WO2009062487A2 - Heat exchanger - Google Patents
Heat exchanger Download PDFInfo
- Publication number
- WO2009062487A2 WO2009062487A2 PCT/DE2008/001870 DE2008001870W WO2009062487A2 WO 2009062487 A2 WO2009062487 A2 WO 2009062487A2 DE 2008001870 W DE2008001870 W DE 2008001870W WO 2009062487 A2 WO2009062487 A2 WO 2009062487A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tubes
- product
- heat exchanger
- row
- heating medium
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/0408—Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
- F28D1/0461—Combination of different types of heat exchanger, e.g. radiator combined with tube-and-shell heat exchanger; Arrangement of conduits for heat exchange between at least two media and for heat exchange between at least one medium and the large body of fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/0408—Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
- F28D1/0417—Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with particular circuits for the same heat exchange medium, e.g. with the heat exchange medium flowing through sections having different heat exchange capacities or for heating/cooling the heat exchange medium at different temperatures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/10—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
- F28D7/106—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F19/00—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
- F28F19/006—Preventing deposits of ice
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0022—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for chemical reactors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2215/00—Fins
- F28F2215/04—Assemblies of fins having different features, e.g. with different fin densities
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2240/00—Spacing means
Definitions
- the invention relates to a heat exchanger according to the features in the preamble of claim 1.
- Such a heat exchanger is used, inter alia, in a chemical production process in which arise products that falter at temperatures between 0 0 C and 50 0 C. That is, they become viscous or solid. This is the case, for example, with tar, wax or ice. Nevertheless, such products must be cooled in the still liquid state of higher production temperature, for example in the range of 100 0 C to 120 0 C, to store them in this liquid state in storage tanks or intermediate tanks or can continue to transport.
- cooling air in the form of ambient air between about -20 0 C and +35 0 C is used in the heat exchanger used, it can cause problems in such an air-cooled heat exchanger, since the temperature of the ambient air is not constant. For example, if a heat exchanger for a temperature of summer ambient air in height of about +30 0 C, for a cooling of the product from 120 0 C to 50 0 C and on the further condition that the product has a pour point of +40 0 C, so there is a risk that in the in Flow direction of the cooling air lower rows of tubes of the heat exchanger because of the lowest cooling air temperature, the product reaches the pour point already at +20 0 C ambient air and then due to its consistency can not be pumped through the exchanger tubes of the heat exchanger.
- Another method is to switch on an intermediate cooling circuit.
- an air-cooled plant for example water in the Cooled circuit to a temperature of above 45 0 C and then used in another heat exchanger to cool the stock-endangered product.
- the invention is - based on the prior art - the object to provide an air-cooled heat exchanger, which reliably avoids the stagnation or freezing of the product to be cooled or condensed even at low temperatures of the cooling air.
- the exchanger tubes are provided in the first of the cooling air flowed lower row of tubes of a heat exchanger (liquid cooler or condenser) with feedable from a heating medium inner tubes.
- the heating medium is preferably steam or hot or hot water.
- the product itself is used as a heating medium.
- the product In the annular gaps between the inner tubes and the exchanger tubes flows the product prone to stagnation or freezing. At normal ambient temperatures, for example above 20 ° C., the product is cooled without risk of stagnation. No heating medium is needed. Sinks however the temperature of the cooling air below 20 0 C, so depending on the local temperatures, at least the inner tubes in the bottom row of tubes are charged with the heating medium. Possibly.
- a heating medium in the form of water at a temperature of 40 0 C are passed into the inner tubes.
- the necessary heat is supplied to the product to be cooled, thus preventing the sticking in the heat exchanger. If the cooling air temperature continues to drop, it is possible to regulate even warmer heating medium to prevent product stagnation.
- a particular advantage of the invention is the very compact design of a heat exchanger over such heat exchangers, which are provided with plate packs and recirculation devices.
- the integration of inner tubes for guiding the heating medium means a production-related additional effort.
- the cross-section of the inner tubes relative to the cross-sectional area of the product-carrying exchanger tubes can be kept so low that in view of the space gain of the slightly higher pressure loss can be ignored within the heat exchanger.
- the tube lengths are often more than 10 meters. It is therefore usually very large investments.
- Such systems must perform their services even at maximum air temperature, that is, even in summer operation reliably cool. Consequently, in summer operation, a countercurrent of cooling air and product without additional heating sought, while in winter operation, the heating medium should flow in opposite directions to the product.
- the admission of the inner tubes with a heating medium can be combined with further measures to ensure the most economical operating state of the heat exchanger as a function of the respective temperatures of the ambient air.
- the exchanger tubes in the flow direction of Cooling air from tube row to tube row are provided with an increasing number of ribs.
- This measure takes into account the fact that the cooling air in an air-cooled heat exchanger from tube row to row of tubes heats from bottom to top, so that the cooling in the lower rows of tubes is the most intense and thus the risk of stagnation is greatest there. To reduce this risk, it is advisable to change the rib pitch from tube row to tube row. In extreme cases, the lowermost row of tubes may even consist only of smooth tubes, in order then to allow the rib pitch from row of tubes to row of tubes to become smaller with increasing temperature of the cooling air.
- the product inlet in the region of the uppermost row of tubes and the product outlet are provided in the region of the lowermost row of tubes. That is, the product flows in crossflow in countercurrent to the cooling air through the heat exchanger.
- the inner tubes are fed in the same direction to the acted upon by the product exchanger tubes with the heating medium.
- This switching mode is appropriate when the temperature of the ambient air is still in a higher range.
- the heating medium would namely cool down in the flow direction, as well as the product. That is, the area of the heat exchanger near the product outlet is at risk because it is the coldest and therefore most likely to be stagnant.
- a circuit according to the features of claim 5 is more advantageous.
- the inner tubes are fed in opposite directions to the treated with the product exchanger tubes with the heating medium. That is, the area of the heat exchanger in the vicinity of the product outlet would sooner be in contact with the still moderately high temperature heating medium, so that stagnation can be effectively avoided.
- the variant according to the invention is even more advantageous according to claim 6.
- the product is diverted on several occasions from tube row to tube row S-shaped on its way from the upper product inlet to the lower product outlet, wherein the inner tubes are respectively charged in opposite directions with the heating medium.
- the opposite direction or the same direction switching the product flow to the heating medium and vice versa can be done with the help of 3-way valves or conventional shut-off valves.
- the product itself is used as the heating medium.
- the product is first passed through inner tubes and heats up here in the exchanger tubes in the opposite direction flowing back through an air flow cooled product.
- Figure 1 in the diagram a vertical longitudinal section through an air-cooled heat exchanger
- Figure 2 also in the diagram a vertical longitudinal section through an air-cooled heat exchanger according to a further embodiment
- Figure 4 is a schematic of a variant of a circuit for the heat exchanger of Figure 2;
- Figure 6 in the diagram a vertical longitudinal section through an air-cooled heat exchanger according to a third embodiment.
- FIG. 1 a heat exchanger is designated in FIG. 1, which has juxtaposed exchanger tubes 2, 3, 4 in several superimposed rows of tubes R, R1, R2, which are acted upon internally by a product P to be cooled and are flowed from below by means of cooling air KL.
- exchanger tubes 2 are designed as smooth tubes without ribs.
- R1 and R2 are exchanger tubes 3, 4 with ribs 5, wherein the ribs 5 of the exchanger tubes 3 in the row R1 have a greater distance from each other than the ribs 5 of the exchanger tubes 4 in the row R2.
- the exchanger tubes 2, 3, 4 are connected at one end to a distribution chamber 6, which is provided with an upper inlet 7 for the product P.
- a collection chamber 8 At the other end of the exchanger tubes 2, 3, 4 is a collection chamber 8, which is provided at the lower end with an outlet 9 for the product P.
- the exchanger tubes 2, 3, 4 are - as the figure 5 reveals - concentrically arranged inner tubes 10 retracted.
- the inner tubes 10 are supported by spacers 11 opposite the exchanger tubes 2, 3, 4 and terminate on the one side in a distribution chamber 12 for a heating medium HM and on the other hand into a collection chamber 13 for the heating medium HM.
- an inlet 14 for the heating medium HM and at the collecting chamber 13 an outlet 15 for the heating medium HM are provided on the distribution chamber 12.
- the product P first flows via the product inlet 7 into the distribution chamber 6, from here via the annular spaces 16 between the inner tubes 10 and the exchanger tubes 2, 3, 4 to the collection chamber 8 and from this via the product outlet 9 for further use.
- the heating medium HM passes from the inlet 14 into the distribution chamber 12 and from there according to the arrows shown in broken lines through the inner tubes 10 into the collection chamber 13 and from the collection chamber 13 via the outlet 15 to a heat source, not shown.
- the heating medium HM thus flows in the same direction to the product P through the inner tubes 10. Both the product P and the heating medium HM flow in cross-flow to the cooling air KL.
- FIG. 2 shows a heat exchanger 1a, which is in principle constructed as the heat exchanger 1 of Figure 1. It has in three rows R, R1, R2 arranged side by side exchanger tubes 2, 3, 4, each traversed by inner tubes 10 according to FIG are.
- the exchanger tubes 2 in the bottom row R have no ribs, while the exchanger tubes 3, 4 of the rows R1 and R2 are provided with ribs 5.
- the ribs 5 of the exchanger tubes 3 in the row R1 have a greater relative distance than the ribs 5 of the exchanger tubes 4 in the top row R2.
- the product P flows according to the arrows shown in solid lines, first via the product inlet 7 and a distribution chamber into the annular spaces 16 of the exchanger tubes 4 in the uppermost row R2.
- the product P passes into a deflection chamber 18, is deflected in this by 180 0 C and then flows through the annular spaces 16 of the exchanger tubes 3 in the row R1 to another deflection chamber 19 at the other end of the exchanger tubes 3.
- the product P is again deflected by 180 0 C, flows in the annular spaces 16 of the exchanger tubes 2 of the bottom row R to a collection chamber 20 and from there via the outlet 9 for further use.
- the distribution chamber 17 is separated from the underlying deflection chamber 19 by means of a wall 21.
- the deflection chamber 18 between the exchanger tubes 4, 3 of the uppermost row R2 and the underlying row R1 of the collection chamber 20 by means of a wall 22 is separated.
- the product P experiences in this way a multiple S-shaped deflection on its way from the product inlet 7 to the product outlet 9.
- a distribution chamber 23 is provided with an inlet 24 for a heating medium HM. From here flows the H ⁇ izmedium HM according to the arrows drawn in broken lines through the inner tubes 10 in the exchanger tubes 2 of the bottom row R to a provided at the other end deflection 25. From the deflection chamber 25 flows through the heating medium HM through the inner tubes 10 of the exchanger tubes 3 of the series R1 a further deflection chamber 26, which is provided above the distribution chamber 23 and separated from the distribution chamber 23 also by means of the wall 22.
- the heating medium HM enters the inner tubes 10 of the exchanger tubes 4 of the uppermost row R2 and from here into a collecting chamber 27, which is separated from the deflection chamber 25 by means of the wall 21. Via an outlet 28, the heating medium HM reaches a heat source, not shown.
- the heating medium HM flows in opposite directions to the product P in all three rows of tubes R, R1 and R2.
- the inlet 24 and the outlet 28 of the heating medium HM are exchanged.
- the heating medium HM flows from top to bottom through the heat exchanger 1a and thus in the same direction to the product P.
- FIGS. 3 and 4 show in the diagram a circuit for the different flow directions of the product to be cooled or of the heating medium HM.
- the possible flow paths of the heating medium HM will be explained with reference to Figures 3 and 4. These explanations can be particularly refer to the product flow, the flow direction can be changed in the same way.
- the heating medium HM passes through a 3-way valve 29 and a 1st strand 30 in the townixieerweg WTW the rows of tubes R2, R1, R and is a second strand 31 and a 3-Wege ⁇ / entil 32 fed to a heat source. If the two 3-way valves 29, 32 switched so flows the heating medium HM according to the arrows in broken lines over the 3-way valve 29 and a third strand 33 in the heat exchanger WTW and passes from here via a 4th strand 34 to the second 3-way valve 32 and over this to the heat source.
- FIG. 6 illustrates an embodiment of a heat exchanger 1b, which has exchanger tubes 2, 3 in two rows R and R1, which are supplied with cooling air KL from below.
- the exchanger tubes 2 in the lower row R are unaffected, while the exchanger tubes 3 of the overlying row R1 have ribs 5.
- the heating medium HM the hot product P itself is used.
- inner tubes 10 are charged via a product inlet 38 with the heating medium HM.
- the heating medium HM flows in opposite directions to the product P flowing in the exchanger tubes 2 to a deflection chamber 35 and from this deflection chamber 35 in inner tubes 10, which are arranged in the upper row R1 in the exchanger tubes 3.
- the heating medium HM enters a deflection chamber 36, where it is transferred into the exchanger tubes 3 of the upper row R1.
- the cooled heating medium HM passes into a deflection chamber 37 and from here through the exchanger tubes 2 of the lower row R into a collecting chamber. Via a product outlet 39 assigned to the collecting chamber, the product P is supplied for further use.
- REFERENCE CHARACTERS REFERENCE CHARACTERS:
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
A heat exchanger (1) has exchanger tubes (2, 3, 4) which are arranged adjacent to one another in a plurality of rows (R, R1, R2) which are situated one on top of the other, which exchanger tubes (2, 3, 4) are acted on at the inside with a product (P) to be cooled and are subjected to a flow of cooling air (KL) from below. At least the exchanger tubes (2) of the lowermost row (R) are provided with inner tubes (10) which can be acted on with a heating medium (HM).
Description
Wärmetauscher heat exchangers
Die Erfindung betrifft einen Wärmetauscher gemäß den Merkmalen im Oberbegriff des Anspruchs 1.The invention relates to a heat exchanger according to the features in the preamble of claim 1.
Ein derartiger Wärmetauscher wird unter anderem in einem chemischen Produktionsprozess eingesetzt, in welchem Produkte anfallen, die bei Temperaturen zwischen 0 0C und 50 0C stocken. Das heißt, sie werden zähflüssig oder fest. Dies ist beispielsweise bei Teer, Wachs oder Eis der Fall. Dennoch müssen derartige Produkte im noch flüssigen Zustand höherer Produktionstemperatur, zum Beispiel im Bereich von 100 0C bis 120 0C gekühlt werden, um sie in diesem flüssigen Zustand in Speichern oder Zwischentanks lagern bzw. weiter transportieren zu können.Such a heat exchanger is used, inter alia, in a chemical production process in which arise products that falter at temperatures between 0 0 C and 50 0 C. That is, they become viscous or solid. This is the case, for example, with tar, wax or ice. Nevertheless, such products must be cooled in the still liquid state of higher production temperature, for example in the range of 100 0 C to 120 0 C, to store them in this liquid state in storage tanks or intermediate tanks or can continue to transport.
Wenn bei dem zum Einsatz gelangenden Wärmetauscher Kühlluft in Form von Umgebungsluft zwischen etwa -20 0C und +35 0C benutzt wird, so kann es zu Problemen in einem solchen luftgekühlten Wärmetauscher kommen, da die Temperatur der Umgebungsluft nicht konstant ist. Wird beispielsweise ein Wärmetauscher für eine Temperatur von sommerlicher Umgebungsluft in Höhe
von etwa +30 0C ausgelegt, und zwar für eine Kühlung des Produkts von 120 0C auf 50 0C und unter der weiteren Voraussetzung, dass das Produkt einen Stockpunkt von +40 0C hat, so besteht die Gefahr, dass in den in Strömungsrichtung der Kühlluft unteren Rohrreihen des Wärmetauschers wegen der dort niedrigsten Kühllufttemperatur das Produkt bereits bei +20 0C Umgebungsluft den Stockpunkt erreicht und dann auf Grund seiner Konsistenz nicht mehr durch die Austauscherrohre des Wärmetauschers gepumpt werden kann. Dies führt dazu, dass in diesen unteren Rohrreihen keine Wärme mehr an die Umgebungsluft übertragen wird, die den Wärmetauscher querende Umgebungsluft also nicht mehr erwärmt wird und folglich im vergleichsweise kalten Zustand die oberen Rohrreihen des Wärmetauschers erreicht, so dass auch dort das Stocken des Produkts beginnt. Dies hat letztlich zur Folge, dass der gesamte Wärmetauscher mit festem Produkt gefüllt ist. Er kann dann seine Aufgabe nicht mehr erfüllen und muss mit vergleichsweise aufwändigen Maßnahmen von außen erwärmt werden.If cooling air in the form of ambient air between about -20 0 C and +35 0 C is used in the heat exchanger used, it can cause problems in such an air-cooled heat exchanger, since the temperature of the ambient air is not constant. For example, if a heat exchanger for a temperature of summer ambient air in height of about +30 0 C, for a cooling of the product from 120 0 C to 50 0 C and on the further condition that the product has a pour point of +40 0 C, so there is a risk that in the in Flow direction of the cooling air lower rows of tubes of the heat exchanger because of the lowest cooling air temperature, the product reaches the pour point already at +20 0 C ambient air and then due to its consistency can not be pumped through the exchanger tubes of the heat exchanger. As a result, heat is no longer transferred to the ambient air in these lower rows of tubes, so that the ambient air passing through the heat exchanger is no longer heated and therefore reaches the upper rows of tubes of the heat exchanger in a comparatively cold state, so that the product begins to stall there too , This ultimately has the consequence that the entire heat exchanger is filled with solid product. He can then no longer fulfill his task and must be heated with comparatively complex measures from the outside.
Ähnlich wie in einem der Kühlung dienenden Wärmetauscher sind die Verhältnisse in Kondensatoren, bei denen sich in den unteren Rohrreihen Eis bilden kann, so dass diese vollständig einfrieren und ggf. sogar zerstört werden können.Similar to a heat exchanger used for cooling, the conditions in capacitors, in which ice can form in the lower rows of tubes, so that they can freeze completely and possibly even destroyed.
Um vom Stocken gefährdete Produkte dennoch relativ sicher kühlen zu können, werden bislang in der Praxis mehrere Methoden angewendet. Bei einem Verfahren erfolgt die Schaltung des zu kühlenden Produkts im thermodynamisch ungünstigen Gleichstrom zur Kühlluft. Dies hat den Nachteil, dass der Wärmetauscher größer sein muss, als bei einer Gegenstromschaltung. Außerdem schützt dieses Verfahren nur bis zu einem bestimmten Temperaturbereich. Unterhalb dieses Temperaturbereichs kommt es dennoch zum Stocken des Produkts.Nevertheless, in order to be able to cool products that are endangered relatively reliably, several methods have hitherto been used in practice. In one method, the switching of the product to be cooled takes place in the thermodynamically unfavorable direct current to the cooling air. This has the disadvantage that the heat exchanger must be larger than in a countercurrent circuit. In addition, this process only protects up to a certain temperature range. Below this temperature range, it still comes to stagnation of the product.
Eine weitere Methode ist das Einschalten eines Zwischenkühlkreises. In diesem wird mit Hilfe einer luftgekühlten Anlage zum Beispiel Wasser im
Kreislauf auf eine Temperatur von über 45 0C gekühlt und dann in einem weiteren Wärmetauscher genutzt, um das stockgefährdete Produkt zu kühlen.Another method is to switch on an intermediate cooling circuit. In this, with the help of an air-cooled plant for example water in the Cooled circuit to a temperature of above 45 0 C and then used in another heat exchanger to cool the stock-endangered product.
Ferner gelangen mit Dampf oder Flüssigkeit beheizte Heizbündel zum Einsatz, die luftseitig vor dem eigentlichen Wärmetauscher angeordnet werden und die Kühlluft über das gesamte Jahr auf etwa 25 0C bis 30 0C geregelt vorheizen.Further engage with steam or heated fluid heating bundles are used, which are arranged on the air side prior to the actual heat exchanger and pre-heat controlled to about 25 0 C to 30 0 C, the cooling air over the entire year.
Schließlich ist es noch bekannt, sogenannte Umluftkühler einzusetzen, bei denen mit Hilfe von Jalousien und Luft-Leitkanälen die am oberen Ende des Wärmetauschers austretende erwärmte Kühlluft zumindest zum Teil wieder nach unten unter den Wärmetauscher geleitet und der neuen Umgebungsluft zugemischt wird, so dass diese sich auf zum Beispiel 30 0C einpegeln kann.Finally, it is still known to use so-called circulating air coolers in which, with the help of blinds and air ducts exiting at the upper end of the heat exchanger heated cooling air is at least partially passed down again below the heat exchanger and the new ambient air is mixed, so that they themselves on for example 30 0 C can level.
Alle vorstehend beschriebenen Lösungen haben indessen insbesondere deshalb technische Nachteile, weil meistens ein erheblicher Mehraufwand an zu installierenden Geräten und Vorrichtungen getrieben werden muss.However, all the solutions described above, in particular because of technical disadvantages, because usually a considerable overhead on equipment and devices to be installed must be driven.
Der Erfindung liegt - ausgehend vom Stand der Technik - die Aufgabe zu Grunde, einen luftgekühlten Wärmetauscher zu schaffen, der das Stocken oder Einfrieren des zu kühlenden oder zu kondensierenden Produkts auch bei niedrigen Temperaturen der Kühlluft sicher vermeidet.The invention is - based on the prior art - the object to provide an air-cooled heat exchanger, which reliably avoids the stagnation or freezing of the product to be cooled or condensed even at low temperatures of the cooling air.
Die Lösung dieser Aufgabe besteht nach der Erfindung in den Merkmalen des Anspruchs 1.The solution to this problem consists according to the invention in the features of claim 1.
Danach sind mindestens die Austauscherrohre in der von der Kühlluft zunächst angeströmten unteren Rohrreihe eines Wärmetauschers (Flüssigkeitskühler oder Kondensator) mit von einem Heizmedium beschickbaren Innenrohren versehen. Das Heizmedium ist bevorzugt Dampf oder warmes beziehungsweise heißes Wasser. In einigen Betriebssituationen kann es aber auch denkbar sein, dass das Produkt selber als Heizmedium verwendet wird. In den Ringspalten zwischen den Innenrohren und den Austauscherrohren strömt das zum Stocken oder Gefrieren neigende Produkt. Bei normalen Umgebungstemperaturen, zum Beispiel oberhalb 20 0C, wird das Produkt ohne Gefahr des Stockens gekühlt. Es wird kein Heizmedium benötigt. Sinkt jedoch
die Temperatur der Kühlluft unter 20 0C ab, so werden je nach den örtlichen Temperaturen zumindest die Innenrohre in der untersten Rohrreihe mit dem Heizmedium beschickt. Ggf. ist es auch nötig, die Innenrohre mindestens einer weiteren Rohrreihe mit einem Heizmedium zu beaufschlagen. So kann zum Beispiel ein Heizmedium in Form von Wasser mit einer Temperatur von 40 0C in die Innenrohre geleitet werden. Damit wird dem zu kühlenden Produkt die notwendige Wärme zugeführt und folglich das Stocken im Wärmetauscher verhindert. Sinkt die Kühllufttemperatur weiter ab, so kann geregelt noch wärmeres Heizmedium verwendet werden, um das Stocken des Produkts zu verhindern.Thereafter, at least the exchanger tubes are provided in the first of the cooling air flowed lower row of tubes of a heat exchanger (liquid cooler or condenser) with feedable from a heating medium inner tubes. The heating medium is preferably steam or hot or hot water. In some operating situations, it may also be conceivable that the product itself is used as a heating medium. In the annular gaps between the inner tubes and the exchanger tubes flows the product prone to stagnation or freezing. At normal ambient temperatures, for example above 20 ° C., the product is cooled without risk of stagnation. No heating medium is needed. Sinks however the temperature of the cooling air below 20 0 C, so depending on the local temperatures, at least the inner tubes in the bottom row of tubes are charged with the heating medium. Possibly. It is also necessary to apply a heating medium to the inner tubes of at least one further row of tubes. Thus, for example, a heating medium in the form of water at a temperature of 40 0 C are passed into the inner tubes. Thus, the necessary heat is supplied to the product to be cooled, thus preventing the sticking in the heat exchanger. If the cooling air temperature continues to drop, it is possible to regulate even warmer heating medium to prevent product stagnation.
Ein besonderer Vorteil der Erfindung ist die sehr kompakte Bauart eines Wärmetauschers gegenüber solchen Wärmetauschern, die mit Lamellenpaketen und Rezirkulationseinrichtungen versehen sind. Zwar bedeutet die Integration von Innenrohren zur Führung des Heizmediums einen fertigungstechnischen Mehraufwand. Indessen kann der Querschnitt der Innenrohre im Verhältnis zur Querschnittsfläche der das Produkt führenden Austauscherrohre so gering gehalten werden, dass in Anbetracht des Bauraumgewinns der etwas höhere Druckverlust innerhalb des Wärmetauschers unbeachtet bleiben kann. Außerdem ist bei der Auslegung des erfindungsgemäßen Wärmetauschers zu berücksichtigen, dass die Rohrlängen oftmals mehr als 10 Meter betragen. Es handelt sich also in der Regel um sehr große Anlagen. Solche Anlagen müssen ihre Leistungen auch bei maximaler Lufttemperatur erbringen, das heißt, auch im Sommerbetrieb zuverlässig kühlen. Folglich wird im Sommerbetrieb ein Gegenstrom von Kühlluft und Produkt ohne zusätzliche Beheizung angestrebt, während im Winterbetrieb das Heizmedium gegensinnig zum Produkt strömen sollte.A particular advantage of the invention is the very compact design of a heat exchanger over such heat exchangers, which are provided with plate packs and recirculation devices. Although the integration of inner tubes for guiding the heating medium means a production-related additional effort. However, the cross-section of the inner tubes relative to the cross-sectional area of the product-carrying exchanger tubes can be kept so low that in view of the space gain of the slightly higher pressure loss can be ignored within the heat exchanger. In addition, in the design of the heat exchanger according to the invention to take into account that the tube lengths are often more than 10 meters. It is therefore usually very large investments. Such systems must perform their services even at maximum air temperature, that is, even in summer operation reliably cool. Consequently, in summer operation, a countercurrent of cooling air and product without additional heating sought, while in winter operation, the heating medium should flow in opposite directions to the product.
Die Beaufschlagung der Innenrohre mit einem Heizmedium kann mit weiteren Maßnahmen kombiniert werden, um in Abhängigkeit von den jeweiligen Temperaturen der Umgebungsluft den wirtschaftlichsten Betriebszustand des Wärmetauschers zu gewährleisten. So ist es gemäß den Merkmalen des Anspruchs 2 möglich, dass die Austauscherrohre in Strömungsrichtung der
Kühlluft von Rohrreihe zu Rohrreihe mit einer jeweils größeren Anzahl an Rippen versehen sind. Mit dieser Maßnahme wird dem Sachverhalt Rechnung getragen, dass sich die Kühlluft in einem luftgekühlten Wärmetauscher von Rohrreihe zu Rohrreihe von unten nach oben erwärmt, so dass die Kühlung in den unteren Rohrreihen am intensivsten ist und damit auch die Gefahr des Stockens dort am größten ist. Um diese Gefahr zu reduzieren, biete es sich an, die Rippenteilung von Rohrreihe zu Rohrreihe zu ändern. Im Extremfall kann die unterste Rohrreihe sogar nur aus Glattrohren bestehen, um dann mit zunehmender Temperatur der Kühlluft die Rippenteilung von Rohrreihe zu Rohrreihe nach oben kleiner werden zu lassen.The admission of the inner tubes with a heating medium can be combined with further measures to ensure the most economical operating state of the heat exchanger as a function of the respective temperatures of the ambient air. Thus, it is possible according to the features of claim 2, that the exchanger tubes in the flow direction of Cooling air from tube row to tube row are provided with an increasing number of ribs. This measure takes into account the fact that the cooling air in an air-cooled heat exchanger from tube row to row of tubes heats from bottom to top, so that the cooling in the lower rows of tubes is the most intense and thus the risk of stagnation is greatest there. To reduce this risk, it is advisable to change the rib pitch from tube row to tube row. In extreme cases, the lowermost row of tubes may even consist only of smooth tubes, in order then to allow the rib pitch from row of tubes to row of tubes to become smaller with increasing temperature of the cooling air.
Vorzugsweise sind nach Anspruch 3 der Produkteinlass im Bereich der obersten Rohrreihe und der Produktauslass im Bereich der untersten Rohrreihe vorgesehen. Das heißt, das Produkt strömt im Kreuzstrom in Gegenstromwende zur Kühlluft durch den Wärmetauscher.Preferably, according to claim 3, the product inlet in the region of the uppermost row of tubes and the product outlet are provided in the region of the lowermost row of tubes. That is, the product flows in crossflow in countercurrent to the cooling air through the heat exchanger.
In diesem Zusammenhang kann es gemäß Anspruch 4 von Vorteil sein, dass die Innenrohre gleichsinnig zu den mit dem Produkt beaufschlagten Austauscherrohren mit dem Heizmedium beschickt sind. Diese Schaltungsweise bietet sich dann an, wenn sich die Temperatur der Umgebungsluft noch in einem höheren Bereich befindet. Das Heizmedium würde sich nämlich in Strömungsrichtung abkühlen, ebenso wie das Produkt. Das heißt, der Bereich des Wärmetauschers in der Nähe des Produktauslasses ist gefährdet, weil es hier am kältesten ist und folglich am ehesten zu Stockungen kommen kann.In this context, it may be advantageous according to claim 4, that the inner tubes are fed in the same direction to the acted upon by the product exchanger tubes with the heating medium. This switching mode is appropriate when the temperature of the ambient air is still in a higher range. The heating medium would namely cool down in the flow direction, as well as the product. That is, the area of the heat exchanger near the product outlet is at risk because it is the coldest and therefore most likely to be stagnant.
Bei geringer werdenden Temperaturen der Umgebungsluft ist demnach eine Schaltung entsprechend den Merkmalen des Anspruchs 5 vorteilhafter. Danach sind die Innenrohre gegensinnig zu den mit dem Produkt beaufschlagten Austauscherrohren mit dem Heizmedium beschickt. Das heißt, der Bereich des Wärmetauschers in der Nähe des Produktauslasses würde früher mit dem temperaturmäßig noch hohen Heizmedium in Kontakt gelangen, so dass Stockungen wirkungsvoll vermieden werden können.
Noch vorteilhafter ist die erfindungsgemäße Variante nach Anspruch 6. Hierbei wird das Produkt auf seinem Weg vom oberen Produkteinlass zum unteren Produktauslass mehrfach von Rohrreihe zu Rohrreihe S-förmig umgelenkt, wobei die Innenrohre jeweils gegensinnig mit dem Heizmedium beschickt werden.With decreasing temperatures of the ambient air, therefore, a circuit according to the features of claim 5 is more advantageous. Thereafter, the inner tubes are fed in opposite directions to the treated with the product exchanger tubes with the heating medium. That is, the area of the heat exchanger in the vicinity of the product outlet would sooner be in contact with the still moderately high temperature heating medium, so that stagnation can be effectively avoided. The variant according to the invention is even more advantageous according to claim 6. In this case, the product is diverted on several occasions from tube row to tube row S-shaped on its way from the upper product inlet to the lower product outlet, wherein the inner tubes are respectively charged in opposite directions with the heating medium.
Sinken die Temperaturen der Kühlluft, so ist es vorteilhafter, die Merkmale des Anspruchs 7 anzuwenden, wonach das Produkt auf seinem Weg vom oberen Produkteinlass zum unteren Produktauslass mehrfach von Rohrreihe zu Rohrreihe S-förmig umgelenkt wird, jedoch die Innenrohre jeweils gleichsinnig mit dem Heizmedium beschickt sind.If the temperatures of the cooling air drop, it is more advantageous to use the features of claim 7, according to which the product is diverted in an S-shape several times from pipe row to pipe row on its way from the upper product inlet to the lower product outlet, but the inner pipes are in each case charged in the same direction with the heating medium are.
Die gegensinnige oder gleichsinnige Schaltung des Produktstroms zum Heizmedium und umgekehrt kann mit Hilfe von 3-Wege-Ventilen oder auch von üblichen Absperrarmaturen erfolgen.The opposite direction or the same direction switching the product flow to the heating medium and vice versa can be done with the help of 3-way valves or conventional shut-off valves.
Bei der Variante gemäß den Merkmalen des Anspruchs 8 wird das Produkt selber als Heizmedium benutzt. Dazu wird das Produkt zunächst durch Innenrohre geführt und heizt hier das in den Austauscherrohren gegensinnig zurückströmende durch einen Luftstrom abgekühlte Produkt auf.In the variant according to the features of claim 8, the product itself is used as the heating medium. For this purpose, the product is first passed through inner tubes and heats up here in the exchanger tubes in the opposite direction flowing back through an air flow cooled product.
Entsprechend den Merkmalen des Anspruchs 9 ist es in Abhängigkeit von der Jahreszeit und den dann herrschenden Temperaturen der Umgebungsluft aber auch möglich, dass der Produkteinlass im Bereich der untersten Rohrreihe und der Produktauslass im Bereich der obersten Rohrreihe vorgesehen sind.According to the features of claim 9, it is also possible depending on the season and the then prevailing temperatures of the ambient air, that the product inlet in the region of the lowermost row of tubes and the product outlet are provided in the region of the uppermost row of tubes.
Nach Anspruch 10 ist es zweckmäßig, dass die Lage der Innenrohre in den Austauscherrohren dadurch gesichert wird, dass die Innenrohre über Distanzstücke in den Austauscherrohren abgestützt sind.According to claim 10, it is expedient that the position of the inner tubes in the exchanger tubes is ensured by the fact that the inner tubes are supported by spacers in the exchanger tubes.
In diesem Zusammenhang ist es dann gemäß Anspruch 11 von Vorteil, dass die Innenrohre in den Außenrohren konzentrisch angeordnet sind. Hierdurch können gleich lange Distanzstücke verwendet werden.
Die Erfindung ist nachfolgend anhand von in den Zeichnungen veranschaulichten Ausführungsbeispielen näher erläutert. Es zeigen:In this context, it is then advantageous according to claim 11, that the inner tubes are arranged concentrically in the outer tubes. As a result, the same length spacers can be used. The invention is explained in more detail with reference to embodiments illustrated in the drawings. Show it:
Figur 1 im Schema einen vertikalen Längsschnitt durch einen luftgekühlten Wärmetauscher;Figure 1 in the diagram a vertical longitudinal section through an air-cooled heat exchanger;
Figur 2 ebenfalls im Schema einen vertikalen Längsschnitt durch einen luftgekühlten Wärmetauscher gemäß einer weiteren Ausführungsform;Figure 2 also in the diagram a vertical longitudinal section through an air-cooled heat exchanger according to a further embodiment;
Figur 3 im Schema eine Schaltung für ein Heizmedium desFigure 3 in the diagram a circuit for a heating medium of
Wärmetauschers der Figur 2;Heat exchanger of Figure 2;
Figur 4 im Schema eine Variante einer Schaltung für den Wärmetauscher der Figur 2;Figure 4 is a schematic of a variant of a circuit for the heat exchanger of Figure 2;
Figur 5 einen Querschnitt durch die Darstellung der Figur 1 entlang der5 shows a cross section through the representation of Figure 1 along the
Linie V - V in Richtung der Pfeile Va gesehen undLine V - V seen in the direction of arrows Va and
Figur 6 im Schema einen vertikalen Längsschnitt durch einen luftgekühlten Wärmetauscher gemäß einer dritten Ausführungsform.Figure 6 in the diagram a vertical longitudinal section through an air-cooled heat exchanger according to a third embodiment.
Mit 1 ist in der Figur 1 ein Wärmetauscher bezeichnet, der in mehreren übereinander liegenden Rohrreihen R, R1 , R2 nebeneinander angeordnete Austauscherrohre 2, 3, 4 aufweist, die innen mit einem zu kühlenden Produkt P beaufschlagt und von unten mittels Kühlluft KL angeströmt sind.1, a heat exchanger is designated in FIG. 1, which has juxtaposed exchanger tubes 2, 3, 4 in several superimposed rows of tubes R, R1, R2, which are acted upon internally by a product P to be cooled and are flowed from below by means of cooling air KL.
Die in der untersten Reihe R liegenden Austauscherrohre 2 sind als Glattrohre ohne Rippen ausgebildet. In den beiden darüber liegenden Reihen R1 und R2 befinden sich Austauscherrohre 3, 4 mit Rippen 5, wobei die Rippen 5 der Austauscherrohre 3 in der Reihe R1 einen größeren Abstand voneinander haben, als die Rippen 5 der Austauscherrohre 4 in der Reihe R2.The lying in the bottom row R exchanger tubes 2 are designed as smooth tubes without ribs. In the two rows above R1 and R2 are exchanger tubes 3, 4 with ribs 5, wherein the ribs 5 of the exchanger tubes 3 in the row R1 have a greater distance from each other than the ribs 5 of the exchanger tubes 4 in the row R2.
Die Austauscherrohre 2, 3, 4 sind an einem Ende an eine Verteilerkammer 6 angeschlossen, die mit einem oberen Einlass 7 für das Produkt P versehen ist.
Am anderen Ende der Austauscherrohre 2, 3, 4 befindet sich eine Sammelkammer 8, die am unteren Ende mit einem Auslass 9 für das Produkt P versehen ist.The exchanger tubes 2, 3, 4 are connected at one end to a distribution chamber 6, which is provided with an upper inlet 7 for the product P. At the other end of the exchanger tubes 2, 3, 4 is a collection chamber 8, which is provided at the lower end with an outlet 9 for the product P.
In die Austauscherrohre 2, 3, 4 sind - wie auch die Figur 5 erkennen lässt - konzentrisch angeordnete Innenrohre 10 eingezogen. Die Innenrohre 10 sind über Distanzstücke 11 gegenüber den Austauscherrohren 2, 3, 4 abgestützt und münden endseitig einerseits in eine Verteilerkammer 12 für ein Heizmedium HM und andererseits in eine Sammelkammer 13 für das Heizmedium HM. Entsprechend sind an der Verteilerkammer 12 ein Einlass 14 für das Heizmedium HM und an der Sammelkammer 13 ein Auslass 15 für das Heizmedium HM vorgesehen.In the exchanger tubes 2, 3, 4 are - as the figure 5 reveals - concentrically arranged inner tubes 10 retracted. The inner tubes 10 are supported by spacers 11 opposite the exchanger tubes 2, 3, 4 and terminate on the one side in a distribution chamber 12 for a heating medium HM and on the other hand into a collection chamber 13 for the heating medium HM. Correspondingly, an inlet 14 for the heating medium HM and at the collecting chamber 13 an outlet 15 for the heating medium HM are provided on the distribution chamber 12.
Wie die Figur 1 anhand der in durchgezogener Linienführung eingezeichneten Pfeile erkennen lässt, strömt das Produkt P über den Produkteinlass 7 zunächst in die Verteilerkammer 6, von hier aus über die Ringräume 16 zwischen den Innenrohren 10 und den Austauscherrohren 2, 3, 4 zu der Sammelkammer 8 und aus dieser über den Produktauslass 9 zur Weiterverwendung.As can be seen from FIG. 1 with reference to the arrows drawn in solid lines, the product P first flows via the product inlet 7 into the distribution chamber 6, from here via the annular spaces 16 between the inner tubes 10 and the exchanger tubes 2, 3, 4 to the collection chamber 8 and from this via the product outlet 9 for further use.
Das Heizmedium HM gelangt vom Einlass 14 in die Verteilerkammer 12 und von hier aus gemäß den in unterbrochener Linienführung dargestellten Pfeilen durch die Innenrohre 10 in die Sammelkammer 13 und aus der Sammelkammer 13 über den Auslass 15 zu einer nicht dargestellten Heizquelle.The heating medium HM passes from the inlet 14 into the distribution chamber 12 and from there according to the arrows shown in broken lines through the inner tubes 10 into the collection chamber 13 and from the collection chamber 13 via the outlet 15 to a heat source, not shown.
Das Heizmedium HM fließt also gleichsinnig zum Produkt P durch die Innenrohre 10. Sowohl das Produkt P als auch das Heizmedium HM strömen im Kreuzstrom zur Kühlluft KL.The heating medium HM thus flows in the same direction to the product P through the inner tubes 10. Both the product P and the heating medium HM flow in cross-flow to the cooling air KL.
Bei der Ausführungsform der Figur 1 ist es aber auch denkbar, dass der Einlass 14 und der Auslass 15 für das Heizmedium HM ausgetauscht werden, so dass dann das Heizmedium HM gegensinnig zu dem Produkt P durch die Innenrohre 10 strömt.
Ferner ist es vorstellbar, dass das Produkt P von unten nach oben durch den Wärmetauscher 1 strömt.In the embodiment of Figure 1 but it is also conceivable that the inlet 14 and the outlet 15 are exchanged for the heating medium HM, so that then the heating medium HM flows in opposite directions to the product P through the inner tubes 10. Furthermore, it is conceivable that the product P flows from bottom to top through the heat exchanger 1.
Die Figur 2 zeigt einen Wärmetauscher 1a, der prinzipiell so aufgebaut ist, wie der Wärmetauscher 1 der Figur 1. Er besitzt in drei Reihen R, R1 , R2 nebeneinander angeordnete Austauscherrohre 2, 3, 4, die jeweils von Innenrohren 10 gemäß Figur 5 durchzogen sind. Die Austauscherrohre 2 in der untersten Reihe R besitzen keine Rippen, während die Austauscherrohre 3, 4 der Reihen R1 und R2 mit Rippen 5 versehen sind. Die Rippen 5 der Austauscherrohre 3 in der Reihe R1 haben einen größeren Relativabstand als die Rippen 5 der Austauscherrohre 4 in der obersten Reihe R2.2 shows a heat exchanger 1a, which is in principle constructed as the heat exchanger 1 of Figure 1. It has in three rows R, R1, R2 arranged side by side exchanger tubes 2, 3, 4, each traversed by inner tubes 10 according to FIG are. The exchanger tubes 2 in the bottom row R have no ribs, while the exchanger tubes 3, 4 of the rows R1 and R2 are provided with ribs 5. The ribs 5 of the exchanger tubes 3 in the row R1 have a greater relative distance than the ribs 5 of the exchanger tubes 4 in the top row R2.
Bei der Ausführungsform der Figur 2 strömt das Produkt P gemäß den in durchgezogenen Linien dargestellten Pfeilen zunächst über den Produkteinlass 7 und eine Verteilerkammer in die Ringräume 16 der Austauscherrohre 4 in der obersten Reihe R2.In the embodiment of Figure 2, the product P flows according to the arrows shown in solid lines, first via the product inlet 7 and a distribution chamber into the annular spaces 16 of the exchanger tubes 4 in the uppermost row R2.
Von hier aus gelangt das Produkt P in eine Umlenkkammer 18, wird in dieser um 180 0C umgelenkt und strömt dann durch die Ringräume 16 der Austauscherrohre 3 in der Reihe R1 zu einer weiteren Umlenkkammer 19 am anderen Ende der Austauscherrohre 3. In der Umlenkkammer 19 wird das Produkt P nochmals um 180 0C umgelenkt, strömt in den Ringräumen 16 der Austauscherrohre 2 der untersten Reihe R zu einer Sammelkammer 20 und von hier aus über den Auslass 9 zur Weiterverwendung.From here, the product P passes into a deflection chamber 18, is deflected in this by 180 0 C and then flows through the annular spaces 16 of the exchanger tubes 3 in the row R1 to another deflection chamber 19 at the other end of the exchanger tubes 3. In the deflection 19 the product P is again deflected by 180 0 C, flows in the annular spaces 16 of the exchanger tubes 2 of the bottom row R to a collection chamber 20 and from there via the outlet 9 for further use.
Die Verteilerkammer 17 ist von der darunter liegenden Umlenkkammer 19 mittels einer Wand 21 abgetrennt. Ebenso ist die Umlenkkammer 18 zwischen den Austauscherrohren 4, 3 der obersten Reihe R2 und der darunter liegenden Reihe R1 von der Sammelkammer 20 mittels einer Wand 22 abgetrennt. Das Produkt P erfährt auf diese Weise eine mehrfache S-förmige Umlenkung auf seinem Weg vom Produkteinlass 7 zum Produktauslass 9.The distribution chamber 17 is separated from the underlying deflection chamber 19 by means of a wall 21. Likewise, the deflection chamber 18 between the exchanger tubes 4, 3 of the uppermost row R2 and the underlying row R1 of the collection chamber 20 by means of a wall 22 is separated. The product P experiences in this way a multiple S-shaped deflection on its way from the product inlet 7 to the product outlet 9.
Neben der Sammelkammer 20 für das Produkt P ist eine Verteilerkammer 23 mit einem Einlas 24 für ein Heizmedium HM vorgesehen. Von hieraus strömt
das Hθizmedium HM gemäß den in unterbrochener Linienführung eingezeichneten Pfeilen durch die Innenrohre 10 in den Austauscherrohren 2 der untersten Reihe R zu einer am anderen Ende vorgesehenen Umlenkkammer 25. Aus der Umlenkkammer 25 strömt das Heizmedium HM durch die Innenrohre 10 der Austauscherrohre 3 der Reihe R1 zu einer weiteren Umlenkkammer 26, die oberhalb der Verteilerkammer 23 vorgesehen und gegenüber der Verteilerkammer 23 ebenfalls mittels der Wand 22 abgetrennt ist. Aus dieser Umlenkkammer 26 gelangt das Heizmedium HM in die Innenrohre 10 der Austauscherrohre 4 der obersten Reihe R2 und von hier aus in eine Sammelkammer 27, die gegenüber der Umlenkkammer 25 auch mittels der Wand 21 abgetrennt ist. Über einen Auslass 28 gelangt das Heizmedium HM zu einer nicht näher dargestellten Heizquelle.In addition to the collection chamber 20 for the product P, a distribution chamber 23 is provided with an inlet 24 for a heating medium HM. From here flows the Hθizmedium HM according to the arrows drawn in broken lines through the inner tubes 10 in the exchanger tubes 2 of the bottom row R to a provided at the other end deflection 25. From the deflection chamber 25 flows through the heating medium HM through the inner tubes 10 of the exchanger tubes 3 of the series R1 a further deflection chamber 26, which is provided above the distribution chamber 23 and separated from the distribution chamber 23 also by means of the wall 22. From this deflection chamber 26, the heating medium HM enters the inner tubes 10 of the exchanger tubes 4 of the uppermost row R2 and from here into a collecting chamber 27, which is separated from the deflection chamber 25 by means of the wall 21. Via an outlet 28, the heating medium HM reaches a heat source, not shown.
Es ist also aus der Figur 1 zu erkennen, dass das Heizmedium HM in allen drei Rohrreihen R, R1 und R2 gegensinnig zu dem Produkt P strömt.It can therefore be seen from FIG. 1 that the heating medium HM flows in opposite directions to the product P in all three rows of tubes R, R1 and R2.
Denkbar ist bei der Ausführungsform der Figur 2 aber auch, dass der Einlass 24 und der Auslass 28 des Heizmediums HM ausgetauscht werden. In diesem Fall strömt das Heizmedium HM von oben nach unten durch den Wärmetauscher 1a und somit gleichsinnig zum Produkt P.However, it is also conceivable in the embodiment of FIG. 2 that the inlet 24 and the outlet 28 of the heating medium HM are exchanged. In this case, the heating medium HM flows from top to bottom through the heat exchanger 1a and thus in the same direction to the product P.
Die Figuren 3 und 4 lassen in diesem Zusammenhang im Schema eine Schaltung für die verschiedenen Strömungsrichtungen des zu kühlenden Produkts bzw. des Heizmediums HM erkennen. Lediglich beispielhaft werden anhand der Figuren 3 und 4 die möglichen Strömungswege des Heizmediums HM erläutert. Diese Erläuterungen lassen sich insbesondere auch auf den Produktstrom beziehen, dessen Strömungsrichtung auf die gleiche Weise geändert werden kann.In this context, FIGS. 3 and 4 show in the diagram a circuit for the different flow directions of the product to be cooled or of the heating medium HM. By way of example only, the possible flow paths of the heating medium HM will be explained with reference to Figures 3 and 4. These explanations can be particularly refer to the product flow, the flow direction can be changed in the same way.
Soll das Heizmedium HM von oben nach unten durch den Wärmetauscher 1a strömen, gelangt das Heizmedium HM über ein 3-Wege-Ventil 29 und einen 1. Strang 30 in den Wärmetauscherweg WTW der Rohrreihen R2, R1 , R und wird über einen 2. Strang 31 sowie ein 3-WegeΛ/entil 32 einer Heizquelle zugeführt. Werden die beiden 3-Wege-Ventile 29, 32 umgeschaltet, so strömt
das Heizmedium HM gemäß den Pfeilen in unterbrochener Linienführung über das 3-Wege-Ventil 29 und einen 3. Strang 33 in den Wärmetauscherweg WTW und gelangt von hier aus über einen 4. Strang 34 zu dem zweiten 3-Wege- Ventil 32 und über dieses zur Heizquelle.If the heating medium HM flow from top to bottom through the heat exchanger 1a, the heating medium HM passes through a 3-way valve 29 and a 1st strand 30 in the Wärmetauscherweg WTW the rows of tubes R2, R1, R and is a second strand 31 and a 3-WegeΛ / entil 32 fed to a heat source. If the two 3-way valves 29, 32 switched so flows the heating medium HM according to the arrows in broken lines over the 3-way valve 29 and a third strand 33 in the heat exchanger WTW and passes from here via a 4th strand 34 to the second 3-way valve 32 and over this to the heat source.
Die Ausführungsform einer Schaltung für das Heizmedium HM gemäß Figur 4 entspricht grundsätzlich derjenigen der Figur 3, es sind nur anstelle der beiden 3-Wege-Venti!e 29, 32 jetzt vier Absperrarmaturen 35 - 38 vorgesehen, die je nach Schaltung dafür sorgen, dass das Heizmedium HM über den 1. Strang 30 und den Wärmetauscherweg WTW in den 2. Strang 31 und von hier aus zur Heizquelle bzw. über den 3. Strang 33 und den Wärmetauscherweg WTW in den 4. Strang 34 und von hier aus zur Heizquelle gelangt.The embodiment of a circuit for the heating medium HM according to Figure 4 corresponds in principle to that of Figure 3, it is only instead of the two 3-way Venti! E 29, 32 now four shut-off valves 35 - 38 are provided, depending on the circuit ensure that the heating medium HM via the 1st strand 30 and the heat exchanger WTW in the second strand 31 and from here to the heating source or via the 3rd strand 33 and the heat exchanger WTW in the 4th strand 34 and from here to the heating source ,
In der Figur 6 ist eine Ausführungsform eines Wärmetauschers 1b veranschaulicht, der in zwei Reihen R und R1 Austauscherrohre 2, 3, aufweist, die von unten mit Kühlluft KL beaufschlagt werden. Die Austauscherrohre 2 in der unteren Reihe R sind unberippt, während die Austauscherrohre 3 der darüber liegenden Reihe R1 Rippen 5 besitzen.FIG. 6 illustrates an embodiment of a heat exchanger 1b, which has exchanger tubes 2, 3 in two rows R and R1, which are supplied with cooling air KL from below. The exchanger tubes 2 in the lower row R are unaffected, while the exchanger tubes 3 of the overlying row R1 have ribs 5.
Bei dieser Ausführungsform wird als Heizmedium HM das heiße Produkt P selber verwendet. Dazu werden in der unteren Reihe R vorgesehene Innenrohre 10 über einen Produkteinlass 38 mit dem Heizmedium HM beschickt. Von hier aus strömt das Heizmedium HM gegensinnig zu dem in den Austauscherrohren 2 fließenden Produkt P zu einer Umlenkkammer 35 und aus dieser Umlenkkammer 35 in Innenrohre 10, die in der oberen Reihe R1 in den Austauscherrohren 3 angeordnet sind. Aus diesen Innenrohren 10 tritt das Heizmedium HM in eine Umlenkkammer 36 ein, wo es in die Austauscherrohre 3 der oberen Reihe R1 überführt wird. Aus den Austauscherrohren 3 gelangt das abgekühlte Heizmedium HM in eine Umlenkkammer 37 und von hier aus durch die Austauscherrohre 2 der unteren Reihe R in eine Sammelkammer. Über einen der Sammelkammer zugeordneten Produktauslass 39 wird das Produkt P der Weiterverwendung zugeführt.
Bezuqszeichen:In this embodiment, as the heating medium HM, the hot product P itself is used. For this purpose, provided in the lower row R inner tubes 10 are charged via a product inlet 38 with the heating medium HM. From here, the heating medium HM flows in opposite directions to the product P flowing in the exchanger tubes 2 to a deflection chamber 35 and from this deflection chamber 35 in inner tubes 10, which are arranged in the upper row R1 in the exchanger tubes 3. From these inner tubes 10, the heating medium HM enters a deflection chamber 36, where it is transferred into the exchanger tubes 3 of the upper row R1. From the exchanger tubes 3, the cooled heating medium HM passes into a deflection chamber 37 and from here through the exchanger tubes 2 of the lower row R into a collecting chamber. Via a product outlet 39 assigned to the collecting chamber, the product P is supplied for further use. REFERENCE CHARACTERS:
1 - Wärmetauscher1 - heat exchanger
1a- Wärmetauscher 1b- Wärmetauscher1a- heat exchanger 1b heat exchanger
2 - Austauscherrohre in R2 - Exchanger tubes in R
3 - Austauscherrohre in R13 - Exchanger tubes in R1
4 - Austauscherrohre in R24 - Exchanger tubes in R2
5 - Rippen an 3, 45 - ribs at 3, 4
6 - Verteilerkammer f. P6 - distribution chamber f. P
7 - Einlass f. P7 - inlet f. P
8 - Sammelkammer f. P8 - collection chamber f. P
9 - Auslass f. P 10- Innenrohre9 - outlet f. P 10- inner tubes
11 - Distanzstücke11 - Spacers
12- Verteilerkammer f. HM12- distribution chamber f. HM
13- Sammelkammer f. HM13- collection chamber f. HM
14- Einlass f. HM14- inlet f. HM
15- Auslass f. HM15- outlet f. HM
16- Ringräume zw.2 -4 u.1016- annular spaces zw.2 -4 u.10
17- Verteilerkammer f. P17- distribution chamber f. P
18- Umlenkkammer f. P18- deflection chamber f. P
19- Umlenkkammer f. P19- deflection chamber f. P
20 - Sammelkammer f. P20 - collection chamber f. P
21 - Trennwand zw.17 u.1921 - partition zw.17 u.19
22 - Trennwand zw.18 u.2022 - Partition zw18 u.20
23 - Verteilerkammer f. HM23 - distribution chamber f. HM
24 - Einlass f. HM24 - inlet f. HM
25- Umlenkkammer f. HM 26 - Umlenkkammer f. HM 27- Sammelkammer f. HM 28 - Auslass f. HM 29- 3-Wege-Ventil
30 - 1. Strang25- deflection chamber f. HM 26 - deflection chamber f. HM 27- collection chamber f. HM 28 - outlet f. HM 29- 3-way valve 30 - 1st strand
31 - 2. Strang 32- 3-Wege-Ventil31 - 2nd branch 32- 3-way valve
33 - 3. Strang33 - 3rd strand
34 - 4. Strang34 - 4th strand
35 - Umlenkkammer 36- Umlenkkammer 37 - Umlenkkammer 38- Produktauslass 39 - Produkteinlass35 - Deflection chamber 36- Deflection chamber 37 - Deflection chamber 38- Product outlet 39 - Product inlet
HM - Heizmedium KL- Kühlluft P- Produkt R- Rohrreihe R1 - Rohrreihe R2- Rohrreihe WTW - Wärmetauscherweg
HM - heating medium KL- cooling air P- product R- pipe series R1 - pipe series R2- pipe series WTW - heat exchanger path
Claims
1. Wärmetauscher, der in mehreren übereinander liegenden Reihen (R, R1 , R2) nebeneinander angeordnete Austauscherrohre (2, 3, 4) aufweist, die innen mit einem zu kühlenden Produkt (P) beaufschlagt und von unten mittels Kühlluft (KL) angeströmt sind, dad u rch- geken nzeich net, dass mindestens die Austauscherrohre (2) in der von der Kühlluft (KL) zunächst angeströmten unteren Rohrreihe (R) mit von einem Heizmedium (HM) beschickbaren Innenrohren (10) versehen sind.1. Heat exchanger, in a plurality of superimposed rows (R, R1, R2) juxtaposed exchanger tubes (2, 3, 4) which acted on the inside with a product to be cooled (P) and from below by means of cooling air (KL) are flowed in that at least the exchanger tubes (2) are provided with inner tubes (10) which can be fed by a heating medium (HM) in the lower row of tubes (R) initially flown by the cooling air (KL).
2. Wärmetauscher nach Anspruch 1 , dad u rch geken nzeich net, dass die Austauscherrohre (2, 3, 4) in Strömungsrichtung der Kühlluft (KL) von Rohrreihe (R, R1 ) zu Rohrreihe (R1 , R2) mit einer jeweils größeren Anzahl an Rippen (5) versehen sind.2. Heat exchanger according to claim 1, dad u rch geken nzeich net that the exchanger tubes (2, 3, 4) in the flow direction of the cooling air (KL) of tube row (R, R1) to tube row (R1, R2) with a larger number are provided on ribs (5).
3. Wärmetauscher nach Anspruch 1 oder 2, dadu rch- geken nzeich net, dass ein Einlass (7) für das Produkt (P) im Bereich der obersten Rohrreihe (R2) und ein Auslass (9) für das Produkt (P) im Bereich der untersten Rohrreihe (R) vorgesehen sind.3. A heat exchanger according to claim 1 or 2, characterized in that an inlet (7) for the product (P) in the region of the uppermost row of tubes (R2) and an outlet (9) for the product (P) in the range the lowest row of tubes (R) are provided.
4. Wärmetauscher nach einem der Ansprüche 1 bis 3, dad u rch geken nzeich net, dass die Innenrohre (10) gleichsinnig zu den mit dem Produkt (P) beaufschlagten Austauscherrohren (2, 3, 4) mit dem Heizmedium (HM) beschickt sind.4. Heat exchanger according to one of claims 1 to 3, dad u rch geken net nets that the inner tubes (10) in the same direction to the product (P) acted upon exchanger tubes (2, 3, 4) with the heating medium (HM) are charged ,
5. Wärmetauscher nach einem der Ansprüche 1 bis 3, d ad u rch- geken nzeichnet, dass die Innenrohre (10) gegensinnig zu den mit dem Produkt (P) beaufschlagten Austauscherrohren (2, 3, 4) mit dem Heizmedium (HM) beschickt sind.5. Heat exchanger according to one of claims 1 to 3, d ad u rch- geken designated that the inner tubes (10) in opposite directions to the product (P) acted upon exchanger tubes (2, 3, 4) with the heating medium (HM) charged are.
6. Wärmetauscher nach einem der Ansprüche 1 bis 5, dadu rch geken nzeichnet, dass das Produkt (P) auf seinem Weg von einem oberen Produkteinlass (7) zu einem unteren Produktauslass (9) mehrfach von Rohrreihe (R2, R1) zu Rohrreihe (R1, R) S-förmig umgelenkt wird, wobei die Innenrohre (10) jeweils gegensinnig mit dem Heizmedium (HM) beschickt sind.6. Heat exchanger according to one of claims 1 to 5, dadu rch geken nzeichnet that the product (P) on its way from an upper product inlet (7) to a lower product outlet (9) several times from tube row (R2, R1) to tube row (R1, R) is deflected S-shaped, wherein the inner tubes (10) are respectively charged in opposite directions with the heating medium (HM).
7. Wärmetauscher nach einem der Ansprüche 1 bis 5, dad u rch- geken nzeich net, dass das Produkt (P) auf seinem Weg von einem oberen Produkteinlass (7) zu einem unteren Produktauslass (9) mehrfach von Rohrreihe (R2, R1) zu Rohrreihe (R1, R) S-förmig umgelenkt wird, wobei die Innenrohre (10) jeweils gleichsinnig mit dem Heizmedium (HM) beschickt sind.7. Heat exchanger according to one of claims 1 to 5, characterized in that the product (P), on its way from an upper product inlet (7) to a lower product outlet (9), is repeated several times from the row of tubes (R2, R1). to tube row (R1, R) is deflected S-shaped, wherein the inner tubes (10) are respectively charged in the same direction with the heating medium (HM).
8. Wärmetauscher nach einem der Ansprüche 1 bis 5, dadu rch- gekennzeichnet, dass das Produkt (P) auf seinem Weg von einem Produkteinlass (39) zu einem Produktauslass (38) mehrfach von Rohrreihe (R, R1) zu Rohrreihe (R1, R) umgelenkt wird, wobei der Produkteinlass (39) an Innenrohre (10) der unteren Rohrreihe (R) angeschlossen ist, wobei das Produkt aus den Innenrohren (10) der oberen Rohrreihe (10) Austritt und über die Austauscherrohre (2, 3) gegensinnig zur Strömungsrichtung in den Innenrohren (10) einem Produktauslass (38) zuströmt.8. Heat exchanger according to one of claims 1 to 5, dadu rch- characterized in that the product (P) on its way from a product inlet (39) to a product outlet (38) several times from tube row (R, R1) to tube row (R1, R), wherein the product inlet (39) to inner tubes (10) of the lower tube row (R) is connected, the product of the inner tubes (10) of the upper tube row (10) outlet and the exchanger tubes (2, 3) in the opposite direction to the flow direction in the inner tubes (10) flows to a product outlet (38).
9. Wärmetauscher nach Anspruch 1 oder 2, dad u rch- geken nzeichnet, dass ein Produkteinlass im Bereich der untersten Rohrreihe (R) und ein Produktauslass (9) im Bereich der obersten Rohrreihe (R2) vorgesehen sind.9. A heat exchanger according to claim 1 or 2, characterized in that a product inlet in the region of the lowermost row of tubes (R) and a product outlet (9) in the region of the uppermost row of tubes (R2) are provided.
10. Wärmetauscher nach einem der Ansprüche 1 bis 9, dadu rch- gekennzeichnet, dass die Innenrohre (10) über Distanzstücke (11) in den Austauscherrohren (2, 3, 4) abgestützt sind.10. Heat exchanger according to one of claims 1 to 9, dadu rch- characterized in that the inner tubes (10) via spacers (11) in the exchanger tubes (2, 3, 4) are supported.
11. Wärmetauscher nach einem der Ansprüche 1 bis 10, dadu rch geken nzeich net, dass die Innenrohre (10) in den Austauscherrohren (2, 3, 4) konzentrisch angeordnet sind. 11. Heat exchanger according to one of claims 1 to 10, dadu rch geken nzeich net that the inner tubes (10) in the exchanger tubes (2, 3, 4) are arranged concentrically.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200710054703 DE102007054703B4 (en) | 2007-11-14 | 2007-11-14 | heat exchangers |
DE102007054703.1 | 2007-11-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2009062487A2 true WO2009062487A2 (en) | 2009-05-22 |
WO2009062487A3 WO2009062487A3 (en) | 2009-07-02 |
Family
ID=40527465
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2008/001870 WO2009062487A2 (en) | 2007-11-14 | 2008-11-13 | Heat exchanger |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102007054703B4 (en) |
WO (1) | WO2009062487A2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140083667A1 (en) * | 2012-09-27 | 2014-03-27 | Tai-Her Yang | Tri-Piece Thermal Energy Body Heat Exchanger Having Multi-Layer Pipeline And Transferring Heat To Exterior Through Outer Periphery Of Pipeline |
US20150362261A1 (en) * | 2012-02-17 | 2015-12-17 | Universite D'aix Marseille | Pipe forming part of a heat exchanger and heat exchanger comprising such a pipe |
TWI576557B (en) * | 2014-03-18 | 2017-04-01 | 財團法人金屬工業研究發展中心 | Adaptable heat exchanger and fabrication method thereof |
TWI586932B (en) * | 2012-09-27 | 2017-06-11 | 楊泰和 | Tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior through outer periphery of pipeline |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5413313B2 (en) | 2010-06-25 | 2014-02-12 | 株式会社デンソー | Heat exchanger |
CN111306966B (en) * | 2020-03-31 | 2024-07-19 | 西南交通大学 | Water-cooling air-cooling double-cooling heat exchanger based on annular microchannel and method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR962473A (en) * | 1950-06-10 | |||
JP2003139478A (en) * | 2001-11-01 | 2003-05-14 | Ee R C:Kk | Heat exchanger |
US20050236145A1 (en) * | 2004-04-27 | 2005-10-27 | Honda Motor Co., Ltd. | Heat exchanger |
WO2008078194A2 (en) * | 2006-06-20 | 2008-07-03 | Adir Segal, Ltd. | Thermal load management system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR647675A (en) * | 1928-01-25 | 1928-11-27 | Anciens Etablissements Mille P | Improvements to temperature exchangers |
DE835007C (en) * | 1939-07-25 | 1952-03-27 | Bergedorfer Eisenwerk A G Astr | Device for temperature control of protein-containing nutrient fluids, especially milk in flow-through apparatus |
FR94941E (en) * | 1967-11-21 | 1970-01-23 | Chausson Usines Sa | Heat exchanger, in particular for heating vehicles. |
DE2656698A1 (en) * | 1976-12-15 | 1978-06-22 | Gea Luftkuehler Happel Gmbh | Heat exchanger for liquids with solid particles - prevents precipitation in ribbed air cooled tubes forming crossed counterflow path |
DE3047736A1 (en) * | 1980-12-18 | 1982-07-15 | Klein, Schanzlin & Becker Ag, 6710 Frankenthal | Spiral tube double walled heat exchanger - has fixed or loose joint between walls over entire length |
-
2007
- 2007-11-14 DE DE200710054703 patent/DE102007054703B4/en not_active Expired - Fee Related
-
2008
- 2008-11-13 WO PCT/DE2008/001870 patent/WO2009062487A2/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR962473A (en) * | 1950-06-10 | |||
JP2003139478A (en) * | 2001-11-01 | 2003-05-14 | Ee R C:Kk | Heat exchanger |
US20050236145A1 (en) * | 2004-04-27 | 2005-10-27 | Honda Motor Co., Ltd. | Heat exchanger |
WO2008078194A2 (en) * | 2006-06-20 | 2008-07-03 | Adir Segal, Ltd. | Thermal load management system |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150362261A1 (en) * | 2012-02-17 | 2015-12-17 | Universite D'aix Marseille | Pipe forming part of a heat exchanger and heat exchanger comprising such a pipe |
US20140083667A1 (en) * | 2012-09-27 | 2014-03-27 | Tai-Her Yang | Tri-Piece Thermal Energy Body Heat Exchanger Having Multi-Layer Pipeline And Transferring Heat To Exterior Through Outer Periphery Of Pipeline |
TWI586932B (en) * | 2012-09-27 | 2017-06-11 | 楊泰和 | Tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior through outer periphery of pipeline |
US9719733B2 (en) * | 2012-09-27 | 2017-08-01 | Tai-Her Yang | Tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior through outer periphery of pipeline |
TWI619922B (en) * | 2012-09-27 | 2018-04-01 | 楊泰和 | Tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior through outer periphery of pipeline |
TWI576557B (en) * | 2014-03-18 | 2017-04-01 | 財團法人金屬工業研究發展中心 | Adaptable heat exchanger and fabrication method thereof |
Also Published As
Publication number | Publication date |
---|---|
WO2009062487A3 (en) | 2009-07-02 |
DE102007054703A1 (en) | 2009-05-20 |
DE102007054703B4 (en) | 2012-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3119623B1 (en) | Heating and cooling module | |
DE102007054703B4 (en) | heat exchangers | |
DE29909871U1 (en) | Heat exchangers, especially oil coolers | |
EP2476970A2 (en) | Fluid storage device | |
EP3249341B1 (en) | Heat exchanger and method for wetting heat exchangers | |
EP3956619B1 (en) | Heat exchanger arrangement having at least one multipass heat exchanger | |
DE1401668C3 (en) | Method for power control of an air-cooled surface cooler for liquids and surface cooler for carrying out the method | |
WO2009095305A1 (en) | Heat exchanger comprising a fractal pipe structure | |
DE2405999B2 (en) | NATURAL ZUG DRY COOLING TOWER | |
DE2501796C2 (en) | ||
DE202010013659U1 (en) | Condensation storage in a heat pump cycle | |
EP3988881B1 (en) | Method for operating a heat transfer assembly | |
DE69802353T2 (en) | AIR COOLED CONDENSER | |
DE112023000239T5 (en) | Heat exchange component and heat exchange process for a hydrogenation device | |
DE102019133184A1 (en) | System for pasteurizing food or beverages filled in closed containers with a process liquid | |
DE102008038658A1 (en) | Tube heat exchanger | |
DE679600C (en) | Recuperator | |
DE202014101213U1 (en) | Heizkühlmodul | |
WO2004111559A1 (en) | Device for heating a coolant conveyed inside the circuit of a heat pump | |
CH634127A5 (en) | Thermal power station WITH A TROCKENKUEHLEINRICHTUNG. | |
DE102010024613B4 (en) | Plate heat exchanger | |
DE2738752C2 (en) | Heat pump system | |
AT507075B1 (en) | HEAT STORAGE | |
DE2507886A1 (en) | Exhaust steam precipitation in steam turbines - closed cycle for heat exchange fluid passes through condenser and cooling tower | |
EP0848224A2 (en) | Cooling tower with forced ventilation and operating method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08849955 Country of ref document: EP Kind code of ref document: A2 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
122 | Ep: pct application non-entry in european phase |
Ref document number: 08849955 Country of ref document: EP Kind code of ref document: A2 |