WO2009066969A1 - Fibre optique à émission/détection latérale et ses procédés de fabrication - Google Patents

Fibre optique à émission/détection latérale et ses procédés de fabrication Download PDF

Info

Publication number
WO2009066969A1
WO2009066969A1 PCT/LV2008/000002 LV2008000002W WO2009066969A1 WO 2009066969 A1 WO2009066969 A1 WO 2009066969A1 LV 2008000002 W LV2008000002 W LV 2008000002W WO 2009066969 A1 WO2009066969 A1 WO 2009066969A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibre
optical
core
axis
optical fibre
Prior art date
Application number
PCT/LV2008/000002
Other languages
English (en)
Inventor
Janis Spigulis
Original Assignee
Latvijas Universitate
Somta, Sia
Z-Light, Sia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Latvijas Universitate, Somta, Sia, Z-Light, Sia filed Critical Latvijas Universitate
Publication of WO2009066969A1 publication Critical patent/WO2009066969A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/262Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2552Splicing of light guides, e.g. by fusion or bonding reshaping or reforming of light guides for coupling using thermal heating, e.g. tapering, forming of a lens on light guide ends

Definitions

  • the present invention relates to fibre optics, particularly to the optical signal transmission through the optical fibre end orthogonally to the fibre axis, and can be used in illumination engineering, phototherapy, endoscopy, laser surgery, optical tomography, optical instrumentation and other industry fields.
  • Devices with beam deflecting endprobes are more compact and reliable. Such devices are used, for example, in the equipments for phototherapy and laser surgery; fibres used in such devices often are called as "side-firing fibres".
  • side-firing fibres Several designs of such fibre probes are known, e. g. with sloped flat or curved reflector, facing to the fibre end (patent US 5366456), with bended fibre bundle end (patent US 5416878), with sloped-polished optical fibre core, assuring the beam deflection due to the total internal reflection (patent US 5537499).
  • the radiation in such "side- firing" optical fibres is partially focused due to the refraction on the cylindrical side surface of the fibre core.
  • This increases power density of the radiation nearby the headpiece, which is positive, for example, in the case of laser scalpel.
  • presence of the cylindrical surface in certain applications acts negatively, if the mentioned endprobe is used for detection of radiation from the side, for example, in contact with plan skin surface. Then considerable part of the radiation to be detected is lost due to reflection and refraction on the cylindrical interface.
  • the known fibre probe has rather complicated design, being composed of three main parts (optical fibre, micro-prism and headpiece shell), laborious manufacturing process (high precision assembly), relatively large dimensions (approximately three times exceeding the fibre diameter) and, finally, relatively low positioning accuracy at the investigated skin surface location, because the area of the lateral input surface of the prism approximately four times exceeds the cross- section of the fibre core.
  • This is the reason of relatively low effectiveness of radiation collection - only small portion of the radiation, incoming via the contact surface and prism, further will be transmitted by the fibre core.
  • Considerable expenditure of the raw materials for manufacturing of the prism and headpiece shell also can be regarded as a drawback. High manufacturing laboriousness and costs of main elements determine high cost of the whole device, restricting its wide application.
  • the optical coating thickness should be artificially increased, which is quite difficult from the technological point of view.
  • the planar fragment of the radiation outlet surface lies between the fibre external cover and the core, the mechanical contact of the radiation output plane and the external surface never can be achieved (always a gap between two planes will remain), which means light loss due to absence of good optical contact.
  • the mentioned drawbacks restrict effective radiation detection from the examined planar surface, for example skin, via the external plane oriented parallel to the optical fibre axis.
  • the aim of the invention is to avoid drawbacks of the prior art, particularly to create smaller simplified optical fibre end or distal probe design, assuring higher precision of the emission/detection zone location and enhanced effectiveness of the detected radiation collection.
  • the mentioned aim is reached by inclining the total internal reflection endface relatively to the optical fibre axis and introducing a planar output/input surface parallel to the fibre axis, filling the space between the output/input planar surface and the lateral surface of the cylindrical core with optically transparent material, that of the fibre core or similar, thus optically monolithically integrating the reflecting surface and the output/input planar surface at the end of optical fibre core.
  • Fig. IA represents the prior art design of side emitting optical fibre end, axial section.
  • Fig. IB represents the cross-section of side emitting optical fibre end, prior art.
  • Fig.2 represents design of the side emitting/detecting optical fibre end with the output/input zone of optical signal.
  • Fig.3 illustrates the sequence of manufacturing steps of the side emitting/detecting optical fibre, according to the first embodiment of the invention.
  • Fig.4 illustrates the sequence of manufacturing steps of the side emitting/detecting optical fibre, according to the second embodiment of the invention.
  • Fig.5 illustrates the sequence of manufacturing steps of the side emitting/detecting optical fibre, according to the third embodiment of the invention.
  • Fig.6 illustrates the sequence of manufacturing steps of the side emitting/detecting optical fibre, according to the fourth embodiment of the invention.
  • Fig.7 illustrates the sequence of manufacturing steps of the side emitting/detecting optical fibre, according to the fifth embodiment of the invention.
  • Fig.8 illustrates the method of manufacturing of side emitting/detecting optical fibre, which provides attachment of separately made sleeve on the optical fibre end.
  • the radiation is deflected at the optical fibre end by means of total internal reflection, complemented with additional integrated smooth planar output/input lateral surface 10, parallel to the fibre symmetry axis.
  • the core end surface 20, cleaned of the external coating is sloped to meet the condition of total internal reflectance, i.e. at all its points the angle of the surface normal against the fibre symmetry axis is greater than the critical angle of total internal reflection arc sin (ni/ri 2 ), were ni and «2 are the refraction indices of air and optical fibre core material, respectively.
  • both surfaces 10 and 20 are smoothly polished.
  • the space between surfaces 20 and 10, which is situated beyond the cylindrical core lateral surface, is entirely filled with the fibre core material or with other transparent material having the refraction index equal or close to ri 2 . In this way the orthogonal ray refraction on the core cylindrical lateral surfaces is excluded.
  • the area of the input/output surface 10 is comparable with the optical fibre cross-section area 30, but its distance to the fibre axis is equal to or greater than the radius R of the fibre external protective coating.
  • Fig.3 illustrates the method of manufacturing of the side emitting/detecting optical fibre, which intends enlargement of the optical fibre end with following grinding and/or polishing.
  • This method is applicable, for example, to optical fibres with core made of glass, including SiO 2 glass.
  • the coating near fibre end is cleaned, for example, for 3 cm along the core.
  • fibre end enlargement e.g. ball-shaped or of similar geometry
  • the two opposite sides of the enlargement are grinded/polished mutually parallel, parallel to the fibre axis and equidistant from it (close to the optical fibre core radius).
  • the internal reflecting surface 20 is grinded/polished in such a way, that it crosses the core cylindrical surface at the beginning of the enlarged portion.
  • the rest of untreated enlarged portion is grinded/polished orthogonally to the both lateral sides and parallel to the fibre axis at a distance > R from it, thus forming the input/output surface 10.
  • Fig.4 illustrates the method of manufacturing of the side emitting/detecting optical fibre, which intends to build up an additional part of the optical fibre core near its end opposite to the inclined polished reflecting surface 20 with following grinding and/or polishing of the build up part.
  • the method it is foreseen to fill the space between the input/output surface 10 and the facing cylindrical lateral surface of the fibre core with additionally fed material - either the core material or another transparent material with corresponding refraction index, for example, optical polymer or optical adhesive.
  • the coating is cleaned from the fibre core at approximately 1 cm long portion, starting from the end.
  • the internally reflecting surface 20 is sloped grinded/polished.
  • Part of the core in front of the surface 20 behind the core lateral surface is thickened with appropriate material in a width equal to the core diameter, for example, by pouring liquid optical polymer or adhesive in the mould.
  • Fig.5 illustrates the method of manufacturing of the side emitting/detecting optical fibre, which intends thermal pressure shaping of the end of the optical fibre.
  • This method is suitable to treat optical fibre made of plastic low-melting materials, for example, of polymer optical fibres. Comparing with the two previous methods, the last one is more economical, it allows reducing hand-work, rendering automatic scale production and cut down materials losses.
  • To make side emitting/detecting optical fibre by the mentioned method it is necessary to create a die mould for thermal shaping with internal cavity, corresponding to the shape shown in the Fig.2.
  • the coating is cleaned from the core near to the fibre end, for example, along 1 cm.
  • the cleaned fibre end is introduced into the die mould, it melts and takes the necessary shape by heating the die mould and pressing the fibre end in the axial direction.
  • Fig. 6 illustrates the method of manufacturing of the side emitting/detecting optical fibre, which uses a part of the same fibre (with a plane-polished end, orthogonal to the fibre axis) to fill the space between both working planes.
  • the method intends to make a planar cut, sloped to the fibre axis, for example, at the angle 45°, near the end of the cleaned fibre core.
  • the cut off fragment is turned by 180° around the axis, orthogonal to the cut plane, and then attached to the sloped fibre end, for example, by the optical adhesive.
  • the end reflecting surface 20 should is cut sloped to the fibre axis and polished to obtain the fibre end configuration, shown in the Fig 2.
  • Fig.7 illustrates the method of manufacturing of the side emitting/detecting optical fibre, which intends to create the sloped reflecting surface 20 at the fiber end (for example, by grinding and polishing) and to attach (for example with optical adhesive) an optical component, made of transparent material with appropriate refraction index to the cylindrical lateral surface in front of the reflecting surface 20.
  • This component is shaped as the additionally fed material illustrated at Fig.4. The mentioned method is more appropriate for the mass production.
  • Fig. 8 illustrates the method of manufacturing of the side emitting/detecting optical fibre, which intends to fix a separately made sleeve at the end of the optical fibre. Since both surfaces 10 and 20 are integrated in the monolith coaxial sleeve mounted on the fibre core, this method is more convenient from the technological point of view for mass production.
  • the sleeve made of transparent material is shaped as it is shown in the Fig.2, for example, by using appropriately designed die mould for optical polymer. Then the coating is cleaned from the fibre near the polished end, orthogonal to the fibre axis, and the sleeve is strung on the core and fixed on it by optical adhesive.
  • the proposed methods if compared with the known technical solutions, assure the following technical advantages: - smaller dimensions of the side emitting/detecting optical fibres, which are more convenient in use and reduce the optical material consumption, - shorter optical pass of radiation between the fibre core and the input/output planar surface, assuring more precise location of the emitted/detected radiation on the contact surface, for example, on skin, and enhancing effectiveness of the radiation collecting.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Radiation-Therapy Devices (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

L'invention porte sur des fibres optiques, en particulier sur la transmission de signal optique à travers l'extrémité d'une fibre optique, de façon orthogonale à son axe de symétrie, et peut être appliquée en ingénierie d'éclairage, photothérapie, endoscopie par fibre optique, chirurgie laser, tomographie optique, ingénierie d'instrument optique et dans d'autres domaines. La fibre optique d'émission/détection latérale proposée avec une surface de réflexion interne totale inclinée vers l'axe de fibre et un plan de sortie/d'entrée parallèle à l'axe de fibre est caractérisée en ce que la surface de réflexion et le plan de sortie/d'entrée sont intégrés optiquement de manière monolithique à l'extrémité de l'âme de fibre optique par remplissage de l'espace entre le plan de sortie/d'entrée et la surface latérale cylindrique de l'âme à l'avant de la surface réfléchissante avec un matériau de l'âme de fibre ou avec un matériau optiquement transparent similaire, à la distance du plan de sortie/d'entrée à partir de l'axe de fibre qui est égale ou dépasse un rayon externe de la fibre. La configuration proposée fournit plusieurs avantages techniques, en particulier, une dimension inférieure (qui est plus commode en utilisation et réduit la consommation de matière optique), un passage de lumière plus court à partir de/vers l'âme de fibre (ce qui assure une localisation plus précise du rayonnement émis/détecté au niveau de la surface de contact, ainsi qu'un rendement de collecte de rayonnement amélioré), un assemblage optique solide (qui exclut une réfraction de rayonnement pendant sa déviation, minimise les pertes optiques et assure un fonctionnement plus sûr), et permet aussi d'obtenir un contact optique qualitatif avec une surface plane, orientée parallèle à l'axe de fibre, sans aucun composant supplémentaire.
PCT/LV2008/000002 2007-11-20 2008-05-15 Fibre optique à émission/détection latérale et ses procédés de fabrication WO2009066969A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
LVP-07-132A LV13940B (lv) 2007-11-20 2007-11-20 Sāniski izstarojoša/uztveroša optiskā šķiedra un tās izgatavošanas paņēmieni
LVP-07-132 2007-11-20

Publications (1)

Publication Number Publication Date
WO2009066969A1 true WO2009066969A1 (fr) 2009-05-28

Family

ID=39736843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/LV2008/000002 WO2009066969A1 (fr) 2007-11-20 2008-05-15 Fibre optique à émission/détection latérale et ses procédés de fabrication

Country Status (2)

Country Link
LV (1) LV13940B (fr)
WO (1) WO2009066969A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013148758A1 (fr) * 2012-03-28 2013-10-03 Corning Incorporated Systèmes optiques monolithiques de mise en forme de faisceaux et procédé pour une sonde de tomographie en cohérence optique
WO2014039323A1 (fr) * 2012-09-04 2014-03-13 Ninepoint Medical, Inc. Sonde optique moulée de faible coût à correction astigmatique, orifice de fibre, faible rétroréflexion, et à haute reproductibilité pour une fabrication en quantités
WO2018045206A3 (fr) * 2016-08-31 2018-04-19 University Of Houston System Fabrication et applications de multiples fibres optiques à allumage latéral et à fenêtre latérale

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60250322A (ja) * 1984-05-26 1985-12-11 Hirosada Hashimoto レ−ザ−ビ−ム側射用フアイバ
JPH01237604A (ja) * 1988-03-18 1989-09-22 Fujitsu Ltd ファイバ型波長板
US5390271A (en) * 1993-05-03 1995-02-14 Litton Systems, Inc. Optical interface for hybrid circuit
US5571099A (en) * 1995-05-09 1996-11-05 Pioneer Optics Company Side firing probe
US20020076152A1 (en) * 2000-12-14 2002-06-20 Hughes Richard P. Optical fiber termination
US20030010904A1 (en) * 2001-07-12 2003-01-16 Luo Xin Simon High speed fiber to photodetector interface

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60250322A (ja) * 1984-05-26 1985-12-11 Hirosada Hashimoto レ−ザ−ビ−ム側射用フアイバ
JPH01237604A (ja) * 1988-03-18 1989-09-22 Fujitsu Ltd ファイバ型波長板
US5390271A (en) * 1993-05-03 1995-02-14 Litton Systems, Inc. Optical interface for hybrid circuit
US5571099A (en) * 1995-05-09 1996-11-05 Pioneer Optics Company Side firing probe
US20020076152A1 (en) * 2000-12-14 2002-06-20 Hughes Richard P. Optical fiber termination
US20030010904A1 (en) * 2001-07-12 2003-01-16 Luo Xin Simon High speed fiber to photodetector interface

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013148758A1 (fr) * 2012-03-28 2013-10-03 Corning Incorporated Systèmes optiques monolithiques de mise en forme de faisceaux et procédé pour une sonde de tomographie en cohérence optique
CN104507378A (zh) * 2012-03-28 2015-04-08 康宁股份有限公司 用于oct探针的单片光束成形光学系统以及方法
US9036966B2 (en) 2012-03-28 2015-05-19 Corning Incorporated Monolithic beam-shaping optical systems and methods for an OCT probe
US9638862B2 (en) 2012-03-28 2017-05-02 Corning Incorporated Monolithic beam-shaping optical systems and methods for an OCT probe
WO2014039323A1 (fr) * 2012-09-04 2014-03-13 Ninepoint Medical, Inc. Sonde optique moulée de faible coût à correction astigmatique, orifice de fibre, faible rétroréflexion, et à haute reproductibilité pour une fabrication en quantités
WO2018045206A3 (fr) * 2016-08-31 2018-04-19 University Of Houston System Fabrication et applications de multiples fibres optiques à allumage latéral et à fenêtre latérale
US11124449B2 (en) 2016-08-31 2021-09-21 University Of Houston System Fabrication and applications of multiple side-window, side-firing optical fiber

Also Published As

Publication number Publication date
LV13940A (lv) 2009-05-20
LV13940B (lv) 2009-08-20

Similar Documents

Publication Publication Date Title
US8967885B2 (en) Stub lens assemblies for use in optical coherence tomography systems
US6246817B1 (en) Optical fiber with numerical aperture compression
US6687436B2 (en) Optical fiber with numerical aperture compression
US8861900B2 (en) Probe optical assemblies and probes for optical coherence tomography
US10725244B2 (en) Optical fiber with cladding-embedded light-converging structure for lateral optical coupling
US8857220B2 (en) Methods of making a stub lens element and assemblies using same for optical coherence tomography applications
JPH11218641A (ja) レンズ付き光ファイバとレーザモジュール
KR20140101721A (ko) 방사선 소스 및 광 안내 장치
AU2017441379B2 (en) Optical endoscope
JP2008152229A (ja) 光導波路部品および光導波路部品の製造方法
US10436967B2 (en) Optical diffuser
US20080094619A1 (en) Optical measuring device and optical measuring method
KR101278285B1 (ko) 렌즈 일체형 광섬유쌍 프로브를 이용한 이미징 시스템
WO2009066969A1 (fr) Fibre optique à émission/détection latérale et ses procédés de fabrication
CN103257395B (zh) 具有偏振功能的光纤
JP5351867B2 (ja) バンドルファイバ及びその製造方法
JP2015141371A (ja) 光ファイバ
TW200422652A (en) Grin lenses, devices and methods of manufacture
US6469835B1 (en) Optical collimator with long working distance
KR101653800B1 (ko) 고온 적용이 가능한 태양광 집광용 빔 컴바이너
CA3023878C (fr) Fibre optique ayant une structure de convergence de lumiere a gaine integree pour le couplage optique lateral
RU2528655C1 (ru) Волоконно-оптический инструмент с изогнутой дистальной рабочей частью
WO2016167204A1 (fr) Sonde optique
KR101853090B1 (ko) 광 도파로 집광용 엘이디 광원 장치
JP2007293259A (ja) 光出射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08766672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08766672

Country of ref document: EP

Kind code of ref document: A1