WO2009068710A1 - Piranometro - Google Patents

Piranometro Download PDF

Info

Publication number
WO2009068710A1
WO2009068710A1 PCT/ES2008/000736 ES2008000736W WO2009068710A1 WO 2009068710 A1 WO2009068710 A1 WO 2009068710A1 ES 2008000736 W ES2008000736 W ES 2008000736W WO 2009068710 A1 WO2009068710 A1 WO 2009068710A1
Authority
WO
WIPO (PCT)
Prior art keywords
pyranometer
control system
photodiode
embodied
housing
Prior art date
Application number
PCT/ES2008/000736
Other languages
English (en)
French (fr)
Inventor
Miguel Angel Martinez Bohorquez
José Manuel ANDUJAR MARQUEZ
Jonathan Medina Garcia
Original Assignee
Universidad De Huelva
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Huelva filed Critical Universidad De Huelva
Publication of WO2009068710A1 publication Critical patent/WO2009068710A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/061Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by controlling the temperature of the apparatus or parts thereof, e.g. using cooling means or thermostats
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0878Diffusers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/28Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using photoemissive or photovoltaic cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/025Interfacing a pyrometer to an external device or network; User interface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/046Materials; Selection of thermal materials

Definitions

  • the present invention relates to a device specially designed to measure light radiation in units of watt per square meter.
  • the object of the invention is to provide a device of great precision and with a reduced manufacturing cost.
  • the device incorporates direct connection means to PC without auxiliary electronics, also eliminating all kinds of noise problems or uncertainties and errors in the conversion processes of the signal obtained.
  • pyranometers In the field of practical application of the invention, devices called pyranometers are used to measure the solar irradiance (direct, global or diffuse). The measurement of this radiation is widely used in studies of both thermal and photovoltaic solar energy use, meteorological measurements, crops, etc. Its use is not widespread enough due to the high cost of these devices, based mostly on thermopiles.
  • the pyrometer which is an instrument for measuring direct solar radiation at normal incidence
  • the pyrometer which measures the net atmospheric radiation on a horizontal black surface, facing up, at room temperature
  • the pyrometer which measures solar and terrestrial radiation.
  • the pyranometer being the most common in research and industrial activities.
  • the pyranometer that the invention proposes solves in a fully satisfactory way the problem previously exposed, in each and every one of the aspects mentioned, so that for similar benefits to those of a professional pyranometer, the cost of the pyranometer of the invention can reach be of the order of more than 100 times lower, without prejudice to its accuracy, to which it should also be added that its measurements are not affected by external temperature differences, being also exempt from the problem of cosine error, and presenting means of Direct connection to a PC without the need for auxiliary electronics.
  • the device that is recommended is constituted from a solar radiation transducer, based on a semiconductor, specifically a silicon photodiode, which unlike conventional devices is thermostated at a constant temperature throughout its operation, temperature that It can be monitored and adjusted by the user through the software, as will be seen later.
  • a solar radiation transducer based on a semiconductor, specifically a silicon photodiode, which unlike conventional devices is thermostated at a constant temperature throughout its operation, temperature that It can be monitored and adjusted by the user through the software, as will be seen later.
  • a Teflon diffuser is provided inside the device housing to improve the problem of cosine error.
  • the electronics of the device basically has four systems: a detection system, a control system, a thermostat system and a transmission system.
  • the pyranometer sensor element is a silicon photodiode mounted on a plastic base.
  • the sensor element is isolated from the outside by a Teflon diffuser.
  • the whole assembly is positioned on a base with level control to adjust the horizontality for which a bubble leveler is established externally to said housing.
  • the radiation incident on the device passes first, before reaching the photodiode, through the Teflon diffuser that acts as both a diffuser and a protector of UV radiation that would degrade the life of the photodiode cover.
  • the Teflon diffuser also has the task of keeping the photodiode isolated from rain and other weather conditions.
  • the photodiode generates an electrical signal that is a function of the value of the radiation received, in units of watt / m 2 , which once properly conditioned is converted by the control system to digital format.
  • the device incorporates a microcontroller with built-in analog-digital converter.
  • This device converts the analog signal from the detection system and converts it to digital format.
  • This signal is sent to the transmission system, consisting of a RS 485 full serial bus converter duplex.
  • the microcontroller also controls the thermostat of the device, since it receives the analog signal from a temperature sensor housed in the thermostat system. Depending on the measured temperature, it will execute the order to activate a series of heaters or not.
  • thermostat system its mission is to keep the temperature inside the housing or body of the device constant at all times.
  • the primary element of the thermostat system is an analog temperature sensor whose output signal, once conditioned, is sent to the microcontroller.
  • the microcontroller compares the measured temperature with the setpoint, which has been set using the control software. Depending on the result, a heating system based on heating mats is activated or not.
  • the transmission of information between the pyranometer and the instrumentation system used by the user is done in standard digital format RS 485 full-duplex series, to lighten the timing in the communications, however, any other suitable conventional format can be used, although through this it allows connections between high-length dipostives (up to IKm), it is robust and very immune to noise.
  • a standard serial converter RS 485 is used that integrates control inputs, of the signal to be transmitted as well as direct output with built-in buffer in serial format.
  • the output is offered directly in digital format, with which avoid problems of noise and signal degeneration (having fewer conversion processes), can be used quickly in any instrumentation system or simply on a PC through its serial port.
  • Figure L- Shows, according to a schematic representation in elevation and in section, a pyranometer made in accordance with the object of the present invention.
  • Figure 2. Shows a plan view of the device of the previous figure.
  • the pyranometer that the invention proposes is constituted from a housing (1) materialized in a black polyethylene cylinder, a material that has ideal characteristics for the purpose of this invention, both thermal as of tightness, closed inferiorly by means of a base of support (2), and superiorly through a cover (3), which by means of an O-ring (4) and a series of screws (5) hermetically seal the assembly formed by the lid and the pyranometer body.
  • a Teflon diffuser (6) with a 45 ° heel is established, under which the detection system (7) associated with a silicon photodiode (8) also established under the cover (3).
  • This special configuration allows the value of solar radiation to be partially independent from the angle of incidence, thereby improving the cosine error.
  • the diffuser (6) homogeneously diffuses the solar radiation that reaches it and is resistant to UV radiation.
  • the said silicon photodiode (8) has a good response within the visible spectrum of solar radiation.
  • a conditioning circuit is used, based on a transimpedance amplifier, a device that has the best characteristics in this type of assembly.
  • Transimpedance amplifiers have a very low input impedance, which resolves high linearity constraints and allows higher output voltages.
  • the assembly has been designed under the prism of high linearity and high stability, to prevent possible problems of oscillations in the circuit.
  • the signal obtained at the output of the transimpedance amplifier is filtered through a low-pass filter to eliminate possible unwanted noise in the circuit and then be sent to the control system
  • the control system (9) is composed of a PIC type microcontroller. This type of controller meets all the necessary requirements in the device object of the invention: speed, low cost, small size, Accuracy and built-in analog-digital converter (ADC).
  • the microcontroller is the brain of the device since it allows its operation to be autonomous. In it, the signals from the detection system (7) and signal conditioning and a temperature sensor (10) established within the device are processed. The microcontroller also governs a transmission system (11), which will be discussed later, as well as a series of heaters that keep the temperature inside the device constant. This temperature can be adjusted by the user through the monitor program on the PC, depending on the climatic characteristics of the site where it will be used, although by default, the temperature will be set to 40 0 C.
  • a thermostatting system (12) is also associated to the control system (9), whose mission is to keep the temperature inside the invention constant at all times. Although this could be done independently, it has been chosen because it is controlled by the control system microcontroller (9) because this solution lowers the cost of the device.
  • the control system (9) sends a signal to the thermostat system (12) to activate the heaters until the temperature is reached.
  • the heaters materialize in heating mats (circular resistors) that operate at 12V with an approximate current consumption of 400 mA.
  • the microcontroller control signal is not applied directly to the heaters, but to an electronic power stage that functions as an electronic switch.
  • the total power consumption of the device is a function of the outside temperature, although it should be noted that it is highly optimized, since the pyranometer body, made of 10 mm thick polyethylene, functions as an excellent thermal insulator.
  • the pyranometer control monitor program it has been It has been introduced that when the irradiance levels received are below set thresholds (for example at night), it stops working automatically since the energy expenditure is unreasonable when the irradiance measurement is not necessary. Also automatically, the device starts to function when the irradiance it receives exceeds the setpoint threshold.
  • the temperature sensor (10) that measures the temperature inside the device at all times will be preferably analog, since it has more stability and accuracy than those analyzed with digital output.
  • the information transmission system (11) between the pyranometer and the instrumentation system used by the user (usually a PC, weather station or similar), it is done in standard digital format RS 485 full series -duplex.
  • the system incorporates an integrated device that performs all conversion operations. This device is fully programmable and allows software configuration of all communication parameters: transmission speed, parity, number of bits, full or half duplex, etc.
  • the output is sent by 4-wire conductor.
  • the total number of wires needed to connect the device object of the invention is 8: 3 for power, 4 for transmission and one for ground.
  • a hygroscopic salt tank (13) will be established inside the casing (1) of the pyranometer, eliminating the problem of possible condensation inside the device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

La invención consiste en un piranómetro de gran precisión y con un coste de fabricación reducido, cuyas medidas no se vean afectadas por las diferencias de temperaturas en el exterior, eliminando el problema del error coseno, así como problemas de ruido o incertidumbres y errores en los procesos de conversión de la señal obtenida. Para ello el piranómetro que se preconiza está constituido a partir de una carcasa (1) estanca, presenta una tapa (3) a modo de anillo a través de la que la radiación luminosa es captada por un fotodiodo de silicio (8), estableciéndose sobre el mismo un difusor de luz (6), fotodiodo (8) asociado a un sistema de detección y acondicionamiento (7) conectado a un sistema de control (9), que a través de al menos un sensor de temperatura interno (10) controla un sistema de termostatización interno (12), en orden a mantener constante la temperatura en el seno del dispositivo. Los datos obtenidos son enviados a través de un sistema de transmisión de datos (11) integrado, con una salida en formato digital serie estándar. Figura 1

Description

PIRANÓMETRO
D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN
La presente invención se refiere a un dispositivo especialmente concebido para medir la radiación luminosa en unidades de vatio por metro cuadrado.
El objeto de la invención es proporcionar un dispositivo de gran precisión y con un coste de fabricación reducido.
Es asimismo objeto de la invención proporcionar un dispositivo cuyas medidas no se vean afectadas por las diferencias de temperatura externas, eliminando el problema del error coseno, habitual en este tipo de dispositivos, así como evitando problemas de posible condensación de vapor de agua en el interior del mismo.
El dispositivo incorpora medios de conexión directa a PC sin electrónica auxiliar, eliminando igualmente todo tipo de problemas de ruido o incertidumbres y errores en los procesos de conversión de la señal obtenida.
La invención se sitúa pues en el ámbito de los sectores industriales en los que la medida de variables meteorológicas sean una necesidad, teniendo aplicación en todas aquellas áreas donde sea necesario medir la radiación luminosa. ANTECEDENTES DE LA INVENCIÓN
En el ámbito de aplicación práctica de la invención, para realizar la medición de la irradiancia solar (directa, global o difusa), se emplean dispositivos denominados piranómetros. La medida de esta radiación se utiliza ampliamente en estudios de aprovechamiento de energía solar tanto térmica como fotovoltaica, mediciones meteorológicas, cultivos, etc. Su uso no está lo suficientemente extendido debido al alto coste de estos dispositivos, basados la mayoría de las ocasiones en termopilas. Existen otros tipos de dispositivos para medir la radiación solar, como son el pirheliómetro, que es un instrumento para medición de la radiación solar directa a incidencia normal, el pirgeómetro, que mide la radiación atmosférica neta sobre una superificie negra horizontal, orientado hacia arriba, a la temperatura del aire ambiente y el pirradiómetro, que mide la radiación solar y terrestre. En función del tipo de medición a realizar, se usará uno u otro tipo de dispositivos, siendo el más común en las actividades de investigación e industriales, el piranómetro.
Estos instrumentos son clasificados en distintas clases, según sus características de medición, concretamente la norma ISO 9060 establece la clasificación de los piranómetros y pirheliómetros en función de su exactitud, tiempo de respuesta, no linealidad, etc. Se pueden considerar dos grandes grupos dentro de los piranómetros, los basados en termopilas como elemento sensible que miden la salida como pequeñas fuerzas electromotrices y los basados en semiconductor (fotodiodo), al cual corresponde esta invención.
Para la determinación del albedo, porcentaje de radiación reflejada por una superficie respecto de la incidente, basta montar dos sensores idénticos contrapuestos, conectando sus salidas a la estación meteorológica o PC. El problema que presentan este tipo de dispositivos es la influencia de la temperatura en la medida obtenida, la degradación de la señal debido al proceso de transmisión, la influencia de ruidos, y sobretodo, y como ya se ha comentado con anterioridad, el elevado coste de estos dispositivos.
DESCRIPCIÓN DE LA INVENCIÓN
El piranómetro que la invención propone resuelve de forma plenamente satisfactoria la problemática anteriormente expuesta, en todos y cada uno de los aspectos comentados, de manera que para unas prestaciones similares a las de un piranómetro profesional, el coste del piranómetro de la invención puede llegar a ser del orden de mas de 100 veces menor, sin menoscabo de su precisión, a lo que hay que añadir además que sus medidas no se vean afectadas por las diferencias de temperatura externas, estando asimismo exento del problema del error coseno, y presentando medios de conexión directa a un PC sin necesidad de electrónica auxiliar.
Para ello, el dispositivo que se preconiza está constituido a partir de un transductor de radiación solar, basado en semiconductor, concretamente un fotodiodo de silicio, que a diferencia de los dispositivos convencionales se encuentra termostatizado a una temperatura constante durante todo su funcionamiento, temperatura que puede ser monitorizada y ajustada por el usuario a través del software, como se verá más adelante. Así pues, mediante esta estructuración, las habituales dependencias de este tipo de dispositivos frente a la temperatura, quedan subsanadas.
Superiormente al citado fotodiodo de silicio se dispone un difusor de teflón para mejorar el problema del error coseno. En el seno de la carcasa del dispositivo se dispone un compartimento para albergar sales - A -
higroscópicas, lo que permite eliminar el problema de la posible condensación en el interior del dispositivo, materializándose la carcasa en un cilindro negro de polietileno convenientemente estanque izado.
Desde el punto de vista de la electrónica del dispositivo, este cuenta básicamente con cuatro sistemas: un sistema de detección, un sistema de control, un sistema de termostatización y un sistema de transmisión.
En cuanto al sistema de detección, y tal y como se acaba de comentar, el elemento sensor del piranómetro es un fotodiodo de silicio montado sobre una base plástica. El elemento sensor está aislado del exterior mediante un difusor de teflón. Todo el conjunto está posicionado sobre una base con control de nivel para ajustar la horizontalidad para lo cual exteriormente a la citada carcasa se establece un nivelador de burbuja.
La radiación incidente en el dispositivo pasa primero, antes de llegar al fotodiodo, por el difusor de teflón que actúa tanto de difusor como de protector de las radiaciones UV que degradarían la vida útil de la cubierta del fotodiodo. El difusor de teflón tiene también el cometido de mantener aislado al fotodiodo de la lluvia y otras inclemencias meteorológicas.
El fotodiodo genera una señal eléctrica que es función del valor de la radiación recibida, en unidades de vatio/m2, que una vez acondicionada de forma correcta es convertida por el sistema de control a formato digital.
En cuanto al sistema de control, el dispositivo incorpora un microcontrolador con convertidor analógico-digital incorporado. En este dispositivo se realiza la conversión de la señal analógica proveniente del sistema de detección y se convierte a formato digital. Esta señal se envía al sistema de transmisión, formado por un convertidor a bus serie RS 485 full dúplex. El microcontrolador controla también la termostatización del dispositivo, ya que recibe la señal analógica de un sensor de temperatura alojado en el sistema de termostatización. En función de la temperatura medida, ejecutará la orden de activar una serie de calentadores o no.
En cuanto al sistema de termostatización, su misión es la de mantener constante en todo momento la temperatura en el interior de la carcasa o cuerpo del dispositivo.
El elemento primario del sistema de termostatización es un sensor de temperatura analógico cuya señal de salida, una vez acondicionada, es enviada al microcontrolador. El microcontrolador compara la temperatura medida con la de consigna, la cual ha sido establecida mediante el software de control. En función del resultado se activa o no un sistema de calentamiento basado en esterillas calefactoras.
Por último y en cuanto al sistema de transmisión, la transmisión de información entre el piranómetro y el sistema de instrumentación que utilice el usuario, por lo general un PC o similar, se realiza en formato digital estándar serie RS 485 full-dúplex, para aligerar la temporización en las comunicaciones, pudiéndose no obstante utilizarse cualquier otro formato convencional adecuado, si bien mediante éste se permite conexiones entre dipostivos de elevada longitud (hasta IKm), es robusto y muy inmune al ruido. Para la transmisión se utiliza un convertdor serie estándard RS 485 que integra entradas de control, de la señal a transmitir así como salida directa con buffer incorporado en formato serie.
Así pues, el ahorro del coste de la invención frente al estado de la técnica se ve aún más acrecentado por el hecho de que no necesita electrónica auxiliar. La salida es ofrecida directamente en formato digital, con lo que se evitan problemas de ruido y de degeneración de la señal (al tener menos procesos de conversión de ésta), pudiendo ser utilizado de forma rápida en cualquier sistema de instrumentación o simplemente en un PC a través de su puerto serie.
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características del invento, de acuerdo con un ejemplo preferente de realización práctica del mismo, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
La figura L- Muestra, según una representación esquemática en alzado y en sección, un piranómetro realizado de acuerdo con el objeto de la presente invención.
La figura 2.- Muestra una vista en planta del dispositivo de la figura anterior.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
A la vista de las figuras reseñadas puede observarse como el piranómetro que la invención propone está constituido a partir de una carcasa (1) materializada en un cilindro negro de polietileno, material éste que cuenta con unas características ideales para el propósito de esta invención, tanto térmicas como de estanqueidad, cerrado inferiormente mediante una base de apoyo (2), y superiormente a través de un tapa (3), que mediante una junta tórica (4) y una serie de tornillos (5) sellan herméticamente el conjunto formado por la tapa y el cuerpo del piranómetro.
En dicha tapa, materializada en un anillo, se establece un difusor de teflón (6) con un talonado a 45°, bajo el que se establece el sistema de detección (7) asociado a un fotodiodo de silicio (8) establecido igualmente bajo la tapa (3). Esta especial configuración permite independizar parcialmente el valor de la radiación solar respecto del ángulo de incidencia, con lo que se mejora de forma real el error coseno. El difusor (6) difunde homogéneamente la radiación solar que le llega y es resistente a las radiaciones UV.
El citado fotodiodo de silicio (8) presenta una buena respuesta dentro del espectro visible de radiación solar. Para acondicionar la señal del fotodiodo se utiliza un circuito de acondicionamiento, basado en un amplificador de transimpedancia, dispositivo éste que presenta las mejores características en este tipo de montajes. Los amplificadores de transimpedancia tienen una impedancia de entrada muy baja, lo que resuelve las restricciones de gran linealidad y permite voltajes de salida superiores. El montaje ha sido diseñado bajo el prisma de elevada linealidad y alta estabilidad, para prevenir posibles problemas de oscilaciones en el circuito.
La señal obtenida a la salida del amplificador de transimpedancia es filtrada a través de un filtro paso-bajo para eliminar los posibles ruidos no deseados en el circuito para a continuación ser enviada al sistema de control
(9).
El sistema de control (9) está compuesto por un microcontrolador tipo PIC. este tipo de controlador reúne todos los requisitos necesarios en el dispositivo objeto de la invención: rapidez, bajo coste, tamaño reducido, exactitud y convertidor analógico-digital (ADC) incorporado. El microcontrolador es el cerebro del dispositivo ya que permite que su funcionamiento sea autónomo. En él se procesan las señales provenientes del sistema de detección (7) y acondicionamiento de la señal y de un sensor de temperatura (10) establecido en el seno del dispositivo. El microcontrolador gobierna igualmente a un sistema de transmisión (11), del que se hablará más adelante, así como y a una serie de calefactores que mantienen constante la temperatura en el interior del dispositivo. Esta temperatura puede ser ajustada por el propio usuario a través del programa monitor en el PC, en función de las características climáticas del emplazamiento donde se vaya a utilizar, aunque por defecto, la temperatura quedará ajustada a 400C.
Al sistema de control (9) está asociado igualmente un sistema de termostatización (12), cuya misión es la de mantener constante en todo momento la temperatura en el interior de la invención. Si bien esto se podría realizar de forma independiente, se ha optado porque sea controlada por el microcontrolador del sistema de control (9) por cuanto que esta solución abarata el coste del dispositivo. En función de la temperatura de consigna fijada por el usuario, el sistema de control (9) envía una señal al sistema de termostatización (12) para activar los calentadores hasta que se alcance dicha temperatura. Los calentadores se materializan en esterillas de calentamiento (resistencias en forma circular) que funcionan a 12V con un consumo de corriente aproximado de 400 mA. Lógicamente, la señal de control del microcontrolador no se aplica directamente a los calefactores, sino a una etapa electrónica de potencia que funciona como interruptor electrónico. El consumo total de potencia del dispositivo es función de la temperatura exterior si bien cabe destacar que está muy optimizado, ya que el cuerpo del piranómetro, realizado en polietileno de 10 mm de espesor, funciona como un excelente aislante térmico. En el programa monitor de control del piranómetro, se ha introducido la consigna que cuando los niveles de irradiancia recibidos estén por debajo de unos umbrales establecidos (por ejemplo por la noche), éste deje de funcionar de forma automática ya que es absurdo el gasto de energía cuando no es necesario la medición de irradiancia. De forma automática también, el dispositivo comienza a funcionar cuando la irradiancia que recibe supera el umbral de consigna. El sensor de temperatura (10) que mide en todo momento la temperatura en el interior del dispositivo, será preferentemente analógico, ya que presenta más estabilidad y precisión que los analizados con salida digital.
Por último, y en cuanto al sistema de transmisión de información (11) entre el piranómetro y el sistema de instrumentación utilizado por el usuario (por lo general un PC, estación meteorológica o similar), se realiza en formato digital estándar serie RS 485 full-dúplex. Para ello el sistema incorpora un dispositvo integrado que realiza todas las operaciones de conversión. Dicho dispositivo es totalmente programable y permite configurar por software todos los parámetros de la comunicación: velocidad de transmisión, paridad, número de bits, full o half dúplex, etc.
La salida se envía por conductor de 4 hilos. El número total de hilos necesario para conectar el dispositivo objeto de la invención es 8: 3 para la alimentación, 4 para la transmisión y uno de tierra.
Como complemento de la estrutura descrita, en el seno de la carcasa (1) del piranómetro se establecerá un depósito de sales higroscópicas (13), eliminando el problema de la posible condensación en el interior del dispositivo.
Igualmente cabe destacar la incorporación de un nivel de burbuja (14) sobre la base (2) del piranómetro, que permite implantarlo con un posicionamiento correcto para el mismo.

Claims

R E I V I N D I C A C I O N E S
I a .- Piranómetro, del tipo de los que incorporan un fotodiodo para medir la radiación luminosa asociado a un sistema de detección, caracterizado porque está constituido a partir de una carcasa (1) dotada de medios de estanque idad para la misma, carcasa que presenta una tapa (3) superior en la que se establece una ventana a través de la que la radiación luminosa es captada por el fotodiodo de silicio (8), habiéndose previsto que dicha tapa (3) incorpore un difusor de luz (6), dispuesto de manera que independice parcialmente el valor la radiación con respecto del ángulo de incidencia, con la particularidad de que el sistema de detección y acondicionamiento (7) asociado al fotodiodo de silicio (8) está asociado igualmente a un sistema de control (9), que a través de al menos un sensor de temperatura interno (10) controla un sistema de termostatización interno (12), en orden a mantener constante la temperatura en el seno del dispositivo, habiéndose previsto igualmente con dicho sistema de control (9) colabore un sistema de transmisión de datos (11) integrado, con una salida en formato digital serie estándar.
2a.- Piranómetro, según reivindicación I a, caracterizado porque su carcasa (1) se materializa en uncilindro negro de polietileno, cerrado inferiormente mediante una base de apoyo (2), dotada de un nivel de burbuja (14), mientras que superiormente se cierra a través de la tapa (3), mediante una junta tórica (4) y una serie de tornillos (5).
3a .- Piranómetro, según reivindicación Ia, caracterizado porque el elemento difusor (8) se materializa en un difusor de teflon con un talonado a 45°.
4a .- Piranómetro, según reivindicación I a, caracterizado porque en el seno de la carcasa (1) se establece un depósito de sales higroscópicas para evitar la formación de humedad interna.
5a.- Piranómetro, según reivindicación I a, caracterizado porque el sistema de control (9) se materializa en un microcontrolador tipo PIC con convertidor analógico-digital incorporado.
6a.- Piranómetro, según reivindicación I a, caracterizado porque el sistema de termostatización (12) incorpora una pluralidad de esterillas de calentamiento controladas a través del microcontrolador del sistema de control (9) y activadas a través de una etapa electrónica de potencia.
7a.- Piranómetro, según reivindicación I a, caracterizado porque el sistema de transmisión (11) se materializa en un convertidor a bus serie RS 485 full dúplex.
PCT/ES2008/000736 2007-11-28 2008-11-25 Piranometro WO2009068710A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200703162A ES2320963A1 (es) 2007-11-28 2007-11-28 Piranometro.
ESP200703162 2007-11-28

Publications (1)

Publication Number Publication Date
WO2009068710A1 true WO2009068710A1 (es) 2009-06-04

Family

ID=40678065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2008/000736 WO2009068710A1 (es) 2007-11-28 2008-11-25 Piranometro

Country Status (2)

Country Link
ES (1) ES2320963A1 (es)
WO (1) WO2009068710A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015073796A1 (en) * 2013-11-14 2015-05-21 Powerowners, Llc. Smart sensor devices for measuring and verifying solar array performance
FR3118163A1 (fr) 2020-12-21 2022-06-24 Sencrop Dispositif et méthode de mesure d’irradiance

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2768527A (en) * 1953-06-30 1956-10-30 Sidney C Stern Long wave radiometer
US5331168A (en) * 1992-02-19 1994-07-19 Beaubien David J Reference grade solar ultraviolet band pyranometer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2768527A (en) * 1953-06-30 1956-10-30 Sidney C Stern Long wave radiometer
US5331168A (en) * 1992-02-19 1994-07-19 Beaubien David J Reference grade solar ultraviolet band pyranometer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
''S09855B'': "''S09855B'' SOLAR RADIATION SENSOR Rev 2.0 (SIAP)", 7 March 2003 (2003-03-07), Retrieved from the Internet <URL:http://web.archive.org/web/20030307200404/www.siap.com/ENG/SO9850B_SO9855B_en.pdf> *
VERA ET AL.: "Desenvolvimiento de un sistema de medición de radiaciôn solar", UNIVERSIDAD NACIONAL DEL NORDESTE COMUNICACIONES CIENTIFICAS Y TECNOLÓGICAS 2005. ABSTRACT T-002, 25 September 2007 (2007-09-25), Retrieved from the Internet <URL:http://web.archive.org/web/20070925005432/www.unne.edu.ar/Web/cyt/com2005/7-Tecnologia/T-002.pdf> *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015073796A1 (en) * 2013-11-14 2015-05-21 Powerowners, Llc. Smart sensor devices for measuring and verifying solar array performance
US9991844B2 (en) 2013-11-14 2018-06-05 Powerowners, Llc. Smart sensor devices for measuring and verifying solar array performance
US10284140B2 (en) 2013-11-14 2019-05-07 Powerowners, Llc. Smart sensor devices for measuring and verifying solar array performance and operational methods for use therewith
US10594257B2 (en) 2013-11-14 2020-03-17 Powerowners, Llc. Smart sensor devices for measuring and verifying solar array performance and operational methods for use therewith
US11050384B2 (en) 2013-11-14 2021-06-29 PowerOwners, LLC Smart sensor devices for measuring and verifying solar array performance and operational methods for use therewith
US11742796B2 (en) 2013-11-14 2023-08-29 PowerOwners, LLC Smart sensor devices for measuring and verifying solar array performance and operational methods for use therewith
FR3118163A1 (fr) 2020-12-21 2022-06-24 Sencrop Dispositif et méthode de mesure d’irradiance
WO2022136396A1 (fr) 2020-12-21 2022-06-30 Sencrop Dispositif et methode de mesure d'irradiance

Also Published As

Publication number Publication date
ES2320963A1 (es) 2009-05-29

Similar Documents

Publication Publication Date Title
Pearcy Radiation and light measurements
US20110048403A1 (en) System and method of tracking solar radiation
ES2698128T3 (es) Disposición de colector solar
CN106370297A (zh) 一种高精度自动化太阳光度计
Biggs Radiation measurement
ES2856573T3 (es) Dispositivos y métodos de espectro solar global
ES2787726A2 (es) Aparato y método de detección de suciedad
WO2009068710A1 (es) Piranometro
WO2019008206A1 (es) Sistema autónomo para registrar la irradiancia solar
ES2766381T3 (es) Espectrofotómetro portátil y método de caracterización de tubos de colectores solares
ES1073458U (es) Piranometro.
US9791363B2 (en) Sensor arrangement with multiple sensors for weathering apparatus
Instruments Solar radiation sensor
US10295404B2 (en) Solar monitoring system for measuring solar radiation intensity
ES2389794B2 (es) Sistema y método de seguimiento de la radiación solar.
US11815652B2 (en) Environmental sensors and sensing methods
JP2020020712A (ja) 気温測定装置
JP5156908B2 (ja) センサーユニット、太陽電池の特性評価システム
ES2724991A1 (es) Metodo y sistema de obtencion y analisis automatico de datos de campo y de validacion y/o calibracion de productos satelitales mediante dichos datos de campo
Lee Baseline surface radiation network
ES2918273B2 (es) Dispositivo verificador de posicion solar y de sombras destinado a ser acoplado a un perfil de un panel solar
KR101576051B1 (ko) 회전식 만곡형 미러를 구비한 일조량 측정장치
ES2879877T3 (es) Sistema de control para sistemas de aire acondicionado
ES2578985B1 (es) Equipo de medida de temperatura de tubos de colectores solares cilindro parabólicos y método de medida de la temperatura.
Takamatsu System for greenhouse climate monitoring in three dimensions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08854956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08854956

Country of ref document: EP

Kind code of ref document: A1