WO2009061360A1 - Personal care composition comprising a reaction product of epoxy compound and amino silane - Google Patents

Personal care composition comprising a reaction product of epoxy compound and amino silane Download PDF

Info

Publication number
WO2009061360A1
WO2009061360A1 PCT/US2008/012291 US2008012291W WO2009061360A1 WO 2009061360 A1 WO2009061360 A1 WO 2009061360A1 US 2008012291 W US2008012291 W US 2008012291W WO 2009061360 A1 WO2009061360 A1 WO 2009061360A1
Authority
WO
WIPO (PCT)
Prior art keywords
emulsion
composition
subscript
carbon atoms
zero
Prior art date
Application number
PCT/US2008/012291
Other languages
French (fr)
Inventor
Benjamin Falk
Anne Dussaud
Lara P. Fieschi-Corso
Original Assignee
Momentive Performance Materials Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Momentive Performance Materials Inc. filed Critical Momentive Performance Materials Inc.
Priority to AT08848570T priority Critical patent/ATE519477T1/en
Priority to CN200880123799.6A priority patent/CN101909598B/en
Priority to EP08848570A priority patent/EP2214633B1/en
Priority to JP2010533070A priority patent/JP5656638B2/en
Priority to KR1020107009842A priority patent/KR101689317B1/en
Priority to US12/740,296 priority patent/US8642022B2/en
Priority to PL08848570T priority patent/PL2214633T3/en
Publication of WO2009061360A1 publication Critical patent/WO2009061360A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/896Polysiloxanes containing atoms other than silicon, carbon, oxygen and hydrogen, e.g. dimethicone copolyol phosphate
    • A61K8/898Polysiloxanes containing atoms other than silicon, carbon, oxygen and hydrogen, e.g. dimethicone copolyol phosphate containing nitrogen, e.g. amodimethicone, trimethyl silyl amodimethicone or dimethicone propyl PG-betaine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/06Preparations for styling the hair, e.g. by temporary shaping or colouring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/12Preparations containing hair conditioners
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • C08G59/306Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4085Curing agents not provided for by the groups C08G59/42 - C08G59/66 silicon containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/504Amines containing an atom other than nitrogen belonging to the amine group, carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/54Nitrogen-containing linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/80Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
    • A61K2800/95Involves in-situ formation or cross-linking of polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • C08J2383/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen

Definitions

  • the present invention relates to novel copolymers formed as the reaction product of epoxy compounds and amino silanes.
  • Modified silicones can exhibit a variety of physical properties.
  • the polymers can be modified to be hydrophilic, lipophilic and hydrophobic depending on the nature of the organic substituents.
  • linear alternating copolymers and linear random copolymers have been made using alkyl or polyether, and polydimethylsiloxane units. These materials have shown utility in a variety of applications including personal care (hair conditioners, skin care and color cosmetics), textile treatments, hard surface modifiers, agricultural adjuncts, and the like. Unfortunately these materials are liquids and show limited durability when applied to a surface.
  • US Patent 4,062,999 A describes a process for treating textile fibers with a mixture of an amino functional silane and an epoxy functional silicone. The unreacted mixture is applied to the fiber then heat-treated in an oven.
  • US Patent 4,359,545 A describes the process of reacting an amino functional silicone and an epoxy functional silicone onto a textile surface. The blend is applied to a textile then heat-treated in an oven.
  • US Patent 5,384,340 describes the use of a moisture and or photo curable coatings system. The process involves first reacting an epoxy or methacryl functional silane with an excess of an amino functional silicone. The remaining unreacted amino groups are then reacted with an epoxy or isocyano functional vinyl containing molecule. The resulting material contains both moisture curable alkoxy silane groups and free radical curable vinyl groups.
  • EP 1,116,813Al describes a textile treatment composition containing siloxanes having epoxy- and glycol- functionalities and either an aminosilane or a silicone quaternary ammonium compound.
  • the composition is preferably formulated as an aqueous emulsion. The emulsion is applied to the textile surface followed by heat treatment to cure the mixture.
  • US Patent 5,102,930 A describes a silicone-based fabric finishing agent that is suitable for finishing a fabric material containing keratinous fibers, e.g., wool.
  • the fabric finishing agent is an aqueous emulsion of a hydroxy- containing organopolysiloxane with an admixture of a mixture of colloidal silica and a reaction product of an amino-functional alkoxy silane or a hydrolysis product thereof with an acid anhydride, an epoxy-functional alkoxy silane compound and a curing catalyst.
  • US patent 6,475,568 Bl describes the synthesis of non- crosslinkable silicone polyether non-(AB)n materials that do not contain silane or reactive groups.Durable films leaving the hair hydrophobic have been disclosed in WO 98/54255. This durability was achieved by crosslinking of copolymer which are silane modified polymethacrylate or acrylate.
  • the application methods for hair treatment consists of keeping the copolymers away from water before use to prevent premature cross-linking.
  • the hydrolyzing step required to allow the cross-linking process has to be performed shortly before use, which is not very convenient for the hair care product end-user.
  • US 2003/0177590 discloses an aqueous dispersion of particle where the reactive silyl function is protected by an acrylic polymer casing, and can be used directly on the hair.
  • Other durable films on hair fiber described in US 6,923,953 involve reducing the sulfur bonds of hair keratin and reacting active compounds on one or more reduced hair sulfur bond.
  • WO 03/078503 describes the preparation of protein /silane copolymer, which can improve the flexabrasion properties of hair. More simple or method of treatments that do not involving a reducing step, would be useful.
  • the present invention provides for a compositi Lon comprising the reaction product of
  • an oxirane or oxetane compound comprising at least two oxirane or oxetane groups
  • R 1 is chosen from the group consisting of H or a monovalent hydrocarbon radical containing one to 20 carbon atoms;
  • R 2 is selected from a group consisting of a divalent linear or branched hydrocarbon radical consisting of 1-60 carbons;
  • R 4 is a hydrocarbon radical that contains 3 to 200 carbon atoms
  • R 5 is selected from a group consisting of oxygen or a divalent linear or branched hydrocarbon radical consisting of 1-60 carbons;
  • R 3 , R 6 , R 7 , and R 8 and are each independently selected from the group of monovalent linear or branched hydrocarbon radicals having from 1 to 200 carbon atoms;
  • the subscript b is zero or a positive number and has a value ranging from 0 to 3;
  • the subscripts a is zero or appositive number less than 3, the subscripts b and c are zero or positive and have a value ranging from 0 to 3 subject to the limitation that (a + b + c) ⁇ 3;
  • the present invention provides for a composition comprising the reaction product of
  • an oxirane or oxetane compound comprising at least two oxirane or oxetane groups
  • R 1 is chosen from the group consisting of H or a monovalent hydrocarbon radical containing one to 20 carbon atoms;
  • R 2 is selected from a group consisting of a divalent linear or branched hydrocarbon radical consisting of 1-60 carbons;
  • R 4 is a hydrocarbon radical that contains 3 to 200 carbon atoms;
  • R 5 is selected from a group consisting of oxygen or a divalent linear or branched hydrocarbon radical consisting of 1-60 carbons;
  • R 3 , R 6 , R 7 , and R 8 are each independently selected from the group of monovalent linear or branched hydrocarbon radicals having from 1 to 200 carbon atoms;
  • the subscript b is zero or a positive number and has a value ranging from 0 to 3;
  • the subscripts a is zero or appositive number less than 3, the subscripts b and c are zero or positive and have a value ranging from 0 to 3 subject to the limitation that (a + b + c) ⁇ 3;
  • the present invention further provides for such reaction product compositions where the oxirane or oxetane compound is selected from the group consisting of siloxanes, hydrocarbons and polyethers particularly where the oxirane or oxetane compound is a siloxane having the formula:
  • D PE R 20 (.CH2CH(R 14 )(R 15 ) t O(R 16 ) u (C 2 H4 ⁇ )v(C3H 6 O)w(C4H8 ⁇ ) ⁇ R 17 )Si ⁇ 2/2
  • D E R20RESiO 2/2 .
  • T R 2i SiO 3 / 2 ;
  • T H HSiO 3 / 2 ;
  • T PE (-CH2CH(R 14 )(R i5 ) t O(R i6 ) u (C2H4 ⁇ )v(C3H 6 O)w(C4H8 ⁇ ) ⁇ R 17 )Si ⁇ 3/2;
  • T E R E SiO 3 /2;
  • R 9 , R 10 , R 11 , R 12 , R", RiS 7 Ri ⁇ R20 / and R 2 I are each independently selected from the group of monovalent hydrocarbon radicals having from 1 to 60 carbon atoms;
  • R 14 is H or a 1 to 6 carbon atom alkyl group
  • R 15 is a divalent alkyl radical of 1 to 6 carbons
  • R 16 is selected from the group of divalent radicals consisting of -C 2 H 4 O-, -C3H6O- , and -C 4 HeO-
  • R 17 is H, a monofunctional hydrocarbon radical of 1 to 6 carbons, or acetyl
  • R E is independently a monovalent hydrocarbon radical containing one or more oxirane or oxetane moieties having from one to sixty carbon atoms;
  • the subscript f may be zero or positive subject to the limitation that when the subscript f is zero, h must be positive; the subscript h may be zero or positive subject to the limitations that when h is zero, the subscript f must be positive, and that the sum of the subscripts h, 1 and p is positive;
  • the subscript k is zero or positive and has a value ranging from about 0 to about 1,000;
  • the subscript 1 is zero or positive and has a value ranging from about 0 to about 400 subject to the limitation that the sum of the subscripts h, 1 and p is positive;
  • the subscript o is zero or positive and has a value ranging from 0 to about 50;
  • the subscript p is zero or positive and has a value ranging from 0 to about 30 subject to the limitation that the sum of the subscripts h, 1 and p is positive;
  • the subscript s is zero or positive and has a value ranging from 0 to about 20;
  • the subscript i is zero or positive and has a value ranging from 0 to about 20;
  • the subscript m is zero or positive and has a value ranging from 0 to about 200;
  • the subscript q is zero or positive and has a value ranging from 0 to about 30;
  • the subscript j is zero or positive and has a value ranging from 0 to about 2;
  • the subscript n is zero or positive and has a value ranging from 0 to about 20;
  • the subscript r is zero or positive and has a value ranging from 0 to about 30;
  • v is zero or positive and has a value ranging from 0 to about 100 subject to the limitation that (v + w + x) > 0;
  • the subscript w is zero or positive and has a value ranging from 0 to about 100 subject to the limitation that (v + w + x) > 0;
  • the subscript x is zero or positive and has a value ranging from 0 to about 100 subject to the limitation that (v + w + x) > 0;
  • oxirane or oxetane compound is a hydrocarbon having the formula:
  • R 22 and R 25 are independently a monovalent hydrocarbon radical containing one or more oxirane or oxetane moieties having from 3 to 12 carbon atoms;
  • R 23 and R 24 are each selected from the group consisting of H or a linear or branched monovalent hydrocarbon radical of 1 to 200 carbons;
  • the subscripts y, z, ⁇ , ⁇ are zero or positive ranging from zero to four subject to the limitation that (y + ⁇ ) > 2or alternatively where the oxirane or oxetane compound is a polyether having the formula: R 26 O (R27) ⁇ (C 2 H 4 O) 5 (C 3 H 6 OMC 4 H 8 OXR 28
  • R 26 and R 28 are independently a monovalent hydrocarbon radical containing one or more oxirane or oxetane moieties having from 3 to 12 carbon atoms;
  • R 27 is selected from the group of divalent radicals consisting of - C 2 H 4 O-, -C 3 H 6 O- , and -C 4 H 8 O-;
  • the subscript ⁇ is zero or positive and has a value ranging from 0 to about 100 subject to the limitation that ( ⁇ + ⁇ + ⁇ ) > 0;
  • the subscript ⁇ is zero or positive and has a value ranging from 0 to about 100 subject to the limitation that ( ⁇ + ⁇ + ⁇ ) > 0;
  • the subscript ⁇ is zero or positive and has a value ranging from 0 to about 100 subject to the limitation that ( ⁇ + ⁇ + ⁇ ) > 0.
  • the present invention also provides for a reaction product of an epoxy compound and an amino silane further comprising the reaction product of a compound having the formula:
  • R 29 is a monovalent hydrocarbon radical containing one or more oxirane or oxetane moieties having from 3 to 12 carbon atoms;
  • R 30 is a divalent hydrocarbon radical consisting of 1-60 carbons and the subscript K has a value of zero or 1;
  • R 31 and R 32 are independently selected from the group of monovalent linear or branched hydrocarbon radicals having from 1 to 60 carbon atoms;
  • the subscript ⁇ is zero or positive and has a value ranging from 0 to 3; the subscript ⁇ is greater than 0 and less than or equal to 3, subject to the limitation that 3- ⁇ - ⁇ is greater than or equal to zero;
  • R 33 is a hydrocarbon radical that contains 3 to 200 carbon atoms.
  • hydrocarbon radical includes hydrocarbon radicals that may be optionally substituted with hetero-atoms particularly nitrogen, oxygen, and sulfur, and may optionally contain ring structures such as oxirane and oxetane groups.
  • the mole ratio of oxirane or epoxy groups to amino groups is preferably about 1 to about 4, more preferably greater than about 1.1 and less than about 3.9, and most preferably greater than about 1.2 and less than about 3.8.
  • R 1 is preferably a monovalent hydrocarbon radical of from 1 to about 10 carbon atoms or hydrogen, more preferably from 1 to about 5 carbon atoms or hydrogen, most preferably R 1 is H.
  • R 2 is preferably a monovalent hydrocarbon radical of from 1 to about 10 carbon atoms more preferably 2 to about 8 carbon atoms, and most preferably 3 to about 5 carbon atoms.
  • R 4 is preferably a monovalent hydrocarbon radical of from 3 to about 10 carbon atoms more preferable 3to about 8 carbon atoms most preferable 3 to about 5 carbon atoms.
  • R 3 , R 6 , R 7 , and R 8 are each preferably a monovalent hydrocarbon radical of from 1 to about 20 carbon atoms more preferably 1 to about 15 carbon atoms, most preferably 2 to about 8 carbon atoms.
  • Subscript a is in the range of from 0 to about 3, preferably from about 1 to about 3, more preferably from about 2 to about 3, most preferably from 0 to about 1.
  • Subscript b is in the range of 0 to about 25, more preferably 0 to about 15 and most preferably 3.
  • Subscript c is in the range 0 to about 3, more preferably 0 to about 2, most preferably 0 to about 1.
  • R 9 , R 10 , R 11 , R 12 , R" , RiS 7 RI ⁇ R20 / and R 21 are each preferably a monovalent hydrocarbon radical of from 1 to about 4 carbon atoms, more preferably 1 to about 3 carbon atoms, and most preferably 1 carbon atom.
  • the subscripts f, 1, m, n, o p , q, r, s are each in the range of 0 to about 200, more preferably 0 to about 100, and most preferably 0 to about 50.
  • the subscript k is in the range of 0 to about500, more preferably 5 to about 250, and most preferably 5 to about 150.
  • the subscripts v, w, and x are each in the range of 0 to about 50, more preferably 0 to about 35, and most preferably 0 to about 25.
  • R 23 and R 24 are each preferably a monovalent hydrocarbon radical of from 5 to aboutlOOO carbon atoms, more preferably 10 to about500, and most preferably 10 to about 300.
  • the subscripts ⁇ , ⁇ , ⁇ are in the range of 0 to about 50 more preferably, 0 to about 30, and most preferably 0 to about 15.
  • R 31 and R 32 are each preferably a monovalent hydrocarbon radical of from 1 to about 10 carbon atoms, more preferably 1 to about 8 carbon atoms, and most preferably 1 to about 4 carbon atoms.
  • R 33 are each preferably a monovalent hydrocarbon radical of from 3 to aboutlOO carbon atoms, more preferably 3 to about 50 carbon atoms, most preferably 3 to about 10 carbon atoms.
  • a substance, component or ingredient identified as a reaction product, resulting mixture, or the like may gain an identity, property, or character through a chemical reaction or transformation during the course of contacting, in situ formation, blending, or mixing operation if conducted in accordance with this disclosure with the application of common sense and the ordinary skill of one in the relevant art (e.g., chemist).
  • the transformation of chemical reactants or starting materials to chemical products or final materials is a continually evolving process, independent of the speed at which it occurs. Accordingly, as such a transformative process is in progress there may be a mix of starting and final materials, as well as intermediate species that may be, depending on their kinetic lifetime, easy or difficult to detect with current analytical techniques known to those of ordinary skill in the art.
  • Reactants and components referred to by chemical name or formula in the specification or claims hereof, whether referred to in the singular or plural, may be identified as they exist prior to coming into contact with another substance referred to by chemical name or chemical type (e.g., another reactant or a solvent).
  • Preliminary and /or transitional chemical changes, transformations, or reactions, if any, that take place in the resulting mixture, solution, or reaction medium may be identified as intermediate species, master batches, and the like, and may have utility distinct from the utility of the reaction product or final material.
  • Other subsequent changes, transformations, or reactions may result from bringing the specified reactants and /or components together under the conditions called for pursuant to this disclosure. In these other subsequent changes, transformations, or reactions the reactants, ingredients, or the components to be brought together may identify or indicate the reaction product or final material.
  • reaction product is obtained from the reaction of at least the components listed as disclosed.
  • Non-reactive components may be added to the reaction mixture as diluents or to impart additional properties unrelated to the properties of the composition prepared as a reaction product.
  • finely divided solids such as pigments may be dispersed into the reaction mixture, before during or after reaction to produce a reaction product composition that additionally comprises the non-reactive component, e.g. a pigment.
  • Additional reactive components may also be added; such components may react with the initial reactants or they may react with the reaction product; the phrase "reaction product" is intended to include those possibilities as well as including the addition of non-reactive components.
  • reaction of component A with component B can be conducted in the presence of a primary or secondary amine that may or may not possess a reactive alkoxy silane moiety.
  • the result will be a reaction product of A, B, and the primary or secondary amine.
  • Examples of these primary amines are; methylamine, ethylamine, propylamine, ethanol amine, isopropylamine, butylamine, isobutylamine, hexylamine, dodecylamine, oleylamine, aniline aminopropyltrimethylsilane, aminopropyltriethylsilane, aminomorpholine, aminopropyldiethylamine benzylamine, napthylamine 3-amino-9-ethylcarbazole, 1- aminoheptaphlorohexane, 2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluoro-l- octanamine and the like.
  • secondary amines are; methylethylamine, methylhexylamine, methyloctadecylamine, diethanolamine, dibenzylamine, dihexylamine dicyclohexylamine, piperidine, pyrrolidine phthalimide, and the like. Polymeric amines may also be used such.
  • the product of the reaction of A, an oxirane or oxetane compound possessing two or more oxirane or oxetane groups per molecule and B, an aminosilane results in a polymer that contains alkoxy silane functional moieties covalently bond to the polymer chain.
  • alkoxy silane groups may be activated particularly by hydrolysis and undergo further reactions leading to a cross-linked network.
  • the cross-linking mechanism of silanes is usually a two-step process. The first step usually involves the hydrolysis of an alkoxy silane to form silanols. The second step usually involves the condensation of the silanol groups so produced with themselves or with other reactive organic groups.
  • silanol groups may also condense reversibly with organic moieties such as alcohols, carboxylic acids, amines, mercaptans, and ketones (other reactive groups).
  • organic moieties such as alcohols, carboxylic acids, amines, mercaptans, and ketones (other reactive groups).
  • the bonds that are formed are less stable than the siloxane bonds.
  • rate of the reverse reaction may be severely reduced or even stopped.
  • compositions of the present invention may be utilized as pure components, mixtures, or emulsions.
  • emulsions comprise at least two immiscible phases one of which is continuous and the other which is discontinuous.
  • Further emulsions may be liquids or gases with varying viscosities or solids. Additionally the particle size of the emulsions may render them microemulsions and when sufficiently small microemulsions may be transparent. Further it is also possible to prepare emulsions of emulsions and these are generally known as multiple emulsions. These emulsions may be:
  • aqueous emulsions where the discontinuous phase comprises water and the continuous phase comprises the composition of the present invention
  • discontinuous phase comprises the composition of the present invention and the continuous phase comprises water
  • non-aqueous emulsions where the discontinuous phase comprises a non-aqueous hydroxylic solvent and the continuous phase comprises the composition of the present invention; and 4) non-aqueous emulsions where the continuous phase comprises a non-aqueous hydroxylic organic solvent and the discontinuous phase comprises the composition of the present invention.
  • the resulting reaction product may be soluble in polar aqueous or hydroxylic solvents or it may be soluble in non-polar solvents such as oils, low molecular weight siloxanes and silicones and the like.
  • the hydrophilic lipophilic balance of the resulting reaction product will result in imparting different properties to articles of manufacture depending on the hydrophilic lipophilic balance of the reaction product.
  • a more hydrophilic reaction product may impart hydrophilic properties to one or more surfaces of an article of manufacture such as a textile or fibers such as hair.
  • a more hydrophobic reaction product may impart hydrophobic properties of one or more surfaces of an article of manufacture such as a textile or fibers such as hair.
  • treatment of woven and non-woven textiles with the reaction product of the present invention produces an enhanced response to water of the treated textile either increasing the hydrophilicity or hydrophobicity of the textile so treated as measured by standardized tests.
  • use of the compositions of the present invention to treat human produces an enhanced response of the skin so treated to water as measured by tests tomeasure the hydrophobic or hydrophilic properties ofhuman skin so treated.
  • the resulting treated material Upon application and curing a reaction product of the present invention to a hair tress, the resulting treated material exhibits a water contact angle of greater than 80°, more preferably greater than 85°, and most preferably greater than 90° when the contact angle technique as described in US6846333 B2 at column 4 lines 16 through 24 is performed.
  • the resulting treated material Upon application and curing a reaction product of the present invention to a hair tress, the resulting treated material exhibits a strike through time of greater than 100 seconds, more preferably greater than 200 seconds, and most preferably greater than 300 seconds when AATCC Test Method 79-1992 adapted for hair is performed.
  • the resulting treated human skin exhibits a water contact angle of greater than 60° and most preferably greater than 65° when ASTM D5725-99 is performed.
  • the resulting treated human skin exhibits a water contact angle of less than 40° and most preferably less than 35° when ASTM D5725-99 is performed.
  • the epoxy amino silane copolymers of the present invention comprises, per 100 parts by weight ("pbw") of the personal care composition, from 0.01 to 99 pbw, more preferably from 0.5 pbw to 30 pbw and still more preferably from 1 to 15 pbw of the composition of the present invention and from 0.01 pbw to 99.9 pbw, more preferably from 70 pbw to 99.5 pbw, and still more preferably from 85 pbw to 99 pbw of the personal care composition.
  • compositions of the present invention may be utilized in personal care emulsions, such as lotions, and creams.
  • emulsions comprise at least two immiscible phases one of which is continuous and the other which is discontinuous.
  • Further emulsions may be liquids with varying viscosities or solids. Additionally the particle size of the emulsions may render them microemulsions and, when sufficiently small, microemulsions may be transparent.
  • emulsions of emulsions and these are generally known as multiple emulsions. These emulsions may be:
  • discontinuous phase comprises water and the continuous phase comprises the epoxy amino silane copolymers of the present invention
  • discontinuous phase comprises the epoxy amino silane copolymers of the present invention and the continuous phase comprises water;
  • discontinuous phase comprises a non-aqueous hydroxylic solvent and the continuous phase comprises the epoxy amino silane copolymers of the present invention
  • Non-aqueous emulsions comprising a silicone phase are described in US patent 6,060,546 and US patent 6,271,295 the disclosures of which are herewith and hereby specifically incorporated by reference.
  • non-aqueous hydroxy lie organic compound means hydroxyl containing organic compounds exemplified by alcohols, glycols, polyhydric alcohols and polymeric glycols and mixtures thereof that are liquid at room temperature, e.g. about 25 0 C, and about one atmosphere pressure.
  • the non-aqueous organic hydroxylic solvents are selected from the group consisting of hydroxyl containing organic compounds comprising alcohols, glycols, polyhydric alcohols and polymeric glycols and mixtures thereof that are liquid at room temperature, e.g. about 25 0 C, and about one atmosphere pressure.
  • the non-aqueous hydroxylic organic solvent is selected from the group consisting of ethylene glycol, ethanol, propyl alcohol, iso-propyl alcohol, propylene glycol, dipropylene glycol, tripropylene glycol, butylene glycol, iso-butylene glycol, methyl propane diol, glycerin, sorbitol, polyethylene glycol, polypropylene glycol mono alkyl ethers, polyoxyalkylene copolymers and mixtures thereof.
  • the resulting material is usually a cream or lotion with improved deposition properties and good feel characteristics. It is capable of being blended into formulations for hair care, skin care, antiperspirants, sunscreens, cosmetics, color cosmetics, insect repellants, vitamin and hormone carriers, fragrance carriers and the like.
  • the personal care applications where the epoxy amino silane copolymers of the present invention and the silicone compositions derived therefrom of the present invention may be employed include, but are not limited to, deodorants, antiperspirants, antiperspirant/ deodorants, shaving products, skin lotions, moisturizers, toners, bath products, cleansing products, hair care products such as shampoos, conditioners, mousses, styling gels, hair sprays, hair dyes, hair color products, hair bleaches, waving products, hair straighteners, manicure products such as nail polish, nail polish remover, nails creams and lotions, cuticle softeners, protective creams such as sunscreen, insect repellent and anti-aging products, color cosmetics such as lipsticks, foundations, face powders, eye liners, eye shadows, blushes, makeup, mascaras and other personal care formulations where silicone components have been conventionally added, as well as drug delivery systems for topical application of medicinal compositions that are to be applied to the skin.
  • the personal care composition of the present invention further comprises one or more personal care ingredients.
  • suitable personal care ingredients include, for example, emollients, moisturizers, humectants, pigments, including pearlescent pigments such as, for example, bismuth oxychloride and titanium dioxide coated mica, colorants, fragrances, biocides, preservatives, antioxidants, antimicrobial agents, anti-fungal agents, antiperspirant agents, exfoliants, hormones, enzymes, medicinal compounds, vitamins, salts, electrolytes, alcohols, polyols, absorbing agents for ultraviolet radiation, botanical extracts, surfactants, silicone oils, organic oils, waxes, film formers, thickening agents such as, for example, fumed silica or hydrated silica, particulate fillers, such as for example, talc, kaolin, starch, modified starch, mica, nylon, clays, such as, for example, bentonite and organo-modified clays.
  • Suitable personal care compositions are made by combining, in a manner known in the art, such as, for example, by mixing, one or more of the above components with the compositions of the present invention.
  • Suitable personal care compositions may be in the form of a single phase or in the form of an emulsion, including oil-in-water, water-in-oil and anhydrous emulsions where the silicone phase may be either the discontinuous phase or the continuous phase, as well as multiple emulsions, such as, for example, oil- in water-in-oil emulsions and water-in-oil-in water-emulsions.
  • an antiperspirant composition comprises the epoxy amino silane copolymers of the present invention and one or more active antiperspirant agents.
  • Suitable antiperspirant agents include, for example, the Category I active antiperspirant ingredients listed in the U.S.
  • a skin care composition comprises the compositions of the present invention, and a vehicle, such as, for example, a silicone oil or an organic oil.
  • the skin care composition may, optionally, further include emollients, such as, for example, triglyceride esters, wax esters, alkyl or alkenyl esters of fatty acids or polyhydric alcohol esters and one or more the known components conventionally used in skin care compositions, such as, for example, pigments, vitamins, such as, for example, Vitamin A, Vitamin C and Vitamin E, sunscreen or sunblock compounds, such as, for example, titanium dioxide, zinc oxide, oxybenzone, octylmethoxy cinnamate, butylmethoxy dibenzoylm ethane, p-aminobenzoic acid and octyl dimethyl-p-aminobenzoic acid.
  • emollients such as, for example, triglyceride esters, wax esters, alkyl or alken
  • a color cosmetic composition such as, for example, a lipstick, a makeup or a mascara composition
  • a coloring agent such as a pigment, a water soluble dye or a liposoluble dye.
  • compositions of the present invention are utilized in conjunction with fragrant materials.
  • These fragrant materials may be fragrant compounds, encapsulated fragrant compounds, or fragrance releasing compounds that either the neat compounds or are encapsulated.
  • Particularly compatible with the compositions of the present invention are the fragrance releasing silicon containing compounds as disclosed in US patents 6,046,156; 6,054,547; 6,075,111; 6,077,923; 6,083,901; and 6,153,578; all of which are herein and herewith specifically incorporated by reference.
  • compositions of the invention By using compositions of the invention, we have found a simple method to provide durable films to hair or skin. This method comprises:
  • the surfactant may comprise a nonionic surfactant, a cationic surfactant, an anionic surfactant, an anionic surfactant, an amphoteric surfactant, or a mixture of such surfactants.
  • aqueous dispersion or diluted microemulsion to hair or skin, in the form of sprays, creams, mousse, O/W emulsion, W/O emulsion, rinse-off products.
  • compositions for hair and skin treatments comprise the above-mentioned polymer as an ingredient.
  • compositions suitable for treating hair include but are not limited to shampoos, conditioners, mousses, styling gels, permanent wave fixatives, spray, paste, moisturizing lotions and creams, combing creams, relaxers, hair dyeing products such as developers and the like.
  • compositions of the present invention are not restricted to personal care compositions, other products such as waxes, polishes and textiles treated with the compositions of the present invention are also contemplated.
  • Home care applications include laundry detergent and fabric softener, dishwashing liquids, wood and furniture polish, floor polish, tub and tile cleaners, toilet bowl cleaners, hard surface cleaners, window cleaners, antifog agents, drain cleaners, auto-dish washing detergents and sheeting agents, carpet cleaners, prewash spotters, rust cleaners and scale removers.
  • compositions of the present organomodified silylated surfactant invention are useful in oil and gas applications, including demulsification.
  • compositions comprising organomodified silylated surfactant invention are useful for applications involving commercial and industrial open recirculating cooling water towers, closed cooling water systems, cooling water conduits, heat exchangers, condensers, once-through cooling systems, Pasteurizers, air washers, heat exchange systems, air conditioning / humidifiers / dehumidifiers, hydrostatic cookers, safety and /or fire water protection storage systems, water scrubbers, disposal wells, influent water systems, including filtration and clarifiers, wastewater treatment, wastewater treatment tanks, conduits, filtration beds, digesters, clarifiers, holding ponds, settling lagoons, canals, odor control, ion exchange resin beds, membrane filtration, reverse osmosis, micro- and ultra-filtration, assisting in the removal of biofilms in cooling tower applications, heat exchangers and process water systems, and the like.
  • compositions of the present organomodified silylated surfactant invention are useful in pulp and paper applications, such as paperboard defoamers, and wetting agents for the pulping process.
  • Aminopropyltriisopropoxy silane (22.68 g), an epoxy encapped polysiloxane with the average structure CH 2 (O)CHCH2 ⁇ CH2CH2CH2Si(CH3)2 ⁇ [Si(CH3)2 ⁇ ]50Si(CH3)2CH2CH 2 CH2 ⁇ C H 2 CH(O)CH 2 (227.34 g) and isopropanol (50 g) was combined in a 500 mL flask. The material was brought to reflux and stirred with an overhead stirrer. The refluxing continued for 24 hr until all epoxy groups were consumed as determined by titration. The material was transferred to a rotary evaporator and stripped at 70 0 C and 4 torr for 2 hrs to remove the isopropanol.
  • Emulsion Al 7 Fl, L1,K1 and C2 are prepared by mixing the polymer and water with a lab propeller mixer for 15 min. The dispersions are then acidified and homogenized for 1 minute.
  • the polymer is mixed with the surfactant system and 10 g of water to obtain an homogeneous mixture, using a regular lab propeller mixer or a speed mixer. The remaining water is added slowly. The acidification is performed at the end. Clear microemulsions should be obtained.
  • microemulsion F2 100 g of microemulsion F2 are prepared by method (ii)
  • the polymer and the surfactant are mixed with 0.6 g water to form a gel-like mixture and added to the acidified water, while stirring.
  • the emulsions presented in Table 1 will be used as master emulsions to prepare the dilute hair treatments described in the following sections.
  • the measurement consists of measuring the force exerted by the water on the hair fiber during its immersion in the distilled water (advancing contact angle).
  • the hair is considered hydrophilic when the advancing angle ranges from 0 to less than 80 and hydrophobic when this angle ranges from 80 to 180.
  • the hydrophobicity of the hair tress was also evaluated by measuring the time required for a drop of water to penetrate the surface of the hair tress secured horizontally on a clamp (Murakami hair tress holder) according to a method adapted from the AATCC Test Method 79-1992 for textile samples.
  • the hair tress is held taut into the Murakami hair holder.
  • a drop of deionized water was applied onto the tress surface via a dropper and a timer was started. The timer was stopped when the drop of water completely penetrated the tress and was record in seconds.
  • the value reported is the average of three drop tests readings, shown in the table 3.
  • the test was terminated at 300 seconds. A value of 300 seconds indicates that the drop never penetrated the hair tress.
  • the shampoo is a 10% sles solution and the conditioner is a silicone containing shampoo from Procter and Gamble, Pantene Pro Daily Moisture Renew.
  • the conditioning quaternized silicone is Silsoft Q from Momentive Performance Material.
  • Table 3 shows that untreated damaged hair (Comparative 2) is hydrophilic, whereas virgin untreated hair (Comparative 1) is hydrophobic. Regular conditioning silicone from rinse-off conditioner do not change the damaged hair hydrophophilicity (Comparative 3-4). In contrast, the hair treated with the polymer described in the present invention are hydrophobic (Example 1- 6).
  • Durability of the hair treatment is also displayed in Table 5 where comparative 5 is the double- bleached untreated hair subjected to 1, 10, 20 washing cycles. The treatment is considered durable after 10 washes or after 20 washes, if the strike through time is higher than 10 s.
  • Table 5 Hydrophobicity durability determined by strike through time
  • Rinse-off conditioner having the composition shown in Table 6 was prepared. Double bleached tresses were washed with 10% SLES solution and conditioned with composition in example 7 and rinsed for 30 s. Hydrophobicity tests were performed on the treated and untreated tress. Table 7 demonstrates that copolymer containing rinse-off conditioner provides hydrophobizing treatment to the hair, which are durable through 20 washes.
  • Double bleached tresses were washed with 10% SLES solution and dried. The composition was poured into a container equipped with a manual pump. 2 g of the mousse was applied to the 4 g tress by massaging. The tresses were dried with a blow drier. Hydrophobicity and durability tests were performed on treated and untreated tress. Table 9 demonstrates that copolymer delivered from a mousse formulation provides a hydrophobizing treatment to damaged hair which are durable through 20 washes, as shown by the strike through time data.
  • Diastron dry combing procedures are well recognized and well accepted in the industry for determining hair conditioning by the ease of dry combing.
  • the test employs a strain gauge, which is equipped to measure the force required to comb the hair.
  • the conditioning performance is based on the ability of a particular hair treatment formulation to reduce the force required to comb the hair. Hair tress preparation.
  • Double bleached blond hair 4 g tresses (15 cm long) were purchased from Hair International INC. Prior to washing, each tress is dipped into 0.5% Sodium Hydroxide solution for two minutes and rinsed for two minutes with tap water. Each tress is then washed with 1 ml of a 10% SLES solution and rinsed using a standard wash protocol. After washing, the wet tresses are combed with a fine teeth comb, dried in a blow drier bonnet and kept overnight in a environmental chamber at 50 % RH before combing force measurement. These clean tresses are used to measure the baseline combing force, according to the combing force protocol described below.
  • control tresses (comparative) are washed again with the SLES solution and treated with a conditioner (1 ml /tress) described below.
  • test tresses were dipped into 100 ml of the dilute dispersion of copolymer containing emulsions described in Table 1 for 60 s and blown dry. After rinsing and drying and combing, the treated tresses are kept overnight in an environmental chamber at 50 % RH before combing force measurement.
  • Diastron combing force apparatus is enclosed in a controlled humidity chamber, equilibrated at 50 %RH.
  • the automated comb speed is 500 mm/min.
  • the combing force measurement is repeated 10 times on each tress. Each treatment is duplicated.
  • % average force reduction (A 0 -A)*! 00 /A 0
  • a 0 is the average combing load of the baseline tress and A is the average combing load of the treated tress.
  • Copolymer containing treatment and comparative treatments are shown in Table 12. 15 cm long double-bleached 4 g tresses from Hair International were used. The tresses were treated with a strong base (0.5% NaOH solution) in order to induce a very visible frizziness. The tresses were then washed with a 10% SLES solution, blow-dried, disentangled with a comb and kept in a 50% RH room. The test tress was dipped in the dispersion described in Table 12 for 60s. Excess water was removed by squeezing the wet tress between the index and middle finger. The damp tress is then ironed at medium heat, in a Revlon flat iron.
  • the tress A treated with tap water showed strong disarray of fibers and knotting. It looked that a large number of fibers had melted and jammed during the damp iron process. This tress felt very coarse and dry to the touch.
  • the hair in tress B treated with 1% copolymer from emulsion Cl looked very aligned and straight with no significant frizziness. The hair felt smooth and soft to touch.
  • the copolymer treated tress provided significant thermal protection during damp ironing, compared to all the other treatments allowing the removal of the initial tress frizzines without severe damage and a clear perceivable hair condition improvement.
  • Aminosilicone and quaternized silicone in comparative 9 and 10 are from the emulsion Silsoft SME253 and Silsoft Q from Momentive Performance Materials.
  • the leave-in conditioner is the leave-in strengthener from SoftShee Carson Optimum Care relaxing kit.
  • volume ratio much higher than 3 indicated very high level of frizziness and high damage.
  • the volume factor measured before and after ironing, for each treatment is displayed in Table 13. The experiment was performed in duplicate. The data showed that the copolymer treatment during ironing allowed a significant removal of frizziness, superior to the aminosilicone treatment. It was also noticed that the copolymer treated tress felt very smooth, without heaviness. Similar results were observed with relaxed ethnic hair.
  • Comparative 12 is the virgin untreated straight hair.
  • the aminosilicone in comparative 13 is prepared with Silsoft SME253 from Momentive Performance Materials.
  • the treatments do provide a styling benefit to the hair, manifested by a reduced width of the curl upon exposure to moisture. Although the hair is not held as tight as the commercial formulation, the hair remains soft and pleasant to touch. The reduced width increase indicates a reduction in "fly away” and frizzyness of the hair.
  • the commercial formulation is hard and does not exhibit desirable sensory.
  • the word "comprises” and its grammatical variants logically also subtend and include phrases of varying and differing extent such as for example, but not limited thereto, "consisting essentially of and “consisting of.” Where necessary, ranges have been supplied; those ranges are inclusive of all sub-ranges there between. Such ranges may be viewed as a Markush group or a collection of Markush groups consisting of differing pairwise numerical limitations which group or groups is or are fully delimited by its lower and upper bounds, increasing in a regular fashion numerically from lower bounds to upper bounds.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Birds (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Dispersion Chemistry (AREA)
  • Cosmetics (AREA)
  • Silicon Polymers (AREA)
  • Polyethers (AREA)

Abstract

The present invention provides for a personal care composition suitable for treating hair comprising a composition comprising the reaction product of a) an oxirane or oxetane compound comprising at least two oxirane or oxetane groups; and b) an amino silane having the formula: N(H)(R1)R2Si(OR3)3-a-b-c(OR4)a(R5Si(OR6)d(R7)e) b R8C with R1 is chosen from the group consisting of H or a monovalent hydrocarbon radical containing one to 20 carbon atoms; R2 is selected from a group consisting of a divalent linear or branched hydrocarbon radical consisting of 1-60 carbons; R4 is a hydrocarbon radical that contains 3 to 200 carbon atoms; R5 is selected from a group consisting of oxygen or a divalent linear or branched hydrocarbon radical consisting of 1-60 carbons; R3, R6, R7, and R8 and are each independently selected from the group of monovalent linear or branched hydrocarbon radicals having from 1 to 200 carbon atoms; the subscript b is zero or a positive number and has a value ranging from 0 to 3; the subscripts a is zero or appositive number less than 3, the subscripts b and c are zero or positive and have a value ranging from 0 to 3 subject to the limitation that (a + b + c) < 3; the subscripts d and e are zero or positive and have a value ranging from 0 to 3 subject to the limitation that (d + e) = 3, wherein when hair is treated with said personal care composition said hair has a hydrophobic response to water.

Description

PERSONAL CARE COMPOSITION COMPRISING A REACTION PRODUCT OF EPOXY COMPOUND AND
AMINO SILANE
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority to US provisional patent application serial number 60/984753 filed November 2, 2007.
FIELD OF THE INVENTION
[0002] The present invention relates to novel copolymers formed as the reaction product of epoxy compounds and amino silanes.
BACKGROUND OF THE INVENTION
[0003] Modified silicones can exhibit a variety of physical properties. The polymers can be modified to be hydrophilic, lipophilic and hydrophobic depending on the nature of the organic substituents. Recently, linear alternating copolymers and linear random copolymers have been made using alkyl or polyether, and polydimethylsiloxane units. These materials have shown utility in a variety of applications including personal care (hair conditioners, skin care and color cosmetics), textile treatments, hard surface modifiers, agricultural adjuncts, and the like. Unfortunately these materials are liquids and show limited durability when applied to a surface.
[0004] US Patent 4,062,999 A describes a process for treating textile fibers with a mixture of an amino functional silane and an epoxy functional silicone. The unreacted mixture is applied to the fiber then heat-treated in an oven.
[0005] US Patent 4,359,545 A describes the process of reacting an amino functional silicone and an epoxy functional silicone onto a textile surface. The blend is applied to a textile then heat-treated in an oven. [0006] US Patent 5,384,340 describes the use of a moisture and or photo curable coatings system. The process involves first reacting an epoxy or methacryl functional silane with an excess of an amino functional silicone. The remaining unreacted amino groups are then reacted with an epoxy or isocyano functional vinyl containing molecule. The resulting material contains both moisture curable alkoxy silane groups and free radical curable vinyl groups.
[0007] EP 1,116,813Al describes a textile treatment composition containing siloxanes having epoxy- and glycol- functionalities and either an aminosilane or a silicone quaternary ammonium compound. The composition is preferably formulated as an aqueous emulsion. The emulsion is applied to the textile surface followed by heat treatment to cure the mixture.
[0008] US Patent 5,102,930 A describes a silicone-based fabric finishing agent that is suitable for finishing a fabric material containing keratinous fibers, e.g., wool. The fabric finishing agent is an aqueous emulsion of a hydroxy- containing organopolysiloxane with an admixture of a mixture of colloidal silica and a reaction product of an amino-functional alkoxy silane or a hydrolysis product thereof with an acid anhydride, an epoxy-functional alkoxy silane compound and a curing catalyst.
[0009] US patent 6,475,568 Bl describes the synthesis of non- crosslinkable silicone polyether non-(AB)n materials that do not contain silane or reactive groups.Durable films leaving the hair hydrophobic have been disclosed in WO 98/54255. This durability was achieved by crosslinking of copolymer which are silane modified polymethacrylate or acrylate. The application methods for hair treatment consists of keeping the copolymers away from water before use to prevent premature cross-linking. The hydrolyzing step required to allow the cross-linking process has to be performed shortly before use, which is not very convenient for the hair care product end-user.
[0011] US 2003/0177590 discloses an aqueous dispersion of particle where the reactive silyl function is protected by an acrylic polymer casing, and can be used directly on the hair. Other durable films on hair fiber described in US 6,923,953 involve reducing the sulfur bonds of hair keratin and reacting active compounds on one or more reduced hair sulfur bond. WO 03/078503 describes the preparation of protein /silane copolymer, which can improve the flexabrasion properties of hair. More simple or method of treatments that do not involving a reducing step, would be useful.
SUMMARY OF THE INVENTION
[0012] The present invention provides for a compositi Lon comprising the reaction product of
a) an oxirane or oxetane compound comprising at least two oxirane or oxetane groups; and
b) an amino silane having the formula:
N(H)(R1)R2Si(OR3)3-a-b-c(OR4)a(R5Si(OR6)d(R7)e) b R8c
with R1 is chosen from the group consisting of H or a monovalent hydrocarbon radical containing one to 20 carbon atoms;
R2 is selected from a group consisting of a divalent linear or branched hydrocarbon radical consisting of 1-60 carbons;
R4 is a hydrocarbon radical that contains 3 to 200 carbon atoms;
R5 is selected from a group consisting of oxygen or a divalent linear or branched hydrocarbon radical consisting of 1-60 carbons; R3, R6, R7, and R8 and are each independently selected from the group of monovalent linear or branched hydrocarbon radicals having from 1 to 200 carbon atoms;
the subscript b is zero or a positive number and has a value ranging from 0 to 3;
the subscripts a is zero or appositive number less than 3, the subscripts b and c are zero or positive and have a value ranging from 0 to 3 subject to the limitation that (a + b + c) < 3;
the subscripts d and e are zero or positive and have a value ranging from 0 to 3 subject to the limitation that (d + e) = 3, wherein when hair is treated with said personal care composition said hair has a hydrophobic response to water or wherein when human skin is with said personal care composition said skin exhibits an enhanced response to water.
DETAILED DESCRIPTION OF THE INVENTION
[0013] The present invention provides for a composition comprising the reaction product of
a) an oxirane or oxetane compound comprising at least two oxirane or oxetane groups; and
b) an amino silane having the formula:
N(H)(R WSi(OR3)3-a-b-c(OR4)a(R5Si(OR6)d(R7)e) b R8C
with R1 is chosen from the group consisting of H or a monovalent hydrocarbon radical containing one to 20 carbon atoms;
R2 is selected from a group consisting of a divalent linear or branched hydrocarbon radical consisting of 1-60 carbons; R4 is a hydrocarbon radical that contains 3 to 200 carbon atoms;
R5 is selected from a group consisting of oxygen or a divalent linear or branched hydrocarbon radical consisting of 1-60 carbons;
R3, R6, R7, and R8 and are each independently selected from the group of monovalent linear or branched hydrocarbon radicals having from 1 to 200 carbon atoms;
the subscript b is zero or a positive number and has a value ranging from 0 to 3;
the subscripts a is zero or appositive number less than 3, the subscripts b and c are zero or positive and have a value ranging from 0 to 3 subject to the limitation that (a + b + c) ≤ 3;
the subscripts d and e are zero or positive and have a value ranging from 0 to 3 subject to the limitation that (d + e) = 3, wherein when hair is treated with said personal care composition said hair has a hydrophobic response to water or wherein when human skin is with said personal care composition said skin exhibits an enhanced response to water.
The present invention further provides for such reaction product compositions where the oxirane or oxetane compound is selected from the group consisting of siloxanes, hydrocarbons and polyethers particularly where the oxirane or oxetane compound is a siloxane having the formula:
MfMEhMPEiMH jDkDEiD15EmDHnToTEpTPEqTHrQ5 with M = R9R10R11SiOu2; MH = R12R13H SiO1/2;
MPE = R12R13(.CH2CH(R14)(R15)tO(R16)u(C2H4θ)v(C3H6O)w(C4H8O)χR17)SiO1/2; ME = R12R13(RE)SiO1/2
D = Ri8Ri9SiO2/2; and
Figure imgf000007_0001
DPE = R20(.CH2CH(R14)(R15)tO(R16)u(C2H4θ)v(C3H6O)w(C4H8θ)χR17)Siθ2/2 DE = R20RESiO2/2.
T = R2iSiO3/2;
TH = HSiO3/2;
TPE = (-CH2CH(R14)(Ri5)tO(Ri6)u(C2H4θ)v(C3H6O)w(C4H8θ)χR17)Siθ3/2;
TE = RESiO3/2; and
Q = SiO472;
where R9, R10, R11 , R12, R", RiS7 Ri^ R20/ and R2I are each independently selected from the group of monovalent hydrocarbon radicals having from 1 to 60 carbon atoms;
R14 is H or a 1 to 6 carbon atom alkyl group; R15 is a divalent alkyl radical of 1 to 6 carbons; R16 is selected from the group of divalent radicals consisting of -C2H4O-, -C3H6O- , and -C4HeO-; R17 is H, a monofunctional hydrocarbon radical of 1 to 6 carbons, or acetyl;
RE is independently a monovalent hydrocarbon radical containing one or more oxirane or oxetane moieties having from one to sixty carbon atoms;
the subscript f may be zero or positive subject to the limitation that when the subscript f is zero, h must be positive; the subscript h may be zero or positive subject to the limitations that when h is zero, the subscript f must be positive, and that the sum of the subscripts h, 1 and p is positive;
the subscript k is zero or positive and has a value ranging from about 0 to about 1,000;
the subscript 1 is zero or positive and has a value ranging from about 0 to about 400 subject to the limitation that the sum of the subscripts h, 1 and p is positive;
the subscript o is zero or positive and has a value ranging from 0 to about 50;
the subscript p is zero or positive and has a value ranging from 0 to about 30 subject to the limitation that the sum of the subscripts h, 1 and p is positive;
the subscript s is zero or positive and has a value ranging from 0 to about 20;
the subscript i is zero or positive and has a value ranging from 0 to about 20;
the subscript m is zero or positive and has a value ranging from 0 to about 200;
the subscript q is zero or positive and has a value ranging from 0 to about 30;
the subscript j is zero or positive and has a value ranging from 0 to about 2; the subscript n is zero or positive and has a value ranging from 0 to about 20;
the subscript r is zero or positive and has a value ranging from 0 to about 30;
the subscript t is zero or one;
the subscript u is zero or one;
the subscript v is zero or positive and has a value ranging from 0 to about 100 subject to the limitation that (v + w + x) > 0;
the subscript w is zero or positive and has a value ranging from 0 to about 100 subject to the limitation that (v + w + x) > 0;
the subscript x is zero or positive and has a value ranging from 0 to about 100 subject to the limitation that (v + w + x) > 0;
or alternatively where the oxirane or oxetane compound is a hydrocarbon having the formula:
R22y(R23)z(R24α)(R25
where R22 and R25 are independently a monovalent hydrocarbon radical containing one or more oxirane or oxetane moieties having from 3 to 12 carbon atoms;
R23 and R24 are each selected from the group consisting of H or a linear or branched monovalent hydrocarbon radical of 1 to 200 carbons;
the subscripts y, z, α, β are zero or positive ranging from zero to four subject to the limitation that (y + β) > 2or alternatively where the oxirane or oxetane compound is a polyether having the formula: R26O(R27) γ(C2H4O) 5(C3H6OMC4H8OXR28
where R26 and R28 are independently a monovalent hydrocarbon radical containing one or more oxirane or oxetane moieties having from 3 to 12 carbon atoms;
R27 is selected from the group of divalent radicals consisting of - C2H4O-, -C3H6O- , and -C4H8O-;
the subscript γ is zero or 1;
the subscript δ is zero or positive and has a value ranging from 0 to about 100 subject to the limitation that (δ + ε + ζ) > 0;
the subscript ε is zero or positive and has a value ranging from 0 to about 100 subject to the limitation that (δ + ε + ζ) > 0;
the subscript ζ is zero or positive and has a value ranging from 0 to about 100 subject to the limitation that (δ + ε + ζ) > 0.
[0014] The present invention also provides for a reaction product of an epoxy compound and an amino silane further comprising the reaction product of a compound having the formula:
R29(R30)κSi(OR31)3- η . θ (R32)η(OR33)θ
where R29 is a monovalent hydrocarbon radical containing one or more oxirane or oxetane moieties having from 3 to 12 carbon atoms;
R30 is a divalent hydrocarbon radical consisting of 1-60 carbons and the subscript K has a value of zero or 1; R31 and R32 are independently selected from the group of monovalent linear or branched hydrocarbon radicals having from 1 to 60 carbon atoms;
the subscript η is zero or positive and has a value ranging from 0 to 3; the subscript θ is greater than 0 and less than or equal to 3, subject to the limitation that 3- η - θ is greater than or equal to zero;
R33 is a hydrocarbon radical that contains 3 to 200 carbon atoms.
As used herein the phrase hydrocarbon radical includes hydrocarbon radicals that may be optionally substituted with hetero-atoms particularly nitrogen, oxygen, and sulfur, and may optionally contain ring structures such as oxirane and oxetane groups.
Preferred embodiments
[0015] In reacting the oxirane or oxetane compounds with amino bearing compounds, the mole ratio of oxirane or epoxy groups to amino groups is preferably about 1 to about 4, more preferably greater than about 1.1 and less than about 3.9, and most preferably greater than about 1.2 and less than about 3.8. R1 is preferably a monovalent hydrocarbon radical of from 1 to about 10 carbon atoms or hydrogen, more preferably from 1 to about 5 carbon atoms or hydrogen, most preferably R1 is H. R2 is preferably a monovalent hydrocarbon radical of from 1 to about 10 carbon atoms more preferably 2 to about 8 carbon atoms, and most preferably 3 to about 5 carbon atoms. R4 is preferably a monovalent hydrocarbon radical of from 3 to about 10 carbon atoms more preferable 3to about 8 carbon atoms most preferable 3 to about 5 carbon atoms. R3, R6, R7, and R8 are each preferably a monovalent hydrocarbon radical of from 1 to about 20 carbon atoms more preferably 1 to about 15 carbon atoms, most preferably 2 to about 8 carbon atoms. Subscript a is in the range of from 0 to about 3, preferably from about 1 to about 3, more preferably from about 2 to about 3, most preferably from 0 to about 1. Subscript b is in the range of 0 to about 25, more preferably 0 to about 15 and most preferably 3. Subscript c is in the range 0 to about 3, more preferably 0 to about 2, most preferably 0 to about 1. R9, R10, R11 , R12, R" , RiS7 RI^ R20/ and R21 are each preferably a monovalent hydrocarbon radical of from 1 to about 4 carbon atoms, more preferably 1 to about 3 carbon atoms, and most preferably 1 carbon atom. The subscripts f, 1, m, n, o p , q, r, s are each in the range of 0 to about 200, more preferably 0 to about 100, and most preferably 0 to about 50. The subscript k is in the range of 0 to about500, more preferably 5 to about 250, and most preferably 5 to about 150. The subscripts v, w, and x are each in the range of 0 to about 50, more preferably 0 to about 35, and most preferably 0 to about 25. R23 and R24 are each preferably a monovalent hydrocarbon radical of from 5 to aboutlOOO carbon atoms, more preferably 10 to about500, and most preferably 10 to about 300. The subscripts δ, ε, ζ are in the range of 0 to about 50 more preferably, 0 to about 30, and most preferably 0 to about 15. R31 and R32 are each preferably a monovalent hydrocarbon radical of from 1 to about 10 carbon atoms, more preferably 1 to about 8 carbon atoms, and most preferably 1 to about 4 carbon atoms. R33 are each preferably a monovalent hydrocarbon radical of from 3 to aboutlOO carbon atoms, more preferably 3 to about 50 carbon atoms, most preferably 3 to about 10 carbon atoms.
[0016] Reference is made to substances, components, or ingredients in existence at the time just before first contacted, formed in situ, blended, or mixed with one or more other substances, components, or ingredients in accordance with the present disclosure. A substance, component or ingredient identified as a reaction product, resulting mixture, or the like may gain an identity, property, or character through a chemical reaction or transformation during the course of contacting, in situ formation, blending, or mixing operation if conducted in accordance with this disclosure with the application of common sense and the ordinary skill of one in the relevant art (e.g., chemist). The transformation of chemical reactants or starting materials to chemical products or final materials is a continually evolving process, independent of the speed at which it occurs. Accordingly, as such a transformative process is in progress there may be a mix of starting and final materials, as well as intermediate species that may be, depending on their kinetic lifetime, easy or difficult to detect with current analytical techniques known to those of ordinary skill in the art.
[0017] Reactants and components referred to by chemical name or formula in the specification or claims hereof, whether referred to in the singular or plural, may be identified as they exist prior to coming into contact with another substance referred to by chemical name or chemical type (e.g., another reactant or a solvent). Preliminary and /or transitional chemical changes, transformations, or reactions, if any, that take place in the resulting mixture, solution, or reaction medium may be identified as intermediate species, master batches, and the like, and may have utility distinct from the utility of the reaction product or final material. Other subsequent changes, transformations, or reactions may result from bringing the specified reactants and /or components together under the conditions called for pursuant to this disclosure. In these other subsequent changes, transformations, or reactions the reactants, ingredients, or the components to be brought together may identify or indicate the reaction product or final material.
[0018] In describing the products of the instant invention as a reaction product of initial materials reference is made to the initial species recited and it is to be noted that additional materials may be added to the initial mixture of synthetic precursors. These additional materials may be reactive or non-reactive. The defining characteristic of the instant invention is that the reaction product is obtained from the reaction of at least the components listed as disclosed. Non-reactive components may be added to the reaction mixture as diluents or to impart additional properties unrelated to the properties of the composition prepared as a reaction product. Thus for example finely divided solids such as pigments may be dispersed into the reaction mixture, before during or after reaction to produce a reaction product composition that additionally comprises the non-reactive component, e.g. a pigment. Additional reactive components may also be added; such components may react with the initial reactants or they may react with the reaction product; the phrase "reaction product" is intended to include those possibilities as well as including the addition of non-reactive components.
[0019] Optionally the reaction of component A with component B can be conducted in the presence of a primary or secondary amine that may or may not possess a reactive alkoxy silane moiety. The result will be a reaction product of A, B, and the primary or secondary amine. Examples of these primary amines are; methylamine, ethylamine, propylamine, ethanol amine, isopropylamine, butylamine, isobutylamine, hexylamine, dodecylamine, oleylamine, aniline aminopropyltrimethylsilane, aminopropyltriethylsilane, aminomorpholine, aminopropyldiethylamine benzylamine, napthylamine 3-amino-9-ethylcarbazole, 1- aminoheptaphlorohexane, 2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluoro-l- octanamine and the like. Examples of secondary amines are; methylethylamine, methylhexylamine, methyloctadecylamine, diethanolamine, dibenzylamine, dihexylamine dicyclohexylamine, piperidine, pyrrolidine phthalimide, and the like. Polymeric amines may also be used such.
Applications for Embodiments of the Invention
[0020] The product of the reaction of A, an oxirane or oxetane compound possessing two or more oxirane or oxetane groups per molecule and B, an aminosilane, results in a polymer that contains alkoxy silane functional moieties covalently bond to the polymer chain. These alkoxy silane groups may be activated particularly by hydrolysis and undergo further reactions leading to a cross-linked network. The cross-linking mechanism of silanes is usually a two-step process. The first step usually involves the hydrolysis of an alkoxy silane to form silanols. The second step usually involves the condensation of the silanol groups so produced with themselves or with other reactive organic groups. The reaction between two silanol groups leads to a thermally stable siloxane bond. Silanol groups may also condense reversibly with organic moieties such as alcohols, carboxylic acids, amines, mercaptans, and ketones (other reactive groups). The bonds that are formed are less stable than the siloxane bonds. However when a cross-linked network is formed the rate of the reverse reaction may be severely reduced or even stopped.
[0021] The compositions of the present invention may be utilized as pure components, mixtures, or emulsions. As is generally known, emulsions comprise at least two immiscible phases one of which is continuous and the other which is discontinuous. Further emulsions may be liquids or gases with varying viscosities or solids. Additionally the particle size of the emulsions may render them microemulsions and when sufficiently small microemulsions may be transparent. Further it is also possible to prepare emulsions of emulsions and these are generally known as multiple emulsions. These emulsions may be:
1) aqueous emulsions where the discontinuous phase comprises water and the continuous phase comprises the composition of the present invention;
2) aqueous emulsions where the discontinuous phase comprises the composition of the present invention and the continuous phase comprises water;
3) non-aqueous emulsions where the discontinuous phase comprises a non-aqueous hydroxylic solvent and the continuous phase comprises the composition of the present invention; and 4) non-aqueous emulsions where the continuous phase comprises a non-aqueous hydroxylic organic solvent and the discontinuous phase comprises the composition of the present invention.
[0022] Depending on the choice of component A and component B it is possible to alter the hydrophilic or lipophilic properties of the resulting reaction product. Thus depending on the hydrophilic lipophilic balance, the resulting reaction product may be soluble in polar aqueous or hydroxylic solvents or it may be soluble in non-polar solvents such as oils, low molecular weight siloxanes and silicones and the like.
[0023] The hydrophilic lipophilic balance of the resulting reaction product will result in imparting different properties to articles of manufacture depending on the hydrophilic lipophilic balance of the reaction product. For example, a more hydrophilic reaction product may impart hydrophilic properties to one or more surfaces of an article of manufacture such as a textile or fibers such as hair. Conversely, a more hydrophobic reaction product may impart hydrophobic properties of one or more surfaces of an article of manufacture such as a textile or fibers such as hair. These hydrophilic or hydrophobic properties are readily measured by standardized tests. As used herein, the word textile encompasses both woven textiles and non-woven textiles made from both natural and man-made fibers. Thus treatment of woven and non-woven textiles with the reaction product of the present invention produces an enhanced response to water of the treated textile either increasing the hydrophilicity or hydrophobicity of the textile so treated as measured by standardized tests. Similarly, use of the compositions of the present invention to treat human produces an enhanced response of the skin so treated to water as measured by tests tomeasure the hydrophobic or hydrophilic properties ofhuman skin so treated.
Hair Treatment Hydrophobic
[0024] Upon application and curing a reaction product of the present invention to a hair tress, the resulting treated material exhibits a water contact angle of greater than 80°, more preferably greater than 85°, and most preferably greater than 90° when the contact angle technique as described in US6846333 B2 at column 4 lines 16 through 24 is performed.
[0025] Upon application and curing a reaction product of the present invention to a hair tress, the resulting treated material exhibits a strike through time of greater than 100 seconds, more preferably greater than 200 seconds, and most preferably greater than 300 seconds when AATCC Test Method 79-1992 adapted for hair is performed.
Skin Treatment
Hydrophobic
[0026] Upon application and curing a reaction product of the present invention to human skin, the resulting treated human skin exhibits a water contact angle of greater than 60° and most preferably greater than 65° when ASTM D5725-99 is performed.
Hydrophilic
[0027] Upon application and curing a reaction product of the present invention to human skin, the resulting treated human skin exhibits a water contact angle of less than 40° and most preferably less than 35° when ASTM D5725-99 is performed.
A. Personal Care
[0028] In a preferred embodiment, the epoxy amino silane copolymers of the present invention comprises, per 100 parts by weight ("pbw") of the personal care composition, from 0.01 to 99 pbw, more preferably from 0.5 pbw to 30 pbw and still more preferably from 1 to 15 pbw of the composition of the present invention and from 0.01 pbw to 99.9 pbw, more preferably from 70 pbw to 99.5 pbw, and still more preferably from 85 pbw to 99 pbw of the personal care composition.
[0029] The compositions of the present invention may be utilized in personal care emulsions, such as lotions, and creams. As is generally known, emulsions comprise at least two immiscible phases one of which is continuous and the other which is discontinuous. Further emulsions may be liquids with varying viscosities or solids. Additionally the particle size of the emulsions may render them microemulsions and, when sufficiently small, microemulsions may be transparent. Further it is also possible to prepare emulsions of emulsions and these are generally known as multiple emulsions. These emulsions may be:
a) aqueous emulsions where the discontinuous phase comprises water and the continuous phase comprises the epoxy amino silane copolymers of the present invention;
b) aqueous emulsions where the discontinuous phase comprises the epoxy amino silane copolymers of the present invention and the continuous phase comprises water;
c) non-aqueous emulsions where the discontinuous phase comprises a non-aqueous hydroxylic solvent and the continuous phase comprises the epoxy amino silane copolymers of the present invention; and
d) non-aqueous emulsions where the continuous phase comprises a non-aqueous hydroxylic organic solvent and the discontinuous phase comprises the epoxy amino silane copolymers of the present invention. [0030] Non-aqueous emulsions comprising a silicone phase are described in US patent 6,060,546 and US patent 6,271,295 the disclosures of which are herewith and hereby specifically incorporated by reference.
[0031] As used herein the term "non-aqueous hydroxy lie organic compound" means hydroxyl containing organic compounds exemplified by alcohols, glycols, polyhydric alcohols and polymeric glycols and mixtures thereof that are liquid at room temperature, e.g. about 25 0C, and about one atmosphere pressure. The non-aqueous organic hydroxylic solvents are selected from the group consisting of hydroxyl containing organic compounds comprising alcohols, glycols, polyhydric alcohols and polymeric glycols and mixtures thereof that are liquid at room temperature, e.g. about 25 0C, and about one atmosphere pressure. Preferably the non-aqueous hydroxylic organic solvent is selected from the group consisting of ethylene glycol, ethanol, propyl alcohol, iso-propyl alcohol, propylene glycol, dipropylene glycol, tripropylene glycol, butylene glycol, iso-butylene glycol, methyl propane diol, glycerin, sorbitol, polyethylene glycol, polypropylene glycol mono alkyl ethers, polyoxyalkylene copolymers and mixtures thereof.
[0032] Once the desired form is attained whether as a silicone only phase, an anhydrous mixture comprising the silicone phase, a hydrous mixture comprising the silicone phase, a water-in-oil emulsion, an oil-in- water emulsion, or either of the two non-aqueous emulsions or variations thereon, the resulting material is usually a cream or lotion with improved deposition properties and good feel characteristics. It is capable of being blended into formulations for hair care, skin care, antiperspirants, sunscreens, cosmetics, color cosmetics, insect repellants, vitamin and hormone carriers, fragrance carriers and the like.
[0033] The personal care applications where the epoxy amino silane copolymers of the present invention and the silicone compositions derived therefrom of the present invention may be employed include, but are not limited to, deodorants, antiperspirants, antiperspirant/ deodorants, shaving products, skin lotions, moisturizers, toners, bath products, cleansing products, hair care products such as shampoos, conditioners, mousses, styling gels, hair sprays, hair dyes, hair color products, hair bleaches, waving products, hair straighteners, manicure products such as nail polish, nail polish remover, nails creams and lotions, cuticle softeners, protective creams such as sunscreen, insect repellent and anti-aging products, color cosmetics such as lipsticks, foundations, face powders, eye liners, eye shadows, blushes, makeup, mascaras and other personal care formulations where silicone components have been conventionally added, as well as drug delivery systems for topical application of medicinal compositions that are to be applied to the skin.
[0034] In a preferred embodiment, the personal care composition of the present invention further comprises one or more personal care ingredients. Suitable personal care ingredients include, for example, emollients, moisturizers, humectants, pigments, including pearlescent pigments such as, for example, bismuth oxychloride and titanium dioxide coated mica, colorants, fragrances, biocides, preservatives, antioxidants, antimicrobial agents, anti-fungal agents, antiperspirant agents, exfoliants, hormones, enzymes, medicinal compounds, vitamins, salts, electrolytes, alcohols, polyols, absorbing agents for ultraviolet radiation, botanical extracts, surfactants, silicone oils, organic oils, waxes, film formers, thickening agents such as, for example, fumed silica or hydrated silica, particulate fillers, such as for example, talc, kaolin, starch, modified starch, mica, nylon, clays, such as, for example, bentonite and organo-modified clays.
[0035] Suitable personal care compositions are made by combining, in a manner known in the art, such as, for example, by mixing, one or more of the above components with the compositions of the present invention. Suitable personal care compositions may be in the form of a single phase or in the form of an emulsion, including oil-in-water, water-in-oil and anhydrous emulsions where the silicone phase may be either the discontinuous phase or the continuous phase, as well as multiple emulsions, such as, for example, oil- in water-in-oil emulsions and water-in-oil-in water-emulsions.
[0036] In one useful embodiment, an antiperspirant composition comprises the epoxy amino silane copolymers of the present invention and one or more active antiperspirant agents. Suitable antiperspirant agents include, for example, the Category I active antiperspirant ingredients listed in the U.S. Food and Drug Administration's October 10, 1993 Monograph on antiperspirant drug products for over-the-counter human use, such as, for example, aluminum halides, aluminum hydroxyhalides, for example, aluminum chlorohydrate, and complexes or mixtures thereof with zirconyl oxyhalides and zirconyl hydroxyhalides, such as for example, aluminum- zirconium chlorohydrate, aluminum zirconium glycine complexes, such as, for example, aluminum zirconium tetrachlorohydrex gly.
[0037] In another useful embodiment, a skin care composition comprises the compositions of the present invention, and a vehicle, such as, for example, a silicone oil or an organic oil. The skin care composition may, optionally, further include emollients, such as, for example, triglyceride esters, wax esters, alkyl or alkenyl esters of fatty acids or polyhydric alcohol esters and one or more the known components conventionally used in skin care compositions, such as, for example, pigments, vitamins, such as, for example, Vitamin A, Vitamin C and Vitamin E, sunscreen or sunblock compounds, such as, for example, titanium dioxide, zinc oxide, oxybenzone, octylmethoxy cinnamate, butylmethoxy dibenzoylm ethane, p-aminobenzoic acid and octyl dimethyl-p-aminobenzoic acid. [0038] In another useful embodiment, a color cosmetic composition, such as, for example, a lipstick, a makeup or a mascara composition comprises the compositions of the present invention, and a coloring agent, such as a pigment, a water soluble dye or a liposoluble dye.
[0039] In another useful embodiment, the compositions of the present invention are utilized in conjunction with fragrant materials. These fragrant materials may be fragrant compounds, encapsulated fragrant compounds, or fragrance releasing compounds that either the neat compounds or are encapsulated. Particularly compatible with the compositions of the present invention are the fragrance releasing silicon containing compounds as disclosed in US patents 6,046,156; 6,054,547; 6,075,111; 6,077,923; 6,083,901; and 6,153,578; all of which are herein and herewith specifically incorporated by reference.
[0040] By using compositions of the invention, we have found a simple method to provide durable films to hair or skin. This method comprises:
i) dispersing the polymer in an aqueous polar phase, preferably microemulsifying the polymer in this aqueous phase with surfactant. The surfactant may comprise a nonionic surfactant, a cationic surfactant, an anionic surfactant, an anionic surfactant, an amphoteric surfactant, or a mixture of such surfactants.
ii) Applying the aqueous dispersion or diluted microemulsion to hair or skin, in the form of sprays, creams, mousse, O/W emulsion, W/O emulsion, rinse-off products.
iii) Drying of the hair or skin in the open air at room temperature or by means involving heat. [0041] In particular, we found that these treatments allow restoring the hydrophobicity of damaged hair, while leaving a pleasant feel and conditioning effect. This hydrophobicity is durable over the washes and helps improve the performance of conditioner for damaged hair. It also provides a remarkable thermal protection during ironing of damped hair, helping to improve the straightening of hair, which are frizzy, such as damaged colored hair, or ethnic relaxed hair. The treatment of this invention can also impart a styling benefit to aid in setting the hair in a desirable position. The compositions for hair and skin treatments comprise the above-mentioned polymer as an ingredient. They may also comprise other ingredients, which are commonly used in cosmetics such as surfactants, humectants, ultraviolet protectors, pH adjustors, preservatives, fragrance, antioxidants, chelating agents, thickening agents, film-forming ingredients, oily components, polymers or propellants provided they do not impede the effects described in this invention. As used herein personal care compositions suitable for treating hair include but are not limited to shampoos, conditioners, mousses, styling gels, permanent wave fixatives, spray, paste, moisturizing lotions and creams, combing creams, relaxers, hair dyeing products such as developers and the like.
[0042] The uses of the compositions of the present invention are not restricted to personal care compositions, other products such as waxes, polishes and textiles treated with the compositions of the present invention are also contemplated.
B. Home Care
[0043] Home care applications include laundry detergent and fabric softener, dishwashing liquids, wood and furniture polish, floor polish, tub and tile cleaners, toilet bowl cleaners, hard surface cleaners, window cleaners, antifog agents, drain cleaners, auto-dish washing detergents and sheeting agents, carpet cleaners, prewash spotters, rust cleaners and scale removers.
C. Oil and Gas
[0044] Compositions of the present organomodified silylated surfactant invention are useful in oil and gas applications, including demulsification.
D. Water Processing
[0045] Compositions comprising organomodified silylated surfactant invention are useful for applications involving commercial and industrial open recirculating cooling water towers, closed cooling water systems, cooling water conduits, heat exchangers, condensers, once-through cooling systems, Pasteurizers, air washers, heat exchange systems, air conditioning / humidifiers / dehumidifiers, hydrostatic cookers, safety and /or fire water protection storage systems, water scrubbers, disposal wells, influent water systems, including filtration and clarifiers, wastewater treatment, wastewater treatment tanks, conduits, filtration beds, digesters, clarifiers, holding ponds, settling lagoons, canals, odor control, ion exchange resin beds, membrane filtration, reverse osmosis, micro- and ultra-filtration, assisting in the removal of biofilms in cooling tower applications, heat exchangers and process water systems, and the like.
Pulp and Paper
[0046] Compositions of the present organomodified silylated surfactant invention are useful in pulp and paper applications, such as paperboard defoamers, and wetting agents for the pulping process.
Experimental Synthetic Examples
Personal Care Examples
Synthesis Examples
Synthesis of polymer A
[0047] Aminopropyltriisopropoxy silane ( 40.77g), an epoxy encapped polysiloxane with the average structure
CH2(O)CHCH2OCH2CH2CH2Si(CH3)2θ[Si(CH3)2θ]50Si(CH3)2CH2CH2CH2OC H2CH(O)CH2 ( 171.40 g) and an epoxy endcapped poly ether with the average structure CH2(O)CHCH2O(CH2(CH3)CH2O)7CH2CH(O)CH2 ( 37.83 g) and isopropanol ( 425.68 g) was combined in a 500 mL flask. The material was brought to reflux and stirred with an overhead stirrer. The refluxing continued for 15.5 hr until all epoxy groups were consumed as determined by titration. The material was transferred to a rotary evaporator and stripped at 700C and 4 torr for 2 hrs to remove the isopropanol.
Synthesis of polymer B
[0048] Aminopropyltriisopropoxy silane (41.45 g), 3- (diethylamino)propylamine (20.49 g), an epoxy encapped polysiloxane with the average structure
CH2(O)CHCH2OCH2CH2CH2Si(CH3)2O[Si(CH3)2O]5oSi(CH3)2CH2CH2CH2OC H2CH(O)CH2 (348.56 g) and an epoxy encapped poly ether with the average structure CH2(O)CHCH2O(CH2(CH3)CH2O)7CH2CH(O)CH2 (89.49 g) and isopropanol (500 g) was combined in a 2000 mL flask. The material was brought to reflux and stirred with an overhead stirrer. The refluxing continued for 24 hr until all epoxy groups were consumed as determined by titration. The material was transferred to a rotary evaporator and stripped at 7O0C and 4 torr for 2 hrs to remove the isopropanol. Synthesis of polymer C
[0049] Aminopropyltriisopropoxy silane (16.78 g), 3- (diethylamino)propylamine (24.88 g), an epoxy encapped polysiloxane with the average structure
CH2(O)CHCH2θCH2CH2CH2Si(CH3)2O[Si(CH3)2O]50Si(CH3)2CH2CH2CH2θC H2CH(O)CH2 (344.45 g) and an epoxy encapped polyether with the average structure CH2(O)CHCH2O(CH2CH2O)14CH2CH(O)CH2 (88.44 g) and isopropanol (500 g) was combined in a 2000 mL flask. The material was brought to reflux and stirred with an overhead stirrer. The refluxing continued for 24 hr until all epoxy groups were consumed as determined by titration. The material was transferred to a rotary evaporator and stripped at 700C and 4 torr for 2 hrs to remove the isopropanol.
Synthesis of polymer D
[0050] Aminopropyltriisopropoxy silane (11.71 g), 3- (diethylamino)propylamine (5.79 g), an epoxy encapped polysiloxane with the average structure
CH2(O)CHCH2θCH2CH2CH2Si(CH3)2θ[Si(CH3)2θ]25θSi(CH3)2CH2CH2CH2O CH2CH(O)CH2 (457.22 g) and an epoxy encapped polyether with the average structure CH2(O)CHCH2O(CH2CH2O)14CH2CH(O)CH2 (25.28 g) and isopropanol (500 g) was combined in a 2000 mL flask. The material was brought to reflux and stirred with an overhead stirrer. The refluxing continued for 24 hr until all epoxy groups were consumed as determined by titration. The material was transferred to a rotary evaporator and stripped at 700C and 4 torr for 2 hrs to remove the isopropanol.
Synthesis of polymer E
[0051] Aminopropyltriisopropoxy silane (22.68 g), an epoxy encapped polysiloxane with the average structure CH2(O)CHCH2θCH2CH2CH2Si(CH3)2θ[Si(CH3)2θ]50Si(CH3)2CH2CH2CH2θC H2CH(O)CH2 (227.34 g) and isopropanol (50 g) was combined in a 500 mL flask. The material was brought to reflux and stirred with an overhead stirrer. The refluxing continued for 24 hr until all epoxy groups were consumed as determined by titration. The material was transferred to a rotary evaporator and stripped at 700C and 4 torr for 2 hrs to remove the isopropanol.
Synthesis of polymer F
[0052] Aminopropyltriisopropoxy silane (15.91 g), an epoxy encapped polysiloxane with the average structure
CH2(O)CHCH2OCH2CH2CH2Si(CH3)2θ[Si(CH3)2O]5θSi(CH3)2CH2CH2CH2θC H2CH(O)CH2 (66.91 g) and an epoxy encapped polyether with the average structure CH2(O)CHCH2O(CH2CH2O)14CH2CH(O)CH2 (17.18 g) and isopropanol (50 g) was combined in a 500 mL flask. The material was brought to reflux and stirred with an overhead stirrer. The refluxing continued for 16 hr until all epoxy groups were consumed as determined by titration. The material was transferred to a rotary evaporator and stripped at 700C and 4 torr for 2 hrs to remove the isopropanol.
[0053] Synthesis of polymer G Aminopropyltriisopropoxy silane (49.44 g), an epoxy encapped polysiloxane with the average structure CH2(O)CHCH2OCH2CH2CH2Si(CH3)2O[Si(CH3)2O]1ooSi(CH3)2CH2CH2CH2O CH2CH(O)CH2 (397.22 g) and an epoxy encapped polyether with the average structure CH2(O)CHCH2O(CH2CH2O)14CH2CH(O)CH2 (53.33 g) and isopropanol (500 g) was combined in a 2000 mL flask. The material was brought to reflux and stirred with an overhead stirrer. The refluxing continued for 24 hr until all epoxy groups were consumed as determined by titration. The material was transferred to a rotary evaporator and stripped at 700C and 4 torr for 2 hrs to remove the isopropanol. Synthesis of polymer H
[0054] Aminopropyltriisopropoxy silane (25.35 g), 3- (diethylamino)propylamine (12.53 g), an epoxy encapped polysiloxane with the average structure
CH2(0)CHCH2OCH2CH2CH2Si(CH3)2θ[Si(CH3)2θ]1ooSi(CH3)2CH2CH2CH2θ CH2CH(O)CH2 (407.38 g) and an epoxy encapped polyether with the average structure CH2(O)CHCH2O(CH2CH2O)14CH2CH(O)CH2 (54.74 g) and isopropanol (500 g) was combined in a 2000 mL flask. The material was brought to reflux and stirred with an overhead stirrer. The refluxing continued for 24 hr until all epoxy groups were consumed as determined by titration. The material was transferred to a rotary evaporator and stripped at 700C and 4 torr for 2 hrs to remove the isopropanol.
Synthesis of polymer I
[0055] Aminopropyltriisopropoxy silane (18.26 g), 3- (diethylamino)propylamine (9.03 g), an epoxy encapped polysiloxane with the average structure
CH2(O)CHCH2OCH2CH2CH2Si(CH3)2O[Si(CH3)2O]15oSi(CH3)2CH2CH2CH2O CH2CH(O)CH2 (433.298 g) and an epoxy encapped polyether with the average structure CH2(O)CHCH2O(CH2CH2O)14CH2CH(O)CH2 (39.42 g) and isopropanol (500 g) was combined in a 2000 mL flask. The material was brought to reflux and stirred with an overhead stirrer. The refluxing continued for 24 hr until all epoxy groups were consumed as determined by titration. The material was transferred to a rotary evaporator and stripped at 700C and 4 torr for 2 hrs to remove the isopropanol.
Synthesis of polymer J
[0056] Aminopropyltriisopropoxy silane (14.27 g), 3- (diethylamino)propylamine (7.05 g), an epoxy encapped polysiloxane with the average structure
CH2(O)CHCH2θCH2CH2CH2Si(CH3)2θ[Si(CH3)2θ]200Si(CH3)2CH2CH2CH2O CH2CH(O)CH2 ( 447.87 g) and an epoxy encapped polyether with the average structure CH2(O)CHCH2O(CH2CH2O)14CH2CH(O)CH2 (30.81 g) and isopropanol (500 g) was combined in a 2000 mL flask. The material was brought to reflux and stirred with an overhead stirrer. The refluxing continued for 24 hr until all epoxy groups were consumed as determined by titration. The material was transferred to a rotary evaporator and stripped at 700C and 4 torr for 2 hrs to remove the isopropanol.
Synthesis of polymer K
[0057] An epoxy encapped polyether (148.28 g) with the average structure of CH2(O)CHCH2O(CH2CH2O)22CH2CH(O)CH2, aminopropyltriisopropoxysilane (51.72 g) and isopropanol (60.00 g) were combined in a 500 mL round bottom flask. The solution was heat to reflux and stirred with a magnetic stirrer. The reaction was allowed to remain at reflux until all the epoxy groups were consumed as determined by titration. The resulting material exhibited a dark straw color. The material was transferred to a rotary evaporator and stripped at 700C and 4 torr for 2 hrs to remove the isopropanol.
Synthesis of polymer L
[0058] Aminopropyltriisopropoxy silane (7.57 g), an epoxy encapped polysiloxane with the average structure
CH2(O)CHCH2OCH2CH2CH2Si(CH3)2O[Si(CH3)2θ]399Si(CH3)2CH2CH2CH2O CH2CH(O)CH2 (234.25 g) and an epoxy encapped polyether with the average structure CH2(O)CHCH2O(CH2CH2O)14CH2CH(O)CH2 (8.18 g) and isopropanol (250 g) was combined in a 1000 mL flask. The material was brought to reflux and stirred with an overhead stirrer. The refluxing continued for 16 hr until all epoxy groups were consumed as determined by titration. The material was transferred to a rotary evaporator and stripped at 700C and 4 torr for 2 hrs to remove the isopropanol.
Examples of copolymer containing emulsions
[0059] Emulsion Al7Fl, L1,K1 and C2 are prepared by mixing the polymer and water with a lab propeller mixer for 15 min. The dispersions are then acidified and homogenized for 1 minute.
100 g of the microemulsions Bl-El, A2 and Gl-Jl are prepared by method (i)
Method (i)
[0060] The polymer is mixed with the surfactant system and 10 g of water to obtain an homogeneous mixture, using a regular lab propeller mixer or a speed mixer. The remaining water is added slowly. The acidification is performed at the end. Clear microemulsions should be obtained.
100 g of microemulsion F2 are prepared by method (ii)
Method (ii)
Figure imgf000031_0001
[0061] The polymer and the surfactant are mixed with 0.6 g water to form a gel-like mixture and added to the acidified water, while stirring. The emulsions presented in Table 1 will be used as master emulsions to prepare the dilute hair treatments described in the following sections.
Hydrophobizing hair treatments
[0062] Samples of copolymer containing emulsions presented in Table 1 were diluted in water to obtain dispersions containing 0.3% and 1% weight percent copolymers. Double-bleached tresses purchased from Hair International Importer and Products were used as sample of damaged hair to test the copolymer containing treatments. Each tress weighs about 4 g. Each tress was dipped into 100 ml of the dilute dispersion for 60 s and blown dry. The tress was then shampooed with a 10% SLES solution then rinsed.
[0063] The hydrophobicity was measured on untreated and treated hair either by determining the contact angle between distilled water and the surface of single hair fibers using a microbalance (Thermocahn). Description of the technique has been described for example in US 6846333 B2.
[0064] The measurement consists of measuring the force exerted by the water on the hair fiber during its immersion in the distilled water (advancing contact angle). The force measured is related to the contact angle between the water and the surface of the hair by the relationship: F=P*g*cosq where F is the force expressed in Newton, P is the circumference of the hair, g is the surface tension of water, and q the contact angle. The hair is considered hydrophilic when the advancing angle ranges from 0 to less than 80 and hydrophobic when this angle ranges from 80 to 180.
[0065] For each treated tress, 5 fibers taken randomly are mounted on a very fine metallic hook. The circumference is derived from the hair fiber diameter, measured using a Mitutoyo laser scan micrometer. The value reported in the table 3 is the contact angle average of 5 hair fibers.
[0066] The hydrophobicity of the hair tress was also evaluated by measuring the time required for a drop of water to penetrate the surface of the hair tress secured horizontally on a clamp (Murakami hair tress holder) according to a method adapted from the AATCC Test Method 79-1992 for textile samples. The hair tress is held taut into the Murakami hair holder. A drop of deionized water was applied onto the tress surface via a dropper and a timer was started. The timer was stopped when the drop of water completely penetrated the tress and was record in seconds. The value reported is the average of three drop tests readings, shown in the table 3. The test was terminated at 300 seconds. A value of 300 seconds indicates that the drop never penetrated the hair tress.
[0067] The comparative experiments for those examples are the following:
Table 2:
Figure imgf000033_0001
[0068] The shampoo is a 10% sles solution and the conditioner is a silicone containing shampoo from Procter and Gamble, Pantene Pro Daily Moisture Renew. The conditioning quaternized silicone is Silsoft Q from Momentive Performance Material. [0069] The results of the hydrophobicity tests are shown in table 3. Table 3 shows that untreated damaged hair (Comparative 2) is hydrophilic, whereas virgin untreated hair (Comparative 1) is hydrophobic. Regular conditioning silicone from rinse-off conditioner do not change the damaged hair hydrophophilicity (Comparative 3-4). In contrast, the hair treated with the polymer described in the present invention are hydrophobic (Example 1- 6).
Table 3: Hydrophobicity data
Figure imgf000034_0001
Durability from wash
[0070] In order to evaluate the durability of the hair treatments to wash cycles, the hydrophobicity was tested after 20 washes on damaged hair (double-bleached) using the contact angle method described above. These values are reported in Table 4, along with the values of contact angle after 1 wash cycle. Comparative 5 showed the values of contact angle for damaged hair washed and conditioned 1 time and 20 times with the shampoo /conditioner system described for Comparative 3. The data show that the contact angle of the hair treated with the copolymer disclosed in this invention is higher than 80 degree after 20 washes, indicating that the hydrophobizing treatment can endure 20 washes.
Table 4: Hydrophobicity durability determined by single fiber contact angle
Figure imgf000035_0001
[0071] Durability of the hair treatment is also displayed in Table 5 where comparative 5 is the double- bleached untreated hair subjected to 1, 10, 20 washing cycles. The treatment is considered durable after 10 washes or after 20 washes, if the strike through time is higher than 10 s. Table 5: Hydrophobicity durability determined by strike through time
Figure imgf000036_0001
Rinse-off Treatment
[0072] Rinse-off conditioner having the composition shown in Table 6 was prepared. Double bleached tresses were washed with 10% SLES solution and conditioned with composition in example 7 and rinsed for 30 s. Hydrophobicity tests were performed on the treated and untreated tress. Table 7 demonstrates that copolymer containing rinse-off conditioner provides hydrophobizing treatment to the hair, which are durable through 20 washes.
Table 6
Figure imgf000037_0001
*trademane : Emulgade SE-PF from Cognis
Table 7
Mousse formulation
[0073] An aqueous mousse composition having the composition shown in Table 8 was prepared.
[0074] Double bleached tresses were washed with 10% SLES solution and dried. The composition was poured into a container equipped with a manual pump. 2 g of the mousse was applied to the 4 g tress by massaging. The tresses were dried with a blow drier. Hydrophobicity and durability tests were performed on treated and untreated tress. Table 9 demonstrates that copolymer delivered from a mousse formulation provides a hydrophobizing treatment to damaged hair which are durable through 20 washes, as shown by the strike through time data.
Table 8: Mousse formulation
Figure imgf000038_0001
Trademark: Plantaren 2000N
Table 9: Hydrophobicity and durability data
Figure imgf000038_0002
Conditioning performance
[0075] The conditioning performance of the hair treated with copolymers disclosed in this invention were evaluated using dry combing force procedure using a Diastron combing force apparatus.
Diastron dry combing test
[0076] Diastron dry combing procedures are well recognized and well accepted in the industry for determining hair conditioning by the ease of dry combing. The test employs a strain gauge, which is equipped to measure the force required to comb the hair. The conditioning performance is based on the ability of a particular hair treatment formulation to reduce the force required to comb the hair. Hair tress preparation.
[0077] Double bleached blond hair 4 g tresses (15 cm long) were purchased from Hair International INC. Prior to washing, each tress is dipped into 0.5% Sodium Hydroxide solution for two minutes and rinsed for two minutes with tap water. Each tress is then washed with 1 ml of a 10% SLES solution and rinsed using a standard wash protocol. After washing, the wet tresses are combed with a fine teeth comb, dried in a blow drier bonnet and kept overnight in a environmental chamber at 50 % RH before combing force measurement. These clean tresses are used to measure the baseline combing force, according to the combing force protocol described below. After the baseline measurement, the control tresses (comparative) are washed again with the SLES solution and treated with a conditioner (1 ml /tress) described below. In contrast, after the baseline measurement, the test tresses were dipped into 100 ml of the dilute dispersion of copolymer containing emulsions described in Table 1 for 60 s and blown dry. After rinsing and drying and combing, the treated tresses are kept overnight in an environmental chamber at 50 % RH before combing force measurement.
Dry Combing force measurement:
[0078] The Diastron combing force apparatus is enclosed in a controlled humidity chamber, equilibrated at 50 %RH. The automated comb speed is 500 mm/min. The combing force measurement is repeated 10 times on each tress. Each treatment is duplicated.
[0079] The combing force reduction is calculated for each tress according to the formula
% average force reduction = (A0-A)*! 00 /A0 where A0 is the average combing load of the baseline tress and A is the average combing load of the treated tress. The higher the average force reduction is, the higher is the conditioning performance of the treatment.
[0080] The results of Diastron dry combing force are shown in Table 10. Comparative 6 is a tress washed with two successive 10% SLES shampoo. Table 10 shows that the copolymer containing hair treatment provides a significant reduction in dry combing force, that are superior to comparative 3 (commercial conditioner).
Table 10: Dry combing force data
Figure imgf000040_0001
Conditioning boosting effect data
[0081] Combing force data generated according to the protocol described above are shown in Table 11. Table 11 shows that the copolymer treatment provides conditioning at lower dose (example 12). But it also helps regular conditioner to perform better on damaged hair (example 13). Table 11: Dry combing force data
Figure imgf000041_0001
Thermal protection
[0082] Copolymer containing treatment and comparative treatments are shown in Table 12. 15 cm long double-bleached 4 g tresses from Hair International were used. The tresses were treated with a strong base (0.5% NaOH solution) in order to induce a very visible frizziness. The tresses were then washed with a 10% SLES solution, blow-dried, disentangled with a comb and kept in a 50% RH room. The test tress was dipped in the dispersion described in Table 12 for 60s. Excess water was removed by squeezing the wet tress between the index and middle finger. The damp tress is then ironed at medium heat, in a Revlon flat iron. A visual and tactile assessment was performed after the damp ironing step. The tress A treated with tap water showed strong disarray of fibers and knotting. It looked that a large number of fibers had melted and jammed during the damp iron process. This tress felt very coarse and dry to the touch. The tress C, D and E treated with commercial silicones or leave-in commercial conditioner, showed a very similar behavior. In contrast, the hair in tress B treated with 1% copolymer from emulsion Cl looked very aligned and straight with no significant frizziness. The hair felt smooth and soft to touch. Clearly the copolymer treated tress provided significant thermal protection during damp ironing, compared to all the other treatments allowing the removal of the initial tress frizzines without severe damage and a clear perceivable hair condition improvement.
Table 12: Hair treatment for damp iron
Figure imgf000042_0001
[0083] Aminosilicone and quaternized silicone in comparative 9 and 10 are from the emulsion Silsoft SME253 and Silsoft Q from Momentive Performance Materials. The leave-in conditioner is the leave-in strengthener from SoftShee Carson Optimum Care relaxing kit.
Damage repair experiment
Frizziness removal test
[0084] As in the previous experiment, 15 cm long double-bleached 4 g tresses from Hair International, held by a polymer bar at the root end were used. The hair frizziness induced by the harsh base treatment described earlier manifests itself by a significant increase of the tress volume. The volume increase of the tress was evaluated by measuring with a ruler the maximum width Lt of the tress in the hair tip region and the width of the tress at the root end Lr(polymer bar width). A volume factor was defined by the ratio Lt/Lr. The hair tress was considered very straight and not frizzy if Lt/Lr is less or equal to 2.6, as shown by the virgin untreated straight tress (comparative 12). Volume ratio much higher than 3 indicated very high level of frizziness and high damage. The volume factor measured before and after ironing, for each treatment is displayed in Table 13. The experiment was performed in duplicate. The data showed that the copolymer treatment during ironing allowed a significant removal of frizziness, superior to the aminosilicone treatment. It was also noticed that the copolymer treated tress felt very smooth, without heaviness. Similar results were observed with relaxed ethnic hair.
Table 13
Figure imgf000043_0001
[0085] Comparative 12 is the virgin untreated straight hair. The aminosilicone in comparative 13 is prepared with Silsoft SME253 from Momentive Performance Materials.
Styling Experiment
[0086] Virgin European brown hair was employed for this experiment. The tresses were treated with a 0.5% emulsions of copolymers polymer K and polymer C and wrapped around 1" curlers. The hair was dried in an oven at 100 0C for 1 hour then placed in 25 0C at 50% relative humidity chamber overnight to condition. The hair was removed from the roller and hung vertically in a 25 0C and 90% relative humidity chamber. The hold of the treatment was determined by the length of the tress and by the width. As the hair uncoiled and straightened, the overall length of the tress would increase. Also, as volume increase due to lack of hold, the width increased as well. Shown in the table 14 are the results. The treatments do provide a styling benefit to the hair, manifested by a reduced width of the curl upon exposure to moisture. Although the hair is not held as tight as the commercial formulation, the hair remains soft and pleasant to touch. The reduced width increase indicates a reduction in "fly away" and frizzyness of the hair. The commercial formulation is hard and does not exhibit desirable sensory.
Table 14: Curl retention data
Maximum Hair Tress
Hair Tress Length (cm) Width (cm) Treatment Initial 15 min 30 min Initial 2 hr Water 7.7 12.8 13.5 2.2 4.3
SME253 9.0 12.8 13.5 2.2 4.2 polymer C 8.3 12.2 13.5 2.3 2.0
Studio 3.8 5.1 5.8 1.7 2.3 polymer K 7.7 10.9 12.2 1.7 2.0
Contact Angle on Skin
[0087] Leg skin cut from Sus scrofa (pig) was used for evaluation of the effect of this invention on the surface properties of skin. A strip of skin measureing 1 cm x 3 cm was cut. 0.3 g of the emulsions (Cl, El, and were coated over the skin using a pipet to level the material. The coating was allowed to dry under ambient conditions for 2 hours. The surface hydropholicity or hydrophobicity was measured using a goniometer. The contact angle of pure water was measured at 1 second after the drop was placed on the surface. A total of 50 measurements were performed on each sample. The results are shown in the table below. The product of this invention increased hydrophobicity when emulsion Cl was applied and increase hydrophiliciy when emulsion Kl was applied.
Untreated Emulsion El Emulsion Cl Emulsion Kl Average 60.7° 44.6° 68.5° 4.0°
Removability from Skin
[0088] In order to examine the adhesion characteristics to skin leg skin cut from Sus scrofa (pig) was used. Two emulsions were tested C2 and Ll. The emulsions (1 g) was applied to the surface of a piece of skin (1 cm x 3 cm) and allowed to dry overnight. The film that resulted from emulsion C2 was tacky and very difficult to remove from the skin. The film resulting from Ll was easy to remove and no residue remained on the skin after gently peeling the coating away.
[0089] The foregoing examples are merely illustrative of the invention, serving to illustrate only some of the features of the present invention. The appended claims are intended to claim the invention as broadly as it has been conceived and the examples herein presented are illustrative of selected embodiments from a manifold of all possible embodiments. Accordingly it is Applicants' intention that the appended claims are not to be limited by the choice of examples utilized to illustrate features of the present invention. As used in the claims, the word "comprises" and its grammatical variants logically also subtend and include phrases of varying and differing extent such as for example, but not limited thereto, "consisting essentially of and "consisting of." Where necessary, ranges have been supplied; those ranges are inclusive of all sub-ranges there between. Such ranges may be viewed as a Markush group or a collection of Markush groups consisting of differing pairwise numerical limitations which group or groups is or are fully delimited by its lower and upper bounds, increasing in a regular fashion numerically from lower bounds to upper bounds. It is to be expected that variations in these ranges will suggest themselves to a practitioner having ordinary skill in the art and where not already dedicated to the public, those variations should where possible be construed to be covered by the appended claims. It is also anticipated that advances in science and technology will make equivalents and substitutions possible that are not now contemplated by reason of the imprecision of language and these variations should also be construed where possible to be covered by the appended claims. All United States patents (and patent applications) referenced herein are herewith and hereby specifically incorporated by reference in their entirety as though set forth in full.

Claims

1. A personal care composition suitable for treating hair comprising a composition comprising the reaction product of
a) oxirane or oxetane compound comprising at least two oxirane or oxetane groups; and
b) an amino silane having the formula:
N(H)(Rl)R2Si(OR3)3-a-b-c(OR4)a(R5Si(OR6)d(R7)e) b R8C
with R1 is chosen from the group consisting of H or a monovalent hydrocarbon radical containing one to 20 carbon atoms;
R2 is selected from a group consisting of a divalent linear or branched hydrocarbon radical consisting of 1-60 carbons;
R4 is a hydrocarbon radical that contains 3 to 200 carbon atoms;
R5 is selected from a group consisting of oxygen or a divalent linear or branched hydrocarbon radical consisting of 1-60 carbons;
R3, R6, R7, and R8 and are each independently selected from the group of monovalent linear or branched hydrocarbon radicals having from 1 to 200 carbon atoms;
the subscript b is zero or a positive number and has a value ranging from 0 to 3;
the subscripts a is zero or appositive number less than 3, the subscripts b and c are zero or positive and have a value ranging from 0 to 3 subject to the limitation that (a + b + c) ≤ 3; the subscripts d and e are zero or positive and have a value ranging from 0 to 3 subject to the limitation that (d + e) = 3, wherein when hair is treated with said personal care composition said hair has a hydrophobic response to water or wherein when human skin is with said personal care composition said skin exhibits an enhanced response to water.
2. The composition of claim 1 where the oxirane or oxetane compound is selected from the group consisting of siloxanes, hydrocarbons and polyethers.
3. The composition of claim 2 where the oxirane or oxetane compound is a siloxane having the formula:
MfMEhM13EiMHjDkDE1DPEmDHnToTEpTPEqTH1Q8 with
M = R9R10R11SiOv2;
MH = Ri2Ri3H SiO1 /2;
M PE = R i2 R i3(.CH2CH(R14)(R15)tO(R16)u(C2H4θ)v(C3H6O)w(C4H8θ)χR17)SiO1/2;
ME = R1ZRlS(RE)SiOv2
D = R18R19SiO2Za; and
Figure imgf000048_0001
DPE = R20(-CH2CH(R14)(R15)tO(R16)u(C2H4θ)v(C3H6O)w(C4H8θ)χR17)Siθ2/2
DE = R20RESiO2/2.
T = R^SiO3Z2;
TH = HSiO3/2;
TPE = (-CH2CH(R14)(R15)tO(R16)u(C2H4θ)v(C3H6θ)w(C4H8O)χR17)Siθ3Z2;
TE = RESiO3z2; and Q = SiO4/2;
where R9, R10, R11 , R12, R13 , R18, R19, R20, and R21 are each independently selected from the group of monovalent hydrocarbon radicals having from 1 to 60 carbon atoms;
R14 is H or a 1 to 6 carbon atom alkyl group; R15 is a divalent alkyl radical of 1 to 6 carbons; R16 is selected from the group of divalent radicals consisting of -C2H4O-, -C3H6O- , and -C4HeO-; R17 is selected from the group consisting of H, monofunctional hydrocarbon radicals of 1 to 6 carbons, and acetyl;
RE is independently a monovalent hydrocarbon radical containing one or more oxirane or oxetane moieties having from one to sixty carbon atoms;
the subscript f may be zero or positive subject to the limitation that when the subscript f is zero, h must be positive;
the subscript h is zero or positive subject to the limitations that when h is zero, the subscript f is positive, and that the sum of the subscripts h, 1 and p is positive;
the subscript k is zero or positive and has a value ranging from about 0 to about 1,000;
the subscript 1 is zero or positive and has a value ranging from about 0 to about 400 subject to the limitation that the sum of the subscripts h, 1 and p is positive;
the subscript o is zero or positive and has a value ranging from 0 to about 50; the subscript p is zero or positive and has a value ranging from 0 to about 30 subject to the limitation that the sum of the subscripts h, 1 and p is positive;
the subscript s is zero or positive and has a value ranging from 0 to about 20;
the subscript i is zero or positive and has a value ranging from 0 to about 20;
the subscript m is zero or positive and has a value ranging from 0 to about 200;
the subscript q is zero or positive and has a value ranging from 0 to about 30;
the subscript j is zero or positive and has a value ranging from 0 to about 2;
the subscript n is zero or positive and has a value ranging from 0 to about 20;
the subscript r is zero or positive and has a value ranging from 0 to about 30;
the subscript t is zero or one;
the subscript u is zero or one;
the subscript v is zero or positive and has a value ranging from 0 to about 100 subject to the limitation that (v + w + x) > 0;
the subscript w is zero or positive and has a value ranging from 0 to about 100 subject to the limitation that (v + w + x) > 0; the subscript x is zero or positive and has a value ranging from 0 to about 100 subject to the limitation that (v + w + x) > 0;
4. The composition of claim 1 where the oxirane or oxetane compound is a hydrocarbon having the formula:
R22y(R23)z(R24α)(R25
where R22 and R25 are independently a monovalent hydrocarbon radical containing one or more oxirane or oxetane moieties having from 3 to 12 carbon atoms;
R23 and R24 are each selected from the group consisting of H or a linear or branched monovalent hydrocarbon radical of 1 to 1000 carbons;
the subscripts y, z, α, β are zero or positive ranging from zero to four subject to the limitation that (y + β) > 2.
5. The composition of claim 2 where the oxirane or oxetane compound is a polyether having the formula:
R 26 O(R27) γ(C2H4O) δ(C3H6θ)ε(C4H8O)ζR28
where R26 and R28 are independently a monovalent hydrocarbon radical containing one or more oxirane or oxetane moieties having from 3 to 12 carbon atoms;
R27 is selected from the group of divalent radicals consisting of - C2H4O-, -C3H6O- , and -C4H8O-;
the subscript γ is zero or 1;
the subscript δ is zero or positive and has a value ranging from 0 to about 100 subject to the limitation that (δ + ε + ζ) > 0; the subscript ε is zero or positive and has a value ranging from 0 to about 100 subject to the limitation that (δ + ε + ζ) > 0;
the subscript ζ is zero or positive and has a value ranging from 0 to about 100 subject to the limitation that (δ + ε + ζ) > 0.
6. The reaction product of claim 1 further comprising the reaction product of a compound having the formula:
R29(R30)KSi(OR31)3- η - θ (R32)η(OR33)θ
where R29 is a monovalent hydrocarbon radical containing one or more oxirane or oxetane moieties having from 3 to 12 carbon atoms;
R30 is a divalent hydrocarbon radical consisting of 1-60 carbons and the subscript K has a value of zero or 1; R31 and R32 are independently selected from the group of monovalent linear or branched hydrocarbon radicals having from 1 to 60 carbon atoms;
the subscript η is zero or positive and has a value ranging from 0 to 3;
the subscript θ is greater than 0 and less than or equal to 3, subject to the limitation that 3 - η - θ is greater than or equal to zero;
R33 is a hydrocarbon radical that contains 3 to 200 carbon atoms.
7. The reaction product of claim 1 wherein
R1 has from one to ten carbon atoms;
R2 has from one to ten carbon atoms;
R4 has from three to ten carbon atoms;
R3, R6, R7, and R8 each independently have from one to twenty carbon atoms; the subscript a ranges from 1 to 3;
the subscript b ranges from 0 to 25 more;
the subscript c ranges from 0 to 3;
R9, R10, R11 , R12, R13 , R18, R19, R20, and R21 each independently have from one to four carbon atoms;
the subscripts f, 1, m, n, o, p, q, r, each independently range from 0 to 200;
the subscript k ranges from 0-500;
the subscripts v, w, and x each independently range from 0 to 50;
R23 and R24 each independently have from five to one thousand carbon atoms;
subscripts δ, ε, ζ each independently range from 0 to 50;
R31 and 32 each independently have from one to ten carbon atoms and
R33 has from three to one hundred carbon atoms.
8. The reaction product of claim 1 wherein
R1 has from one to five carbon atoms;
R2 has from two to eight carbon atoms;
R4 has from three to eight carbon atoms;
R3, R6, R7, and R8 each independently have from one to fifteen carbon atoms;
the subscript a ranges from 2 to 3; the subscript b ranges from 0 to 15 more;
the subscript c ranges from 0 to 2;
R9, R10, R11 , R12, R13 , R18, R19, R20, and R21 each independently have from one to three carbon atoms;
the subscripts f, 1, m, n, o, p, q, r, each independently range from 0 to 100;
the subscript k ranges from 5-250;
the subscripts v, w, and x each independently range from 0 to 35;
R23 and R24 each independently have from ten to five hundred carbon atoms;
subscripts δ, ε, ζ each independently range from 0 to 30;
R31 and 32 each independently have from one to eight carbon atoms and
R33 has from three to fifty carbon atoms.
9. The reaction product of claim 1 wherein
R1 is hydrogen;
R2 has from two to five carbon atoms;
R4 has from three to five carbon atoms;
R3, R6, R7, and R8 each independently have from two to eight carbon atoms;
the subscript a is 0 or 1;
the subscript b is 3; the subscript c is 0 or 1;
R9, R10, R11 , R12, R13 , R18, R19, R20, and R21 each independently methyl;
the subscripts f, 1, m, n, o, p, q, r, each independently range from 0 to 50;
the subscript k ranges from 5 to 150;
the subscripts v, w, and x each independently range from 0 to 25;
R23 and R24 each independently have from five to one thousand carbon atoms;
subscripts δ, ε, ζ each independently range from 0 to 15;
R31 and 32 each independently have from one to four carbon atoms and
R33 has from three to ten carbon atoms.
10. The reaction product of claim 6 wherein
R1 has from one to ten carbon atoms;
R2 has from one to ten carbon atoms;
R4 has from three to ten carbon atoms;
R3, R6, R7, and R8 each independently have from one to twenty carbon atoms;
the subscript a ranges from 1 to 3;
the subscript b ranges from 0 to 25 more;
the subscript c ranges from 0 to 3; R9, R10, R11 , R12, R13 , R18, R19, R20, and R21 each independently have from one to four carbon atoms;
the subscripts f, 1, m, n, o, p, q, r, each independently range from 0 to 200;
the subscript k ranges from 0-500;
the subscripts v, w, and x each independently range from 0 to 50;
R23 and R24 each independently have from five to one thousand carbon atoms more preferred 10-500 most preferred 10-300;
subscripts δ, ε, ζ each independently range from 0 to 50;
R31 and 32 each independently have from one to ten carbon atoms and
R33 has from three to one hundred carbon atoms.
11. An aqueous emulsion where the discontinuous phase comprises water and the emulsion comprises the composition of claim 1.
12. An aqueous emulsion where the discontinuous phase comprises water and the emulsion comprises the composition of claim 2.
13. An aqueous emulsion where the discontinuous phase comprises water and the emulsion comprises the composition of claim 3.
14. An aqueous emulsion where the discontinuous phase comprises water and the emulsion comprises the composition of claim 4.
15. An aqueous emulsion where the discontinuous phase comprises water and the emulsion comprises the composition of claim 5.
16. An aqueous emulsion where the discontinuous phase comprises water and the emulsion comprises the composition of claim 6.
17. An aqueous emulsion where the discontinuous phase comprises water and the emulsion comprises the composition of claim 7.
18. An aqueous emulsion where the discontinuous phase comprises water and the emulsion comprises the composition of claim 8.
19. An aqueous emulsion where the discontinuous phase comprises water and the emulsion comprises the composition of claim 9.
20. An aqueous emulsion where the discontinuous phase comprises water and the emulsion comprises the composition of claim 10.
21. An aqueous emulsion where the continuous phase comprises water and the emulsion comprises the composition of claim 1.
22. An aqueous emulsion where the continuous phase comprises water and the emulsion comprises the composition of claim 2.
23. An aqueous emulsion where the continuous phase comprises water and the emulsion comprises the composition of claim 3.
24. An aqueous emulsion where the continuous phase comprises water and the emulsion comprises the composition of claim 4.
25. An aqueous emulsion where the continuous phase comprises water and the emulsion comprises the composition of claim 5.
26. An aqueous emulsion where the continuous phase comprises water and the emulsion comprises the composition of claim 6.
27. An aqueous emulsion where the continuous phase comprises water and the emulsion comprises the composition of claim 7.
28. An aqueous emulsion where the continuous phase comprises water and the emulsion comprises the composition of claim 8.
29. An aqueous emulsion where the continuous phase comprises water and the emulsion comprises the composition of claim 9.
30. An aqueous emulsion where the continuous phase comprises water and the emulsion comprises the composition of claim 10.
31. An non-aqueous emulsion where the discontinuous phase comprises a non-aqueous hydroxylic solvent and the emulsion comprises the composition of claim 1.
32. An non-aqueous emulsion where the discontinuous phase comprises a non-aqueous hydroxylic organic solvent and the emulsion comprises the composition of claim 2.
33. An non-aqueous emulsion where the discontinuous phase comprises a non-aqueous hydroxylic organic solvent and the emulsion comprises the composition of claim 3.
34. An non-aqueous emulsion where the discontinuous phase comprises a non-aqueous hydroxylic organic solvent and the emulsion comprises the composition of claim 4.
35. An non-aqueous emulsion where the discontinuous phase comprises a non-aqueous hydroxylic organic solvent and the emulsion comprises the composition of claim 5.
36. An non-aqueous emulsion where the discontinuous phase comprises a non-aqueous hydroxylic organic solvent and the emulsion comprises the composition of claim 6.
37. An non-aqueous emulsion where the discontinuous phase comprises a non-aqueous hydroxylic organic solvent and the emulsion comprises the composition of claim 7.
38. An non-aqueous emulsion where the discontinuous phase comprises a non-aqueous hydroxylic organic solvent and the emulsion comprises the composition of claim 8.
39. An non-aqueous emulsion where the discontinuous phase comprises a non-aqueous hydroxylic organic solvent and the emulsion comprises the composition of claim 9.
40. An non-aqueous emulsion where the discontinuous phase comprises a non-aqueous hydroxylic organic solvent and the emulsion comprises the composition of claim 10.
41. A non-aqueous emulsion where the continuous phase comprises a nonaqueous hydroxylic organic solvent and the emulsion comprises the composition of claim 1.
42. An non-aqueous emulsion where the continuous phase comprises a non-aqueous hydroxylic organic solvent and the emulsion comprises the composition of claim 2.
43. An non-aqueous emulsion where the continuous phase comprises a non-aqueous hydroxylic organic solvent and the emulsion comprises the composition of claim 3.
44. An non-aqueous emulsion where the continuous phase comprises a non-aqueous hydroxylic organic solvent and the emulsion comprises the composition of claim 4.
45. An non-aqueous emulsion where the continuous phase comprises a non-aqueous hydroxylic organic solvent and the emulsion comprises the composition of claim 5.
46. An non-aqueous emulsion where the continuous phase comprises a non-aqueous hydroxylic organic solvent and the emulsion comprises the composition of claim 6.
47. An non-aqueous emulsion where the continuous phase comprises a non-aqueous hydroxylic organic solvent and the emulsion comprises the composition of claim 7.
48. An non-aqueous emulsion where the continuous phase comprises a non-aqueous hydroxylic organic solvent and the emulsion comprises the composition of claim 8.
49. An non-aqueous emulsion where the continuous phase comprises a non-aqueous hydroxylic organic solvent and the emulsion comprises the composition of claim 9.
50. An non-aqueous emulsion where the continuous phase comprises a non-aqueous hydroxylic organic solvent and the emulsion comprises the composition of claim 10.
PCT/US2008/012291 2007-11-02 2008-10-30 Personal care composition comprising a reaction product of epoxy compound and amino silane WO2009061360A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AT08848570T ATE519477T1 (en) 2007-11-02 2008-10-30 PERSONAL CARE COMPOSITION COMPRISING A REACTION PRODUCT OF AN EPOXY COMPOUND AND AMINO SILANE
CN200880123799.6A CN101909598B (en) 2007-11-02 2008-10-30 The personal care composition of the product including epoxide and amino silane
EP08848570A EP2214633B1 (en) 2007-11-02 2008-10-30 Personal care composition comprising a reaction product of epoxy compound and amino silane
JP2010533070A JP5656638B2 (en) 2007-11-02 2008-10-30 Personal care composition containing reaction product of epoxy compound and aminosilane
KR1020107009842A KR101689317B1 (en) 2007-11-02 2008-10-30 Personal care composition comprising a reaction product of epoxy compound and amino silane
US12/740,296 US8642022B2 (en) 2007-11-02 2008-10-30 Copolymers of epoxy compounds and amino silanes
PL08848570T PL2214633T3 (en) 2007-11-02 2008-10-30 Personal care composition comprising a reaction product of epoxy compound and amino silane

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US98475307P 2007-11-02 2007-11-02
US60/984,753 2007-11-02
US26016908A 2008-10-29 2008-10-29
US12/260,169 2008-10-29

Publications (1)

Publication Number Publication Date
WO2009061360A1 true WO2009061360A1 (en) 2009-05-14

Family

ID=40377273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/012291 WO2009061360A1 (en) 2007-11-02 2008-10-30 Personal care composition comprising a reaction product of epoxy compound and amino silane

Country Status (7)

Country Link
EP (1) EP2214633B1 (en)
JP (1) JP5656638B2 (en)
KR (1) KR101689317B1 (en)
CN (1) CN101909598B (en)
AT (1) ATE519477T1 (en)
PL (1) PL2214633T3 (en)
WO (1) WO2009061360A1 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065955A1 (en) * 2009-11-30 2011-06-03 Momentive Performance Materials Inc. Demulsifying compositions and methods for separating emulsions using the same
WO2011065956A1 (en) * 2009-11-30 2011-06-03 Momentive Performance Materials Inc. Non-crosslinked reaction product of an epoxy or oxetane compound and an amino siloxane
FR2965727A1 (en) * 2010-10-12 2012-04-13 Oreal Composition, useful for care of keratin materials, preferably human keratin fibers such as hair, comprises reaction products of oxirane or oxetane compounds and aminosilane compounds, and anti-dandruff agents e.g. triclosan
FR2965728A1 (en) * 2010-10-12 2012-04-13 Oreal Composition, useful for care of keratin materials, preferably human keratin fibers such as hair, comprises reaction products of oxirane or oxetane compounds and aminosilane compounds, and acrylic thickening polymers
FR2965720A1 (en) * 2010-10-12 2012-04-13 Oreal Composition, useful for the permanent deformation of keratin fibers, preferably hair, comprises, in a medium, reducing agents and reaction products of oxirane or oxetane compounds, and aminosilane compounds
FR2965722A1 (en) * 2010-10-12 2012-04-13 Oreal Composition, useful for washing and/or care of keratin materials, preferably human keratin fibers such as hair, comprises reaction products of oxirane or oxetane compounds, and aminosilane compounds, and anionic surfactants
FR2965725A1 (en) * 2010-10-12 2012-04-13 Oreal Composition, useful for care, preferably conditioning of keratin materials such as hair and keratin materials, comprises reaction products of oxirane or oxetane compounds and aminosilane compounds, and cationic surfactants
FR2965721A1 (en) * 2010-10-12 2012-04-13 Oreal Composition, useful for shaping or maintaining hairstyle, comprises reaction products of oxirane or oxetane compounds and aminosilane compounds, fixing polymers e.g. anionic fixing polymers, and solvents e.g. ethanol in medium
FR2965723A1 (en) * 2010-10-12 2012-04-13 Oreal Composition, useful for non-therapeutic cosmetic treatment of keratin materials, preferably hair, comprises reaction products of oxirane or oxetane compounds and aminosilane compounds, and organomodified silicones
FR2965726A1 (en) * 2010-10-12 2012-04-13 Oreal Composition, useful for care of keratin materials, preferably human keratin fibers such as hair, comprises reaction products of oxirane or oxetane compounds and aminosilane compounds, and betaines type amphoteric surfactants
FR2965724A1 (en) * 2010-10-12 2012-04-13 Oreal Cosmetic composition, useful for the non-therapeutic cosmetic treatment and care of keratin materials, preferably hair, comprises reaction products of oxirane or oxetane compounds and aminosilane compounds, and cationic polymers
WO2012049145A1 (en) 2010-10-12 2012-04-19 L'oreal Cosmetic composition comprising a particular silicon derivative and one or more acrylic thickening polymers
FR2982158A1 (en) * 2011-11-09 2013-05-10 Oreal COSMETIC OR DERMATOLOGICAL COMPOSITION COMPRISING ALPHA-ALCOXYSILANE OBTAINED FROM EPOXIDE
WO2013173119A1 (en) * 2012-05-07 2013-11-21 Momentive Performance Materials Inc. Copolymer of epoxy compounds and amino silanes
WO2013156387A3 (en) * 2012-04-17 2013-12-19 L'oreal Water resistant compositions containing a heterocyclic compound and an alkoxysilane
US9028804B2 (en) 2012-04-17 2015-05-12 L'oreal Water resistant compositions containing a lactone compound and an amine compound chosen from amino alcohol compounds and alkoxylated amine compounds
WO2017124061A1 (en) * 2016-01-15 2017-07-20 Salon Commodities, Inc. Methods and compositions for treating damaged hair
WO2017176403A1 (en) * 2016-04-08 2017-10-12 Empire Technology Development Llc Method and composition for dag mitigation on hair
EP3281623A1 (en) * 2016-08-12 2018-02-14 Noxell Corporation Hair coloring composition for providing a film on keratin fibers
AU2017204791B2 (en) * 2016-09-22 2019-02-07 Xinova, LLC Methods and compositions for dag mitigation
WO2019142169A1 (en) * 2018-01-22 2019-07-25 Landa Labs (2012) Ltd. Methods for textile coloring
WO2019144157A1 (en) * 2018-01-22 2019-07-25 Henkel Ag & Co. Kgaa Improved compositions and methods for hair coloring
US10716748B2 (en) 2010-04-30 2020-07-21 Momentive Performance Materials Inc. Method of treating hair
CN111732890A (en) * 2020-07-17 2020-10-02 徐州市威固特种玻璃有限公司 Long-acting antifogging coating on glass surface and preparation method thereof
US11179315B2 (en) 2017-04-02 2021-11-23 Henkel Ag & Co. Kgaa Compositions, kits and methods for coloring fibers
US11426344B2 (en) 2017-03-25 2022-08-30 Salon Commodities, Inc. Methods and compositions for straightening hair

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2857004B1 (en) 2013-10-07 2018-07-04 The Procter and Gamble Company Hair straightening method involving reducing sugars
US11110046B2 (en) 2013-12-19 2021-09-07 The Procter And Gamble Company Shaping keratin fibres using 2-hydroxypropane-1,2,3-tricarboxylic acid and/or 1,2,3,4-butanetetracarboxylic acid
CN105828793B (en) 2013-12-19 2019-06-18 宝洁公司 Keratin fiber is shaped using sugar
EP3082743A1 (en) 2013-12-19 2016-10-26 The Procter & Gamble Company Shaping keratin fibres using carbonate ester
WO2015095671A1 (en) 2013-12-19 2015-06-25 The Procter & Gamble Company Shaping keratin fibres using oxoethanoic acid and/or derivatives thereof
MX2016007998A (en) 2013-12-19 2016-09-13 Procter & Gamble Shaping keratin fibres using carbonate ester.
JP6396473B2 (en) 2013-12-19 2018-09-26 ザ プロクター アンド ギャンブル カンパニー Molding of keratin fibers using an activator comprising at least two functional groups selected from -C (OH)-and -C (= O) OH
MX361097B (en) 2013-12-19 2018-11-27 Procter & Gamble Shaping keratin fibres using an amine or a diamine.
JP2016540006A (en) * 2013-12-19 2016-12-22 ザ プロクター アンド ギャンブル カンパニー Shaping keratin fibers using reducing and fixing compositions
CN105828786B (en) 2013-12-19 2020-07-07 宝洁公司 Shaping keratin fibres using AN AN active agent comprising a functional group selected from-C (═ O) -, -C (═ O) -H and-C (═ O) -O-)
US9801805B2 (en) * 2014-12-16 2017-10-31 Momentive Performance Materials Inc. Personal care composition comprising silicone network
WO2016100258A1 (en) 2014-12-19 2016-06-23 The Procter & Gamble Company Method of shaping keratin fibres
EP3297731A1 (en) 2014-12-19 2018-03-28 The Procter and Gamble Company Shaping keratin fibres using arabinose and ethylene carbonate
EP3256096B1 (en) 2014-12-19 2019-04-17 The Procter and Gamble Company Shaping keratin fibres using arabinose and ethylene carbonate
EP3295820B1 (en) 2016-09-15 2019-05-22 Noxell Corporation Colored hair ornament, method and kit thereof
JP2020023485A (en) * 2018-07-27 2020-02-13 花王株式会社 Hair cosmetic
WO2020090951A1 (en) * 2018-11-02 2020-05-07 株式会社 資生堂 Hair treatment method
JP2020094005A (en) * 2018-12-13 2020-06-18 株式会社 資生堂 Hair treatment method
JP2020070272A (en) * 2018-11-02 2020-05-07 株式会社 資生堂 Hair cosmetic and hair treatment method using the same
JP2020070273A (en) * 2018-11-02 2020-05-07 株式会社 資生堂 Hair cosmetic and hair treatment method using the same
WO2020262525A1 (en) 2019-06-26 2020-12-30 花王株式会社 Hair treatment method
US20220273061A1 (en) * 2019-08-21 2022-09-01 Kao Corporation Human hair fiber treatment agent
US20230050775A1 (en) 2019-12-23 2023-02-16 Kao Corporation Hair cosmetic composition
EP4082625A4 (en) * 2019-12-24 2024-02-28 Shiseido Co Ltd Water-in-oil emulsion cosmetic preparation for skin

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA866244A (en) * 1971-03-16 W. Sullivan Philip Use of water-soluble salts of epoxy-amine condensates to disperse epoxy resins
WO2003066007A1 (en) * 2002-02-05 2003-08-14 Dow Corning Corporation Hair care compositions containing polysiloxanes
US20070106045A1 (en) * 2003-04-11 2007-05-10 Horst Lange Reactive amino-and/or ammonium polysiloxane compounds

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319716B2 (en) * 1974-02-12 1978-06-22
US5019607A (en) 1989-11-01 1991-05-28 Eastman Kodak Company Modified epoxy resins and composites
CN1791376B (en) * 2003-05-16 2010-08-18 陶氏康宁公司 Personal care applications of emulsions containing elastomeric silanes and siloxanes with nitrogen atoms
KR100550883B1 (en) * 2004-03-02 2006-02-10 (주)도 은 Low interference and abrasion resistant coating composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA866244A (en) * 1971-03-16 W. Sullivan Philip Use of water-soluble salts of epoxy-amine condensates to disperse epoxy resins
WO2003066007A1 (en) * 2002-02-05 2003-08-14 Dow Corning Corporation Hair care compositions containing polysiloxanes
US20070106045A1 (en) * 2003-04-11 2007-05-10 Horst Lange Reactive amino-and/or ammonium polysiloxane compounds

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2589617A3 (en) * 2009-11-30 2013-06-12 Momentive Performance Materials Inc. Non-crosslinked reaction product of an epoxy or oxetane compound and an amino siloxane
WO2011065956A1 (en) * 2009-11-30 2011-06-03 Momentive Performance Materials Inc. Non-crosslinked reaction product of an epoxy or oxetane compound and an amino siloxane
WO2011065955A1 (en) * 2009-11-30 2011-06-03 Momentive Performance Materials Inc. Demulsifying compositions and methods for separating emulsions using the same
US10716748B2 (en) 2010-04-30 2020-07-21 Momentive Performance Materials Inc. Method of treating hair
FR2965723A1 (en) * 2010-10-12 2012-04-13 Oreal Composition, useful for non-therapeutic cosmetic treatment of keratin materials, preferably hair, comprises reaction products of oxirane or oxetane compounds and aminosilane compounds, and organomodified silicones
FR2965722A1 (en) * 2010-10-12 2012-04-13 Oreal Composition, useful for washing and/or care of keratin materials, preferably human keratin fibers such as hair, comprises reaction products of oxirane or oxetane compounds, and aminosilane compounds, and anionic surfactants
FR2965725A1 (en) * 2010-10-12 2012-04-13 Oreal Composition, useful for care, preferably conditioning of keratin materials such as hair and keratin materials, comprises reaction products of oxirane or oxetane compounds and aminosilane compounds, and cationic surfactants
FR2965721A1 (en) * 2010-10-12 2012-04-13 Oreal Composition, useful for shaping or maintaining hairstyle, comprises reaction products of oxirane or oxetane compounds and aminosilane compounds, fixing polymers e.g. anionic fixing polymers, and solvents e.g. ethanol in medium
FR2965726A1 (en) * 2010-10-12 2012-04-13 Oreal Composition, useful for care of keratin materials, preferably human keratin fibers such as hair, comprises reaction products of oxirane or oxetane compounds and aminosilane compounds, and betaines type amphoteric surfactants
FR2965724A1 (en) * 2010-10-12 2012-04-13 Oreal Cosmetic composition, useful for the non-therapeutic cosmetic treatment and care of keratin materials, preferably hair, comprises reaction products of oxirane or oxetane compounds and aminosilane compounds, and cationic polymers
WO2012049145A1 (en) 2010-10-12 2012-04-19 L'oreal Cosmetic composition comprising a particular silicon derivative and one or more acrylic thickening polymers
FR2965720A1 (en) * 2010-10-12 2012-04-13 Oreal Composition, useful for the permanent deformation of keratin fibers, preferably hair, comprises, in a medium, reducing agents and reaction products of oxirane or oxetane compounds, and aminosilane compounds
US20130164248A1 (en) * 2010-10-12 2013-06-27 L'oreal Cosmetic composition comprising a particular silicon derivative and one or more acrylic thickening polymers
FR2965728A1 (en) * 2010-10-12 2012-04-13 Oreal Composition, useful for care of keratin materials, preferably human keratin fibers such as hair, comprises reaction products of oxirane or oxetane compounds and aminosilane compounds, and acrylic thickening polymers
FR2965727A1 (en) * 2010-10-12 2012-04-13 Oreal Composition, useful for care of keratin materials, preferably human keratin fibers such as hair, comprises reaction products of oxirane or oxetane compounds and aminosilane compounds, and anti-dandruff agents e.g. triclosan
WO2013068968A3 (en) * 2011-11-09 2014-03-13 L'oreal Cosmetic composition comprising an alpha-alkoxysilane obtained from an epoxide
FR2982158A1 (en) * 2011-11-09 2013-05-10 Oreal COSMETIC OR DERMATOLOGICAL COMPOSITION COMPRISING ALPHA-ALCOXYSILANE OBTAINED FROM EPOXIDE
WO2013156387A3 (en) * 2012-04-17 2013-12-19 L'oreal Water resistant compositions containing a heterocyclic compound and an alkoxysilane
US9028804B2 (en) 2012-04-17 2015-05-12 L'oreal Water resistant compositions containing a lactone compound and an amine compound chosen from amino alcohol compounds and alkoxylated amine compounds
WO2013173119A1 (en) * 2012-05-07 2013-11-21 Momentive Performance Materials Inc. Copolymer of epoxy compounds and amino silanes
WO2017124061A1 (en) * 2016-01-15 2017-07-20 Salon Commodities, Inc. Methods and compositions for treating damaged hair
US10987301B2 (en) 2016-01-15 2021-04-27 Salon Commodities, Inc. Methods and compositions for treating damaged hair
WO2017176403A1 (en) * 2016-04-08 2017-10-12 Empire Technology Development Llc Method and composition for dag mitigation on hair
WO2018031941A1 (en) * 2016-08-12 2018-02-15 Noxell Corporation Hair coloring composition for providing a film on keratin fibers
EP3281623A1 (en) * 2016-08-12 2018-02-14 Noxell Corporation Hair coloring composition for providing a film on keratin fibers
AU2017204791B2 (en) * 2016-09-22 2019-02-07 Xinova, LLC Methods and compositions for dag mitigation
US11426344B2 (en) 2017-03-25 2022-08-30 Salon Commodities, Inc. Methods and compositions for straightening hair
US11179315B2 (en) 2017-04-02 2021-11-23 Henkel Ag & Co. Kgaa Compositions, kits and methods for coloring fibers
WO2019142169A1 (en) * 2018-01-22 2019-07-25 Landa Labs (2012) Ltd. Methods for textile coloring
WO2019144157A1 (en) * 2018-01-22 2019-07-25 Henkel Ag & Co. Kgaa Improved compositions and methods for hair coloring
US11369561B2 (en) 2018-01-22 2022-06-28 Henkel Ag & Co. Kgaa Compositions and methods for hair coloring
US11560670B2 (en) 2018-01-22 2023-01-24 Landa Labs (2012) Ltd. Methods for textile treatment
CN111732890A (en) * 2020-07-17 2020-10-02 徐州市威固特种玻璃有限公司 Long-acting antifogging coating on glass surface and preparation method thereof
CN111732890B (en) * 2020-07-17 2021-08-17 徐州市威固特种玻璃有限公司 Long-acting antifogging coating on glass surface and preparation method thereof

Also Published As

Publication number Publication date
ATE519477T1 (en) 2011-08-15
KR101689317B1 (en) 2016-12-23
PL2214633T3 (en) 2012-01-31
KR20100084645A (en) 2010-07-27
CN101909598B (en) 2017-06-06
EP2214633A1 (en) 2010-08-11
CN101909598A (en) 2010-12-08
JP2011503059A (en) 2011-01-27
EP2214633B1 (en) 2011-08-10
JP5656638B2 (en) 2015-01-21

Similar Documents

Publication Publication Date Title
KR101689317B1 (en) Personal care composition comprising a reaction product of epoxy compound and amino silane
US8642022B2 (en) Copolymers of epoxy compounds and amino silanes
ES2369384T3 (en) COMPOSITION FOR PERSONAL CARE UNDERSTANDING AN EPOXI AND AMINOSILAN COMPOUND REACTION PRODUCT.
CA2387498C (en) Zwitterionic siloxane polymers and ionically cross-linked polymers formed therefrom
JP5715119B2 (en) Use of organo-modified siloxanes with branched silicone moieties for the production of cosmetic or pharmaceutical compositions
US8957009B2 (en) Linear polydimethylsiloxane-polyether copolymers having amino and/or quaternary ammonium groups and use thereof
JP5997155B2 (en) Sugar siloxanes that are stable in an aqueous environment and methods of preparing and using such sugar siloxanes
JP2013544856A (en) Formulation containing a polysiloxane having a nitrogen-containing group
EP1426398B1 (en) Method of making emulsion containing quaternary ammonium functional silanes and siloxanes
KR20060010809A (en) Personal care applications of emulsions containing elastomeric silanes and siloxanes with nitrogen atoms
WO2010047993A2 (en) Aminofunctional endblocked silicone polyether copolymers in personal care compositions
CN109071820B (en) Silicone block copolymers with amino-functional end-capping groups and methods of making and using the same
EP2617892B1 (en) Textiles treated with copolymers of epoxy compounds and amino silanes
US10961352B2 (en) Crosslinked aminosilicone polymer and methods for its preparation and use

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880123799.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08848570

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12740296

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107009842

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010533070

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2008848570

Country of ref document: EP