WO2009065985A1 - Parque eólico - Google Patents

Parque eólico Download PDF

Info

Publication number
WO2009065985A1
WO2009065985A1 PCT/ES2008/000722 ES2008000722W WO2009065985A1 WO 2009065985 A1 WO2009065985 A1 WO 2009065985A1 ES 2008000722 W ES2008000722 W ES 2008000722W WO 2009065985 A1 WO2009065985 A1 WO 2009065985A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
leader
hierarchy
wind farm
farm
Prior art date
Application number
PCT/ES2008/000722
Other languages
English (en)
French (fr)
Inventor
Oscar Alonso Sádaba
Ricardo ROYO GARCÍA
Miguel NÚÑEZ POLO
Original Assignee
Acciona Windpower, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acciona Windpower, S.A. filed Critical Acciona Windpower, S.A.
Priority to ES08852042.4T priority Critical patent/ES2588310T3/es
Priority to US12/743,444 priority patent/US8355825B2/en
Priority to EP08852042.4A priority patent/EP2233737B1/en
Publication of WO2009065985A1 publication Critical patent/WO2009065985A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/403Bus networks with centralised control, e.g. polling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/047Automatic control; Regulation by means of an electrical or electronic controller characterised by the controller architecture, e.g. multiple processors or data communications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/048Automatic control; Regulation by means of an electrical or electronic controller controlling wind farms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • G06F13/36Handling requests for interconnection or transfer for access to common bus or bus system
    • G06F13/368Handling requests for interconnection or transfer for access to common bus or bus system with decentralised access control
    • G06F13/37Handling requests for interconnection or transfer for access to common bus or bus system with decentralised access control using a physical-position-dependent priority, e.g. daisy chain, round robin or token passing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/407Bus networks with decentralised control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/4026Bus for use in automation systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Definitions

  • the following invention refers to a wind farm, with the essential object of providing at least two wind turbines with a control system that allows the wind farm to operate in which they are integrated so that one of the wind turbines acts as a leader governing the behavior of the other wind turbines.
  • these wind turbines are capable of operating in two different ways, both acting as a leader for the rest of the wind turbines in a way that sends the generation instructions to each one of them and exercising as a subject, limiting themselves to obeying the orders of the park's leading wind turbine. wind power at that time in order to achieve its proper functioning.
  • SCOPE SCOPE.
  • the invention described herein applies to a wind farm that is characterized in that at least two of the wind turbines can act as leaders, obtaining a system of collective operation of said wind farm.
  • This report also describes a wind turbine capable of acting as a leader or subject within a wind farm as described above.
  • each wind turbine incorporates a local controller that monitors the levels of voltage, current, etc. in generator bums.
  • this solution may be convenient in wind farms with a small number of wind turbines, due to the high cost of a central control in substation against the total cost of the installation.
  • Patent application EP 1 467 463 is a good example of this control scheme and it describes the mode of operation of a wind farm, in which a central control unit sends the necessary instructions to each wind turbine in the park, in function of the frequency of the network.
  • each wind turbine incorporates its own control to ensure the operation within its limits, so that in the patent application EP 1 512 869 a central controller is calculated that calculates the setpoints of reactive power for each wind turbine depending on the park voltage and an individual control on each wind turbine originates the particular voltage setpoint based on said reactive demanded from the central control.
  • the reactive setpoint may be erroneous in the face of the global voltage control when changing the operating conditions in the network.
  • it incorporates the advantage over the previous option that, thanks At the individual controls incorporated, it is monitored that the voltage levels in each wind turbine's bumpers, even if they are not optimal for the park voltage control, do not exceed the permitted limits.
  • a wind farm is described being of the type of wind farms that are formed by a plurality of wind turbines, said wind turbines comprising a rotor, a generator, a control unit and connection means to the computer network of the wind farm of which They are part, so that at least two of the wind turbines that are integrated in the park have two alternative modes of operation according to which each of them can assume:
  • Another object of the invention is to provide adequate leadership transitions between wind turbines:
  • wind turbines that can assume both a leader and subject hierarchy are assigned a predetermined position in a hierarchical list for assignment as a leader of the wind farm.
  • a wind turbine assumes the hierarchy of leader if the previous wind turbines of the aforementioned hierarchical list are not operational.
  • the order established to exercise the wind turbines the hierarchy of leader is such that the operating wind turbine closest to the electrical substation of the wind farm acts as the leader.
  • Another object of the invention is to manage the generation of reactive power in the wind farm.
  • a wind turbine assumes the hierarchy of leader, it calculates setpoints of reactive power or power or voltage factor for all the wind turbines that make up the park, sending said slogans to the rest of wind turbines through the wind farm's computer network.
  • a wind turbine when a wind turbine assumes the hierarchy of leader, it accesses the data of measurements made in substation.
  • the setpoints are calculated from a global setpoint received from a remote control or from the system operator.
  • the setpoints are calculated taking into account the reactive generation capacity by the turned off wind turbine converter.
  • the wind turbine with the leader hierarchy calculates said setpoints from the voltage measured at the point of connection of said leading wind turbine to the wind farm electrical network.
  • An additional object of the invention is to manage the generation of active power in the wind farm.
  • a wind turbine assumes the hierarchy of leader, it calculates slogans of active power limitation for all wind turbines that integrate the park from the operational state of all wind turbines and network frequency measurements made in one or more of them and sends them to the rest of wind turbines through the wind farm's computer network.
  • the power limitation of the park can be achieved by reducing the power of each of the wind turbines to a different extent from individual setpoints generated by the wind turbine that exercises the leader hierarchy.
  • the power limitation of the park is achieved by a selective shutdown of wind turbines.
  • the selective shutdown of the wind turbines is carried out with the objective of extending the useful life of the wind turbines that make up the wind farm, taking into account the number of hours worked.
  • the measurements may come from substation, from the connection point of the machine that acts as a leader, or from other wind turbines.
  • the substation measures allow any type of collective control, (of power factor, voltage, frequency, etc.), while wind turbine measurements are more suitable for collective voltage or frequency controls.
  • the wind farm described in the present invention has advantages over the prior art.
  • a collective control of the park is carried out without the need to incorporate an additional control unit, when said operations are carried out in the local controllers that are usually available to wind turbines.
  • this option of control integrated in several of the wind turbines that form the wind farm it entails a redundancy that guarantees a coordinated control of the park at all times.
  • Another object of the present invention is a wind turbine such that when it is integrated into a wind farm as described above, it has two alternative modes of operation, according to which it can assume: • a hierarchy of leader of said wind farm accessing the operation data of the rest of wind turbines, calculating and sending instructions to the rest of wind turbines that integrate said wind farm; O well,
  • Figure 1 Shows a view of an individual control scheme in which each wind turbine incorporates a control unit.
  • Figure 2 It shows a view of a central control scheme in which all wind turbines in the wind farm are governed by a central control unit.
  • Figure 3 It shows a view of a scheme of a wind farm governed by a central control unit and also providing each wind turbine with an individual control.
  • Figure 4 Shows a view of a scheme, according to the invention, in which all wind turbines are connected through the park's computer network and one of the wind turbines acts as a leader controlling the rest of wind turbines that act as subjects.
  • Figure 5 It shows a view of a scheme of a wind farm in which the wind turbine that was the leader is inoperative and the hierarchy of leader is reassigned to another wind turbine.
  • Figure 6. It shows a view of a scheme of a wind farm composed of several wind turbines that can exercise the hierarchy of leader.
  • Figure 7. Shows a view of the algorithm diagram incorporated into a database of the wind turbine control unit that can exercise the leader hierarchy for the assignment of said leader hierarchy.
  • Figure 8 Shows a view of a generic scheme of a wind turbine.
  • the control unit The same figure shows the transformer 14 usually present as part of the electrical substation through which the energy produced is poured into the electrical network.
  • Figure 2 of the designs the conventional scheme of a wind farm governed by a central control unit 16 can be observed, so that said central control unit 16, from the measurements made at the connection point of the park PCC calculates and sends instructions to each of the wind turbines 1, 2, ..., n, through the computer network of the park 11.
  • said central control unit is located in the electrical substation of the wind farm.
  • Figure 3 of the designs depicts the conventional scheme of a wind farm governed by a central control unit 106 that also incorporates local controls C1, C2, ..., Cn, faster, to ensure the operation of wind turbines 1 ,
  • Figure 4 shows a wind farm according to the invention formed by several wind turbines 1, 2, ..., n, connected to the power grid 15 from an elevator transformer 14, so that one of the wind turbines 10 will be the leader of the wind farm and the Other wind turbines will be the subjects that will follow the orders of the leading wind turbine 10.
  • All wind turbines that make up the wind farm will be connected through the computer network 11 of the park, so that the leading wind turbine 10 has access to the operating data of each of the other wind turbines.
  • a measuring device 12 at the PCC park connection point will be connected to said computer network, so that the leading wind turbine 10 has access to the data extracted from said point.
  • said computer network 11 may receive setpoints from a remote control unit 13.
  • each wind turbine 1, ..., n shown in more detail in Figure 8 consists of a rotor 21, a generator 22, a converter 23, a control unit D2 and means for connecting to the computer network 11 of the park, through which it will receive the instructions of the leading wind turbine 10 in the case of acting as a deputy or sending them to the rest of wind turbines in the case of acting as a leader.
  • the control unit D2 will be responsible for processing said setpoints and generating the necessary orders for the converter
  • the control unit D2 of the leading wind turbine 10 will have access to the operation data of the rest of the wind turbines, and, likewise, it will be able to generate the necessary orders for the rest of the wind turbines that it will send through the computer network 11 of the wind farm.
  • the leading wind turbine 10 may receive the instructions from a remote control 13 through the computer network 11 and, in a preferred embodiment, will have access to measurements made at the point of connection of the park to the PCC network by the measuring equipment 12. From all these data, the leading wind turbine will generate the instructions for each of the wind turbines, which will receive them through the computer network 11 of the wind farm, so that it will exercise collective control to ensure correct integration of the park in the network.
  • Figure 5 of the designs shows the case in which the wind turbine 1 that previously was the leader and carried out the collective control is inoperative. Before this event, another wind turbine 2 becomes the leader, its control unit being the one that will coordinate the operation of the rest of the wind turbines, as explained previously, that is, exercising the leading wind turbine 10.
  • only a part of the wind turbines that make up the wind farm have a control system such as that described in the present invention, and may be distributed among the different alignments of the wind farm.
  • Figure 6 shows a preferred embodiment of a wind farm composed of three alignments 100, 200, 300 each of which is formed by several wind turbines.
  • At least one of the wind turbines 101, 201, 301, ... of each alignment 100, 200, 300, ... has a control system as described in the present invention, so that They are prepared to act as leaders of the wind farm.
  • the leader of the wind farm sends to the rest of wind turbines capable of adopting said paper the state of the variables of the controllers, so that all of them are synchronized.
  • the leader of the wind farm sends to the rest of wind turbines capable of adopting said paper the state of the variables of the controllers, so that all of them are synchronized.
  • the position P that each wind turbine, capable of assuming the role of the leader, occupies in the hierarchical list of possible leaders can be established so that the first one is occupied by the wind turbine closest to the connection point from the PCC park to the network, since it has voltage measurements in the generator sockets more similar to those of the latter.
  • the rest of wind turbines capable of assuming the hierarchy of leader are ordered from least to greatest by proximity to said point.
  • Figure 6 shows a preferred embodiment, in which the wind turbines capable of exercising the role of leader 101, 201, 301, etc., are the wind turbines closest to the connection point of the PCC park of each alignment.
  • the position P assigned to each of the wind turbines with the possibility of acting as leader is selected by proximity to the PCC park connection point.
  • Figure 7 of the designs corresponds to the diagram of the algorithm incorporated in the control unit of the wind turbine that occupies the P position whose purpose is to evaluate at each moment, if the wind turbine performs or is to perform the collective control of the park.
  • the algorithm is such that, in the first step 1001 each control unit asks if it is a leader. Yes it is Thus, he will continue to exercise as such 1005. If this is not the case and there is no communication from him 1002, his role will be that of subject 1006. If he is not a leader and also does not receive communication from him 1003, he wonders what the position of the first operational wind turbine is. "i". If P> i, the role of the wind turbine P will be that of subject 1006. However, if this is not the case, at that moment the machine P will become the leader and perform collective control 1005.
  • the wind turbine that leads the operation of the park calculates and sends setpoints of reactive power, or power factor, or voltage to all the turbines of which the park is integrated, based on voltage measurements in its generator, or those taken at the connection point to which you have access.
  • these setpoints are calculated from global orders received from a remote control or from the system operator.
  • the reactive power generation capacity through the converter of the off machines is taken into account.
  • a wind turbine in the case of acting as a leader, calculates active power limitation setpoints based on the operating status of all wind turbines and the network frequency measurements performed on several of them and sends them to the rest of wind turbines that make up the wind farm.
  • the active power setpoints are calculated by the control unit of the leading wind turbine from frequency measurements made at the point of connection to the network to which it has access.
  • the limitation of active power can be carried out by means of a selective shutdown of wind turbines, taking into account the number of hours worked in order to extend their useful life, or by calculating individual setpoints for each of them, based on the data operations available to the wind turbine control unit that acts as a leader.

Abstract

Parque eólico, del tipo de parques eólicos que se conforman por una pluralidad de aerogeneradores, que comprenden un rotor, un generador, una unidad de control y medios de conexión a Ia red informática del parque eólico del que forman parte, de forma que al menos, dos de los aerogeneradores que se integran en el parque pueden asumir una jerarquía de líder del parque eólico accediendo a los datos de operación del resto de aerogeneradores, calculando y enviando consignas al resto de aerogeneradores que integran dicho parque eólico y una jerarquía de subdito del aerogenerador que ejerce de líder recibiendo y siguiendo las consignas procedentes del aerogenerador líder del parque eólico.

Description

PARQUE EÓL1CO. OBJETO DE LA INVENCIÓN.
La siguiente invención, según se expresa en el enunciado de Ia presente memoria descriptiva, se refiere a un parque eólico, teniendo por objeto esencial dotar a, al menos, dos aerogeneradores de un sistema de control que permita un funcionamiento del parque eólico en el que se integran de forma que uno de los aerogeneradores ejerce de líder gobernando el comportamiento de los demás aerogeneradores.
Además, dichos aerogeneradores son capaces de funcionar de dos formas distintas, tanto ejerciendo de líder para el resto de los aerogeneradores de manera que envía las consignas de generación a cada uno de ellos como ejerciendo de subdito limitándose a obedecer las órdenes del aerogenerador líder del parque eólico en ese momento con el fin de lograr un correcto funcionamiento del mismo. CAMPO DE APLICACIÓN.
La invención descrita en Ia presente memoria se aplica a un parque eólico que se caracteriza porque, al menos, dos de los aerogeneradores pueden ejercer de líder, obteniendo un sistema de operación colectiva de dicho parque eólico. En Ia presente memoria se describe también un aerogenerador capaz de ejercer de líder o de subdito dentro de un parque eólico como el descrito anteriormente.
ANTECEDENTES DE LA INVENCIÓN.
Actualmente, existen diferentes maneras de realizar el control de un parque eólico compuesto por un número variable de aerogeneradores.
Por un lado es posible realizar un control individual de los diferentes aerogeneradores, en cuyo caso, cada aerogenerador incorpora un controlador local que vigila los niveles de tensión, corriente, etc. en bomas del generador.
Sin embargo, dichas magnitudes no son controladas a nivel de parque, Io que puede originar que se incumplan los requisitos impuestos por Ia red.
En cualquier caso, esta solución puede resultar conveniente en parques eólicos con un reducido número de aerogeneradores, debido al elevado coste de un control central en subestación frente al coste total de Ia instalación.
Un ejemplo de dicho control, aplicado al caso particular del control de frecuencia, se describe en Ia patente EP 1 282 774. En ella se describe el control de una turbina que adapta Ia potencia activa que genera, en función de medidas de frecuencia realizadas en bomas del generador, con el fin de contribuir a restituir Ia frecuencia de Ia red ante desviaciones de ésta por encima o por debajo de los límites permitidos.
Por otro lado, es más extendido el uso de una unidad de control central que controla las magnitudes globales necesarias para garantizar Ia correcta integración en Ia red del parque eólico. Es habitual situar dicha unidad de control en las subestación eléctrica que alberga el transformador y resto de equipamiento necesario para Ia evacuación a Ia red eléctrica de Ia energía generada por el parque eólico. Sin embargo, esta solución presenta también una serie de inconvenientes, de forma que, requiere equipos adicionales, pero además, en el caso de que éstos fallen, el control central queda inoperativo.
La solicitud de patente EP 1 467 463 es un buen ejemplo de este esquema de control y en ella se describe el modo de funcionamiento de un parque eólico, en el que una unidad de control central envía las consignas necesarias a cada aerogenerador del parque, en función de Ia frecuencia de Ia red.
Lo más común es que, además de dicho controlador central, cada aerogenerador incorpore su propio control para asegurar así Ia operación dentro de los límites del mismo, de manera que en Ia solicitud de patente EP 1 512 869 se describe un controlador central que calcula las consignas de potencia reactiva para cada aerogenerador en función de Ia tensión de parque y un control individual en cada aerogenerador origina Ia consigna particular de tensión en función de dicha reactiva demandada desde el control central.
En este caso, si se produce un fallo del control central, Ia consigna de reactiva puede resultar errónea de cara al control de tensión global al cambiar las condiciones de operación en Ia red. Sin embargo, incorpora Ia ventaja frente a Ia opción anterior de que, gracias a los controles individuales incorporados, se vigila que los niveles de tensión en bomas de cada aerogenerador, aunque no sean los óptimos para el control de tensión de parque, no excedan los límites permitidos.
DESCRIPCIÓN DE LA INVENCIÓN. En Ia presente memoria se describe un parque eólico siendo del tipo de parques eólicos que se conforman por una pluralidad de aerogeneradores, comprendiendo dichos aerogeneradores un rotor, un generador, una unidad de control y medios de conexión a Ia red informática del parque eólico del que forman parte, de forma que, al menos dos de los aerogeneradores que se integran en el parque tienen dos modos de operación alternativos según los cuales cada uno de ellos puede asumir:
• una jerarquía de líder del parque eólico, accediendo a los datos de operación del resto de aerogeneradores, calculando y enviando consignas al resto de aerogeneradores que integran dicho parque eólico ; o bien,
• una jerarquía de subdito, recibiendo y siguiendo las consignas procedentes del aerogenerador líder del parque eólico.
Asimismo, otro objeto de Ia invención es proporcionar transiciones adecuadas de liderato entre aerogeneradores:
• cuando un aerogenerador asume Ia jerarquía de líder, envía los datos de las variables actuales de las unidades de control al resto de aerogeneradores subditos capaces de ejercer Ia jerarquía de líder;
• cuando un aerogenerador asume Ia jerarquía de subdito, mantiene una copia de los datos de las variables de las unidades de control recibidos del aerogenerador con Ia jerarquía de líder, y;
• cuando un aerogenerador pasa de ejercer Ia jerarquía de subdito a Ia jerarquía de líder inicia los algoritmos de control a partir de los valores de las variables del anterior líder. De esta forma, Ia transición del liderato de un aerogenerador - A - a otro se hace sin discontinuidades.
En una realización preferida de la invención, a los aerogeneradores que pueden asumir tanto una jerarquía de líder como de subdito se les asigna un puesto predeterminado en una lista jerárquica para su asignación como líder del parque eólico.
Un aerogenerador asume Ia jerarquía de líder si no están operativos los aerogeneradores anteriores de Ia citada lista jerárquica.
Además, en una realización preferida de Ia invención el orden establecido para ejercer los aerogeneradores Ia jerarquía de líder es tal que ejerce de líder el aerogenerador operativo mas cercano a Ia subestación eléctrica del parque eólico.
Otro objeto de Ia invención es gestionar Ia generación de potencia reactiva en el parque eólico. Cuando un aerogenerador asume Ia jerarquía de líder, calcula consignas de potencia reactiva o factor de potencia o de tensión para todos los aerogeneradores que integran el parque, enviando dichas consignas al resto de aerogeneradores a través de Ia red informática del parque eólico.
Según una realización preferida, cuando un aerogenerador asume Ia jerarquía de líder, accede a los datos de medidas realizadas en subestación.
Según una realización preferida, las consignas se calculan a partir de una consigna global recibida desde un control remoto o del operador del sistema.
En una realización preferida las consignas se calculan teniendo en cuenta Ia capacidad de generación de reactiva por el convertidor de los aerogeneradores apagados.
En una realización preferida el aerogenerador con Ia jerarquía de líder calcula dichas consignas a partir de Ia tensión medida en el punto de conexión de dicho aerogenerador líder a Ia red eléctrica del parque eólico.
Un objeto adicional de Ia invención es gestionar Ia generación de potencia activa en el parque eólico. Cuando un aerogenerador asume Ia jerarquía de líder, calcula consignas de limitación de potencia activa para todos los aerogeneradores que integran el parque a partir del estado operativo de todos los aerogeneradores y de las medidas de frecuencia de red realizadas en uno o varios de ellos y las envía al resto de aerogeneradores a través de Ia red informática del parque eólico.
En una realización preferida Ia limitación de potencia del parque se puede alcanzar reduciendo Ia potencia de cada uno de los aerogeneradores en distinta medida a partir de consignas individuales generadas por el aerogenerador que ejerce Ia jerarquía de líder.
Igualmente, Ia limitación de potencia del parque se alcanza realizando un apagado selectivo de aerogeneradores. El apagado selectivo de los aerogeneradores se realiza con el objetivo de alargar Ia vida útil de los aerogeneradores que integran el parque eólico teniendo en cuenta el número de horas trabajadas.
Dependiendo de cuál sea Ia variable a controlar, las medidas pueden proceder de subestación, del punto de conexión de Ia máquina que ejerce de líder, o bien de otros aerogeneradores. Así por ejemplo las medidas de subestación permiten cualquier tipo de control colectivo, (de factor de potencia, tensión, frecuencia, etc.), mientras que las medidas de los aerogeneradores son más adecuadas para controles colectivos de tensión o frecuencia. El parque eólico descrito en Ia presente invención presenta ventajas respecto al arte previo. Por un lado se realiza un control colectivo del parque sin Ia necesidad de incorporar una unidad de control adicional, al realizarse dichas operaciones en los controladores locales de los que habitualmente disponen los aerogeneradores. Además, al estar esta opción de control integrada en varios de los aerogeneradores que forman el parque eólico, conlleva una redundancia que garantiza un control coordinado del parque en todo momento. Por otro lado se pueden realizar un control coordinado de potencia reactiva a partir de Ia tensión, o de potencia activa a partir de Ia frecuencia, sin necesidad de disponer de medios de medida adicionales a los que ya incorporan los aerogeneradores individuales.
Otro objeto de Ia presente invención es un aerogenerador tal que cuando se integra en un parque eólico según Io descrito anteriormente, tiene dos modos de operación alternativos, según los cuales puede asumir: • una jerarquía de líder de dicho parque eólico accediendo a los datos de operación del resto de aerogeneradores, calculando y enviando consignas al resto de aerogeneradores que integran dicho parque eólico; o bien,
• una jerarquía de subdito, recibiendo y siguiendo las consignas procedentes de otros aerogeneradores.
Para complementar Ia descripción que seguidamente se va a realizar, y con objeto de ayudar a una mejor comprensión de las características de Ia invención, se acompaña a Ia presente memoria descriptiva, de un juego de planos, en cuyas figuras de forma ilustrativa y no limitativa, se representan los detalles más característicos de Ia invención.
BREVE DESCRIPCIÓN DE LOS DISEÑOS. Figura 1. Muestra una vista de un esquema de control individual en el que cada aerogenerador incorpora una unidad de control.
Figura 2. Muestra una vista de un esquema de control central en el que mediante una unidad de control central se gobierna todos los aerogeneradores del parque eólico.
Figura 3. Muestra una vista de un esquema de un parque eólico gobernado por una unidad de control central y disponiendo, además, cada aerogenerador de un control individual.
Figura 4. Muestra una vista de un esquema, de acuerdo con Ia invención, en el que todos los aerogeneradores están conexionados a través de Ia red informática del parque y uno de los aerogeneradores ejerce de líder controlando al resto de aerogeneradores que ejercen de subditos.
Figura 5. Muestra una vista de un esquema de un parque eólico en el que el aerogenerador que ejercía de líder queda inoperativo y Ia jerarquía de líder es reasignada a otro aerogenerador.
Figura 6. Muestra una vista de un esquema de un parque eólico compuesto por varios aerogeneradores que pueden ejercer Ia jerarquía de líder. Figura 7. Muestra una vista del diagrama del algoritmo incorporado en una base de datos de Ia unidad de control de un aerogenerador que puede ejercer Ia jerarquía de líder para Ia asignación de dicha jerarquía de líder.
Figura 8. Muestra una vista de un esquema genérico de un aerogenerador.
DESCRIPCIÓN DE UNA REALIZACIÓN PREFERENTE. A Ia vista de las comentadas figuras y de acuerdo con Ia numeración adoptada podemos observar como en Ia figura 1 de los diseños se muestra un esquema convencional del control individual de los aerogeneradores de un parque eólico, de forma que cada aerogenerador 1, 2, ... n, incorpora una unidad de control local C1, C2, ..., Cn, y a partir de las medidas realizadas en el punto de conexión PC1, PC2, ...., PCn, del aerogenerador regula Ia potencia activa, reactiva, etc., generando las órdenes necesarias para el convertidor de potencia, encargado de generar las corrientes para que el correspondiente aerogenerador 1, 2 n, responda adecuadamente a las consignas de
Ia unidad de control. En Ia misma figura se muestra el transformador 14 usualmente presente formando parte de Ia subestación eléctrica a través de Ia cual se vierte Ia energía producida a Ia red eléctrica. En Ia figura 2 de los diseños se puede observar el esquema convencional de un parque eólico gobernado por una unidad de control central 16, de manera que, dicha unidad de control central 16, a partir de las medidas realizadas en el punto de conexión del parque PCC, calcula y envía consignas a cada uno de los aerogeneradores 1, 2, ..., n, a través de Ia red informática del parque 11. Usualmente dicha unidad de control central se localiza en Ia subestación eléctrica del parque eólico.
En Ia figura 3 de los diseños se representa el esquema convencional de un parque eólico gobernado por una unidad de control central 106 que incorpora asimismo controles locales C1, C2, ..., Cn, más rápidos, para asegurar el funcionamiento de los aerogeneradores 1,
2, ..., n, dentro de rango.
En Ia figura 4 se representa un parque eólico de acuerdo con Ia invención formado por varios aerogeneradores 1, 2, ...,n, conectado a Ia red eléctrica 15 a partir de un transformador elevador 14, de manera que uno de los aerogeneradores 10 será el líder del parque eólico y el resto de aerogeneradores serán los subditos que seguirán las órdenes del aerogenerador 10 líder.
Todos los aerogeneradores que integran el parque eólico estarán conectados a través de Ia red informática 11 del parque, de manera que el aerogenerador 10 líder tenga acceso a los datos de operación de cada uno del resto de aerogeneradores.
En una realización preferente, un equipo 12 de medida en el punto de conexión del parque PCC, estará conectado a dicha red informática, de forma que el aerogenerador líder 10 tenga acceso a los datos extraídos de dicho punto. Además, en una realización preferente, dicha red informática 11 podrá recibir consignas de una unidad de control remoto 13.
Por otra parte, cada aerogenerador 1,...,n, mostrado más en detalle en Ia figura 8 consta de un rotor 21, un generador 22, un convertidor 23, una unidad de control D2 y medios para conectarse a Ia red informática 11 del parque, a través de Ia cual recibirá las consignas del aerogenerador líder 10 en el caso de ejercer de subdito o de enviarlas al resto de aerogeneradores en el caso de ejercer de líder.
La unidad de control D2 será Ia encargada de procesar dichas consignas y generar las órdenes necesarias para el convertidor
23 de manera que se cumplan.
La unidad de control D2 del aerogenerador líder 10 tendrá acceso a los datos de operación del resto de aerogeneradores, y, asimismo, será capaz de generar las órdenes necesarias para el resto de aerogeneradores que enviará a través de Ia red informática 11 del parque eólico.
En una realización preferente, el aerogenerador líder 10 podrá recibir las consignas desde un control remoto 13 a través de Ia red informática 11 y, en una realización preferente, tendrá acceso a medidas realizadas en el punto de conexión del parque a Ia red PCC por el equipo de medida 12. A partir de todos estos datos, el aerogenerador líder generará las consignas para cada uno de los aerogeneradores, que las recibirán a través de Ia red informática 11 del parque eólico, de manera que ejercerá un control colectivo para asegurar una correcta integración del parque en Ia red. En Ia figura 5 de los diseños se muestra el caso en el que el aerogenerador 1 que anteriormente ejercía de líder y llevaba a cabo el control colectivo queda inoperativo. Ante este evento, otro aerogenerador 2 pasa a ejercer de líder, siendo su unidad de control Ia que coordinará el funcionamiento del resto de aerogeneradores, tal y como se ha explicado previamente, es decir ejerciendo de aerogenerador líder 10.
En una realización preferente, para Ia reasignación del papel de líder existe un orden preestablecido, de tal manera que a los aerogeneradores que pueden asumir dicho papel, se les asigna un puesto P en una lista, de acuerdo al orden preestablecido. En una realización preferente están ordenados de menor a mayor según Ia conveniencia de ocupar el liderato. De esta forma, Ia máquina que ocupe el puesto P = 1, si está operativa, ejercerá de líder. Si no está operativa, ejercerá de líder Ia máquina operativa que ocupe un puesto más cercano al prioritario. El resto de máquinas operativas, ejercerán de subditos.
En una realización preferente sólo una parte de los aerogeneradores que integran el parque eólico, poseen un sistema de control como el que se describe en Ia presente invención, pudiendo estar distribuidos entre las diferentes alineaciones del parque eólico.
De ese modo, cuando por razones de mantenimiento es preciso desconectar una alineación completa, siempre quedará en el resto del parque eólico algún aerogenerador operativo con Ia capacidad de ejercer de líder.
En Ia figura 6 se muestra una realización preferente de un parque eólico compuesto por tres alineaciones 100, 200, 300 cada una de las cuales está formada por varios aerogeneradores.
En una realización preferente al menos uno de los aerogeneradores 101, 201, 301, ... de cada alineación 100, 200, 300, ..., posee un sistema de control como el que se describe en Ia presente invención, de manera que están preparados para ejercer de líderes del parque eólico.
En una realización preferente, el líder del parque eólico envía al resto de aerogeneradores capaces de adoptar dicho papel el estado de las variables de los controladores, de manera que todos ellos estén sincronizados. De esta forma, en el caso de que el aerogenerador líder no pueda seguir gobernando a los demás aerogeneradores, cuando otro aerogenerador adopte el mando, todas las unidades de control estarán adecuadamente preparadas y Ia transición del liderato de un aerogenerador a otro se hará sin discontinuidades, al iniciar el nuevo aerogenerador líder los algoritmos de control en el mismo estado operativo en que se encontraban en Ia anterior.
En una realización preferente, el puesto P que cada aerogenerador, susceptible de asumir el papel del líder, ocupa en Ia lista jerárquica de posibles líderes, puede ser establecido de manera que el primero de ellos sea ocupado por el aerogenerador más cercano al punto de conexión del parque PCC a Ia red, ya que cuenta con medidas de tensión en bomas del generador más parecidas a las de éste. En este caso, el resto de aerogeneradores susceptibles de asumir Ia jerarquía de líder son ordenadas de menor a mayor por proximidad a dicho punto.
De esta forma, en el caso de no disponer de medidas en el punto de conexión proporcionadas por el equipo de medida 12, aquellas de las que dispone Ia unidad de control del aerogenerador servirán para realizar el control colectivo pudiendo ser corregidas a partir de modelos de Ia red de parque.
En Ia figura 6 se muestra una realización preferente, en Ia que los aerogeneradores susceptibles de ejercer el papel de líder 101, 201, 301, etc., son los aerogeneradores más cercanos al punto de conexión del parque PCC de cada alineación.
En una realización preferente el puesto P que se asigna a cada uno de los aerogeneradores con posibilidad de ejercer de líder es seleccionado por proximidad al punto de conexión del parque PCC. La figura 7 de los diseños corresponde el diagrama del algoritmo incorporado en Ia unidad de control del aerogenerador que ocupa el puesto P cuyo fin es evaluar en cada instante, si el aerogenerador realiza o ha de realizar el control colectivo del parque.
En una realización preferente, el algoritmo es tal que, en el primer paso 1001 cada unidad de control se pregunta si es líder. Si es así, seguirá ejerciendo como tal 1005. Si no es así y no hay comunicación de éste 1002 su papel será el de subdito 1006. Si no es líder y además no recibe comunicación de éste 1003, se pregunta cuál es el puesto del primer aerogenerador operativo "i". Si P>i, el rol del aerogenerador P será el de subdito 1006. Sin embargo, si no es así, en ese instante Ia máquina P pasará a ejercer de líder y realizar el control colectivo 1005.
En una realización preferente, el aerogenerador que lidera el funcionamiento del parque, calcula y envía consignas de potencia reactiva, o factor de potencia, o tensión a todas las turbinas de las que integran el parque, a partir de medidas de tensión en bomas de su generador, o de las tomadas en el punto de conexión a las que tiene acceso.
Asimismo, en una realización preferente, estas consignas son calculadas a partir de órdenes globales recibidas desde un control remoto o del operador del sistema. Además, se tiene en cuenta Ia capacidad de generación de potencia reactiva a través del convertidor de las máquinas apagadas.
En una realización preferente, un aerogenerador, en el caso de ejercer de líder, calcula consignas de limitación de potencia activa a partir del estado operativo de todos los aerogeneradores y de las medidas de frecuencia de red realizadas en varias de ellas y las envía al resto de aerogeneradores que componen el parque eólico.
En una realización preferente, las consignas de potencia activa son calculadas por Ia unidad de control del aerogenerador líder a partir de medidas de frecuencia realizadas en el punto de conexión a Ia red a las que tiene acceso. La limitación de potencia activa puede realizarse mediante un apagado selectivo de aerogeneradores, teniendo en cuenta el número de horas trabajadas con el fin de alargar Ia vida útil de los mismos, o bien calculando consignas individuales para cada uno de ellos, a partir de los datos operativos de los que dispone Ia unidad de control del aerogenerador que ejerce de líder.

Claims

R E 1 V I N D I C A C I O N E S.
1a.- PARQUE EÓLICO, siendo del tipo de parques eólicos que se conforman por una pluralidad de aerogeneradores, comprendiendo dichos aerogeneradores un rotor, un generador, una unidad de control y medios de conexión a Ia red informática del parque eólico del que forman parte, caracterizado porque, al menos dos de los aerogeneradores que se integran en el parque tienen dos modos de operación alternativos, según los cuales cada uno de ellos puede asumir: • una jerarquía de líder del parque eólico, accediendo a los datos de operación del resto de aerogeneradores, calculando y enviando consignas al resto de aerogeneradores que integran dicho parque eólico ; o bien, • una jerarquía de subdito, recibiendo y siguiendo las consignas procedentes del aerogenerador líder del parque eólico.
2a- PARQUE EÓLICO, según reivindicación 1a, caracterizado porque:
• cuando un aerogenerador (10) asume Ia jerarquía de líder, envía los datos de las variables actuales de las unidades de control al resto de aerogeneradores subditos capaces de ejercer Ia jerarquía de líder;
• cuando un aerogenerador (10) asume Ia jerarquía de subdito, mantiene una copia de los datos de las variables de las unidades de control recibidos del aerogenerador con Ia jerarquía de líder, y;
• cuando un aerogenerador pasa de ejercer Ia jerarquía de subdito a Ia jerarquía de líder inicia los algoritmos de control a partir de los valores de las variables del anterior líder. 3a- PARQUE EÓLICO, según Ia reivindicación 2a, caracterizado porque a los aerogeneradores que pueden asumir tanto una jerarquía de líder como de subdito se les asigna un puesto predeterminado en una lista jerárquica para su asignación como líder del parque eólico. 4a- PARQUE EÓLICO, según Ia reivindicación 3a, caracterizado porque un aerogenerador asume Ia jerarquía de líder si no están operativos los aerogeneradores anteriores de Ia citada lista jerárquica.
5a- PARQUE EÓLICO, según Ia reivindicación 4a, caracterizado porque el orden preestablecido para ejercer los aerogeneradores Ia jerarquía de líder es tal que ejerce de líder el aerogenerador operativo más cercano a Ia subestación del parque eólico.
6- PARQUE EÓLICO, según cualquiera de las reivindicaciones anteriores, caracterizado porque cuando un aerogenerador asume Ia jerarquía de líder, calcula consignas de potencia reactiva o factor de potencia o de tensión para todos los aerogeneradores que integran el parque, enviando dichas consignas al resto de aerogeneradores a través de Ia red informática (11) del parque eólico.
T- PARQUE EÓLICO, según Ia reivindicación 6a, caracterizado porque cuando un aerogenerador asume Ia jerarquía de líder, accede a los datos de medidas realizadas en subestación.
8a- PARQUE EÓLICO, según Ia reivindicación 7a, caracterizado porque las consignas se calculan a partir de una consigna global recibida desde un control remoto (13) o del operador del sistema
9a- PARQUE EÓLICO, según Ia reivindicación 8a, caracterizado porque el aerogenerador con Ia jerarquía de líder calcula las consignas a partir de Ia tensión medida en el punto de conexión de dicho aerogenerador líder a Ia red eléctrica del parque eólico.
10a- PARQUE EÓLICO, según Ia reivindicación 9a caracterizado porque las consignas se calculan teniendo en cuenta Ia capacidad de generación de reactiva por el convertidor de los aerogeneradores apagados.
11a- PARQUE EÓLICO, según cualquiera de las reivindicaciones 1a a 5a, caracterizado porque cuando un aerogenerador (10) asume Ia jerarquía de líder, calcula consignas de limitación de potencia activa para todos los aerogeneradores que integran el parque a partir del estado operativo de todos los aerogeneradores y de las medidas de frecuencia de red realizadas en uno o varios de ellos, y las envía al resto de aerogeneradores a través de Ia red informática del parque eólico. 12a- PARQUE EÓLICO, según Ia reivindicación 11a, caracterizado porque cuando un aerogenerador asume Ia jerarquía de líder, accede a los datos de medidas realizadas en subestación.
13a- PARQUE EÓLICO, según Ia reivindicación 12a, caracterizado porque las consignas se calculan a partir de una consigna global recibida desde un control remoto (13) o del operador del sistema
14a- PARQUE EÓLICO, según Ia reivindicación 13a, caracterizado porque Ia limitación de potencia del parque eólico se puede alcanzar reduciendo Ia potencia de cada uno de los aerogeneradores en distinta medida a partir de consignas individuales generadas por el aerogenerador que ejerce Ia jerarquía de líder.
15a- PARQUE EÓLICO, según Ia reivindicación 14a, caracterizado porque Ia limitación de potencia del parque se alcanza realizando un apagado selectivo de aerogeneradores. 16a- PARQUE EÓLICO, según Ia reivindicación 15a, caracterizado porque el apagado selectivo de los aerogeneradores se realiza con el criterio de alargar Ia vida útil de los aerogeneradores que integran el parque eólico teniendo en cuenta el número de horas trabajadas. 17a.- AEROGENERADOR, integrable en un parque eólico según Ia reivindicación 1a, caracterizado porque tiene dos modos de operación alternativos, según los cuales puede asumir:
• una jerarquía de líder de dicho parque eólico accediendo a los datos de operación del resto de aerogeneradores, calculando y enviando consignas al resto de aerogeneradores que integran dicho parque eólico; o bien,
• una jerarquía de subdito, recibiendo y siguiendo las consignas procedentes de otros aerogeneradores.
PCT/ES2008/000722 2007-11-20 2008-11-19 Parque eólico WO2009065985A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES08852042.4T ES2588310T3 (es) 2007-11-20 2008-11-19 Parque eólico
US12/743,444 US8355825B2 (en) 2007-11-20 2008-11-19 Wind farm
EP08852042.4A EP2233737B1 (en) 2007-11-20 2008-11-19 Wind farm

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200703055 2007-11-20
ES200703055A ES2320401B1 (es) 2007-11-20 2007-11-20 Parque eolico.

Publications (1)

Publication Number Publication Date
WO2009065985A1 true WO2009065985A1 (es) 2009-05-28

Family

ID=40667156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2008/000722 WO2009065985A1 (es) 2007-11-20 2008-11-19 Parque eólico

Country Status (4)

Country Link
US (1) US8355825B2 (es)
EP (1) EP2233737B1 (es)
ES (2) ES2320401B1 (es)
WO (1) WO2009065985A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013021049A1 (de) 2011-08-11 2013-02-14 Peter Karl Verfahren zum betreiben, insbesondere zum kalibrieren von windkrafträdern, und windenergiepark mit mehreren windkrafträdern
EP2284392A3 (en) * 2009-06-03 2013-04-03 Vestas Wind Systems A/S Wind power plant, wind power plant controller and method of controlling a wind power plant

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090212563A1 (en) * 2008-02-21 2009-08-27 General Electric Company System and method for improving performance of power constrained wind power plant
DE102008039429A1 (de) * 2008-08-23 2010-02-25 DeWind, Inc. (n.d.Ges.d. Staates Nevada), Irvine Verfahren zur Regelung eines Windparks
WO2010136041A2 (en) * 2009-05-25 2010-12-02 Vestas Wind Systems A/S Two global precise times for synchronization
DE102009030725A1 (de) 2009-06-26 2010-12-30 Repower Systems Ag Windpark und Verfahren zum Regeln eines Windparks
CA2730658A1 (en) * 2010-10-29 2012-04-29 Mitsubishi Heavy Industries, Ltd. Wind-turbine-generator control system, wind, farm, and wind-turbine-generator control method
US8035242B2 (en) 2010-11-09 2011-10-11 General Electric Company Wind turbine farm and method of controlling at least one wind turbine
US9201410B2 (en) 2011-12-23 2015-12-01 General Electric Company Methods and systems for optimizing farm-level metrics in a wind farm
CN103472759A (zh) * 2012-06-08 2013-12-25 北方工业大学 基于arm控制器的风力发电机组主控系统
CN105264222B (zh) 2013-04-04 2018-11-30 通用电气公司 多场风力发电系统
US9845789B2 (en) * 2014-10-23 2017-12-19 General Electric Company System and method for monitoring and controlling wind turbines within a wind farm
US10027118B2 (en) 2016-05-19 2018-07-17 General Electric Company System and method for balancing reactive power loading between renewable energy power systems
EP3299614B1 (en) * 2016-09-26 2020-11-11 Siemens Gamesa Renewable Energy A/S Method, device and system for managing a wind farm
DE102018000160A1 (de) * 2018-01-11 2019-07-11 Senvion Gmbh Verfahren und System zum Steuern eines Windparks
EP4006337A1 (en) * 2020-11-27 2022-06-01 Siemens Gamesa Renewable Energy A/S Movable park control system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020013805A1 (en) * 1999-11-30 2002-01-31 Valeri Popescu LogNet: a low cost, high reliability network for embedded systems
US20020029097A1 (en) * 2000-04-07 2002-03-07 Pionzio Dino J. Wind farm control system
EP1282774A1 (de) 2000-05-11 2003-02-12 Aloys Wobben Verfahren zum betreiben einer windenergienanlage sowie windenergieanlage
EP1467463A1 (en) 2003-04-09 2004-10-13 General Electric Company Wind farm and method for operating same
EP1512869A1 (en) 2003-09-03 2005-03-09 General Electric Company Voltage control for windpark
WO2006066797A1 (de) * 2004-12-17 2006-06-29 Repower Systems Ag Windparkleistungsregelung und -verfahren
EP1722102A1 (en) * 2005-05-13 2006-11-15 General Electric Company Wind farm and method of controlling the communication between a master unit and slave units inside a wind farm network

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7050943B2 (en) * 2001-11-30 2006-05-23 General Electric Company System and method for processing operation data obtained from turbine operations
US7013203B2 (en) * 2003-10-22 2006-03-14 General Electric Company Wind turbine system control
DE102004048341A1 (de) * 2004-10-01 2006-04-13 Repower Systems Ag Windpark mit robuster Blindleistungsregelung und Verfahren zum Betrieb
DE102005033229A1 (de) * 2005-07-15 2007-01-18 Siemens Ag Netzwerk, Verfahren und Recheneinheit zur Steuerung von Windkraftanlagen
EP1770277A1 (en) * 2005-09-30 2007-04-04 General Electric Company Method for controlling a wind energy turbine of a wind park comprising multiple wind energy turbines
WO2007048001A2 (en) * 2005-10-20 2007-04-26 Reidy Michael T Wind energy harnessing apparatuses, systems, methods, and improvements
DE102007026176A1 (de) * 2007-01-04 2008-07-17 Dewind Ltd. SCADA-Einheit
EP2053239B1 (en) * 2007-10-23 2012-11-28 Siemens Aktiengesellschaft Method for controlling of wind turbines in a wind farm
US8805595B2 (en) * 2008-01-17 2014-08-12 General Electric Company Wind turbine arranged for independent operation of its components and related method and computer program
EP2141359A1 (en) * 2008-07-02 2010-01-06 Siemens Aktiengesellschaft Wind turbine configuration management system, and central computer system therefor
DE102008039429A1 (de) * 2008-08-23 2010-02-25 DeWind, Inc. (n.d.Ges.d. Staates Nevada), Irvine Verfahren zur Regelung eines Windparks
US7962246B2 (en) * 2009-06-22 2011-06-14 General Electric Company Method and apparatus for operating a wind turbine during a loss of communication
US8655495B2 (en) * 2009-06-24 2014-02-18 Vestas Wind Systems A/S Current control of a wind park
US20120020786A1 (en) * 2010-07-21 2012-01-26 Clipper Windpower, Inc. Method and system for redundant turbine control

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020013805A1 (en) * 1999-11-30 2002-01-31 Valeri Popescu LogNet: a low cost, high reliability network for embedded systems
US20020029097A1 (en) * 2000-04-07 2002-03-07 Pionzio Dino J. Wind farm control system
EP1282774A1 (de) 2000-05-11 2003-02-12 Aloys Wobben Verfahren zum betreiben einer windenergienanlage sowie windenergieanlage
EP1467463A1 (en) 2003-04-09 2004-10-13 General Electric Company Wind farm and method for operating same
EP1512869A1 (en) 2003-09-03 2005-03-09 General Electric Company Voltage control for windpark
WO2006066797A1 (de) * 2004-12-17 2006-06-29 Repower Systems Ag Windparkleistungsregelung und -verfahren
EP1722102A1 (en) * 2005-05-13 2006-11-15 General Electric Company Wind farm and method of controlling the communication between a master unit and slave units inside a wind farm network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2233737A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2284392A3 (en) * 2009-06-03 2013-04-03 Vestas Wind Systems A/S Wind power plant, wind power plant controller and method of controlling a wind power plant
EP2284392B1 (en) 2009-06-03 2015-12-16 Vestas Wind Systems A/S Wind power plant, wind power plant controller and method of controlling a wind power plant
EP2284392B2 (en) 2009-06-03 2019-09-25 Vestas Wind Systems A/S Wind power plant, wind power plant controller and method of controlling a wind power plant
WO2013021049A1 (de) 2011-08-11 2013-02-14 Peter Karl Verfahren zum betreiben, insbesondere zum kalibrieren von windkrafträdern, und windenergiepark mit mehreren windkrafträdern

Also Published As

Publication number Publication date
ES2588310T3 (es) 2016-11-02
EP2233737B1 (en) 2016-06-08
US20100274399A1 (en) 2010-10-28
ES2320401B1 (es) 2010-02-26
EP2233737A1 (en) 2010-09-29
ES2320401A1 (es) 2009-05-21
EP2233737A4 (en) 2013-12-18
US8355825B2 (en) 2013-01-15

Similar Documents

Publication Publication Date Title
WO2009065985A1 (es) Parque eólico
ES2962987T3 (es) Planta de energía fotovoltaica y método de control secundario de la misma
JP5439340B2 (ja) ウインドファームの制御装置、ウインドファーム、及びウインドファームの制御方法
ES2667005T3 (es) Turbina eólica
CN102664429B (zh) 一种并网不上网微网系统及其控制保护方法
ES2831154T3 (es) Sistema y procedimiento de control de potencia activa en una central de generación eléctrica
ES2640715T3 (es) Control de frecuencia de central eólica
ES2813590T3 (es) Procedimiento para alimentar potencia eléctric a una red de suministro eléctrico
TWI536699B (zh) 用於控制一風力發電場之方法及應用此方法之風力發電場
ES2844532T3 (es) Método para alimentar potencia eléctrica a una red de suministro eléctrico
ES2761263T3 (es) Adaptación de perfiles de carga y perfiles de alimentación
WO2014044007A1 (zh) 风电场动态电压自动控制系统
WO2009147274A1 (es) Método de control de un aerogenerador
ES2949709T3 (es) Procedimiento para inyectar potencia eléctrica a una red de suministro eléctrico
CA2883814A1 (en) Method for operating a wind farm
BR112014022567B1 (pt) Método e sistema de controle para gerenciar o perfil de carga de uma rede elétrica de baixa ou média tensão
ES2608723T3 (es) Método y dispositivo para el control espaciotemporal del consumo de energía eléctrica de una red de telecomunicaciones en función del estado del sistema de suministro eléctrico
EP3552291A1 (en) Improvements relating to reactive power support in wind power plants
PT1665494E (pt) Processo para operar ou regular uma central de energia eólica, bem como, processo para disponibilizar uma potência de regulação primária com centrais de energia eólica
CN102480162B (zh) 全冗余式高可靠性风光互补电源系统
JP2015534438A (ja) 直流電圧中間回路を有するエネルギー貯蔵モジュール
CN109906536B (zh) 与风力发电厂中的无功功率控制有关的改进
ES2781575T3 (es) Sistema de control para instalaciones de generación de energías renovables, método para controlar las mismas, y sistema de generación de energías renovables
ES2685898T3 (es) Procedimiento para la introducción de energía eléctrica en una red de suministro
CN202602306U (zh) 一种并网不上网微网系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08852042

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008852042

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12743444

Country of ref document: US