WO2009059567A1 - Dispositif servant à maintenir l'activité d'un dispositif de protection et procédé de mise en oeuvre associé - Google Patents
Dispositif servant à maintenir l'activité d'un dispositif de protection et procédé de mise en oeuvre associé Download PDFInfo
- Publication number
- WO2009059567A1 WO2009059567A1 PCT/CN2008/072961 CN2008072961W WO2009059567A1 WO 2009059567 A1 WO2009059567 A1 WO 2009059567A1 CN 2008072961 W CN2008072961 W CN 2008072961W WO 2009059567 A1 WO2009059567 A1 WO 2009059567A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- protection device
- npd
- physical layer
- send
- primary
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/20—Network architectures or network communication protocols for network security for managing network security; network security policies in general
Definitions
- the present invention relates to the field of communication technologies, and more particularly to a method and apparatus for controlling a protection device to remain active. Background technique
- the IEEE 802.22.1 standard defines a Protecting Device (PD) or Beaconing Device to form a Beaconing Network to enhance the authorization of low-power authorized primary user equipment (such as wireless microphones). Protection to facilitate frequency sharing with unlicensed devices.
- PD Protecting Device
- Beaconing Device to form a Beaconing Network to enhance the authorization of low-power authorized primary user equipment (such as wireless microphones). Protection to facilitate frequency sharing with unlicensed devices.
- the beacon transmission in the beacon network is done by broadcast, and the transmitted data can be received and processed by any device within the coverage of the network.
- the protection devices in the beacon network are classified into a Primary Protecting Device (PPD) and a Secondary Protecting Device (SPD).
- PPD Primary Protecting Device
- SPD Secondary Protecting Device
- the primary protection device controls the access of the wireless channel, integrates the beacon data of the other protection device, and is responsible for broadcasting all the beacon information in the beacon network; the protection device is responsible for protecting the low-power authorized device in the partial area, and the beacon is The content is sent to the primary user device.
- the IEEE 802.22.1 standard defines a special secondary protection device, ie, alternative protection.
- Next-in-line Protecting Device (NDD) Next-in-line Protecting Device
- the steps for device initialization are as follows:
- the protection device is initialized first after being powered on.
- Each protection device listens to a number of superframe periods on a designated television channel to determine if a primary protection device is present on the channel. If the primary protection device is not detected, the protection device sets itself as the primary protection device and starts to send the beacon frame; if it detects the presence of one or more primary protection devices, the protection device may decide to become the primary protection device. And start sending your own beacon frame, or become a slave protection device and try to contact one of the primary protection devices.
- the primary protection device should select a secondary protection device as an alternate protection device. If the primary protection device stops transmitting beacons, the alternate protection device will promote itself as the new primary protection device, and the other secondary protection devices will eventually contact the new primary protection device. The new primary protection device should select one of the secondary protection devices. Become a new alternative protection device.
- the protocol structure of the protection device is based on the multi-layer structure of the Open System Interconnection (OSI) seven-layer model, as shown in Figure 1. Each layer is responsible for a part of the agreement and provides services to the upper level.
- OSI Open System Interconnection
- the IEEE 802.22.1 standard defines the physical layer (PHY) and Medium Access Control (MAC) sublayer of the protection device.
- the physical layer includes a wireless transceiver and an underlying control mechanism to provide bit transmission services to the MAC layer.
- the medium access control sublayer provides access services for physical channels and performs MAC frame assembly and decomposition.
- the next higher layer (NHL) is not part of the standard specification, but the high-level execution selects the working channel, determines the working mode of the protection device (becomes the primary protection device or the protection device), starts/stops the transmission of the beacon frame, and processes The functions of the received beacon frame, the fusion data, and the error handling the security mechanism, the high-level behavior is very important to protect the normal operation of the device.
- SAP Service Access Point
- MLME MAC sublayer Management Entity
- PLME PHY Layer Management Entity, the physical layer management entity
- the superframe structure of the IEEE 802.22.1 system is shown in Figure 2.
- One superframe period is divided into 31 slots.
- the first 30 slots are used to transmit beacon data, which is called beacon.
- the 31st time slot is used as an inter-device communication period (ICP), which is hereinafter referred to as an inter-device communication period.
- the superframe during the beacon period is divided into two channels: the Synchronization channel and the beacon channel.
- the synchronization channel contains 30 Sync bursts for superframe synchronization; the beacon channel is used to transmit MAC beacon frames.
- the inter-device communication period is further divided into two parts: the receiving period (Rx period) and the response period (Acknowledgement/No acknowledgement period, ANP).
- the inter-device communication period is one slot length, including 32 modulation symbols, including a reception period of 8 symbol lengths and a response period of 8 symbol lengths, as shown in FIG.
- the protection device can send an RTS (Request to Send) request within the receiving period, and the primary protection device responds to the RTS request within the receiving period and then receives or rejects the response within the subsequent response period. If the primary protection device receives the RTS request, the corresponding ACK (Acknowledgement) codeword is sent during the response period; if the primary protection device rejects the RTS request, the NACK (No Acknowledgement) codeword is sent during the response period.
- RTS Request to Send
- the beacon frame needs to be broadcasted so that other protection devices can detect the existence of the primary protection device and contact the primary protection device to report the related protection information.
- the initial transmission process of the primary protection device lasts for 100 superframe periods. In this process, only the primary protection device sends a beacon frame, so there is no need to set the communication period between devices, and the synchronization is sent on the synchronization channel corresponding to the 31st time slot. Burst, all zeros are sent on the beacon channel.
- the structure of the superframe during the initialization of the primary protection device is shown in Figure 4.
- protection devices There are two data transmission models between protection devices: the primary protection device sends data to the secondary protection device, and the protection device sends data to the primary user device.
- the primary protection device Since the primary protection device controls the access of the wireless channel, the primary protection device sends the protection information to the MAC layer when the data is transmitted from the protection device (ie, the primary protection device broadcasts the beacon, and the protection device or other device listens for the beacon).
- the beacon frame is transmitted through the PHY layer.
- the slave protection device that is within the coverage of the primary protection device listens to the primary protection device Beacon, and parse the protection information.
- the RTS request When the beacon is sent from the protection device to the primary protection device, the RTS request must be sent to the primary protection device during the receiving period of the ICP, and after the ACK of the primary protection device is obtained during the response period of the ICP, during the beacon period of the next superframe period Send a beacon frame.
- the RTS request from the protection device generally only obtains the transmission opportunity of the next superframe, that is, the primary protection device must respond to the NACK within the response period of the next superframe, and reclaim the transmission right of the next superframe.
- Step s501 The beacon frame carrying the protection information of the primary protection device is sent to the secondary protection device through the physical layer.
- Step s502 Send an RTS request from the protection device to the primary protection device during the ICP reception period.
- Step s503 the primary protection device sends an ACK during the response period.
- Step s504 After obtaining the ACK of the primary protection device from the protection device during the response period of the ICP, the beacon frame is sent during the beacon period of the next superframe period.
- Step s505 The primary protection device responds to the NACK during the response period of the next superframe, and reclaims the transmission right of the next superframe. Then continue to send the beacon frame to the slave protection device (step s501).
- the transmission opportunity is first obtained through the RTS request, and the NST (Next SPD Superframe to Transmit) bit is set to 1 in the transmitted beacon frame, indicating that the protection device needs to resend.
- the primary protection device may reject the NST request from the protection device, or may agree to the requirement because the primary protection device is responsible for controlling access to the wireless channel. If the primary protection device agrees to the NST requirement from the protection device, the Go-On codeword must be sent during the response period. It should be noted that the NST requirement is time-limited. If the Go-On codeword is not received within two superframe times after the protection device sends the beacon frame with the NST bit set, the RTS request must be resent.
- the NPD codeword must be sent periodically during the reception period to indicate the presence of the alternate protection device.
- the primary protection device selects a secondary protection device as a backup, so that the primary When the protection device stops transmitting periodic beacon frames, the slave protection device can become a new primary protection device in time. This selected slave protection device is called an alternate protection device.
- Some bits are defined in the beacon frame to assist in the completion of the function. As shown in Table 1, bits 6-7 of parameter 2 (Parameter 2) in the beacon frame of the primary protection device are NPD indication fields (NPD Indication field), which The meaning is as shown in Table 1. The bit 6 of parameter 2 in the beacon frame of the protection device is the NPD field. If the field is set to 1, it indicates that it is a beacon frame sent by the candidate protection device, otherwise it indicates that it is a protection device. The beacon frame sent.
- the NPD indicates that the domain is "00", that is, there is no alternative protection device in the current beacon network and an alternative protection device needs to be selected.
- All slave protection devices that receive the beacon frame of the primary protection device must send an RTS request, and if the primary protection device grants, send a beacon frame indicating that the volunteer is an alternate protection device. After receiving the beacon frames of these slave protection devices, the primary protection device selects one of them as an alternative protection device according to certain criteria. It should be noted that the primary protection device must announce that the secondary protection device is selected as the alternate protection device within two superframe periods after receiving a beacon frame from the protection device. For example, if a slave protection device sends a beacon frame during the nth superframe period, the primary protection device must place the beacon frame.
- the NPD indication field is set to "01" and is sent during the n+2 superframe period to inform the slave protection device that it has been selected as the alternate protection device.
- the upper layer of the primary protection device informs the MAC sublayer of the selected protection device address (ie, the value of the parameter NPD Address) by the MLME-NPD.request primitive, that is, the slave protection device with the address NPD Address has been selected as the candidate protection. device.
- the NPD indication field is "01"
- the macNPDAddress attribute in the MAC information database is set to its own address, and in two
- the NPD codeword is sent in response within a superframe period. For example, from the protection device receiving the beacon frame of the primary protection device during the n+2 superframe period, the NPD codeword must be transmitted within the n+4 superframe period.
- each aNPDPeriod (constant, value is 10) superframes must transmit an NPD codeword during the receive period, indicating the presence of an alternate protection device.
- the primary protection device and the other secondary protection devices must detect the NPD codeword. If no NPD codeword is detected for a period of time or if a beacon frame from the alternate protection device is not received, then the alternate protection device is considered to be absent.
- the protection device After the protection device receives the beacon frame whose primary protection device NPD indication field is "01", its upper layer is informed that it is selected as an alternative.
- the protection device the MAC sublayer determines whether it is selected by checking the macNPDAddress or by receiving the MLME-NPD.request primitive.
- the MAC sublayer cannot require the physical layer to start sending NPD codewords after two superframe periods, causing the primary protection device and other secondary protection devices to consider that the alternate protection device does not exist, so that the protection device cannot remain active. Summary of the invention
- the embodiments of the present invention provide a method and a device for controlling a protection device to maintain an active state, so that the primary protection device and other protection devices continuously perform service interaction according to an NPD codeword or a signal frame sent by the candidate protection device.
- the embodiment of the invention provides a method for controlling a protection device to remain activated, comprising the following steps:
- the MAC device layer is required to send the candidate protection device NPD codeword and start the timer at the same time.
- the MAC sublayer After the timer expires, the MAC sublayer requires the physical layer to resend the NPD codeword and reset the timer.
- An embodiment of the present invention further provides an apparatus for controlling a protection device to remain in an active state, including:
- the upper layer is used to learn from the upper layer of the protection device that it is selected as an alternative protection device, and notify the MAC sublayer;
- a MAC sublayer configured to send a request to the physical layer to send an NPD codeword, and start a timer, if the timer expires, instruct the physical layer to send the NPD codeword again, and reset the timer;
- the physical layer is used to control the transceiver to send NPD code words.
- the protection device by modifying the primitive interaction between the MAC sublayer and the physical layer, the protection device is kept in an active state, so that the primary protection device and the other secondary protection device detect the existence of the alternate protection device.
- FIG. 1 is a schematic structural diagram of a protection device in the prior art
- FIG. 2 is a schematic diagram of a superframe structure in the prior art
- FIG. 3 is a schematic diagram of communication between devices in the prior art
- FIG. 5 is a schematic diagram of communication from a protection device to a primary protection device in the prior art
- FIG. 6 is a schematic diagram of a flow of controlling a protection device to remain activated in the first embodiment of the present invention
- Figure ⁇ is a schematic flowchart of selecting and activated a protection device from the protection device in the second embodiment of the present invention
- FIG. 8 is a structural diagram of a device for controlling a protection device to remain activated in an embodiment of the present invention. detailed description
- Embodiment 1 of the present invention A method for controlling a protection device to maintain an activation state is provided in Embodiment 1 of the present invention. As shown in FIG. 6, the method includes the following steps:
- step s601 it is learned from the upper layer of the protection device that it is selected as the candidate protection device, and is notified to the MAC sublayer of the protection device.
- Step s602 The slave protection MAC sublayer requests to send an NPD codeword from the physical layer of the protection device, and starts a timer at the same time.
- Step s603 After the timer expires, the slave MAC layer of the protection device requests the physical layer to resend the NPD codeword, and resets the timer.
- the second embodiment of the present invention is described by taking the example of the protection device as an alternative protection device and maintaining the activation state.
- the main signaling interaction process of the method includes the following steps:
- Step s701 Pass the MLME-START-BEACON. request primitive from the upper layer of the protection device, and transmit the information of the beacon frame and the control information to the MAC sublayer of the protection device.
- step s702 the confirmation message is returned from the protection device MAC sublayer through the MLME-START-BEACON. confirm primitive to the protection device upper layer.
- Step s703 requesting, by the protection device MAC sublayer, the RTS request to be sent from the physical layer of the protection device, and monitoring the response period. If the ACK is received, the MAC sublayer protocol data unit is generated according to the information and control information of the beacon frame, and the data unit is set and sent. After the state of the machine, a request to send from the physical layer of the protection device is issued by the PD-DATA.request primitive.
- Step s704 after receiving the request from the physical layer of the protection device, the PD-DATA.confirm primitive tells the request from the protection device MAC sublayer that it has been received. And the MAC sub-layer protocol data unit is encoded, and the physical layer protocol data unit is generated and transmitted on the beacon channel, and 30 synchronization bursts are generated and transmitted on the synchronization channel.
- the superframe structure is shown in FIG. 2, and details are not described herein. .
- Step s705 Receive, from the protection device physical layer, a beacon frame of the primary protection device in the n+2th frame (the beacon frame is used by the primary protection device to notify the secondary protection device as an alternate protection device), by using PD-DATA. The indication is reported to the MAC sublayer of the protection device.
- Step s706 Report the received beacon frame to the upper layer of the protection device from the protection device MAC sublayer by using the MLME-INCOMING- BEACON.indication primitive.
- Step s707 from the protection device upper layer indication, from the protection device MAC sublayer, the macNPD Address attribute in the MAC information database is set to the protection device's own address through the MLME-NPD. request primitive.
- Step s708 returning confirmation information from the protection device MAC sublayer to the slave protection device upper layer through the MLME-NPD.confirm primitive.
- step s709 a request is sent from the protection device MAC sublayer to the slave protection physical layer by the PLME-NPD-HEARTBEAT.request primitive to send the NPD codeword, and the timer T of length aNPDPeriod is started.
- the PLME-NPD-HEARTBEAT.request primitive is the MAC sublayer of the alternate protection device and is generated and sent to the slave protection physical layer, and the NPD codeword is required to be sent from the protection device physical layer during the superframe reception period.
- This primitive has no parameters.
- Step s710 The physical layer informs the protection device MAC sublayer that the NPD codeword has been sent by the PLME-NPD-HEARTBEAT.confirm primitive.
- the PLME-NPD-HEARTBEAT.confirm primitive is the MAC layer of the alternate protection device that generates and sends to its MAC sublayer.
- the NPD codeword has been sent. .
- the parameters of this primitive are shown in Table 2.
- step s711 when the timer expires, a request is sent from the protection device MAC sublayer to the slave protection physical layer through the PLME-NPD-HEARTBEAT.request primitive to send the NPD codeword, and the timer T is reset.
- Step s712 returning the confirmation information from the protection device physical layer through the PLME-NPD-HEARTBEAT. confirm primitive, and sending the NPD codeword.
- the secondary device learns that it is selected as the candidate protection device by using the MLME-NPD.request primitive (which The parameter NPD Address is the address of the slave protection device.)
- the MAC sublayer is informed, and the macNPD Address attribute is set to the value of the parameter NPD Address.
- the MAC sublayer management requests the physical layer to send the NPD codeword through the PLME-NPD-HEARTBEAT.request primitive and simultaneously starts the timer T of length aNPDPeriod. After the timer T timeout, the MAC sublayer management requires the physical layer to resend the NPD codeword and reset the timer T through the PLME-NPD-HEARTBEAT.request primitive. Thereby the alternative protection device is continuously activated.
- the embodiment of the present invention further provides a device for controlling a protection device to remain activated. As shown in FIG. 8, the method includes:
- the upper layer 81 is used to learn from the protection device upper layer 81 that it is selected as the candidate protection device, and the MAC sublayer 82 is notified.
- the MAC sublayer 82 is configured to send a request to the physical layer 83 to send the NPD codeword, and start the timer. If the timer expires, the physical layer 83 is instructed to send the NPD codeword again, and the timer is reset.
- the physical layer 83 is used to control the transceiver to send the NPD codeword.
- the upper layer 81 specifically includes:
- a beacon frame receiving unit 811 configured to receive and save an NPD indication field of the primary protection device beacon frame
- the determining unit 812 is configured to be selected as the candidate protection device by using the NPD indication field of the primary protection device beacon frame.
- the MAC sublayer 82 specifically includes:
- the timing unit 821 is configured to request the physical layer 83 to send the NPD codeword while timing.
- the management unit 822 is configured to request the physical layer 83 to send the NPD codeword. If the timing unit 821 times out, the physical layer 83 is instructed to send the NPD codeword again.
- the method for maintaining the activated state of the candidate protection device is improved by the primitive interaction between the MAC sublayer and the physical layer.
- the present invention can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases, the former is a better implementation. the way.
- the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for making a A computer device (which may be a personal computer, server, or network device, etc.) performs the methods described in various embodiments of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Computer Hardware Design (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Description
控制保护设备保持激活状态的方法及设备 本申请要求于 2007 年 11 月 5 日提交中国专利局, 申请号为 200710169617.6, 发明名称为 "控制保护设备保持激活状态的方法及 设备"的中国专利申请的优先权, 其全部内容通过引用结合在本申请 中。 技术领域
本发明涉及通信技术领域,尤其是控制保护设备保持激活状态的 方法及设备。 背景技术
随着数字电视的推广,原本用于模拟电视的频段其利用率越来越 低。 目前已批准免授权设备在不造成干扰的前提下可以使用这部分未 使用的电视频段。尽管这些电视信道没有被用来广播电视信号, 但其 他低功率的授权设备比如无线麦克风等,仍可能工作在这些电视信道 上。 因此保护这些低功率的设备免受干扰就显得尤为重要。
IEEE 802.22.1标准定义了一种保护设备 ( Protecting Device, PD ) 或信标设备 ( Beaconing Device ) 用来组成信标网络 ( Beaconing Network ), 加强对低功率的授权主用户设备 (比如无线麦克风)的保 护, 以利于与免授权设备进行频语共享。
信标网络中的信标传输是通过广播完成的,所发送数据可以被网 络覆盖范围内的任何设备接收和处理。信标网络中的保护设备分为主 保护设备 ( Primary Protecting Device, PPD )和从保护设备 ( Secondary Protecting Device, SPD )。 主保护设备控制无线信道的接入, 融合其 他从保护设备的信标数据, 负责广播该信标网络中的所有信标信息; 从保护设备负责保护部分区域内的低功率授权设备,把信标内容发送 给主用户设备。为了缩短主保护设备退出后重新选择新主保护设备的 时间, IEEE 802.22.1标准定义了一种特殊的从保护设备, 即备选保护
设备 ( Next-in-line Protecting Device, NPD )。
设备初始化的步骤如下: 保护设备开机后首先进行初始化。每个 保护设备在指定的电视频道上侦听若干个超帧周期以判断该信道上 是否存在主保护设备。 若没有侦听到主保护设备, 该保护设备就将自 己设置为主保护设备并开始发送信标帧;若侦听到一个或多个主保护 设备的存在,该保护设备可决定成为主保护设备并开始发送自己的信 标帧, 或成为从保护设备并尝试与其中一个主保护设备联系。 当信标 网络中存在主保护设备时,主保护设备应该选择某个从保护设备作为 备选保护设备。 如果主保护设备停止发送信标, 备选保护设备将提升 自己成为新的主保护设备,其他从保护设备最终会与新的主保护设备 联系,新的主保护设备应该选择其中某个从保护设备成为新的备选保 护设备。
保护设备的协议结构基于开放系统互连 ( Open System Interconnection, OSI )七层模型的多层结构, 如图 1所示。 每一层负 责一部分协议, 并向上层提供服务。
IEEE 802.22.1标准定义保护设备的物理层( Physical Layer, PHY ) 和介质接入控制(Medium Access Control, MAC )子层。 物理层包括 无线收发机以及底层的控制机制, 向 MAC层提供比特传输的服务。 介质接入控制子层提供物理信道的接入服务, 并进行 MAC帧的组装 和分解。 高层(Next Higher Layer, NHL ) 不属于标准规定的部分, 但由于高层执行选择工作信道、 决定保护设备的工作模式(成为主保 护设备还是从保护设备)、 开始 /停止信标帧的传送、 处理接收到的信 标帧的信息、 融合数据以及处理安全机制的错误等功能, 高层的行为 对保护设备的正常工作非常重要。
各层之间的接口被称作服务接入点( Service Access Point, SAP )。 每个服务接入点提供了相邻两层之间的信息交互。高层与介质接入控 制子层之间通过 MLME ( MAC sublayer Management Entity, MAC子 层管理实体) -SAP接口进行信息交互; 介质接入控制子层与物理层 之间的数据通过 PD-SAP进行交互,控制信息通过 PLME( PHY Layer
Management Entity, 物理层管理实体 ) -SAP进行交互。
IEEE 802.22.1系统的超帧 ( superframe )结构如图 2所示, 一个 超帧周期分为 31个时隙(slot ), 前 30个时隙用于发送信标数据, 后 文称作信标期, 第 31 个时隙用作设备间通信 ( Inter-device communication period, ICP ), 后文称作设备间通信期。 信标期内超帧 分为两个還辑信道: 同步信道 ( Synchronization channel )和信标信道 ( beacon channel )。 同步信道包含 30个同步突发( Sync burst ), 用来 进行超帧同步; 信标信道用来发送信标数据 ( MAC beacon frame )。 设备间通信期又分为两部分: 接收期 (Rx period ) 和应答期 ( Acknowledgement/No acknowledgement period, ANP )。
设备间通信期为一个时隙长度, 包括 32个调制符号, 其中包括 8个符号长度的接收期和 8个符号长度的应答期, 如图 3所示。 从保 护设备可以在接收期内发送 RTS ( Request to Send )请求, 主保护设 备在接收期内检测到 RTS请求后, 在随后的应答期内做出接收或拒 绝的回复。 若主保护设备接收了 RTS请求, 则在应答期内发送对应 的 ACK ( Acknowledgement )码字; 若主保护设备拒绝了 RTS请求, 则在应答期内发送 NACK ( No Acknowledgement )码字。
主保护设备初始化完成后,需要广播信标帧以便其他保护设备能 够侦听到主保护设备的存在, 并与主保护设备进行联系, 把相关的保 护信息上报。 主保护设备的初始化传输过程持续 100个超帧周期, 在 这个过程中, 只有主保护设备发送信标帧, 因此不需要设置设备间通 信期, 在第 31个时隙对应的同步信道上发送同步突发, 信标信道上 发送全零。 主保护设备初始化传输过程中超帧的结构如图 4所示。
保护设备之间存在两种数据传输模型:主保护设备向从保护设备 发送数据, 从保护设备向主用户设备发送数据。
由于主保护设备控制无线信道的接入, 因此主保护设备向从保护 设备发送数据时 (即主保护设备广播信标, 从保护设备或其他设备侦 听信标 ), 把保护信息发送给 MAC层构成信标帧通过 PHY层发送即 可。处于主保护设备覆盖范围内的从保护设备侦听来自主保护设备的
信标, 并解析其中的保护信息。
当从保护设备向主保护设备发送信标时,必须在 ICP的接收期内 向主保护设备发送 RTS请求,在 ICP的应答期得到主保护设备的 ACK 后, 在下一个超帧周期的信标期内发送信标帧。从保护设备利用 RTS 请求一般只能得到下一个超帧的发送机会,即主保护设备必须在下一 个超帧的应答期内回应 NACK, 收回再下一个超帧的发送权。具体流 程如图 5所示, 包括以下步骤:
步骤 s501 ,主保护设备携带保护信息的信标帧通过物理层发送给 从保护设备。
步骤 s502, 从保护设备在 ICP接收期内向主保护设备发送 RTS 请求。
步骤 s503 , 主保护设备在应答期内发送 ACK.
步骤 s504, 从保护设备在 ICP的应答期得到主保护设备的 ACK 后, 在下一个超帧周期的信标期内发送信标帧。
步骤 s505, 主保护设备在下一个超帧的应答期内回应 NACK, 收回再下一个超帧的发送权。 再继续向从保护设备发送信标帧(转步 骤 s501 )。
若从保护设备需要连续两个超帧周期进行发送,则首先通过 RTS 请求得到发送机会, 在发送的信标帧中设置 NST ( Next SPD Superframe to Transmit )位为 1 , 表示从保护设备需要再发送一个信 标帧。 主保护设备收到该帧后, 可以拒绝从保护设备的 NST要求, 也可以同意该要求, 因为主保护设备负责控制无线信道的接入。 若主 保护设备同意从保护设备的 NST要求,则必须在应答期内发送 Go-On 码字。 需要注意的是 NST要求是有时间限制的, 若从保护设备在发 出设置了 NST位的信标帧后的两个超帧时间内没有收到 Go-On码字, 则必须重新发送 RTS请求。
若某个从保护设备被选为备选保护设备,必须周期性地在接收期 内发送 NPD码字, 以指示备选保护设备的存在。
现有技术中, 主保护设备选择某个从保护设备作为备份, 以便主
保护设备停止发送周期性信标帧时,该从保护设备能及时成为新的主 保护设备。 这个被选中的从保护设备叫做备选保护设备。信标帧中定 义了一些比特位来辅助完成该功能, 如表 1所示, 主保护设备的信标 帧中参数 2 ( Parameter2 )的比特 6 - 7为 NPD指示域( NPD Indication field ), 其含义如表 1所示; 从保护设备的信标帧中参数 2的比特 6 为 NPD域, 若该域设置为 1 , 则表示是备选保护设备发送的信标帧, 否则表示是从保护设备发送的信标帧。
表 1: 主保护设备信标帧中的 NPD指示域
NPD指示域为 "00" , 即当前信标网络中没有备选保护设备且需要选 一个备选保护设备。所有收到主保护设备的信标帧的从保护设备必须 发送 RTS请求, 如果主保护设备许可后, 发送一个信标帧, 表示志 愿成为备选保护设备。 主保护设备收到这些从保护设备的信标帧后, 按照某种准则选择其中一个成为备选保护设备。 需要注意的是, 主保 护设备必须在收到某个从保护设备的信标帧后的两个超帧周期内宣 布该从保护设备被选中成为备选保护设备。 例如, 某个从保护设备在 第 n个超帧周期内发送一个信标帧, 主保护设备必须把信标帧中的
NPD指示域设置为 "01" , 并在第 n+2超帧周期内发送以便通知该从 保护设备已被选中成为备选保护设备。 主保护设备的高层通过 MLME-NPD.request 原语把选中的从保护设备的地址 (即参数 NPD Address的值 )告知 MAC子层, 即地址为 NPD Address的从保护 设备已被选作备选保护设备。
从保护设备收到主保护设备的信标帧 (NPD 指示域为 "01" ), 即被告知已被选中为备选保护设备, 把 MAC 信息库中的 macNPDAddress 属性设置为自己的地址, 并在两个超帧周期内开始 发送 NPD码字作为回应。 例如, 从保护设备在第 n+2超帧周期内收 到主保护设备的信标帧, 必须在第 n+4超帧周期内开始发送 NPD码 字。
若某个从保护设备被选为备选保护设备, 每 aNPDPeriod (常数, 值为 10 )个超帧就必须在接收期内发送 NPD码字, 已指示备选保护 设备的存在。 主保护设备和其他从保护设备必须检测 NPD码字, 若 在一段时间内没有检测到 NPD码字或没有收到来自备选保护设备的 信标帧, 则认为备选保护设备不存在了。
在实现本发明的过程中, 发明人发现现有技术至少存在以下问 题: 从保护设备在收到主保护设备 NPD指示域为 "01" 的信标帧后, 其高层得知被选作备选保护设备, MAC子层通过对 macNPDAddress 的检查或依据是否收到 MLME-NPD.request原语, 判断是否被选中。 但 MAC子层无法要求物理层在两个超帧周期后开始发送 NPD码字, 导致主保护设备和其他从保护设备认为备选保护设备不存在,使得保 护设备不能保持激活状态。 发明内容
本发明实施例提供控制保护设备保持激活状态的方法及设备,使 主保护设备和其他从保护设备根据备选保护设备发送的 NPD码字或 信号帧持续进行业务交互。
本发明实施例提供了一种控制保护设备保持激活状态的方法,包 括以下步骤:
从保护设备高层得知被选作备选保护设备, 告知 MAC子层; 所述 MAC子层要求物理层发送备选保护设备 NPD码字, 同时 启动定时器;
定时器超时后, 所述 MAC子层要求物理层再发送 NPD码字, 并重置定时器。
本发明实施例还提供了一种控制保护设备保持激活状态的设备, 包括:
高层,用于从保护设备高层得知被选作备选保护设备,通知 MAC 子层;
MAC子层, 用于向物理层发送请求以发送 NPD码字, 同时启动 定时器, 如果定时器超时, 则指示所述物理层再次发送 NPD码字, 并重置所述定时器;
物理层, 用于控制收发机发送 NPD码字。
与现有技术相比, 本发明的实施例具有以下优点:
本发明实施例中, 通过改进 MAC子层与物理层的原语交互, 使 得保护设备保持激活状态,从而使主保护设备和其他从保护设备检测 到备选保护设备的存在。 附图说明
图 1是现有技术中保护设备的体系结构示意图;
图 2是现有技术中超帧结构示意图;
图 3是现有技术中设备间通信期的示意图; 图 5是现有技术中从保护设备到主保护设备的通信示意图; 图 6 是本发明实施例一中控制保护设备保持激活状态的流程示 意图;
图 Ί 是本发明实施例二中从保护设备被选作并被激活为主保护 设备的流程示意图;
图 8 是本发明实施例中一种控制保护设备保持激活状态的设备 结构图。 具体实施方式
以下结合附图和实施例, 对本发明实施方式做进一步说明。
本发明实施例一中提供一种控制保护设备保持激活状态的方法, 如图 6所示, 包括以下步骤:
步骤 s601 ,从保护设备高层得知被选作备选保护设备,并通知从 保护设备 MAC子层。
步骤 s602,所述从保护设备 MAC子层请求从保护设备物理层发 送 NPD码字, 同时启动定时器。
步骤 s603 , 定时器超时后, 所述从保护设备 MAC子层请求物理 层再发送 NPD码字, 并重置定时器。
本发明实施例二以从保护设备高层发起成为备选保护设备并保 持激活状态为例进行说明, 如图 7所示, 该方法主要的信令交互过程 包括以下步骤:
步骤 s701 , 从保护设备高层通过 MLME-START-BEACON. request原语,把信标帧的信息和控制信息传递给从保护设备 MAC子 层。
步骤 s702,从保护设备 MAC子层通过 MLME-START-BEACON. confirm原语向从保护设备高层返回确认信息。
步骤 s703 ,从保护设备 MAC子层请求该从保护设备物理层发送 RTS请求, 监听应答期, 若收到 ACK, 则根据信标帧的信息和控制 信息生成 MAC 子层协议数据单元, 设置好收发机的状态后, 通过 PD-DATA.request原语向从保护设备物理层发出发送请求。
步骤 s704 , 从保护设备物理层收到请求后 , 通过
PD-DATA.confirm原语告知从保护设备 MAC子层请求已收到。 并把 MAC子层协议数据单元进行编码, 生成物理层协议数据单元在信标 信道上发送, 同时生成 30个同步突发在同步信道上发送, 超帧结构 如图 2所示, 这里不再赘述。
步骤 s705, 从保护设备物理层在第 n+2帧收到主保护设备的信 标帧(该信标帧用于主保护设备告知该从保护设备为备选保护设备 ), 通过 PD-DATA.indication上报给从保护设备 MAC子层。
步骤 s706, 从保护设备 MAC 子层通过 MLME-INCOMING- BEACON.indication原语把收到的信标帧上报给从保护设备高层。
步骤 s707 , 从保护设备高层指示从保护设备 MAC 子层通过 MLME-NPD. request原语把 MAC信息库中的 macNPD Address属性设 置为从保护设备自己的地址。
步骤 s708,从保护设备 MAC子层通过 MLME-NPD.confirm原语 向从保护设备高层返回确认信息。
步 骤 s709 , 从 保 护 设 备 MAC 子 层 通 过 PLME-NPD-HEARTBEAT.request原语向从保护设备物理层发送请求 以发送 NPD码字, 同时启动长度为 aNPDPeriod的定时器 T。
该步骤中, PLME-NPD-HEARTBEAT.request原语是备选保护设 备的 MAC子层产生并发给从保护设备物理层, 要求从保护设备物理 层在超帧的接收期内发送 NPD码字。 该原语没有参数。
步骤 s710,物理层通过 PLME-NPD-HEARTBEAT.confirm原语告 知从保护设备 MAC子层 NPD码字已经发送。
该步骤中, PLME-NPD-HEARTBEAT.confirm原语是备选保护设 备 的 物 理层产 生 并发给它 的 MAC 子 层 , 作 为 对 PLME-NPD-HEARTBEAT.request原语的回应,告知 NPD码字已经发 送。 该原语的参数如表 2所示。
表 2: PLME-NPD-HEARTBEAT.confirm原语的参数
名称 类型 取值范围 描述
Status 枚举 COMPLETE 请求发送 NPD码字的结果。
步骤 s711,当定时器超时时, 从保护设备 MAC 子层通过 PLME-NPD-HEARTBEAT.request原语再向从保护设备物理层发送请 求以发送 NPD码字, 并重置定时器 T。
步骤 s712 , 从保护设备物理层通过 PLME-NPD-HEARTBEAT. confirm原语返回确认信息 , 并发送 NPD码字。
在本实施例中, 从保护设备在收到主保护设备 NPD 指示域为 " 01 " 的信标帧后, 其高层得知被选作备选保护设备, 通过 MLME-NPD.request原语(其参数 NPD Address为该从保护设备的地 址 )告知 MAC子层, 设置 macNPD Address属性为参数 NPD Address 的值。 然后 MAC子层管理通过 PLME-NPD-HEARTBEAT.request原 语要求物理层发送 NPD码字,同时启动长度为 aNPDPeriod的定时器 T 。 定 时 器 T 超 时 后 , MAC 子 层 管 理 通 过 PLME-NPD-HEARTBEAT.request原语要求物理层再发送 NPD码字, 并重置定时器 T。 从而使备选保护设备持续地处于激活状态。
本发明实施例还提供一种控制保护设备保持激活状态的设备,如 图 8所示, 包括:
高层 81 , 用于从保护设备高层 81得知被选作备选保护设备, 通 知 MAC子层 82。
MAC子层 82, 用于向物理层 83发送请求以发送 NPD码字, 同 时启动定时器, 如果定时器超时, 则指示物理层 83再次发送 NPD码 字, 并重置定时器。
物理层 83 , 用于控制收发机发送 NPD码字。
进一步的, 在该系统中, 高层 81具体包括:
信标帧接收单元 811 ,用于接收并保存主保护设备信标帧的 NPD 指示域;
判断单元 812, 用于通过所述主保护设备信标帧的 NPD指示域 得知被选作备选保护设备。
所述 MAC子层 82具体包括:
定时单元 821 ,用于请求物理层 83发送 NPD码字同时进行计时; 管理单元 822, 用于请求物理层 83发送 NPD码字, 如果定时单 元 821超时, 指示物理层 83再次发送 NPD码字。
本发明实施例中, 通过 MAC子层与物理层之间的原语交互, 完 善了备选保护设备保持激活状态的方法。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解 到本发明可借助软件加必需的通用硬件平台的方式来实现, 当然也可 以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解, 本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以 软件产品的形式体现出来, 该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服 务器, 或者网络设备等)执行本发明各个实施例所述的方法。
总之, 以上所述仅为本发明的较佳实施例而已, 并非用于限定本 发明的保护范围。 凡在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。
Claims
1、 一种控制保护设备保持激活状态的方法, 其特征在于, 包括 以下步骤:
从保护设备高层获知被选作备选保护设备, 通知媒体接入控制
MAC子层;
所述 MAC子层指示物理层发送备选保护设备 NPD码字, 同时 启动定时器;
所述定时器超时后, 所述 MAC 子层指示所述物理层再次发送 NPD码字, 并重置所述定时器。
2、 一种控制保护设备保持激活状态的设备, 其特征在于, 包括: 高层,用于从保护设备高层得知被选作备选保护设备,通知 MAC 子层;
MAC子层, 用于向物理层发送请求以发送 NPD码字, 同时启动 定时器, 如果定时器超时, 则指示所述物理层再次发送 NPD码字, 并重置所述定时器;
物理层, 用于控制收发机发送 NPD码字。
3、 如权利要求 2所述控制保护设备保持激活状态的设备, 其特 征在于, 所述高层具体包括:
信标帧接收单元, 用于接收并保存主保护设备信标帧的 NPD指 示域;
判断单元, 用于通过所述主保护设备信标帧的 NPD指示域得知 被选作备选保护设备。
4、 如权利要求 2所述控制保护设备保持激活状态的设备, 其特 征在于, 所述 MAC子层具体包括:
定时单元, 用于请求物理层发送 NPD码字同时进行计时; 管理单元, 用于请求物理层发送 NPD码字, 并当定时单元超时 时, 再次请求物理层发送 NPD码字。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101696176A CN101431398B (zh) | 2007-11-05 | 2007-11-05 | 控制保护设备保持激活状态的方法及设备 |
CN200710169617.6 | 2007-11-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009059567A1 true WO2009059567A1 (fr) | 2009-05-14 |
Family
ID=40625390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2008/072961 WO2009059567A1 (fr) | 2007-11-05 | 2008-11-05 | Dispositif servant à maintenir l'activité d'un dispositif de protection et procédé de mise en oeuvre associé |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101431398B (zh) |
WO (1) | WO2009059567A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3175672B1 (en) * | 2014-07-29 | 2019-05-01 | Telefonaktiebolaget LM Ericsson (publ) | Listen-before-talk based medium access |
CN114501531A (zh) * | 2020-10-23 | 2022-05-13 | 大唐移动通信设备有限公司 | 一种数据传输方法、装置及设备 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030231658A1 (en) * | 2002-03-14 | 2003-12-18 | Jie Liang | Robust indication of MAC level error correction |
CN101057422A (zh) * | 2004-12-03 | 2007-10-17 | 三星电子株式会社 | 用于在移动通信系统中传送/接收分组数据码元的设备和方法 |
-
2007
- 2007-11-05 CN CN2007101696176A patent/CN101431398B/zh active Active
-
2008
- 2008-11-05 WO PCT/CN2008/072961 patent/WO2009059567A1/zh active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030231658A1 (en) * | 2002-03-14 | 2003-12-18 | Jie Liang | Robust indication of MAC level error correction |
CN101057422A (zh) * | 2004-12-03 | 2007-10-17 | 三星电子株式会社 | 用于在移动通信系统中传送/接收分组数据码元的设备和方法 |
Also Published As
Publication number | Publication date |
---|---|
CN101431398A (zh) | 2009-05-13 |
CN101431398B (zh) | 2012-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI549460B (zh) | 用於密集無線環境中的頻率多工通訊的方法和系統(二) | |
KR101407779B1 (ko) | Ieee 802.11 무선 근거리 통신망 에서의 연속 그룹 소유권 | |
KR101299312B1 (ko) | 고처리율 스테이션을 보호하는 방법 및 장치 | |
CA2861633C (en) | Systems and methods for generating and decoding short control frames in wireless communications | |
EP1952595B1 (en) | Collision avoidance systems and methods | |
KR20170118064A (ko) | 효율적인 레인징 | |
EP3528585B1 (en) | Frame transmission method, apparatus, and system | |
TW202040971A (zh) | 基於封包的鏈路聚合架構 | |
JP2001157251A (ja) | 次世代移動通信における共通パケットチャンネル(cpch)割当方法 | |
KR20170032277A (ko) | Ul mu mimo/ofdma 송신을 위한 시그널링 기술들 | |
WO2015074237A1 (zh) | 一种数据传输方法和数据传输设备 | |
CN105684339A (zh) | 增强型子信道选择性传输规程 | |
JP2006295564A (ja) | 無線通信システム,無線通信装置,無線通信方法,およびコンピュータプログラム。 | |
TW201637496A (zh) | 針對共存性和併發性的時鐘漂移管理 | |
EP2189040B1 (en) | Method for initializing protection device and protection device in wireless microphone beacon system | |
JP2022022338A (ja) | フラグメンテーションを利用する無線通信方法及びそれを使用する無線通信端末 | |
EP2048902B1 (en) | Method and system for contention-free NPD periodic updating | |
CA2980929A1 (en) | Extended interframe space (eifs) exemptions | |
US8305976B1 (en) | Efficient wireless communication network entry for wireless communication devices | |
WO2009059567A1 (fr) | Dispositif servant à maintenir l'activité d'un dispositif de protection et procédé de mise en oeuvre associé | |
EP4415334A1 (en) | Addressing system for a wireless communication network | |
CN105636187B (zh) | 在d2d通信中保证消息完整性检测的方法 | |
WO2013143356A1 (zh) | 一种目标站点、查询站点、通讯系统以及通讯方法 | |
WO2009059566A1 (fr) | Procédé et dispositif pour configurer les etats d'un émetteur-récepteur d'un dispositif de protection | |
WO2009059560A1 (fr) | Procédé pour contrôler l'initialisation d'un dispositif de protection et dispositif pour le mettre en oeuvre |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08846976 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08846976 Country of ref document: EP Kind code of ref document: A1 |