WO2009067898A1 - Procédé et dispositif de mesure de ligne - Google Patents

Procédé et dispositif de mesure de ligne Download PDF

Info

Publication number
WO2009067898A1
WO2009067898A1 PCT/CN2008/072974 CN2008072974W WO2009067898A1 WO 2009067898 A1 WO2009067898 A1 WO 2009067898A1 CN 2008072974 W CN2008072974 W CN 2008072974W WO 2009067898 A1 WO2009067898 A1 WO 2009067898A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
length
value
measured
diameter
Prior art date
Application number
PCT/CN2008/072974
Other languages
English (en)
French (fr)
Inventor
Pengrui Zhang
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to EP08854824A priority Critical patent/EP2112810B1/en
Priority to AT08854824T priority patent/ATE524918T1/de
Publication of WO2009067898A1 publication Critical patent/WO2009067898A1/zh
Priority to US12/541,230 priority patent/US8184778B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/46Monitoring; Testing
    • H04B3/462Testing group delay or phase shift, e.g. timing jitter
    • H04B3/466Testing attenuation in combination with at least one of group delay and phase shift
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/22Arrangements for supervision, monitoring or testing
    • H04M3/26Arrangements for supervision, monitoring or testing with means for applying test signals or for measuring
    • H04M3/28Automatic routine testing ; Fault testing; Installation testing; Test methods, test equipment or test arrangements therefor
    • H04M3/30Automatic routine testing ; Fault testing; Installation testing; Test methods, test equipment or test arrangements therefor for subscriber's lines, for the local loop
    • H04M3/305Automatic routine testing ; Fault testing; Installation testing; Test methods, test equipment or test arrangements therefor for subscriber's lines, for the local loop testing of physical copper line parameters, e.g. capacitance or resistance
    • H04M3/306Automatic routine testing ; Fault testing; Installation testing; Test methods, test equipment or test arrangements therefor for subscriber's lines, for the local loop testing of physical copper line parameters, e.g. capacitance or resistance for frequencies above the voice frequency, e.g. xDSL line qualification

Definitions

  • the present invention relates to line measurement techniques, and more particularly to line measurement methods and measurement devices.
  • DSLAM Digital Subscriber Line Access Multiplexer
  • double-ended line testing (DELT, Dual-ended Line Testing) is to set test points at both ends of the line to test the condition of the line. This technique can be used for testing in line diagnostic mode. Test data obtained by testing DSL through DELT technology can help maintenance engineers analyze information such as fault locations and fault sources caused by crosstalk, radio frequency interference, or (bridge) taps.
  • DELT can directly measure the line attenuation to get the length of the line under test.
  • Methods for obtaining line lengths using the DELT principle include attenuation measurements and frequency/phase measurements, and the like.
  • an excitation signal can be inserted into the line through the DSL transceiver in the central office, and the frequency response is measured by the DSL transceiver in the user equipment, and the frequency response is calculated according to the reception result of the frequency response.
  • Line length For another example, the length of the line is calculated by way of line attenuation test.
  • test object is single.
  • existing DELT technology does not have a method for calculating the line diameter.
  • the technical problem to be solved by the embodiments of the present invention is to provide a line measurement method and a measurement device.
  • the line diameter and line length of the line can be measured simultaneously in the DELT test to improve measurement accuracy.
  • the present invention provides a method of measuring a line, comprising:
  • the wire diameter is the measured wire diameter.
  • the invention also provides a method of measuring a line, comprising:
  • the path line loop attenuation parameter value is queried in the relationship data between the first and second line path lengths and the loop attenuation parameter value to obtain two length values, and the second length value is defined as the center point.
  • the length range of the third and third length ranges is defined as a fourth length range, and the second and third length ranges respectively correspond to the first and second wire diameter lines, and the fourth length The range corresponds to the mixed line composed of the first and second line diameter lines;
  • the midpoint of the first length range belongs to the second length range, determining that the line diameter corresponding to the second length range is the measured first line diameter; when the midpoint of the first length range belongs to the third length Determining, the range corresponding to the third length range is the measured second line diameter; when the midpoint of the first length range belongs to the fourth length range, determining the hybrid line diameter corresponding to the fourth length range For the measured wire diameter.
  • the invention also provides a method of measuring a line, comprising:
  • the attenuation parameter value obtains the third and fourth length values respectively in the first and second wire diameter line lengths and the downlink loop attenuation parameter value relationship data;
  • the length and length of the line corresponding to the length value are the measured line diameter and length.
  • the invention also provides a method of measuring a line, comprising:
  • the first and second insertion loss theoretical values of the loop of the intermediate distance of the first and second wire diameter lines and the insertion loss of the measured line are respectively substituted into a function of the insertion loss and the line length at a fixed frequency, to obtain the first Second optional line length;
  • the invention also provides a measuring device, comprising:
  • a saving unit configured to store relationship data between a line length of the first wire diameter line at a fixed frequency and a phase radians value of the insertion loss, and relationship data between the line length and the loop attenuation parameter value; further storing the second wire diameter line in the Data relating to the phase radians of the line length and the insertion loss at a fixed frequency, and the relationship between the line length and the loop attenuation parameter value;
  • a measuring unit for obtaining a phase radiance value and a loop attenuation parameter value of the measured insertion loss of the wire diameter line;
  • a searching unit configured to determine, according to a phase radians value of the measured line diameter insertion loss, two length values obtained by querying the phase radians value data of the first and second wire diameter lines and the insertion loss to define a first length range ; according to the measured line diameter loop attenuation parameter value in the first and second lines The two length values obtained by querying the relationship between the length of the path line and the value of the loop attenuation parameter define a second length range;
  • a judging unit configured to determine, at a boundary of the second length range, a midpoint of the first length range, and a line length corresponding to a boundary side of the midpoint near the measured line length,
  • the line diameter corresponding to the line length value is the measured line diameter.
  • the relationship data between the line length of the various line diameter lines and the insertion loss, and the relationship between the line length and the loop attenuation parameter value are obtained in advance, and then obtained according to the actual measured line. Inserting the loss phase radians value and the loop attenuation parameter value, and obtaining the respective length values corresponding to the phase radians and the loop attenuation parameter values of the various wire diameters and the insertion loss, and then the phase radians and the rings Comparing the error of various wire diameters with specific parameters such as road attenuation parameter values, the line length and wire diameter with small error are the line length and wire diameter of the measured wire diameter line, so the circuit under test can be subtly confirmed at the same time. Line length and wire diameter improve measurement accuracy for subsequent line or fault maintenance.
  • FIG. 1 is a flow chart of a first embodiment of a measuring method of the present invention
  • FIG. 2 is a flow chart of a second embodiment of the measuring method of the present invention.
  • FIG. 3 is a schematic diagram of a two-port network in a second embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a twisted pair transmission system in a second embodiment of the present invention.
  • Figure 5 is a graph showing the relationship between the radian phase value and the frequency of Hlin(f) of #24 and #26 line diameters in an embodiment of the present invention
  • FIG. 6 is a relationship diagram of line length and phase radians when the frequency is fixed at 1104 kHz;
  • FIG. 7 is a relationship diagram of line length and uplink LATN in one embodiment of the present invention;
  • FIG. 8 is a third embodiment of a method for measuring lines according to the present invention.
  • FIG. 9 is a schematic view showing the distribution of a mixed wire diameter section in an embodiment of the present invention.
  • Figure 10 is a flow chart of a fourth embodiment of a method of measuring a line
  • FIG. 11 is a flow chart of a fifth embodiment of a method of measuring a line of the present invention.
  • Figure 12 is a schematic block diagram of a first embodiment of the measuring device of the present invention.
  • Figure 13 is a schematic block diagram of a second embodiment of the measuring device of the present invention.
  • One aspect of an embodiment of the present invention is a practical technique for calculating line length and wire diameter using DELT test data, which is a test parameter defined according to relevant sections of the ITU-T standard ADSL2 (G.992.3), ADSL2+ (G.992.5). (Test Parameters) A method for calculating the length and diameter of a subscriber line, providing a reference for subsequent subscriber line maintenance and troubleshooting.
  • the present invention provides a first embodiment of a method for measuring a line, including:
  • Step 101 Obtain data of relationship between line length of the first wire diameter line at a fixed frequency and phase radians of the insertion loss [Hlin(f)], and relationship data between the line length and the loop attenuation parameter value; obtain the second wire diameter line Data on the relationship between the line length at the fixed frequency and the phase radians of Hlin(f), and the relationship between the line length and the loop attenuation parameter value;
  • Step 102 Query two phase values according to the phase radians of the measured wire diameter line Hlin(f) in the relationship between the first and second wire diameters and the phase radians of the Hlin(f), according to the The two length values define a first length range; according to the measured line diameter loop attenuation parameter value, two length values are obtained by querying the relationship data between the first and second line path lengths and the loop attenuation parameter value, according to the The two length values define a second length range;
  • Step 103 Determine, according to which boundary of the second length range, the midpoint of the first length range, and the length of the line corresponding to the boundary side of the midpoint close to the measured line length, with the length of the line
  • the wire diameter corresponding to the value is the measured wire diameter.
  • the line lengths of various possible wire diameter lines are obtained in advance.
  • the relationship between the length of the wire diameter line and the phase radiance value of Hlin(f) and the value of the loop attenuation parameter value respectively obtain corresponding length values, and the first and second length ranges are obtained.
  • the first length range obtained from the phase radians and the line length relationship data of the first and second line lines is smaller than the second length range, that is, the accuracy is high, so the first length range is The midpoint of the second point is the length of the line corresponding to the side of the boundary of the second length range near the midpoint, and the line diameter corresponding to the line length value is the measured line diameter. It can subtly confirm the line length and wire diameter of the tested line at the same time, improve the measurement accuracy, and facilitate subsequent line or fault maintenance.
  • the line measurement method of the twisted pair is taken as an example for the description of the line measurement method of the present invention, wherein the two wire diameters of the first wire diameter #24 and the second wire diameter #26 are taken as an example. The embodiments of the invention will be described.
  • the present invention provides a second embodiment of a method for measuring a line.
  • a phase value and a loop attenuation (LATN) value of Hlin(f) in a test parameter are used to calculate a line length and a wire diameter.
  • LATN loop attenuation
  • Step 201 Obtain data relating to the line length of the first line path at a fixed frequency and the phase radians of the Hlin(f), and relationship data between the line length and the loop attenuation parameter value; obtaining the second line path at the fixed frequency Data on the relationship between the length of the line and the phase radians of Hlin(f), and the relationship between the length of the line and the value of the loop attenuation parameter;
  • Hlin(f) is a function that reflects the channel transmission characteristics, namely Hlin(f).
  • the equation between Hlin(f) and the characteristics of the twisted pair can be established by the value of the twisted pair RLCG model and the derivation of the ABCD parameters.
  • Twisted pair is a type of transmission line.
  • RLCG parameters For any transmission line, there are some basic parameters, such as resistance (R), inductance (L), and conductance (G). These parameters are called RLCG parameters.
  • the so-called RLCG model uses the RLCG parameters of the twisted pair to characterize the channel characteristics of the twisted pair.
  • This model is also known as the primary model of the twisted pair channel because it only provides the RLCG parameters for the twisted pair channel and does not provide the transfer function for the twisted pair channel. The latter invention will derive the transfer function through the RLCG parameters.
  • the RLCG model is obtained by curve fitting of the measured cable and can be applied to various frequency bands, including the VDSL band. Equations 1 ⁇ 4 are general equations for RLCG.
  • a transmission constant
  • Z.(f) characteristic impedance
  • the ABCD model uses a two-port network to characterize the twisted pair channel characteristics. It looks at the twisted pair channel A black box is used to describe its characteristics using its input/output relationship. This channel model is also called the quadratic model of the twisted pair channel. This is because the ABCD parameters are usually obtained from the RLCG parameters. According to the channel ABCD model, the twisted pair transfer function and characteristic impedance can be easily calculated. , input impedance and other important parameters.
  • V, AV 2 +BI 2 (9)
  • the Y axis represents the phase radians value and the X axis represents the frequency.
  • the phase raw value is a polyline that exhibits a periodic change as the frequency increases.
  • the phase radians are expanded, that is, the value in the next phase period is shifted every 2 r period so that the phase value of the next period is connected with the previous period, so that the phase radians are at the entire frequency.
  • the range is a straight line, not a polyline that changes with the cycle. This processing helps to observe and understand the relationship between phase radians and frequency, and line length.
  • Figure 6 is a graph showing the relationship between line length and phase radians when the frequency is fixed at 1104 kHz. among them
  • the Y axis represents the phase radiance and the X axis represents the line length.
  • the length range of the line is calculated according to #26 and #24, respectively (A 2 )
  • Equation 27 Substituting Equation 27 and Equation 23 into the above equation gives an error of 1.65%.
  • LATN is a parameter that reflects loop attenuation. It is the difference in dB between transmit power and received power, defined as follows: NSC-1 2
  • FIG. 7 is a plot of line length and upstream LATN, where the Y-axis represents LATN and the X-axis represents line length. In fitting with the straight line, it is found that the value of the LATN in the upstream direction and the line length approach the linear relationship.
  • the maximum rate of change of the M value is 8%. This error is negligible for the subsequent calculation of the wire diameter.
  • the M value of the same line diameter changes slowly during the test interval and can be approximately constant. The average value can be obtained:
  • the length range of the line can be derived ( , 2 )
  • Equation 32 Substituting Equation 32 and Equation 34 into Equation 35, the error is 11.13%.
  • the measured first and second wire loop loop attenuation parameter values may be the uplink loop attenuation parameter values measured by the first and second wire diameter lines, or may be the first and second wire diameter lines.
  • the measured downlink loop attenuation parameter value is measured.
  • Z(Hlin) o D (36) can be launched by type 20:
  • Step 202 Query two phase values according to the phase radians of the measured wire diameter line Hlin(f) in the relationship between the first and second wire diameters and the phase radians of the Hlin(f), according to the The two length values define a first length range; according to the measured line diameter loop attenuation parameter value, two length values are obtained by querying the relationship data between the first and second line path lengths and the loop attenuation parameter value, according to The two length values define a second length range; the details are as follows:
  • the length of the line in the table can be set from 0 to 6Km (or according to the actual situation), and 5m is the minimum step.
  • the minimum step of the line length determines the minimum error of the calculated line, which can vary depending on actual needs.
  • the phase radians can be calculated.
  • the length range ( ⁇ , ⁇ ) corresponding to the line can be found by #26 and #24, respectively, in the present embodiment. Called the first length range.
  • a relationship table between the line lengths of #24 and #26 lines and the upstream or downstream LATN values is established.
  • the length of the line in the table is usually 0 ⁇ 6Km, 5m is the minimum step.
  • the minimum step of the line length determines the minimum error of the calculated line, which can vary depending on actual needs.
  • the length range (A, J 2 ) corresponding to the line can be found by #26 and #24 respectively by the look-up table method, and is referred to as the second length range in the present embodiment.
  • Such may be utilized (Hlin) information to determine the length of a small range of the first line ( ⁇ , ⁇ ), after a second determined using LATN larger line length (L ,, L 2).
  • Step 203 Determine, according to which boundary of the second length range, the midpoint of the first length range is a measured line length corresponding to a line length corresponding to the boundary of the midpoint, and corresponding to the line length value.
  • the wire diameter is the measured wire diameter, specifically:
  • the rate of change with respect to the wire diameter (#24, #26) is much smaller than the rate of change of the LATN relative to the wire diameter (#24, #26), so in order to obtain a more accurate line length.
  • one of the lengths A and A determined by (Hlin) is usually selected according to the wire diameter determined in step 203.
  • a third embodiment of the method for measuring a line of the present invention includes the steps of: Step 801: Obtain data relating to the line length of the first line path at a fixed frequency and the phase radians of the Hlin(f), and the relationship between the line length and the loop attenuation parameter value; obtaining the second line path at the fixed frequency Data on the relationship between the length of the line and the phase radians of Hlin(f), and the relationship between the length of the line and the value of the loop attenuation parameter;
  • Step 802 Query two phase values according to the phase radians of the measured wire diameter line Hlin(f) in the relationship between the first and second wire diameters and the phase radians of the Hlin(f), according to the
  • the two length values define a first length range; according to the measured line diameter loop attenuation parameter value, two length values are obtained by querying the relationship data between the first and second line lengths and the loop attenuation parameter values, respectively The two length values are centered, and the second and third length ranges with the two centers as the midpoints are respectively defined, and the remaining length range between the second and third length ranges is defined as the fourth length range.
  • the second and third length ranges respectively correspond to the first and second wire diameter lines
  • the fourth length range corresponds to the mixed circuit composed of the first and second wire diameter lines;
  • Step 803 When the midpoint of the first length range belongs to the second or third length range, determine that the line diameter corresponding to the second or third length range is the measured wire diameter, when the first length range When the midpoint belongs to the fourth length range, it is determined that the hybrid line diameter corresponding to the fourth length range is the measured wire diameter.
  • This embodiment is a method for measuring a mixed wire diameter line.
  • the measured line is connected by two or more wire diameter lines, so that it is required for a single-type wire diameter line to be measured.
  • Diameter mixing section shown in Figure 9 two kinds of diameter corresponding to the subscriber line composed of the circuit under test can be J,, L 2 defined range is divided into three sections.
  • Equation 28 Calculate a standard error:
  • E% E mn % + e%
  • the equation with Hlin can be established according to the RLCG parameters of the wire diameter type. According to steps 801 ⁇ 803, the line length, the line diameter and the line diameter are judged.
  • the present invention provides a fourth embodiment of a method for measuring a line.
  • the line length and the line diameter are calculated by using the uplink and downlink values of the LATN in the test parameters, and the following steps are implemented:
  • Step 1001 Obtain relationship data between a line length of the first wire diameter line and an attenuation parameter value of the uplink loop, obtain relationship data between a line length of the first wire diameter line and a downlink loop attenuation parameter value, and obtain a second wire diameter line. The relationship between the line length and the value of the uplink loop attenuation parameter, and obtains relationship data between the line length of the second line path and the downlink loop attenuation parameter value;
  • Equation 29 a relationship table between the line lengths of #24 and #26 lines and the uplink and downlink LATN values is established.
  • the length of the line in the table is usually 0 ⁇ 6Km, 5m is the minimum step.
  • the minimum step of the line length determines the minimum error of the calculated line, which can vary depending on actual needs.
  • Step 1002 Obtain first and second length values respectively according to the measured line diameter loop loop attenuation parameter value in the first and second line diameter line lengths and the uplink loop attenuation parameter value relationship data; according to the measured line diameter The line loop attenuation parameter value obtains the third and fourth length values respectively in the first and second line diameter line lengths and the downlink loop attenuation parameter value relationship data;
  • Step 1003 Obtain an absolute value of a difference between the first length value and the third length value, obtain an absolute value of a difference between the second length value and the fourth length value, and compare the two absolute values to be smaller in absolute value.
  • the set of length values corresponds to the line diameter and length of the measured line diameter and length.
  • FIG. 11 a fifth embodiment of a method for measuring a circuit of the present invention is provided.
  • the line length and the wire diameter are calculated by using the Hlog(f) value in the test parameter, and the following steps are implemented:
  • Step 1101 Obtain a logarithmic value Hlog toi of the insertion loss of the tested line
  • Step 1102 Substituting the first insertion loss logarithmic value Hlog rc/24 of the loop of the intermediate path of the first wire diameter line and the insertion loss log value Hlog terf of the measured line into the insertion loss logarithm value Hlog of the fixed frequency (/ ) and the linear function of the line length, the optional line length L toi24 is obtained , the second insertion loss logarithm theoretical value Hlog e/26 of the loop of the intermediate path of the second line path and the H of the measured line ⁇ og test substitutes a linear function of Hlog (/ ) and line length at a fixed frequency to obtain an optional line length L tesi26 ;
  • Oc L shows that Hlog(f) and line length L are approximately linear at the same frequency when the frequency is >1 ::
  • Hlog( ) 2 L 2 first obtains the line Hlo gterf parameter. Then select the theoretical values Hlog 24 and Hlog rc/26 of #24 and #26 - intermediate distance loops (such as 2 km) as reference loops;
  • Step 1103 Substituting the wire diameter value of the first wire diameter line and the line length L fe ⁇ 24 into the insertion The loss function Hlin(f) of the first wire diameter line, and then the logarithm value Hlog, obtains Hlog toi24 , and substitutes the wire diameter value of the second wire diameter line and the line length L tei26 into the loss function of the second wire diameter line. Hlin(f), and then take the logarithmic value Hlog to obtain Hlog teii26 ;
  • Step 1104 Obtain the mean square error sum, variance sum, or difference sum of H log toi and H log ⁇ 24 in all frequency bands or partial frequency bands.
  • the length and its diameter are the length and wire diameter of the line under test.
  • the logarithmic form of the insertion loss function can be used instead, and the interpolation function value itself is directly used for calculation, so that the linear function of the insertion loss logarithm value Hlog (/ ) and the line length is changed to the insertion loss.
  • the storage medium referred to herein is, for example, a ROM/RAM, a magnetic disk, an optical disk, or the like.
  • the present invention further provides a first embodiment of a measuring device.
  • the measuring device includes: a saving unit, configured to save relationship data between a line length of a first wire diameter line at a fixed frequency and a phase radians value of Hlin(f) And the relationship between the line length and the loop attenuation parameter value; further storing relationship data between the line length of the second line path and the phase radians of the Hlin(f), and the line length and the loop attenuation parameter value Relationship data;
  • a measuring unit configured to obtain a phase radiance value and a loop attenuation parameter value of the measured wire diameter line Hlin(f);
  • a searching unit configured to query, according to the phase radians value of the measured wire diameter line Hlin(f), two length values in the relationship data of the first and second wire diameters and the phase radians of the Hlin(f), according to The two length values define a first length range; and according to the measured line diameter loop attenuation parameter value, two length values are obtained by querying the relationship data between the first and second line path lengths and the loop attenuation parameter value, Defining a second length range according to the two length values;
  • a determining unit configured to determine, where the midpoint of the first length range is close to the second length range
  • the length of the line corresponding to the boundary near the midpoint is the measured line length
  • the line diameter corresponding to the line length value is the measured line diameter
  • the relationship between the line length of various possible wire diameter lines and the phase radians of Hlin(f), and the relationship between the line length and the loop attenuation parameter value are obtained in advance, and then The Hlin(f) phase radiance value and the loop attenuation parameter value obtained by the actual measured line are respectively corresponding to the relationship between the length of the various line diameter lines and the phase radians of Hlin(f) and the loop attenuation parameter value.
  • the length value gives the first and second length ranges.
  • the first length range obtained from the phase radians and the line length relationship data of the first and second line paths is smaller than the second length range, that is, the accuracy is high, so the first length range is The midpoint of the second point is the length of the line corresponding to the boundary length of the second length range near the midpoint, and the line diameter corresponding to the length value of the line is the measured line diameter. It can subtly confirm the line length and wire diameter of the tested line at the same time, improve the measurement accuracy, and facilitate subsequent line or fault maintenance.
  • the present invention also provides a second embodiment of a measuring device.
  • the measuring device includes: a saving unit, configured to save relationship data between a line length of the first wire diameter line and an uplink loop attenuation parameter value, and a line length and a downlink loop attenuation parameter value of the first wire diameter line Relation data; further storing relationship data between the line length of the second line path and the value of the uplink loop attenuation parameter, and relationship data between the line length of the second line line and the attenuation parameter value of the downlink loop; Measuring the line loop circuit attenuation parameter value;
  • a searching unit configured to obtain first and second length values respectively according to the relationship between the first and second line path lengths and the uplink loop attenuation parameter value according to the measured line path loop attenuation parameter value;
  • the relationship between the line diameter loop attenuation parameter value and the first and second line diameter line length and the downlink loop attenuation parameter value respectively obtains the third and fourth length values;
  • a determining unit configured to compare the two absolute values after obtaining the absolute values of the first length value and the third length value, the second length value, and the fourth length value, and the absolute value is small
  • the length and length of the line corresponding to a set of length values are the measured line diameter and length.
  • the saving unit, the measuring unit, the searching unit and the judging unit in the first embodiment of the measuring device of the present invention may be integrated into one processing module.
  • the foregoing second embodiment of the measuring device of the present invention The units may also be integrated in one processing module; alternatively, any two or more of the various units of the foregoing embodiments may be integrated into one processing module.
  • the invention also provides a third embodiment of the measuring device.
  • the measuring device comprises:
  • An obtaining unit configured to obtain phase radians value relationship data of a line length and an insertion loss of the first and second wire diameter lines at a fixed frequency, and relationship data between the line length and the loop attenuation parameter value;
  • a searching unit configured to determine, according to a phase radians value of the measured line diameter insertion loss, two length values obtained by querying the phase radians value data of the first and second wire diameter lines and the insertion loss to define a first length range Querying two length values according to the relationship between the length of the first and second line path lengths and the loop attenuation parameter value according to the measured line loop attenuation parameter value, respectively, with the two length values as the center
  • the midpoint defines a second and a third length range, and the remaining length range between the second and third length ranges is defined as a fourth length range, and the second and third length ranges respectively correspond to the first and second wire diameter lines.
  • the fourth length range corresponds to a mixed line composed of the first and second wire diameter lines; and the determining unit is configured to determine a wire diameter corresponding to the second length range when the midpoint of the first length range belongs to the second length range a measured first wire diameter; when the midpoint of the first length range belongs to the third length range, determining that the wire diameter corresponding to the third length range is measured A second diameter; when a midpoint of said first length range belongs to the fourth length, determining that the fourth length of the corresponding diameter of the mixing measured diameter.
  • the invention also provides a fourth embodiment of the measuring device.
  • the measuring device comprises:
  • An insertion loss acquisition unit for obtaining insertion loss of the line under test
  • a calculation unit configured to respectively substitute the first and second insertion loss theoretical values of the loop of the intermediate distance of the first and second wire diameter lines and the insertion loss of the measured line into the insertion loss and the line length at a fixed frequency Obtaining the first and second optional line lengths; respectively, the wire diameter values of the first and second wire diameter lines and the first and second line lengths are substituted into the insertion loss function of the first and second wire diameter lines, Obtaining the first and second insertion loss calculation values;
  • the determining unit is configured to obtain an error between the insertion loss of the measured line and the calculated value of the first insertion loss in all frequency bands or partial frequency bands, and obtain the calculated insertion loss and the second insertion loss calculated value of the tested line in all frequency bands or partial frequency bands.
  • the error sum is compared with the error sum of the above two sets of data, and the line length corresponding to the error and the small set of data and its line diameter are the measured line length and wire diameter.
  • each unit in the embodiment of the measuring device of the present invention can be implemented in the form of hardware, and the software-implemented portion can also be implemented in the form of a software function module. Accordingly, this Embodiments of the invention may be sold or used as separate products, and software-implementable portions may also be stored in a computer readable storage medium for sale or use.
  • the present invention can at least produce the following technical effects:
  • One of the DELT parameters Hlin, Hlog, and LATN can be selected as one or two or two or all of the parameters for line measurement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Monitoring And Testing Of Exchanges (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Paper (AREA)
  • Vehicle Body Suspensions (AREA)
  • Length-Measuring Instruments Using Mechanical Means (AREA)

Description

线路测量方法以及测量装置
本申请要求于 2007 年 11 月 9 日提交中国专利局、 申请号为 200710188123.2、 发明名称为 "线路测量方法以及测量装置 "的中国专利申请的 优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及线路测量技术, 具体涉及线路测量方法以及测量装置。
背景技术
随着数字用户线路接入复用器 (DSLAM, Digital Subscriber Line Access Multiplexer ) 网络规模的逐步扩大, DSLAM网络的应用需要进行快速的用户 线缆选用、 准确的故障定位和自动线路定期维护。
根据 ITU-T 标准 ADSL2 ( G.992.3 ) 的定义, 双端测试技术(DELT , Dual-ended Line Testing )是在线路两端设置测试点, 测试该线路状况。 该技术 可以用于线路诊断模式的测试。 通过 DELT技术对 DSL进行测试所获得的测 试数据可以帮助维护工程师分析得到由串扰、 无线电频率干扰或(桥式)分接 头所造成的故障位置和故障源等信息。
DELT 可以对线路衰减情况进行直接测量, 以获得被测线路的长度。 以 DELT原理获得线路长度的方法包括衰减测量和频率 /相位测量等等。 例如,要 测量下游线路长度,可通过局端中的 DSL收发器在线路中插入一个激励信号, 同时由用户端设备中的 DSL收发器对频率响应进行测量, 根据频率响应的接 收结果计算出该线路长度; 又例如, 通过线路衰减测试的方式, 计算得到线路 的长度。
在进行本发明创造过程中,发明人发现釆用上述现有 DELT测量线路长度 的技术至少存在以下问题:
1 )现有 DELT技术测试的手段较为简单, 比如单纯进行衰减测试、 频率 / 相位测试, 在未知线路线径的情况下, 这些测试误差范围较大, 测得线路长度 的精确度不高;
2 )测试对象单一, 比如现有的 DELT技术并未出现计算线路线径的方法。 发明内容
本发明实施方式要解决的技术问题是提供一种线路测量方法以及测量装 置, 可以在 DELT测试中同时测量得到线路的线径和线长, 提高测量精确度。 本发明提供了一种测量线路的方法, 包括:
分别获得第一、第二线径线路在固定频率下的线路长度与插入损耗的相位 弧度值关系数据、 以及线路长度与环路衰减参数值的关系数据;
根据被测量线径线路插入损耗的相位弧度值在所述第一、第二线径线路长 度与插入损耗的相位弧度值关系数据中查询得到的两个长度值定义第一长度 范围; 根据被测线径线路环路衰减参数值在所述第一、第二线径线路长度与环 路衰减参数值的关系数据中查询得到的两个长度值定义第二长度范围;
判断所述第一长度范围的中点靠近所述第二长度范围的哪个边界,以所述 中点靠近的边界一侧对应的线路长度值为测量到的线路长度,以该线路长度值 对应的线径为测量到的线径。
本发明还提供了一种测量线路的方法, 包括:
分别获得第一、第二线径线路在固定频率下的线路长度与插入损耗的相位 弧度值关系数据、 以及线路长度与环路衰减参数值的关系数据;
根据被测量线径线路插入损耗的相位弧度值在所述第一、第二线径线路长 度与插入损耗的相位弧度值关系数据中查询得到的两个长度值定义第一长度 范围; 根据被测线径线路环路衰减参数值在所述第一、第二线径线路长度与环 路衰减参数值的关系数据中查询得到两个长度值,分别以所述两长度值为中心 为中点定义第二、 三长度范围, 定义所述第二、 三长度范围之间剩下的长度范 围为第四长度范围, 所述第二、 三长度范围分别对应第一、 第二线径线路, 所 述第四长度范围对应第一和二线径线路组成的混合线路;
当所述第一长度范围的中点属于第二长度范围时,确定该第二长度范围所 对应线径为测量到的第一线径;当所述第一长度范围的中点属于第三长度范围 时,确定该第三长度范围所对应线径为测量到的第二线径; 当所述第一长度范 围的中点属于第四长度范围时,确定该第四长度范围所对应的混合线径为测量 到的线径。
本发明还提供了一种测量线路的方法, 包括:
分别获得第一、第二线径线路的线路长度与上行环路衰减参数值的关系数 据, 分别获得所述第一、第二线径线路的线路长度与下行环路衰减参数值的关 系数据;
根据被测量线径线路环路衰减参数值在所述第一、第二线径线路长度与上 行环路衰减参数值关系数据中分别得到第一、第二长度值; 根据被测量线径线 路环路衰减参数值在所述第一、第二线径线路长度与下行环路衰减参数值关系 数据分别得到第三、 第四长度值;
获得所述第一长度值与第三长度值的差的绝对值,获取所述第二长度值与 第四长度值的差的绝对值, 比较上述两个绝对值, 以绝对值小的一组长度值所 对应线路线径与长度为测量到的线径与长度。
本发明还提供了一种测量线路的方法, 包括:
获得被测线路的插入损耗;
分别将第一、第二线径线路一个中间距离的环路的第一、第二插入损耗理 论值和所述被测线路的插入损耗代入固定频率下插入损耗与线路长度的函数, 得到第一、 第二可选线路长度;
分别将所述第一、第二线径线路的线径值以及所述第一、第二线路长度代 入第一、 第二线径线路的插入损耗函数, 获得第一、 第二插入损耗计算值; 获得所有频段或者部分频段内被测线路的插入损耗与第一插入损耗计算 值的误差和,获得所有频段或者部分频段内被测线路的插入损耗与第二插入损 耗计算值的误差和, 比较上述两组数据的误差和, 以误差和小的那一组数据对 应的线路长度及其线径为被测线路长度和线径。
本发明还提供了一种测量装置, 包括:
保存单元,用于保存第一线径线路在固定频率下的线路长度与插入损耗的 相位弧度值关系数据、 以及线路长度与环路衰减参数值的关系数据; 还进一步 保存第二线径线路在该固定频率下的线路长度与插入损耗的相位弧度值关系 数据、 以及线路长度与环路衰减参数值的关系数据;
测量单元,用于获得被测量线径线路插入损耗的相位弧度值和环路衰减参 数值;
查找单元, 用于根据被测量线径线路插入损耗的相位弧度值在所述第一、 第二线径线路长度与插入损耗的相位弧度值关系数据中查询得到的两个长度 值定义第一长度范围; 根据被测线径线路环路衰减参数值在所述第一、 第二线 径线路长度与环路衰减参数值的关系数据中查询得到的两个长度值定义第二 长度范围;
判断单元,用于判断所述第一长度范围的中点靠近所述第二长度范围的哪 个边界, 以所述中点靠近的边界一侧对应的线路长度值为测量到的线路长度, 以该线路长度值对应的线径为测量到的线径。
以上技术方案可以看出,由于预先得到各种可能线径线路的线路长度与插 入损耗的相位弧度值关系数据、 以及线路长度与环路衰减参数值的关系数据, 然后根据实际被测线路得到的插入损耗相位弧度值、环路衰减参数值,在所述 各种线径线路长度与插入损耗的相位弧度值、环路衰减参数值关系数据得到相 应的各个长度值, 然后在相位弧度值、环路衰减参数值等特定参数条件下比较 各种线径线路长度的误差,以误差小的线长与线径为被测线径线路的线长与线 径, 因此能巧妙地同时确认被测线路的线长和线径, 提高测量精确度, 便于后 续线路或故障维护。
附图说明
图 1是本发明测量方法第一实施方式的流程图;
图 2是本发明测量方法第二实施方式的流程图;
图 3是本发明第二实施方式中一个二端口网络的示意图;
图 4是本发明第二实施方式中一个双绞线传输系统的示意图;
图 5是本发明一个实施方式中 #24和 #26线径的 Hlin(f)的弧度相位值和频 率的关系;
图 6是频率固定为 1104KHz时, 线路长度和相位弧度值的关系图; 图 7是本发明一个实施方式中线路长度和上行 LATN的关系图; 图 8是本发明测量线路的方法第三实施方式的流程图;
图 9是本发明一个实施方式中混合线径区间的分布示意图;
图 10是测量线路的方法第四实施方式的流程图;
图 11是本发明测量线路的方法第五实施方式的流程图;
图 12是本发明测量装置第一实施方式的原理框图;
图 13是本发明测量装置第二实施方式的原理框图。
具体实施方式 为使本发明的目的、 技术方案、 及优点更加清楚明白, 以下参照附图并举 实施方式, 对本发明进一步详细说明。
本发明实施方式的一个方面是利用 DELT 测试数据计算线路长度和线径 的实用化技术, 是根据 ITU-T标准 ADSL2 ( G.992.3 )、 ADSL2+ ( G.992.5 ) 中 相关章节的定义的测试参数 ( Test Parameters )来计算用户线路长度和线径的 一种方法, 为后续用户的线路维护和排障提供参考依据。
参阅图 1 , 本发明提供测量线路的方法第一实施方式, 包括:
步骤 101 :获得第一线径线路在固定频率下的线路长度与插入损耗 [Hlin(f)] 的相位弧度值关系数据、 以及线路长度与环路衰减参数值的关系数据; 获得第 二线径线路在该固定频率下的线路长度与 Hlin(f)的相位弧度值关系数据、以及 线路长度与环路衰减参数值的关系数据;
步骤 102: 根据被测量线径线路 Hlin(f)的相位弧度值在所述第一、 第二线 径线路长度与 Hlin(f)的相位弧度值关系数据中查询得到两个长度值,根据所述 两长度值定义第一长度范围; 根据被测线径线路环路衰减参数值在所述第一、 第二线径线路长度与环路衰减参数值的关系数据中查询得到两个长度值,根据 所述两长度值定义第二长度范围;
步骤 103: 判断所述第一长度范围的中点靠近所述第二长度范围的哪个边 界, 以所述中点靠近的边界一侧对应的线路长度值为测量到的线路长度, 以该 线路长度值对应的线径为测量到的线径。
以上实施方式可以看出, 由于预先得到各种可能线径线路的线路长度与
Hlin(f)的相位弧度值关系数据、 以及线路长度与环路衰减参数值的关系数据, 然后根据实际被测线路得到的 Hlin(f)相位弧度值、环路衰减参数值,在所述各 种线径线路长度与 Hlin(f)的相位弧度值、环路衰减参数值关系数据得到相应的 各个长度值, 得到第一、 二长度范围。 现有技术中可以推出, 从第一、 第二线 径线路的相位弧度值与线路长度关系数据中得到的第一长度范围较第二长度 范围小, 也即精确度高, 因此以第一长度范围的中点为判断依据, 以所述中点 靠近的第二长度范围边界一侧对应的线路长度值为测量到的线路长度,以该线 路长度值对应的线径为测量到的线径,因此能巧妙地同时确认被测线路的线长 和线径, 提高测量精确度, 便于后续线路或故障维护。 下面,以双绞线被测线径线路为例进行本发明线路测量方法的说明,其中, 又以第一线径 # 24、 第二线径 # 26 两个线径规格的双绞线为例对本发明实施 方式进行说明。
参阅图 2, 本发明提供测量线路的方法第二实施方式, 本实施方式是利用 测试参数中的 Hlin(f)的相位值和环路衰减( LATN )值来计算线路长度和线径, 通过下面步骤实现:
步骤 201 : 获得第一线径线路在固定频率下的线路长度与 Hlin(f)的相位弧 度值关系数据、 以及线路长度与环路衰减参数值的关系数据; 获得第二线径线 路在该固定频率下的线路长度与 Hlin(f)的相位弧度值关系数据、以及线路长度 与环路衰减参数值的关系数据;
1 )获得第一、 第二线径线路在固定频率下的线路长度与 Hlin(f)的相位弧 度值关系数据。
ITU-T标准 ADSL2 ( G.992.3 ) 定义 Hlin(f)是反映信道传输特性的函数, 即 Hlin(f)。可以通过双绞线的数值 RLCG模型和 ABCD参数的推导,建立 Hlin(f) 和双绞线特性参数之间的方程。
1、 RLCG模型
双绞线是传输线的一种。 对于任何传输线, 都存在一些最基本的参数,如 电阻(R )、 电感(L )、 电导(G ), 这些参数叫做 RLCG参数。 所谓 RLCG模 型, 就是利用双绞线的 RLCG参数, 来表征双绞线的信道特性。 这种模型又 称为双绞线信道的一次模型, 这是因为它仅仅提供了双绞线的信道的 RLCG 参数, 而没有提供双绞线信道的传递函数。 后面本发明将会通过 RLCG参数 推导出传递函数。
# 24、 # 26线径规格双绞线的数值 RLCG模型, 是通过实测电缆的曲线 拟合得到的, 可适用于各个频段, 包括 VDSL频段。 式 1 ~ 4是 RLCG的通用 方程式。
R(f)
Figure imgf000008_0001
G(f) = g。尸 (3) {f) = c (4) 公式中涉及的参数如表 1所示,
参数 # 24规格 # 26规格 roc /( /km) 174.55888 286.17578
ac/( 4 /km4Hz2) 0.053073481 0.14769620
l {Hlkm) 617.29593*1(Γ6 675.36888*10- ll(Hlkm) 478.97099*1(Γ6 488.95186*10- fm '(Hz) 553760.63 806338.63
b 1.1529766 0.92930728
g0 (Siemen I Hz* km) 0.23487476*10- 4.3*ΐ(Γ8
ge 1.38 0.70
c (nF I km) 50*ιο-' 49*l(T9
表一: 数值双绞线模型参数
2、 传输线的传输常数和特性阻抗
根据上述传输线的 RLCG参数,可以求得两个常用的参数:传输常数( Λ ) 和特性阻抗( Z。(f) ),它们可以表征沿传输线的电压和电流。其中传输常数为: λ = α + ίβ = (R + jo£)(G + jcoC) (5)
在定义传播常数时基于两种基本假定的情形, 第一种 _Ay »G, 第二种当 频率 f OOKHz时, jcoL»R, 由式 5可以推导出下面的式 6和式 7
Figure imgf000009_0001
在以上两个方程中, 《。, A均为常数。 根据传输线的 RLCG模型定义的 特性阻抗为:
Figure imgf000009_0002
3、 二端口网络的 ABCD模型
ABCD模型用一个二端口网络来表征双绞线信道特征。它把双绞线信道看 出一个黑盒, 用它的输入 /输出关系来描述其特征。 这种信道模型又称为双绞 线信道的二次模型, 这是因为 ABCD参数通常要根据 RLCG参数来求得, 根 据信道 ABCD模型, 可以很容易地计算出双绞线地传递函数、 特性阻抗、 输 入阻抗等重要参数。
对于一个一般的二端口网络, 其 ABCD参数描述如图 3所示。
相应的数学描述为:
V, =AV2+BI2 (9)
Figure imgf000010_0001
对于图 4所示的双绞线传输系统, 可以证明其 ABCD参数为:
Figure imgf000010_0002
如果不存在环路( zs被直接连到 ζ£ ), 则分布在负载上的电压为
ζτ
(12)
z + zr 如果存在环路, 电压 能够被简写成下式:
νλ=Αν2^ΒΙ2=ν,-ΙλΖ, (13)
将/i用第二个基本 ABCD公式替代上式得:
V,=AV2+BI2=VS-(CV2+DI2)Z, (14)
用欧姆定律 p z£来替换 /2得:
AV2+B^ = VS-(CV2+D^-)ZS (15) 通过上式可以解得 2:
Figure imgf000010_0003
由此可以求得 Hlin(f)为:
Ζ.+ΖΓ
HHn(f) (17)
VL AZL+B + CZSZL+DZ 4、 Hlinf)的相位弧度值与线路长度的关系 将式 ( 11 )代入式 ( 17 )得:
Hlin(f) = Zl +Zs . ( 18)
cos (AL)ZL + Z。 sm (AL) + Zs (S jZL + cosh(lL)) 在图 4 中, 当源端阻抗 Zs, 特性阻抗 Z。, 负载阻抗 ^匹配的情况下, 并 且当/≥ioo¾fe时, 可以认为^=2£«2。, 则上式可以简化为:
Figure imgf000011_0001
将式 5代入上式得:
Hlin(f) = e~{a+Pj)L ( 20 )
由式 20和式 7可推出下式:
Hlin(f) = -β∑ = -p L (21 )
由此可知, 当 f一定时, Hlin(f)的相位弧度值与与长度成线型关系。
基于上面的 Hlin(f)公式 18, 用计算机仿真不同线路长度下 #24和 #26线径 的 Hlin(f)的相位值弧度和频率的关系, 参见图 5。
图 5中, Y轴代表相位弧度值, X轴代表频率。 相位原始值是随着频率的 增加而呈现周期性的变化的折线。 在图 5中, 对相位弧度值做了展开处理, 即 每隔 2 r周期将下一个相位周期内的值移位使下一个周期的相位值与上个周期 衔接, 这样使得相位弧度在整个频率范围内是一条直线, 而不是随着周期变化 的折线。 这样处理有助于观察和理解相位弧度与频率、 线路长度之间的关系。
由图 5可知, 随着线路长度的增加, 相位弧度值也在增大, 并且 #24和 # 26规格的线缆在同一距离下弧度值相差很小。
图 6是频率固定为 1104KHz时, 线路长度和相位弧度值的关系图。 其中
Y轴代表相位弧度, X轴代表线路长度。
以图 6中 #24和 #26线为例,计算当 f=1104KHz, Le (lkm,6km)范围内相位 和长度的比值 K(X):
K (l) = Z(Hlin( f))/L (22 )
距离 1000 2000 3000 4000 5000 6000
L(m) #24 -2.0347 -2.0347 -2.0347 -2.0348 -2.0348 -2.0348
- #26 -2.1042 -2.1043 -2.1043 -2.1043 -2.1043 -2.1043
表二: 相位角和线路长度的比值
通过表 2可知, #24和^ 26的值近似恒定值, 其变化最大范围大约 0.005% 左右, 在以后的计算中可以忽略此误差, 取 Le(l , 6½7)内的平均值得:
#24= -2.03475
#26= -2.1043
在获得被测线路 Hlin(f)后, 分别根据 #26和 #24计算出此线路的长度范 围 ( A 2 )
Z(Hlin)
D = (23)
K,
Z(Hlin)
(24) 那么可以估计一个粗略的线路长度值:
A+ ( 25)
2
取此长度范围的差值:
Figure imgf000012_0001
代入 , A的值可得:
AD = Z (應 (/)) (27)
K. #24 K. #26
当 ZHlin(ne (0,-13000)时, 求式 24和实际线路长度之间的误差:
AD
E + -
Hlin (28)
2
将式 27和式 23代入上式得其误差为 1.65%。
2) 同时, 获得第一、 第二线径线路在固定频率下的线路长度与 Hlin(f)的 相位弧度值关系数据。
ITU-T标准 ADSL2 ( G.992.3 ) 定义 LATN是反映环路衰减的参数, 它是 发送功率和接收到的功率的在 dB上的差值, 定义如下: NSC-1 2
∑ |^*Δ )|
LATN(dB) = 10* log '=。 —— ( 29 ) 图 7是线路长度和上行 LATN的关系图, 其中 Y轴代表 LATN, X轴代表 线路长度。 在与直线拟合中发现, LATN上行方向的值和线路长度趋近线型关 系。
定义 LATN与线路长度的比值 M(l):
Figure imgf000013_0001
下面是根据式 29计算出不同长度下的 M(l)的数值:
距离 1000 2000 3000 4000 5000 6000
L(m)
#24 0.0136 0.0124 0.0116 0.0110 0.0106 0.0103 #26 0.0171 0.0157 0.0148 0.0142 0.0138 0.0135
表三: 上行 LATN与线路长度的比值
通过表三可知, M值的最大变化率是 8%。 这个误差对于后面区分线径的 计算是可以忽略不计的。 同一线径的 M值在测试区间内变化较为緩慢, 可以 近似恒定, 取其平均值可得:
#24 =0.0116
#26 =0.0148
如果已知被测线路是 #24或者 #26的一种,在测得被测线路上行 LATN后, 可以推算出此线路的长度范围 ( , 2 )
Figure imgf000013_0002
取此长度范围的差值:
ΔΙ = 1 -^1 (33)
代入 A,J2得:
Figure imgf000014_0001
计算误差值:
AL
E LATN (35)
将式 32和式 34代入式 35, 得其误差为 11.13%.
其中, 所述测量得到的第一、 第二线径线路环路衰减参数值可以是通过第 一、 第二线径线路测量得到的上行环路衰减参数值, 也可以是通过第一、 第二 线径线路测量得到的下行环路衰减参数值。
由 21式可知:
Z(Hlin) o D (36) 由 20式可以推出:
Figure imgf000014_0002
HIM \dB =(— 20"J)loge
\m f)\dB-L (37)
由 29式可知随着 D的增大, LATN值也在增大。
由 26式和 33式可知, 在 (Hlin)和 LATN各自值域范围内:
ELATN》 ^Hlin
所以有:
AL»AD (38)
由此可以推断 (Hlin)相对于线径 (#24,#26)变化率远远小于 LATN相对与 线径 (#24,#26)的变化率。 可以理解, 从相位弧度值与线路长度关系数据得到的 线路长度误差较小, 精确度较高。
步骤 202: 根据被测量线径线路 Hlin(f)的相位弧度值在所述第一、 第二线 径线路长度与 Hlin(f)的相位弧度值关系数据中查询得到两个长度值,根据所述 两长度值定义第一长度范围; 根据被测线径线路环路衰减参数值在所述第一、 第二线径线路长度与环路衰减参数值的关系数据中查询得到两个长度值 ,根据 所述两长度值定义第二长度范围; 具体如下:
基于式 18,分别建立频率 f=1104KHz时 #24和 #26线径下线路长度和相位 弧度值的关系表格。 表格中线路长度可以设定在 0 ~ 6Km (或根据实际情况变 化), 5m为最小步进。 线长的最小步进决定计算出的线路的最小误差, 这个可 以根据实际需要而变化。在获得被测线路 Hlin(f)后,可以计算出其相位弧度值, 可以用查表法分别找出 #26和 #24对应出此线路的长度范围 (Α,Α ), 在本实 施方式中称第一长度范围。
基于式 29, 分别建立 #24和 #26线径下线路长度和上行或者下行 LATN值 的关系表格。 表格中线路长度通常在 0 ~ 6Km, 5m为最小步进。 线长的最小 步进决定计算出的线路的最小误差, 这个可以根据实际需要而变化。在获得被 测线路的上行或者 LATN后, 可以用查表法分别查出 #26和 #24对应出此线路 的长度范围 (A,J2 ), 在本实施方式中称第二长度范围。
这样可以利用 (Hlin)信息先确定一个较小的线路第一长度范围( Α,Α ), 之后利用 LATN确定一个较大的线路第二长度范围 ( L、,L2 )。
步骤 203: 判断所述第一长度范围的中点靠近所述第二长度范围的哪个边 界, 以所述中点靠近的边界对应的线路长度值为测量到的线路长度, 以该线路 长度值对应的线径为测量到的线径, 具体是: 比较
Figure imgf000015_0001
这表明线路长度更接近第二长度范围的边界 , 那么可以判断线路线径为
+ D
#24。 如果 -厶小于 - , , 这表明线路长度更接近第二长度范围
2 2 的边界 ι , 那么可以判断线路线径为 #26。 此方法可用于单一线径的判断。
因为, 在同样线路长度下 (Hlin)相对于线径 (#24, #26)变化率远远小于 LATN相对与线径 (#24, #26)的变化率, 所以为了得到更加精确的线路长度结 果, 通常会根据步骤 203中所确定的线径在 (Hlin)所确定的长度 A和 A中选 其一
参阅图 8, 本发明测量线路的方法第三实施方式包括步骤: 步骤 801 : 获得第一线径线路在固定频率下的线路长度与 Hlin(f)的相位弧 度值关系数据、 以及线路长度与环路衰减参数值的关系数据; 获得第二线径线 路在该固定频率下的线路长度与 Hlin(f)的相位弧度值关系数据、以及线路长度 与环路衰减参数值的关系数据;
步骤 802: 根据被测量线径线路 Hlin(f)的相位弧度值在所述第一、 第二线 径线路长度与 Hlin(f)的相位弧度值关系数据中查询得到两个长度值,根据所述 两长度值定义第一长度范围; 根据被测线径线路环路衰减参数值在所述第一、 第二线径线路长度与环路衰减参数值的关系数据中查询得到两个长度值,分别 以所述两长度值为中心,分别定义以所述两个中心为中点的第二、三长度范围, 定义所述第二、 三长度范围之间剩下的长度范围为第四长度范围, 所述第二、 三长度范围分别对应第一、第二线径线路, 所述第四长度范围对应第一和二线 径线路组成的混合线路;
步骤 803: 当所述第一长度范围的中点属于第二或第三长度范围时, 确定 该第二或第三长度范围所对应线径为测量到的线径,当所述第一长度范围的中 点属于第四长度范围时,确定该第四长度范围所对应的混合线径为测量到的线 径。
此实施方式是测量混合线径线路的方法, 在实际测量中, 有可能被测线路 由两种以上线径的线路连接而成, 因此相较单——种被测线径线路来说, 需要 将可能的线长提供多个长度区间。如图 9所示的混合线径区间,对应两种线径 的用户线路组成的被测线路, 可以将 J, , L2确定的范围划分为三段区间。
为此, 可以才艮据式 28和测试误差 e。/ †算出一个标准误差:
E% = Emn% + e%
估算出一个判断范围, 即:
1 ) #26线径判断区间:
m -i^ -L^∑%,∑, + (∑2 -∑^∑%] ( 39 )
2 ) #24线径判断区间:
\L2 - (L2 - E%, L2 + (L2 -L, E%] ( 40 )
3 ) 混合线径判断区间:
[Lx + (L2 - ) * E%, L2 - (L2 - ) * E%] ( 41 ) 根据 所在的区间来判断线路的线径种类, 以及确定线路长度。
2
可以根据其线径类型的 RLCG参数建立与 Hlin的方程, 按照步骤 801 ~ 803计算线路长度、 线路线径及判断是否为混合线径。
参阅图 10, 本发明提供测量线路的方法第四实施方式, 本实施方式是利 用测试参数中的 LATN的上行和下行值来计算线路长度和线径,通过下面步骤 实现:
基于式 29, 通过计算发现相同线径线路在上行方向和下行方向 LATN随 线路变化率是不相同的。 利用这个性质在测得某一线路长度的上行和下行的 LATN值后即可计算出该线路的长度和线径。
步骤 1001 : 获得第一线径线路的线路长度与上行环路衰减参数值的关系 数据, 获得所述第一线径线路的线路长度与下行环路衰减参数值的关系数据; 获得第二线径线路的线路长度与上行环路衰减参数值的关系数据 ,获得所述第 二线径线路的线路长度与下行环路衰减参数值的关系数据;
基于式 29, 分别建立 #24和 #26线径下线路长度与上行和下行 LATN值的 关系表格。 表格中线路长度通常在 0 ~ 6Km, 5m为最小步进。 线长的最小步 进决定计算出的线路的最小误差, 这个可以根据实际需要而变化。
步骤 1002: 根据被测量线径线路环路衰减参数值在所述第一、 第二线径 线路长度与上行环路衰减参数值关系数据中分别得到第一、第二长度值; 根据 被测量线径线路环路衰减参数值在所述第一、第二线径线路长度与下行环路衰 减参数值关系数据分别得到第三、 第四长度值;
在获得被测线路的上行和 LATN后, 可以用查表法分别查出 #26和 #24对 应出此线路的长度( )。 在获得被测线路的下行和 LATN后, 可以用查表 法分别查出 #26和 #24对应出此线路的长度( D4,D3 )。
步骤 1003: 获得所述第一长度值和第三长度值的差的绝对值, 获取所述 第二长度值和第四长度值的差的绝对值, 比较上述两个绝对值, 以绝对值小的 一组长度值所对应线路线径与长度为测量到的线径与长度。
比较 - D41和 |D2 - ί¾ I的大小, 较小的那一组对应的线径和线长即为实际 线路的线径和线长。
本实施方式仅测量一个参数值, 方便测量。 参阅图 11, 提供本发明测量线路的方法第五实施方式, 本发明方案实施 例三是利用测试参数中的 Hlog(f)值来计算线路长度和线径, 通过下面步骤实 现:
步骤 1101: 获得被测线路的插入损耗的对数值 Hlogtoi;
步骤 1102: 将第一线径线路一个中间距离的环路的第一插入损耗对数理 论值 Hlogrc/24和所述被测线路的插入损耗对数值 Hlogterf代入固定频率下插入 损耗对数值 Hlog(/)与线路长度的线性函数, 得到可选线路长度 Ltoi24, 将第二 线径线路一个中间距离的环路的第二插入损耗对数理论值 Hloge/26和所述被 测线路的 H \ogtest代入固定频率下 Hlog(/)与线路长度的线性函数, 得到可选线 路长度 Ltesi26 ;
由式 37
Figure imgf000018_0001
oc L可知, 当频率 >1 ΟΟΚΗζ时,在相同的频率下, Hlog(f) 和线路长度 L近似成线性关系:
Hlog( )2 L2 首先获得线路 Hlogterf参数。 之后分别选择 #24和 #26—个中间距离的环 路(如 2公里)的理论值 Hlog 24和 Hlogrc/26作为参考环路; 利用式 42可得:
Figure imgf000018_0002
将测得的 Hlogterf参数分别代入 43和 44式,得到两个不同线径下的长度值 步骤 1103: 将所述第一线径线路的线径值以及所述线路长度 Lfe^24代入插 入第一线径线路的损耗函数 Hlin(f), 再取对数值 Hlog, 获得 Hlogtoi24, 将所 述第二线径线路的线径值以及所述线路长度 Ltei26代入插入第二线径线路的损 耗函数 Hlin(f), 再取对数值 Hlog, 获得 Hlogteii26;
在所有频段内求下面的方差和: error24 =∑|| Hlog )卜 | Hl0gte ) ||2 (45) error26 =∑|| Hlog )卜 | HU ||2 ( 46 ) 步骤 1104: 获得所有频段或者部分频段内 H log toi与 H log ^24的均方误差 和、 方差和、 或差值和, 获得所有频段或者部分频段内 H log toi与 H l0gtoi2 々 均方误差和、 方差和、 或差值和, 比较上述两组数据的误差和, 以误差和小的 那一组数据对应的线路长度及其线径为被测线路长度和线径。
比 ^口, 比较式 errar247fo errar26的大小, 对应较小值的 error 的线径和线长 即是实际线路的线长线径。
在更多实施方式中, 可以不釆用插入损耗函数的对数形式, 而直接釆用插 入函数值本身进行计算,这样插入损耗对数值 Hlog(/)与线路长度的线性函数则 更改为插入损耗对数值 Hlog( )与线路长度的函数。
本领域普通技术人员可以理解实现上述测量线路长度的方法实施方式中 的全部或部分步骤是可以通过程序来指令相关的硬件来完成,所述的程序可以 存储于计算机可读取存储介质中, 该程序在执行时, 可以包括前述本发明方法 各个实施方式的内容。 这里所称得的存储介质, 如: ROM/RAM、 磁碟、 光盘 等。
参阅图 12, 本发明还提供测量装置第一实施方式, 所述测量装置包括: 保存单元,用于保存第一线径线路在固定频率下的线路长度与 Hlin(f)的相 位弧度值关系数据、 以及线路长度与环路衰减参数值的关系数据; 还进一步保 存第二线径线路在该固定频率下的线路长度与 Hlin(f)的相位弧度值关系数据、 以及线路长度与环路衰减参数值的关系数据;
测量单元,用于获得被测量线径线路 Hlin(f)的相位弧度值和环路衰减参数 值;
查找单元, 用于根据被测量线径线路 Hlin(f)的相位弧度值在所述第一、 第 二线径线路长度与 Hlin(f)的相位弧度值关系数据中查询得到两个长度值,根据 所述两长度值定义第一长度范围;根据被测线径线路环路衰减参数值在所述第 一、 第二线径线路长度与环路衰减参数值的关系数据中查询得到两个长度值, 根据所述两长度值定义第二长度范围;
判断单元,用于判断所述第一长度范围的中点靠近所述第二长度范围的哪 个边界, 以所述中点靠近的边界对应的线路长度值为测量到的线路长度, 以该 线路长度值对应的线径为测量到的线径。
以上本发明第一实施方式可以看出,由于预先得到各种可能线径线路的线 路长度与 Hlin(f)的相位弧度值关系数据、以及线路长度与环路衰减参数值的关 系数据, 然后根据实际被测线路得到的 Hlin(f)相位弧度值、 环路衰减参数值, 在所述各种线径线路长度与 Hlin(f)的相位弧度值、环路衰减参数值关系数据得 到相应的各个长度值,得到第一、二长度范围。现有技术中可以推出,从第一、 第二线径线路的相位弧度值与线路长度关系数据中得到的第一长度范围较第 二长度范围小, 也即精确度高, 因此以第一长度范围的中点为判断依据, 以所 述中点靠近的第二长度范围边界一侧对应的线路长度值为测量到的线路长度, 以该线路长度值对应的线径为测量到的线径 ,因此能巧妙地同时确认被测线路 的线长和线径, 提高测量精确度, 便于后续线路或故障维护。
参阅图 13 , 本发明还提供测量装置第二实施方式。 所述测量装置包括: 保存单元,用于保存第一线径线路的线路长度与上行环路衰减参数值的关 系数据、 以及所述第一线径线路的线路长度与下行环路衰减参数值的关系数 据; 还进一步保存第二线径线路的线路长度与上行环路衰减参数值的关系数 据、 以及所述第二线径线路的线路长度与下行环路衰减参数值的关系数据; 测量单元, 获得被测量线径线路环路衰减参数值;
查找单元, 用于根据被测量线径线路环路衰减参数值在所述第一、 第二线 径线路长度与上行环路衰减参数值关系数据中分别得到第一、第二长度值; 根 据被测量线径线路环路衰减参数值在所述第一、第二线径线路长度与下行环路 衰减参数值关系数据分别得到第三、 第四长度值;
判断单元, 用于在获得所述第一长度值和第三长度值的绝对值、 所述第二 长度值和第四长度值的绝对值后, 比较上述两个绝对值, 以绝对值小的一组长 度值所对应线路线径与长度为测量到的线径与长度。
值得说明的是, 前述本发明测量装置第一实施方式中的保存单元、测量单 元、 查找单元以及判断单元可以集成在一个处理模块中; 同理, 前述本发明 测量装置第二实施方式中的各单元也可以集成在一个处理模块中; 或者, 前述 各实施方式各单元中的任何两个或两个以上都可以集成在一个处理模块中。 本发明还提供测量装置第三实施方式。 所述测量装置包括:
获取单元, 用于分别获得第一、第二线径线路在固定频率下的线路长度与 插入损耗的相位弧度值关系数据、 以及线路长度与环路衰减参数值的关系数 据;
查找单元, 用于根据被测量线径线路插入损耗的相位弧度值在所述第一、 第二线径线路长度与插入损耗的相位弧度值关系数据中查询得到的两个长度 值定义第一长度范围; 根据被测线径线路环路衰减参数值在所述第一、 第二线 径线路长度与环路衰减参数值的关系数据中查询得到两个长度值,分别以所述 两长度值为中心为中点定义第二、 三长度范围, 定义所述第二、 三长度范围之 间剩下的长度范围为第四长度范围, 所述第二、 三长度范围分别对应第一、 第 二线径线路, 所述第四长度范围对应第一和二线径线路组成的混合线路; 确定单元, 用于在所述第一长度范围的中点属于第二长度范围时,确定该 第二长度范围所对应线径为测量到的第一线径;当所述第一长度范围的中点属 于第三长度范围时,确定该第三长度范围所对应线径为测量到的第二线径; 当 所述第一长度范围的中点属于第四长度范围时,确定该第四长度范围所对应的 混合线径为测量到的线径。
本发明还提供测量装置第四实施方式。 所述测量装置包括:
插入损耗获取单元, 用于获得被测线路的插入损耗;
计算单元, 用于分别将第一、 第二线径线路一个中间距离的环路的第一、 第二插入损耗理论值和所述被测线路的插入损耗代入固定频率下插入损耗与 线路长度的函数, 得到第一、 第二可选线路长度; 分别将所述第一、 第二线径 线路的线径值以及所述第一、第二线路长度代入第一、第二线径线路的插入损 耗函数, 获得第一、 第二插入损耗计算值;
确定单元,用于获得所有频段或者部分频段内被测线路的插入损耗与第一 插入损耗计算值的误差和,获得所有频段或者部分频段内被测线路的插入损耗 与第二插入损耗计算值的误差和, 比较上述两组数据的误差和, 以误差和小的 那一组数据对应的线路长度及其线径为被测线路长度和线径。
值得说明的是,本发明测量装置实施方式中的各单元既可以釆用硬件的形 式实现, 可软件实现的部分也可以釆用软件功能模块的形式实现。 相应地, 本 发明实施方式既可以作为独立的产品销售或使用,可软件实现的部分也可以存 储在一个计算机可读取存储介质中进行销售或使用。
综上, 本发明至少可以产生如下技术效果:
1 ) 能对 DELT能够测试范围内的线路长度和线径同时进行判断, 并且测 试长度范围大, 通常 DELT能够测试 #26线径线路长度范围在 (0~6000m);
2 )对于长度计算和线径判断的精确度较高, 并且因为首先判断出线径, 然后根据该线径的特性去判断线路的长度, 精确度高;
3 )可以判断线路是否为混合线径;
4 )使用性较为广泛。 可以在 DELT参数 Hlin、 Hlog、 LATN中任选其一、 两两结合或者全部作为线路测量的参数。
以上对本发明所提供的一种线路测量方法以及测量装置通过具体实施例 进行了详细介绍, 以上实施例的说明只是用于帮助理解本发明的方法及其思 想; 同时, 对于本领域的一般技术人员, 依据本发明的思想, 在具体实施方式 及应用范围上均会有改变之处, 综上所述, 本说明书内容不应理解为对本发明 的限制。

Claims

权 利 要 求
1、 一种测量线路的方法, 其特征在于, 包括:
分别获得第一、第二线径线路在固定频率下的线路长度与插入损耗的相位 弧度值关系数据、 以及线路长度与环路衰减参数值的关系数据;
根据被测量线径线路插入损耗的相位弧度值在所述第一、第二线径线路长 度与插入损耗的相位弧度值关系数据中查询得到的两个长度值定义第一长度 范围; 根据被测线径线路环路衰减参数值在所述第一、第二线径线路长度与环 路衰减参数值的关系数据中查询得到的两个长度值定义第二长度范围;
判断所述第一长度范围的中点靠近所述第二长度范围的哪个边界,以所述 中点靠近的边界一侧对应的线路长度值为测量到的线路长度,以该线路长度值 对应的线径为测量到的线径。
2、 根据权利要求 1所述的测量线路的方法, 其特征在于, 所述测量得到 的第一、第二线径线路环路衰减参数值是通过第一、第二线径线路测量得到的 上行或下行环路衰减参数值。
3、 根据权利要求 1所述的测量线路的方法, 其特征在于, 所述: 以所述 中点靠近的边界一侧对应的线路长度值为测量到的线路长度,是指: 确认所述 中点靠近的第二长度范围边界,选择所述确认的第二长度范围边界所临近的第 一长度范围的边界,以选择的所述第一长度范围边界所对应的线路长度值为测 量到的线路长度。
4、 一种测量线路的方法, 其特征在于, 包括:
分别获得第一、第二线径线路在固定频率下的线路长度与插入损耗的相位 弧度值关系数据、 以及线路长度与环路衰减参数值的关系数据;
根据被测量线径线路插入损耗的相位弧度值在所述第一、第二线径线路长 度与插入损耗的相位弧度值关系数据中查询得到的两个长度值定义第一长度 范围; 根据被测线径线路环路衰减参数值在所述第一、第二线径线路长度与环 路衰减参数值的关系数据中查询得到两个长度值,分别以所述两长度值为中心 为中点定义第二、 三长度范围, 定义所述第二、 三长度范围之间剩下的长度范 围为第四长度范围, 所述第二、 三长度范围分别对应第一、 第二线径线路, 所 述第四长度范围对应第一和二线径线路组成的混合线路; 当所述第一长度范围的中点属于第二长度范围时,确定该第二长度范围所 对应线径为测量到的第一线径;当所述第一长度范围的中点属于第三长度范围 时,确定该第三长度范围所对应线径为测量到的第二线径; 当所述第一长度范 围的中点属于第四长度范围时,确定该第四长度范围所对应的混合线径为测量 到的线径。
5、 一种测量线路的方法, 其特征在于, 包括:
分别获得第一、第二线径线路的线路长度与上行环路衰减参数值的关系数 据, 分别获得所述第一、第二线径线路的线路长度与下行环路衰减参数值的关 系数据;
根据被测量线径线路环路衰减参数值在所述第一、第二线径线路长度与上 行环路衰减参数值关系数据中分别得到第一、第二长度值; 根据被测量线径线 路环路衰减参数值在所述第一、第二线径线路长度与下行环路衰减参数值关系 数据分别得到第三、 第四长度值;
获得所述第一长度值与第三长度值的差的绝对值,获取所述第二长度值与 第四长度值的差的绝对值, 比较上述两个绝对值, 以绝对值小的一组长度值所 对应线路线径与长度为测量到的线径与长度。
6、 一种测量线路的方法, 其特征在于, 包括:
获得被测线路的插入损耗;
分别将第一、第二线径线路一个中间距离的环路的第一、第二插入损耗理 论值和所述被测线路的插入损耗代入固定频率下插入损耗与线路长度的函数, 得到第一、 第二可选线路长度;
分别将所述第一、第二线径线路的线径值以及所述第一、第二线路长度代 入第一、 第二线径线路的插入损耗函数, 获得第一、 第二插入损耗计算值; 获得所有频段或者部分频段内被测线路的插入损耗与第一插入损耗计算 值的误差和,获得所有频段或者部分频段内被测线路的插入损耗与第二插入损 耗计算值的误差和, 比较上述两组数据的误差和, 以误差和小的那一组数据对 应的线路长度及其线径为被测线路长度和线径。
7、 如权利要求 6所述的测量线路的方法, 其特征在于, 所述误差和为均 方误差和、 或方差和、 或差值和。
8、 一种测量装置, 其特征在于, 包括:
保存单元,用于保存第一线径线路在固定频率下的线路长度与插入损耗的 相位弧度值关系数据、 以及线路长度与环路衰减参数值的关系数据; 还进一步 保存第二线径线路在该固定频率下的线路长度与插入损耗的相位弧度值关系 数据、 以及线路长度与环路衰减参数值的关系数据;
测量单元,用于获得被测量线径线路插入损耗的相位弧度值和环路衰减参 数值;
查找单元, 用于根据被测量线径线路插入损耗的相位弧度值在所述第一、 第二线径线路长度与插入损耗的相位弧度值关系数据中查询得到的两个长度 值定义第一长度范围; 根据被测线径线路环路衰减参数值在所述第一、 第二线 径线路长度与环路衰减参数值的关系数据中查询得到的两个长度值定义第二 长度范围;
判断单元,用于判断所述第一长度范围的中点靠近所述第二长度范围的哪 个边界, 以所述中点靠近的边界一侧对应的线路长度值为测量到的线路长度, 以该线路长度值对应的线径为测量到的线径。
PCT/CN2008/072974 2007-11-09 2008-11-07 Procédé et dispositif de mesure de ligne WO2009067898A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP08854824A EP2112810B1 (en) 2007-11-09 2008-11-07 Line measuring method and device
AT08854824T ATE524918T1 (de) 2007-11-09 2008-11-07 Verfahren und vorrichtung für leitungsmessung
US12/541,230 US8184778B2 (en) 2007-11-09 2009-08-14 Line measurement method and measurement apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710188123.2 2007-11-09
CN2007101881232A CN101159777B (zh) 2007-11-09 2007-11-09 线路测量方法以及测量装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/541,230 Continuation US8184778B2 (en) 2007-11-09 2009-08-14 Line measurement method and measurement apparatus

Publications (1)

Publication Number Publication Date
WO2009067898A1 true WO2009067898A1 (fr) 2009-06-04

Family

ID=39307691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/072974 WO2009067898A1 (fr) 2007-11-09 2008-11-07 Procédé et dispositif de mesure de ligne

Country Status (6)

Country Link
US (1) US8184778B2 (zh)
EP (1) EP2112810B1 (zh)
CN (1) CN101159777B (zh)
AT (1) ATE524918T1 (zh)
ES (1) ES2371138T3 (zh)
WO (1) WO2009067898A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101159777B (zh) 2007-11-09 2011-02-09 华为技术有限公司 线路测量方法以及测量装置
CN101572569B (zh) * 2008-05-04 2013-01-23 华为技术有限公司 一种线路拓扑管理方法、系统及相关装置
GB2493684A (en) * 2011-05-17 2013-02-13 British Telecomm Measurement method
EP2525502A1 (en) 2011-05-17 2012-11-21 British Telecommunications Public Limited Company Measurement method
CN105319480B (zh) * 2014-07-21 2019-11-12 南京中兴新软件有限责任公司 线路诊断方法及装置
CN106771650A (zh) * 2016-11-15 2017-05-31 中国电子科技集团公司第四十研究所 一种差分多端口器件测试建模方法
CN107040321B (zh) * 2016-12-15 2020-08-21 通号(北京)轨道工业集团有限公司 一种参考环校准方法及装置
US11411605B2 (en) 2017-03-30 2022-08-09 British Telecommunications Public Limited Company Measurement method
US11218189B1 (en) * 2020-10-09 2022-01-04 Viavi Solutions Inc. Method and apparatus providing common path distortion (CPD) detection from a field instrument

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020181665A1 (en) * 2001-04-26 2002-12-05 Murat Belge Systems and methods for loop characterization from double-ended measurements
CN1545769A (zh) * 2001-07-05 2004-11-10 ʤ��ͨѶ���޹�˾ Dsl系统中的单端线路探测
CN1663227A (zh) * 2002-06-20 2005-08-31 泰拉丁公司 用于使用平均环路损耗对用于dsl服务的电话线预鉴定的系统和方法
CN1784586A (zh) * 2003-05-12 2006-06-07 艾利森电话股份有限公司 估计线路属性的方法和布置
US20060159231A1 (en) * 2005-01-18 2006-07-20 Tollgrade Communications, Inc. Apparatus and method for measuring loop insertion loss single-endedly
US20060227940A1 (en) * 2005-04-08 2006-10-12 Nima Ferdosi Double-ended line probing (DELP) for DSL systems
US20070121520A1 (en) * 2005-11-29 2007-05-31 Sbc Knowledge Ventures L.P. System and method for automated double-ended field management of DSL service
CN101159777A (zh) * 2007-11-09 2008-04-09 华为技术有限公司 线路测量方法以及测量装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6466647B1 (en) * 1999-11-17 2002-10-15 Bellsouth Intellectual Property Corporation System and method for estimating the capacity of a local loop to carry data
WO2001052439A1 (en) * 2000-01-07 2001-07-19 Aware, Inc. Systems and methods for loop length and bridged tap length determination of a transmission line
EP1444802B1 (de) * 2001-11-15 2007-02-28 Swisscom Fixnet AG Verfahren und system zum bestimmen von datentransfermargins für netzwerkverbindungen
US7809116B2 (en) * 2003-12-07 2010-10-05 Adaptive Spectrum And Signal Alignment, Inc. DSL system estimation including known DSL line scanning and bad splice detection capability
WO2005069856A2 (en) * 2004-01-14 2005-08-04 Conexant Systems, Inc. Method and apparatus for single end loop testing for dsl provisioning and maintenance
CN1588966A (zh) * 2004-09-27 2005-03-02 新太科技股份有限公司 Adsl线路参数的测试方法
US7130032B2 (en) * 2005-03-11 2006-10-31 Northrop Grumman Corporation Alternate test method for RF cable testing to avoid long test cables
CN100501430C (zh) * 2005-06-03 2009-06-17 华为技术有限公司 测量数字用户线路插入损耗的方法和装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020181665A1 (en) * 2001-04-26 2002-12-05 Murat Belge Systems and methods for loop characterization from double-ended measurements
CN1545769A (zh) * 2001-07-05 2004-11-10 ʤ��ͨѶ���޹�˾ Dsl系统中的单端线路探测
CN1663227A (zh) * 2002-06-20 2005-08-31 泰拉丁公司 用于使用平均环路损耗对用于dsl服务的电话线预鉴定的系统和方法
CN1784586A (zh) * 2003-05-12 2006-06-07 艾利森电话股份有限公司 估计线路属性的方法和布置
US20060159231A1 (en) * 2005-01-18 2006-07-20 Tollgrade Communications, Inc. Apparatus and method for measuring loop insertion loss single-endedly
US20060227940A1 (en) * 2005-04-08 2006-10-12 Nima Ferdosi Double-ended line probing (DELP) for DSL systems
US20070121520A1 (en) * 2005-11-29 2007-05-31 Sbc Knowledge Ventures L.P. System and method for automated double-ended field management of DSL service
CN101159777A (zh) * 2007-11-09 2008-04-09 华为技术有限公司 线路测量方法以及测量装置

Also Published As

Publication number Publication date
US20090296896A1 (en) 2009-12-03
ES2371138T3 (es) 2011-12-27
CN101159777A (zh) 2008-04-09
EP2112810A4 (en) 2010-07-07
CN101159777B (zh) 2011-02-09
EP2112810B1 (en) 2011-09-14
ATE524918T1 (de) 2011-09-15
US8184778B2 (en) 2012-05-22
EP2112810A1 (en) 2009-10-28

Similar Documents

Publication Publication Date Title
WO2009067898A1 (fr) Procédé et dispositif de mesure de ligne
US7521938B2 (en) Modeling and calibrating a three-port time-domain reflectometry system
US8265232B2 (en) Estimation of transmission line insertion loss
US20090024340A1 (en) Method and a System for Cable or Subscriber Loop Investigation Performing Loop Topology Identification
JP4759047B2 (ja) Dslモデムのためのダブルエンド回線調査(delp)
JP2003520489A (ja) 伝送ラインのループ長・ブリッジタップ長を決定するためのシステムおよび方法
TWI441465B (zh) 用於評估電信傳輸線之特性的方法、裝置及電腦可讀取儲存媒體
CN101572569B (zh) 一种线路拓扑管理方法、系统及相关装置
US9054785B2 (en) Method and arrangement in a telecommunication system for estimating frequency dependent resistance
US20050094785A1 (en) Technique for estimation of a subscriber line insertion loss
US7263121B2 (en) Method and apparatus for determining a topology of a subscriber line loop
US9130655B2 (en) Methods and systems for detecting metallic faults affecting communications links
US8798946B2 (en) Method and arrangement for a digital subscriber line
CN100486273C (zh) 一种数字用户线路外线衰减的测算方法
RU2406224C2 (ru) Способ, устройство и программный продукт для оценки свойств линии передачи системы связи
EP2503720A1 (en) Spiral-shaped interpolation of coupling coefficients
JP2006322826A (ja) ケーブルテスター

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08854824

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008854824

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE