentielle sus indiquée est emmagasiné dans une structure élastique de pièces déformables du système, lesquelles sont susceptibles de restituer, si rien ne s'y oppose, sous forme d'un travail moteur, la totalité de l'énergie emmagasinée, laquelle restitution, partielle ou totale est télécommandée par un organe déclencheur neutralisant la pression différentielle par équilibrage des pressions interne et externe agissant sur la dite enveloppe.
On comprend donc que le procédé consiste tout d'abord à mettre un volume étanche délimité par une enveloppe (comprenant une structure élastique) à une première pression, par exemple la pression ambiante au niveau de la mer. Ensuite, le procédé consiste à mener l'enveloppe dans un milieu où la pression environnante est supérieure à la première pression, par exemple la pression ambiante dans la mer à deux milles mètres (2000m) de profondeur. Ainsi, la pression interne du volume étanche délimité par l'enveloppe étant inférieure à la pression qu'exerce le milieu extérieur sur l'enveloppe, cette dernière se déforme. Bien entendu, pour permettre cette déformation, le volume étanche contient un fluide compressible, par exemple de l'air. Lorsque l'enveloppe est déformée, on amène la pression du volume étanche interne de l'enveloppe à la pression ambiante à l'extérieur de l'enveloppe au moyen d'un organe déclencheur, par exemple une valve mettant en communication le volume étanche et le milieu extérieur. Ainsi les pressions à l'intérieur et à l'extérieur de l'enveloppe tendent à s'équilibrer, et en conséquence l'enveloppe tend à reprendre sa forme initiale. Bien évidemment, l'enveloppe est conçue de telle sorte que les déformations subies n'entrent pas dans le domaine plastique, afin que les déformations de l'enveloppe soient réversibles.
Pendant la phase d'équilibrage des pressions interne et externe, le procédé consiste à limiter ou brider le retour à la forme initiale de l'enveloppe, par exemple en la positionnant entre deux extrémités libres mais sensiblement immobiles de deux tuyauteries. Ainsi, lorsque l'enveloppe tend à reprendre sa forme initiale, elle prend appui sur les extrémités libres des tuyauteries et réalise ainsi le raccord des deux tuyauteries. Par la suite, lorsque l'équilibre des pressions entre le volume intérieur de l'enveloppe et le milieu extérieur est effectif, l'enveloppe exerce un effort de serrage qui serre (verrouille) le raccord entre les tuyauteries et l'enveloppe. Cet effort de serrage est proportionnel à la déformation élastique dans laquelle est bridée l'enveloppe. En d'autre terme, lorsque l'enveloppe est bridées, au plus cette dernière est déformée, au plus l'effort de serrage est important. L'idée générale de cette nouvelle technologie est de substituer au raccordement et au serrage par système hélicoïde, représenté par exemple par un ensemble constitué d'une vis et d'un écrou, un système utilisant conjointement la pression hydrostatique environnementale et la propriété élastique d'éléments réalisés à partir de certains matériaux ayant la propriété d'emmagasiner lors de leur déformation une énergie potentielle. Energie potentielle dénommée dans la théorie statique des ressorts, potentiel élastique ou potentiel interne du-dit élément ; celui-ci pouvant être métallique (un acier par exemple) ou un polymère naturel ou synthétique (élastomère) ou bien encore composite (fibres de verre, de carbone ou d'aramide) avec association pouvant être combinée de ces différents matériaux au moyen d'une matrice de liaison ou d'un assemblage type sandwich. La technique utilisée pour la mise en œuvre du système objet de l'invention fait donc appel à des éléments matériels utilisant pour certains le couple « élasticité-raideur » susceptible d'absorber et de restituer un travail -éléments matériels composant un ensemble dénommé dans la présente description sous le vocable «enveloppe (B) » pour d'autres leurs propriétés réfractaires à la déformation d'éléments matériels composant un ensemble dénommé sous le vocable «étrier (A) » lequel oppose des forces de réaction aux forces d'action développées par l'enveloppe (B) dans certaines conditions explicitées au paragraphe «fonctionnement du système».
On connaît l'hydrostatique ou statique des fluides et donc l'existence des forces pressantes exercées par ceux-ci. Leur mise en évidence n'est donc pas nécessaire. Si. comme nous le notions précédemment, ces forces créent un obstacle sérieux aux interventions en eaux profondes, elles représentent aussi des caractéristiques énergétiques potentielles considérables et intéressantes. L'utilisation conjointe de cette propriété avec celle des ressorts constituent les deux éléments fondamentaux utilisés dans la présente invention. Dans le domaine énergétique, les théories de base se ressemblent. Par exemple, pour obtenir un travail en thermodynamique, une source froide et une source chaude sont nécessaires. De même dans le domaine des fluides, en hydraulique, par exemple deux milieux à pression d'intensités différentes peuvent générer un travail moteur. On conçoit dès lors que, si l'on soumet la surface extérieure d'une enveloppe fermée, rigide mais élastique à une pression supérieure à celle d'un fluide compressible agissant sur ses parois, une force tendant à l'écrasement de la dite enveloppe se manifeste modifiant ainsi les caractéristiques dimensionnelles de celle-ci. Ce travail de déformation correspond à l'énergie potentielle accumulée par sa structure et susceptible d'être restituée en tout ou en partie lorsque l'action de la dite force est neutralisée.
Il convient de noter que, lorsque l'enveloppe est immergée au sein d'un liquide, cette force modifie toutes les dimensions de son ossature par compression, traction ou flexion. Ces types de déformation ont dans la conception de l'enveloppe une influence parfaitement contrôlée par des opérations d'usinage. Par exemple, visant à rendre prépondérante l'action due à la compression et à son contrôle par diminution des épaisseurs de la structure de l'enveloppe dans certaines zones en améliorant sa flexibilité ou au contraire par augmentation de l'épaisseur en privilégiant la raideur. Cette raideur limitant la déformation est susceptible d'être confortée par des éléments de sécurité devenant jointifs lorsque la diminution de l'épaisseur de l'enveloppe atteint sa valeur optimum.
Les chantiers en eau profonde peuvent être situés à plusieurs niveaux, en conséquence les enveloppes (B) déformables sont réglées lors de leur fabrication d'une part en fonction de la pression hydrostatique correspondant à la profondeur d'immersion, d'autre part en fonction de l'intensité du serrage désiré au niveau des plans de joint des brides par dimensionnement approprié de la surface impliquée dans la déformation. En outre, l'adaptation de l'enveloppe (B) à une fin déterminée est directement liée : a) Au choix de la (ou des) matière(s) composant sa structure (flexibilité, raideur, module d'élasticité, limites élastiques) b) Aux épaisseurs de la structure composant les parois de l'enveloppe (B) incluant des zones de moindre résistance comme indiqué précédemment ou encore des surépaisseurs privilégiant la raideur des dites zones.
Par souci d'économie et de simplification de fabrication, un type de structure déterminé d'une enveloppe prévue pour un niveau d'immersion donné pourra être adapté à un niveau d'immersion supérieur et ce au moyen de charges additionnelles réglables, lesquelles charges additionnelles étant par exemple constituées de ressorts type rondelles coniques susceptibles d'être montées en colonnes ou en paquets (ces deux procédés d'association pouvant être combinés l'un avec l'autre lors du montage en atelier). Pour résumer : Comme remarqué précédemment, nous disposons :
• d'un milieu source de haute énergie représenté par : la pression hydrostatique environnementale
• d'un milieu source de basse énergie représenté par le volume interne de l'enveloppe (B) sous faible pression d'air (de l'ordre de la pression atmosphérique),
• d'un système apte à accumuler ou restituer l'énergie en utilisant les propriétés des ressorts, il nous est donc possible d'obtenir un travail moteur ou résistant en utilisant alternativement les deux sources indiquées et ce par leur séparation ou leur mise en communication au moyen d'une valve dite d'équilibrage.
Cet ensemble de moyens judicieusement combinés constitue la base de fonctionnement du système de raccordement de tuyauteries sous-marines, objet de l'invention.
L'invention et ses avantages seront mieux compris à la lecture de la description détaillée qui suit de différents modes de réalisation donnés à titre d'exemples non limitatifs. Cette description fait référence aux dessins annexés sur lesquels: la figure IA représente une vue en coupe partielle d'un premier mode de réalisation de l'invention à une épaisseur ej, la figure IB représente deux demi-coupes à une épaisseur e2 et e3, et la figure IC représente une coupe selon le plan F de la figure IB, la figure 2 représente une demi-coupe d'un second mode de réalisation de l'invention, la figure 3 A représente une vue de face partiellement en coupe d'un troisième mode de réalisation de l'invention, la figure 3B représente une vue partiellement en coupe selon le plan IIIB de la figure 3A, la figure 4A représente une vue de face partiellement en coupe d'un quatrième mode de réalisation de l'invention, la figure 4B représente une vue en coupe rabattue selon le plan FF de la figure 4A. les figures 5A, 5B et 5C représentent trois phases d'un procédé de mise en œuvre d'un cinquième mode de réalisation de l'invention, la figure 5D représente une coupe selon le plan VD de la figure 5C, la figure 6 représente une coupe partielle d'un cinquième mode de réalisation de l'invention, Ia figure 7A représente une vue de face partielle d'un sixième mode de réalisation de l'invention, la figure 7B représente deux demi-coupes (à des épaisseurs différentes) du mode de réalisation de la figure 7A selon le plan VIIB, les figures 8A et 8B représentent deux phases (respectivement valve fermée et valve ouverte) d'un procédé de mise en œuvre de l'invention, les figures 9A, 9B (valve fermée) et 9C (valve ouverte) représentent trois phases d'une variante du procédé de mise en œuvre de l'invention, la figure 10 représente un diagramme charge/déformation, et la figure 1 1 représente par un diagramme l'évolution des charges en fonction de la hauteur d'eau.
Fig. IA, fig. IB et fig. IC
Le système objet de l'invention comprend :
• d'une part, une enveloppe (B) rigide et fermée constituée de deux flasques élastiques de forme tronconique (1) et (2) disposés «tête-bêche» et rendus solidaires à leur grande base par visserie ou soudure (5), à leur petite base par un manchon (8). Le dit manchon traverse de part en part et dans son axe la dite enveloppe (B) ; il possède en son centre une (ou plusieurs) partie(s) annulaire(s) pliante(s) préalablement formée(s) en soufflet (9) alors qu'à ses extrémités sont dressées par usinage et perpendiculairement à l'axe XZ les parties circulaires (16) et (18). On comprend donc que l'enveloppe (B), comprenant le manchon (8) et les flasques (1) et (2), présente une symétrie de révolution par rapport à l'axe XZ, les flasques (1) et (2) et le manchon (8) étant montés coaxialement. Les flasques (1) et (2) correspondent à la structure élastique de l'invention, c'est-à-dire la partie que génère l'effort de serrage par déformation élastique. Lorsque l'enveloppe (B) est au repos, la distance entre les deux extrémités du manchon (8) est maximale et égale à eι (épaisseur hors contrainte). Le manchon (8) dugeonné ou mandriné à la petite base des troncs de cônes (36) détermine un volume de forme annulaire (10) étanche mais susceptible d'être mis en communication avec l'environnement extérieur à l'enveloppe par ouverture de la valve ( 15) laquelle est fixée à la grande base des flasques réunis solidarisés comme indiqué par vissage positionnant l'axe de la valve (15) perpendiculairement par rapport à l'axe XZ. On comprend donc que le volume de forme annulaire est délimité d'une part par le manchon (8) et d'autre part par les flasques (1) et (2). En outre, on comprend également que le manchon (8) est élastiquement déformable, ce dernier est donc apte à emmagasiner de l'énergie par déformation élastique, et donc à participer à l'effort de serrage.
La partie interne de chaque flasque tronconique comporte par usinage et en surépaisseur un bossage de forme circulaire (13) ayant pour centre l'axe X, Z. Les dits bossages parfaitement symétriques se font vis à vis à l'intérieur du volume annulaire
(10). Ils deviennent jointifs lorsque l'aplatissement de l'enveloppe (B) est à sa valeur maximum (e2). En d'autres termes, les bossages (13) sont en butée l'un contre l'autre, lorsque l'enveloppe (B) est soumise à un différentiel de pression tel que l'enveloppe
(B) présente une déformation maximale, c'est-à-dire une déformation selon l'axe XZ telle que la distance entre les deux extrémités du manchon est minimale et égale à β2
(épaisseur sous contrainte maximale).
• D'autre part, le système comprend un étrier mécano-soudé (A) constitué par une ossature en forme de «U» peu déformable dans laquelle viennent se placer les deux contre-brides (30) solidaires de l'extrémité des tubes à raccorder. Ces contre-brides sont préalablement imbriquées dans les fraisages annulaires (27). Cet étrier (A) est apte à bloquer les tuyauteries au niveau de leur contre-bride (30) dans le sens de leur éloignement réciproque selon la direction XZ. Cet étrier sert à reprendre des efforts de serrage générés par l'enveloppe (B). En d'autres termes, lorsque l'enveloppe (B) et les tuyauteries sont connectées, l'étrier (A) bloque l'enveloppe (B) par l'intermédiaire des contre-brides (30) de telle sorte que l'enveloppe (B) génère un effort de serrage résultant de sa déformation élastique.
FONCTIONNEMENT DU SYSTEME DE RACCORDEMENT OBJET
DE L'INVENTION
Les figures IA, IB et IC (premier mode de réalisation) représentent :
• D'une part, à la partie supérieure de la planche en élévation et demi-coupe, l'enveloppe libérée de toute contrainte. La pression à l'intérieur du volume annulaire ( 10) est identique à celle agissant sur la surface extérieure de l'enveloppe, la valve (15) étant fermée. Dans ces conditions, l'épaisseur de l'enveloppe (B) est à sa valeur maximun, correspondant à la position non immergée (eθ
• D'autre part, la figure IB représente en coupe l'enveloppe (B) soumise à la pression hydrostatique (épaisseur sous contrainte max e2), tandis que la figure IA fait apparaître l' épaisseur hors contrainte et, la valeur de Ia déformation maximale étant égale à (C] - e2).
• Soumise à la pression hydrostatique, le volume annulaire (10) étant isolé du milieu extérieur à l'aide de la valve ( 15), la dite enveloppe (B) d'épaisseur (ei) devient d'épaisseur (e2) ce qui permet son introduction dans l'espace libre déterminé par les surfaces des contre-brides (30) se faisant vis-à-vis. L'enveloppe (B) aplatie progressivement au cours de sa descente par la force développée par la pression hydrostatique atteint à ce stade sa déformation maximum, laquelle est limitée par les bossages annulaires (13) devenus jointifs et agissant en dispositif de sécurité. La force déterminant cette variation d'épaisseur correspondant à son aplatissement a pour valeur la pression hydrostatique au centimètre carré (cm2) multipliée par la surface correspondant au diamètre extérieur de l'enveloppe (02) de laquelle est retranchée la surface correspondant au diamètre intérieur de l'enveloppe (0i). La valeur de cette surface différentielle étant d'importance vitale dans la conception de l'enveloppe et son adaptation à la pression en service du fluide transporté et plus précisément le réglage du potentiel élastique, c'est-à-dire du travail emmagasiné par l'enveloppe (B) considéré comme un véritable système de ressorts. L'enveloppe (B) étant positionnée comme indiqué précédemment et à axe confondu avec l'axe XZ (c'est-à-dire l'enveloppe (B) étant positionnée coaxialement aux tuyauteries), le serrage du raccordement peut dès lors être commandé par ouverture de la valve (15) équilibrant les pressions interne et externe de la dite enveloppe ; laquelle enveloppe, dans son expansion, vient encastrer avec force les portées circulaires (16) et (18) dans les lamages des contre-brides (30). Lesquelles contre- brides immobilisées dans les logements circulaires (27) portés par l'étrier (A) opposent une force réactive correspondant à l'intensité du serrage. Dans cette position, le manchon (8) de l'enveloppe (B) présente une distance entre ses extrémités (dite distance intermédiaire) égale à e? (épaisseur de raccordement serré), cette épaisseur β3 étant inférieure à l'épaisseur maximale ej (enveloppe (B) au repos) et supérieure ou égale à l'épaisseur minimale 63 (enveloppe (B) déformée au maximum), c'est-à-dire : e2 < e3 <ei. Nous noterons que le fonctionnement du système peut être comparé dans sa théorie élastique aux rondelles coniques type Belleville où la relation entre la charge P et la flèche Δ est différente des autres types de ressort. Ces rondelles admettent en effet une charge constante pour une grande variation de flèche et ce, notamment, dans une zone de fonctionnement particulièrement intéressante, c'est-à-dire proche de la charge maximum donc de la déformation maxi (voir diagramme figure 10 planche 7/8). Cette particularité a par conséquence une valeur d'expansion permettant, sans perte significative d'énergie, une imbrication importante des portées circulaires (16) et (18) dans les contre-brides (30).
La figure 2 (second mode de réalisation), identique quant à son principe de fonctionnement au premier mode de réalisation (figures IA, IB et IC), diffère en ce que l'enveloppe (B) est constituée par quatre flasques tronconiques (1) (2) (3) et (4) assemblés «tête-bêche» deux à deux et rendus solidaires d'une part à leur grande base par la visserie (5) appuyant les joints annulaires (6) ; d'autre part, à leur petite base par un manchon (8) hydro ou thermo-formé avant montage venant s'appliquer sur les bases arrondies des flasques tronconiques (1) et (4). L'étanchéité avec l'extérieur des volumes annulaires (10) étant confortée par les deux drapages plastiques annulaires (12) prenant appui d'une part pour l'un, sur le manchon (8) et la petite base du flasque tronconique (1) et d'autre part, pour l'autre, sur la petite base du flasque tronconique (4) et l'écrou de serrage (17). Le serrage du dit écrou tend simultanément à l'élongation du manchon (8) et au blocage des bases des flasques tronconiques sur celui-ci assurant une légère contrainte de l'ensemble ainsi monté. Les deux volumes annulaires (10) sont mis en communication par exemple par le canal (16) ou encore par un fraisage longitudinal usiné dans le manchon (8) (non représenté). Nous retrouvons comme indiqué sur les figures IA et IB les bossages annulaires (13) limitant la déformation lorsqu'ils sont jointifs. Ces bossages reçoivent dans cette position les soufflets (9) qui viennent y prendre appui.
Sur l'axe XY et sur un cercle concentrique à l'axe longitudinal du manchon (8) sont disposées des charges additionnelles (14) se présentant comme nous l'avons indiqué sous forme de ressorts du type rondelle conique, lesquelles rondelles coniques traversées et immobilisées à leur petite base par les axes (37) sur lesquels coulissent les douilles (38) sont réparties symétriquement sur un cercle concentrique à l'axe ZZ' et ce, suivant un écart angulaire d'une valeur déterminée lors du montage en atelier. L'ensemble des charges additionnelles amovibles et réglables permet au système objet de l'invention l'adaptation aisée d'une structure de base de l'enveloppe (B) à différentes hauteurs d'eau, donc susceptible de faire face à différents chantiers et profondeurs.
Le flasque tronconique (1) comprend latéralement vissée la valve d'équilibrage (15) isolant les volumes annulaires (10) de l'environnement extérieur (position fermée) ou au contraire permettant la communication entre ces deux milieux (position ouverte). Cet organe permettant ou interdisant l'équilibrage des volumes annulaires (10) avec la pression environnementale pouvant être du type à pointeau, ou du type hydrovalve électrique à commande ultra-sonique de faible puissance et télécommandée à partir d'un R. O. V. ou encore par un navire situé au niveau zéro.
Les principaux avantages de la variante ci-dessus décrite du système de raccordement réside d'une part dans l'augmentation de la valeur de la flèche qui est multipliée par deux pour une même charge, d'autre part dans la possibilité d'augmentation de la dite charge à la valeur voulue au moyen des ressorts du type rondelle conique (14). Dans ce mode de réalisation, la structure élastique correspond aux quatre flasques (1) (2) (3) et (4) combinés avec les charges additionnelles (14). Bien entendu, il est également possible de monter ces ressorts ou charges additionnelles (14) sur le premier mode de réalisation (figures IA et
I B).
Les figures 3A et 3B (troisième mode de réalisation) présentent une forme d'enveloppe légèrement différente de la forme biconique représentée par la figure IA et dans laquelle est pratiquée une rainure (7) à la périphérie du volume annulaire (10) et orientant la déformation de la dite enveloppe, la fibre neutre étant située sur l'axe UU'. Sur la figure 3 A apparaissent le positionnement des charges additionnelles (14) disposées sur un cercle concentrique à l'axe des tronçons de tuyauterie à raccorder, les bossages circulaires (13), enfin, les fraisages circulaires (27) imbriquant les contre-brides (30) dans l'étrier (A).
Les figures 4A et 4B (quatrième mode de réalisation) présentent une autre variante permettant par le système objet de l'invention de raccorder simultanément plusieurs tuyauteries de diamètre 01, 02. 03 et 04. Nous retrouvons les flasques tronconiques (1) et (2) rendus solidaires à leur grande base par visserie ou soudure (5) et à leur petite base par le manchon (8) solidarisé par soudure à une plaque de plus forte épaisseur (20) peu déformable entraînée lors de la déformation des flasques (1) et (2) sous l'effet de la pression hydrostatique à un mouvement de translation réduisant l'épaisseur de l'enveloppe, ou permettant son expansion lors de l'équilibrage des pressions. L'espace annulaire (10) a les mêmes fonctions que dans les précédentes descriptions (valve d'équilibrage non représentée). Les fraisages annulaires (27) imbriquent les contre-brides (30) dans rétrier (A).
Les figures 5 A, 5B, 5C et 5D représentent les phases de montage « en lame de guillotine » de l'enveloppe (B) dans l'étrier (A), c'est-à-dire le montage de l'enveloppe (B) entre deux extrémités de tuyauteries bridées par Tétrier (A) (l'enveloppe B étant celle d'un cinquième mode de réalisation décrit ultérieurement en référence à la figure 6). Les phases 1 (figure 5A) et 2 (figure 5B) imagent la descente de l'enveloppe (B) soumise à son arrivée au fond à la pression hydrostatique maximum modifiant son épaisseur à la valeur (62) et permettant l'introduction de la dite enveloppe dans l'espace séparant les deux contre-brides (30) se faisant vis-à-vis (phase 2).
La phase 3 (figures 5C et 5D) correspond à l'expansion élastique de l'enveloppe et au serrage du système de raccordement par ouverture de la valve (15) laquelle assure l'équilibrage des pressions interne et externe de l'enveloppe (B). Notons, dans les phases 1 et 2, la position effacée des douilles coulissantes (21) et (22) et le recouvrement qu'elles assurent après serrage en phase 3 (variante explicitée sur la figure 6).
La figure 6 (cinquième mode de réalisation) présente le système objet de l'invention assurant le raccordement de deux tronçons de tuyauteries positionnés dans l'étrier (A). La rigidité du raccordement est ainsi confortée par la douille coulissante (21) venant recouvrir l'extrémité du manchon (8) et la douille coulissante (22) venant recouvrir et immobiliser l'écrou (17). Solidaire de l'étrier (A) par soudure, un réservoir (24) résistant aux plus fortes pressions hydrostatiques constitue la source d'énergie basse pression nécessaire au démontage du système de raccordement objet de l'invention. Desserrage et démontage assurant le retour aux conditions initiales de pression avant serrage par la mise en communication du réservoir (24) avec les volumes annulaires (10) lorsque la valve (23) est ouverte. Le désaccouplement de l'étrier (A) de l'enveloppe (B) ne devenant possible qu'après coulissement des douilles (21) et (22) pour leur retour en position initiale avant recouvrement.
Ce dispositif de démontage intégrant à l'ensemble «étrier-enveloppe» la source basse pression limite avantageusement l'action (d'un R. O. V. par exemple) à la jonction par tuyauterie des valves (23) et (15) positionnées de manière à isoler les volumes annulaires (10) de la pression environnementale et à soumettre les dits volumes annulaires à la source basse pression du dit réservoir (24).
La capacité du réservoir (24) sera au minimum égale à la totalité des volumes représentés par le ou les volumes annulaires (10) et celui de la tuyauterie de raccordement. L' adoption de ce système est avantageuse pour la jonction de tuyauteries sous-marines admettant des tronçons de grande longueur autorisée par le faible poids spécifique des dits tronçons (prochaine utilisation de risers flexibles). Notons que le réservoir (24) conforte la rigidité de l'étrier (A) avec lequel il forme un ensemble monobloc.
Les figures 7A et 7B (sixième mode de réalisation) présentent une variante fonctionnant suivant les mêmes principes que le système objet de l'invention et spécialement étudiée pour l'obturation des extrémités des tronçons de tuyauteries sous-marines lors des opérations de démontage, lorsque celles-ci sont remplies (après abandon d'un champ pétrolier par exemple) de produits polluants tels que des hydrocarbures liquides.
Une différence avec les variantes précédentes réside dans le fait que l'étrier (A) est solidarisé avec l'enveloppe (B) au moyen du manchon (8) déformable fileté en (43). L'ensemble monobloc ainsi conçu vient coiffer et emprisonner en fin de descente la contre-bride (30) comme imagé par la vue en coupe (partie supérieure) de l'enveloppe et de l'étrier positionné avant serrage ; et après serrage par la vue en coupe (partie inférieure) représentant l'étanchéité assurée par la portée (16) laquelle vient en appui sur le lamage circulaire de la contre-bride (30).
Les figures 7A et 7B font apparaître un anneau de levage (33), un bouchon vissé (34) permettant par dévissage la vidange du tronçon de tuyauterie lorsque le dit tronçon parvient au niveau zéro alors que l'autre extrémité, (non représentée) pourvue du même ensemble permet l'injection d'un produit tensioactif ou d'une vapeur d'eau sous pression par le raccord fileté (35) pour la fluidification du reliquat du produit contenu dans la tuyauterie et sa récupération. L'autre différence réside dans l'organe d'équilibrage (15) dénommé valve dans toutes les autres descriptions est remplacée par un tube sécable (39) susceptible d'équilibrer le volume annulaire (10) avec la pression hydrostatique environnementale par rotation d'un quart de tour du levier (31) imprimant la torsion puis assurant la rupture du tube sécable (39) immobilisé à une extrémité par filetage dans la paroi du flasque tronconique (2) et obturé à l'autre extrémité. Afin d'éviter le fonctionnement intempestif de la commande d'équilibrage de pression de l'enveloppe (B) avec la pression environnementale au cours des manutentions et de la descente sur site, une pièce en forme de fourchette (32) plombée assure l'immobilisation du levier (31).
En fin d'opération de vidange du tronçon de tuyauterie, les contre-brides (30) sont libérées de l'emprise des étriers (A) par dévissage des vis d'assemblage (37). Les figures 8A (valve fermée) et 8B (valve ouverte) représentent le montage sur site du système de raccordement objet de l'invention. Le positionnement de l'enveloppe (B) dans Tétrier (A) se fait «en lame de guillotine» - processus identique à celui décrit sur les figures 5A, 5B. 5C et 5D.
Les figures 9A et 9B (valve fermée) et 9C (valve ouverte) représentent une variante de montage du système de raccordement objet de l'invention. Cette variante consiste à rendre solidaire avant leur descente et par soudure (S) de l'étrier (A) avec l'extrémité (45) du tube à raccorder et à assurer la dépose de l'ensemble sur le fond alors que l'enveloppe (B) elle- même solidarisée avant sa descente avec l'autre extrémité du tube à raccorder par la soudure (Si) est descendue et imbriquée dans le fraisage annulaire (27). La dite enveloppe se trouve dans la position correspondant au serrage du système de raccordement objet de l'invention.
La figure 11 représente par un diagramme l'évolution des charges en fonction des surfaces différentielles adoptées. Dans l'exemple suivant, le système de raccordement objet de l'invention est adapté à une tuyauterie de diamètre nominal (0) égal à 8 pouces, ou 203,2 mm (1 pouce = 25.4 millimètre). En abscisses les charges en tonnes, en ordonnées les hauteurs d'eau correspondant au niveau du chantier sous-marin.
L'exemple N0I (hauteur d'eau de 2000m et un coefficient K = 02 / 01 = 600 / 350 = 1,714) correspond à une contrainte au niveau du plan de joint de 373 tonnes. L'exemple N°2 (même hauteur d'eau et un coefficient K = 02 / 01 = 650 / 350 = 1 ,857) correspond à une contrainte au niveau du plan de joint de 471 tonnes. La puissance nous permettant de déclencher ces forces par une télé-commande est de quelques watts (W). Notations (définitions) voir Fig, IA et IB
ei épaisseur de l'enveloppe hors contrainte
&2 épaisseur de l'enveloppe sous contrainte maximale t% épaisseur de l'enveloppe, système de raccordement serré
01 diamètre de la surface ne participant pas à la déformation de l'enveloppe
02 diamètre de l'anneau participant à la déformation de l'enveloppe. S02 - S0i surface différentielle impliquée dans la déformation
Charges en fonction de la surface différentielle impliquée
Exemple 1 : tuyauterie 0 nominal 8 pouces - hauteur d'eau 2000 mètres 02 = 600 mm S = 2826 cm2 surface différentielle : 2826 - 961 = 1865 cm2 0, = 350 mm S = 961 cm2
Charge totale à 2000 mètres : 200 x 1.865 = 373.000 kg
Surface du joint 66 cm" - pression sur le joint : 373.000: 66 = [5.651 kg/cm~
Exemple 2 : tuyauterie 0 nominal 8 pouces
Figure imgf000018_0001
surface différentielle :3316 - 961 = [2355 cm'
Figure imgf000018_0002
Charge totale à 2000 mètres : 200 x 2.355 = 471.000 KG Surface du joint 66 cm2 - pression sur le joint : 471.000: 66 = [7.136 kg/cm"

Claims

REVENDICATIONS
1. Système de raccordement pour raccorder au moins deux extrémités de tuyauteries, caractérisé en ce que ledit système de raccordement comprend une enveloppe (B) composée d'une structure élastique et d'un manchon (8) traversant de part en part et dans son axe (XZ) l'enveloppe (B), ladite enveloppe (B) présentant une épaisseur variable et définissant un volume étanche (10), de sorte qu'une pression à l'extérieur du volume étanche (10) supérieure à la pression à l'intérieur du volume étanche (10) entraine une déformation élastique de la structure élastique tendant à diminuer l'épaisseur de l'enveloppe (B) jusqu'à une épaisseur sous contrainte maximale (e2), et en ce que ledit système de raccordement raccorde lesdites tuyauteries en étant disposé entre les deux extrémités de chaque tuyauterie et en équilibrant la pression à l'intérieur du volume étanche (10) avec la pression à l'extérieur du volume étanche (10) au moyen d'un organe déclencheur (15) de sorte que l'épaisseur de l'enveloppe (B) est ramenée à une épaisseur de raccordement serré (e3) comprise entre l'épaisseur hors contrainte (ei) et l'épaisseur sous contrainte maximale (e2), le serrage de raccordement étant réalisé par la force résultant de la déformation élastique de l'enveloppe (B) exercée par l'enveloppe (B) sur les extrémités des tuyauteries, grâce à quoi des forces de serrages importantes sont mises en œuvre entre les extrémités des tuyauteries et le système de raccordement sans apport sensible d'énergie.
2. Système de raccordement selon la revendication 1, caractérisé en ce que le raccordement est effectué entre des contre-brides (30) solidaires de l'extrémité des tuyauteries à raccorder.
3. Système de raccordement selon la revendication 1 ou 2. caractérisé en ce que le système comprend en outre un étrier (A) permettant d'immobiliser les extrémités des tuyauteries à raccorder.
4. Système de raccordement selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'organe déclencheur est une valve (15) permettant de mettre en communication ou en séparation le volume étanche (10) avec l'environnement extérieur.
5. Système de raccordement selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'il comprend en outre un réservoir (24) constituant une source basse pression, permettant en étant en communication avec le volume étanche
( 10) d'amener le volume étanche (10) en basse pression afin de desserrer le raccordement et autoriser le démontage du système de raccordement en amenant l'épaisseur de l'enveloppe (B) à l'épaisseur sous contrainte maximale (e2).
6. Système de raccordement selon l'une quelconque des revendications 1 à 5. caractérisé en ce que la structure élastique est constituée par au moins deux flasques élastiques (1, 2, 3, 4) de forme tronconique disposés tête-bêche et rendus solidaires à leur grande base par visserie ou soudure (5), et par le manchon (8) à leur petite base.
7. Système de raccordement selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la structure élastique comprend en outre des ressorts additionnels (14).
8. Système de raccordement selon l'une quelconque des revendications 1 à 7, caractérisé en ce que les extrémités des tuyauteries à raccorder présentent un lamage sur lequel des portées (16, 18) du manchon (8) prennent appui.
9. Système de raccordement selon la revendication 3 et l'une quelconque des revendications 1 à 8, caractérisé en ce que l'étrier (A) comporte en outre des douilles coulissantes (21 , 22).
10. Système de raccordement selon la revendication 3 et l'une quelconque des revendications 1 à 9, caractérisé en ce qu'il permet également de raccorder à l'aide de l'étrier (A) une extrémité de tuyauterie avec le manchon (8) équipé d'un bouchon (34), pour assurer l'obturation de ladite extrémité de tuyauterie.
1 1. Procédé de raccordement de tuyauteries sous-marines caractérisé en qu'il utilise conjointement deux pressions l'une «haute pression» environnementale et naturelle, l'autre «basse pression» artificiellement apportée et contenue dans un système, un travail ayant pour origine la pression différentielle sus indiquée est emmagasiné dans une structure élastique de pièces déformables du système, lesquelles sont susceptibles de restituer, si rien ne s'y oppose, sous forme d'un travail moteur, la totalité de l'énergie emmagasinée, laquelle restitution, partielle ou totale est télécommandée par un organe déclencheur (15) neutralisant la pression différentielle par équilibrage des pressions interne et externe agissant sur la dite enveloppe (B).
PCT/FR2008/051988 2007-11-05 2008-11-05 Systeme de raccordement de tuyauteries sous-marines en grandes profondeurs WO2009068775A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/740,243 US20100253077A1 (en) 2007-11-05 2008-11-05 System for Connecting Undersea Pipes at Great Depths
EP08854976A EP2215391A2 (fr) 2007-11-05 2008-11-05 Systeme de raccordement de tuyauteries sous-marines en grandes profondeurs
CN200880114735XA CN101855485B (zh) 2007-11-05 2008-11-05 用于连接位于深水的管道的系统
CA2704703A CA2704703A1 (fr) 2007-11-05 2008-11-05 Systeme de raccordement de tuyauteries sous-marines en grandes profondeurs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0707773 2007-11-05
FR0707773A FR2923282B1 (fr) 2007-11-05 2007-11-05 Systeme de raccordement de tuyauteries sous marines en grandes profondeurs

Publications (2)

Publication Number Publication Date
WO2009068775A2 true WO2009068775A2 (fr) 2009-06-04
WO2009068775A3 WO2009068775A3 (fr) 2009-07-23

Family

ID=39469947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/051988 WO2009068775A2 (fr) 2007-11-05 2008-11-05 Systeme de raccordement de tuyauteries sous-marines en grandes profondeurs

Country Status (6)

Country Link
US (1) US20100253077A1 (fr)
EP (1) EP2215391A2 (fr)
CN (1) CN101855485B (fr)
CA (1) CA2704703A1 (fr)
FR (1) FR2923282B1 (fr)
WO (1) WO2009068775A2 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2957398B1 (fr) * 2010-03-09 2012-03-16 Joseph Toupin Raccordement de tuyauterie sous-marines
CN103089745B (zh) * 2013-02-19 2015-03-11 哈尔滨工程大学 一种用于深水液压管路的快速联接装置及出油接头
CN103089744B (zh) * 2013-02-19 2015-03-11 哈尔滨工程大学 一种用于深水液压管路的快速联接装置的进油接头
US9784413B2 (en) 2014-10-29 2017-10-10 Hydrostor Inc. Methods of deploying and operating variable-buoyancy assembly and non-collapsible fluid-line assembly for use with fluid-processing plant
US9939112B2 (en) 2014-10-29 2018-04-10 Hydrostar Inc. Variable-buoyancy assembly and non-collapsible fluid-line assembly for use with fluid-processing plant
CN107366778A (zh) * 2017-09-20 2017-11-21 中国船舶重工集团公司第七0三研究所 一种管道式调节针阀
CN107606309B (zh) * 2017-09-20 2019-04-26 青岛理工大学 一种深水海底管道管段连接作业装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3695637A (en) * 1970-05-06 1972-10-03 Satterthwaite James G Inflatable coupling
US3843167A (en) * 1973-01-31 1974-10-22 B Gronstedt Hydraulically actuated pipe coupling
US4676531A (en) * 1985-04-15 1987-06-30 Martin Charles F Apparatus for clamping and sealing the outer surface of a pipe and fittings for pipe connection

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2209325A (en) * 1937-03-02 1940-07-30 Perfect Bond Asphalt Company Flexible coupling
US2180720A (en) * 1939-03-17 1939-11-21 Raedle Theodor Pipe joint
US2561540A (en) * 1948-06-16 1951-07-24 Piping Specialties Inc Conduit and retaining means
US2657074A (en) * 1950-08-17 1953-10-27 Titeflex Inc Metallic bellows
US3837685A (en) * 1973-01-02 1974-09-24 J Miller Pipe expansion and repair fitting
US4815650A (en) * 1987-12-04 1989-03-28 James Reaux Hydraulically activated welding flange
WO2001036857A2 (fr) * 1999-11-16 2001-05-25 Polaris Pool Systems, Inc. Raccord rotatif pour tuyau souple
WO2003046427A1 (fr) * 2001-11-24 2003-06-05 Gary Ragner Tuyau longitudinalement extensible et retractable commande par pression
US7617762B1 (en) * 2003-06-23 2009-11-17 Gary Dean Ragner Flexible hydraulic muscle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3695637A (en) * 1970-05-06 1972-10-03 Satterthwaite James G Inflatable coupling
US3843167A (en) * 1973-01-31 1974-10-22 B Gronstedt Hydraulically actuated pipe coupling
US4676531A (en) * 1985-04-15 1987-06-30 Martin Charles F Apparatus for clamping and sealing the outer surface of a pipe and fittings for pipe connection

Also Published As

Publication number Publication date
FR2923282A1 (fr) 2009-05-08
CA2704703A1 (fr) 2009-06-04
EP2215391A2 (fr) 2010-08-11
WO2009068775A3 (fr) 2009-07-23
CN101855485B (zh) 2012-08-29
CN101855485A (zh) 2010-10-06
FR2923282B1 (fr) 2012-08-24
US20100253077A1 (en) 2010-10-07

Similar Documents

Publication Publication Date Title
WO2009068775A2 (fr) Systeme de raccordement de tuyauteries sous-marines en grandes profondeurs
EP0867596B1 (fr) Joint fileté pour tubes
EP1771679B1 (fr) Ensemble d&#39;au moins deux conduites coaxiale et procédé de réalisation d&#39;un tel ensemblage
EP1828656B1 (fr) Element de conduites coaxiales sous-marines allege et renforce
EP1987280B1 (fr) Element de conduites coaxiales et procede de fabrication
WO2014076079A1 (fr) Système hexapode
WO2007096548A2 (fr) Element de conduites coaxiales dont la conduite interne est sous contrainte de traction et procede de fabrication
EP2360346A1 (fr) Connecteur de tronçon de colonne montante avec bridges, bague de verrouillage intérieur et anneau de verrouillage extérieur
EP1651840B1 (fr) Dispositif de liaison fond-surface comportant une articulation flexible etanche entre un riser et un flotteur
EP2201280B1 (fr) Support flottant comprenant un dispositif de retenue et maintien d&#39;une conduite sous-marine
EP3140492B1 (fr) Ensemble de jonction pour former une conduite
FR2948165A1 (fr) Ensemble de conduites coaxiales comprenant des pieces de jonction a cavites internes etanches et procede de realisation
FR2576658A1 (fr) Structure d&#39;etancheite
EP1194677B1 (fr) Dispositif de liaison fond-surface comportant une conduite sous-marine assemblee a au moins un flotteur
WO2018073539A1 (fr) Procédé de surveillance de la poussée d&#39;une bouée de conduite sous-marine
FR3027338A1 (fr) Connexion polyvalente etanche a double butee
EP2798141B1 (fr) Joint fileté à faible couple de vissage
FR2545147A1 (fr) Ensemble d&#39;accouplements de tube prolongateur marin
EP2526328A1 (fr) Dispositif de raccordement de tubes de circulation de fluides et procédé associé
FR3090069A1 (fr) Raccord flexible démontable, grand diamètre et hautes pressions
FR2957398A1 (fr) Raccordement de tuyauterie sous-marines
EP4215791B1 (fr) Dispositif de raccordement de deux conduits à double paroi et canalisation d&#39;hydrogène comprenant ledit dispositif de raccordement
FR2997324A1 (fr) Joint statique metallique annulaire performant a bas cout pour hautes pressions et grands diametres
FR3021290A1 (fr) Systeme d&#39;entrainement et de guidage d&#39;un joint tournant
FR2496221A1 (fr) Joint torique a ondes bloquees

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880114735.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08854976

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2704703

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12740243

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008854976

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: PI0820062

Country of ref document: BR

Free format text: IDENTIFIQUE E COMPROVE QUE O SIGNATARIO DAS PETICOES NO 020100039388 DE 05/05/2010 E 020100042308 DE 13/05/2010 TEM PODERES PARA ATUAR EM NOME DO DEPOSITANTE, UMA VEZ QUE BASEADO NO ARTIGO 216 DA LEI 9.279/1996 DE 14/05/1996 (LPI) "OS ATOS PREVISTOS NESTA LEI SERAO PRATICADOS PELAS PARTES OU POR SEUS PROCURADORES, DEVIDAMENTE QUALIFICADOS.".

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: PI0820062

Country of ref document: BR

Free format text: PEDIDO RETIRADO EM RELACAO AO BRASIL POR NAO ATENDER AS DETERMINACOES REFERENTES A ENTRADA DO PEDIDO NA FASE NACIONAL E POR NAO CUMPRIMENTO DA EXIGENCIA FORMULADA NA RPI NO 2324 DE 21/07/2015.