WO2009059566A1 - Procédé et dispositif pour configurer les etats d'un émetteur-récepteur d'un dispositif de protection - Google Patents

Procédé et dispositif pour configurer les etats d'un émetteur-récepteur d'un dispositif de protection Download PDF

Info

Publication number
WO2009059566A1
WO2009059566A1 PCT/CN2008/072958 CN2008072958W WO2009059566A1 WO 2009059566 A1 WO2009059566 A1 WO 2009059566A1 CN 2008072958 W CN2008072958 W CN 2008072958W WO 2009059566 A1 WO2009059566 A1 WO 2009059566A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
period
protection device
beacon
receiving
Prior art date
Application number
PCT/CN2008/072958
Other languages
English (en)
French (fr)
Inventor
Jianwei Zhang
Xuesheng Zhu
Ke Wang
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2009059566A1 publication Critical patent/WO2009059566A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a method and an apparatus for setting a state of protecting a transceiver of a device. Background technique
  • the IEEE 802.22.1 standard defines a Protecting Device (PD) or Beaconing Device to form a Beaconing Network to enhance the authorization of low-power authorized primary user equipment (such as wireless microphones). Protection, which facilitates frequency sharing with unauthorized devices.
  • PD Protecting Device
  • Beaconing Device to form a Beaconing Network to enhance the authorization of low-power authorized primary user equipment (such as wireless microphones). Protection, which facilitates frequency sharing with unauthorized devices.
  • the beacon transmissions in the beacon network are broadcast, and the transmitted data can be received and processed by any device within the coverage of the network.
  • the protection devices in the beacon network are classified into a Primary Protecting Device (PPD) and a Secondary Protecting Device (SPD).
  • PPD Primary Protecting Device
  • SPD Secondary Protecting Device
  • the primary protection device controls the access of the wireless channel, integrates the beacon data of the other protection device, and is responsible for broadcasting all the beacon information in the beacon network; the protection device is responsible for the protection of the low-power authorized device in a part of the area, and the letter is protected.
  • the content is sent to the primary user device.
  • the IEEE 802.22.1 standard defines a special secondary protection device, that is, an alternative protection.
  • the architecture of the protection device is based on the multi-layer structure of the Open System Interconnection (OSI) seven-layer model, as shown in Figure 1. Each layer is responsible for a part of the agreement and provides services to the upper level. And Medium Access Control (MAC) sublayer.
  • the physical layer includes a wireless transceiver and an underlying control mechanism to provide bit transmission services to the MAC layer.
  • the medium access control sublayer provides access services for physical channels and performs MAC frame assembly and decomposition.
  • the next higher layer (NHL) is not part of the standard, but because the upper layer performs the selection of the working channel, determines the working mode of the protection device (becomes the primary protection device or the protection device), starts/stops the transmission of the beacon frame, and processes The functions of the received beacon frame, the fused data, and the error handling the security mechanism, the high-level behavior is very important to protect the normal operation of the device, so the IEEE 802.22.1 standard describes the behavior of the high-level in the appendix.
  • Service Access Points Each service access point provides a method of information interaction between two adjacent layers.
  • the control information is exchanged through the PLME (Physical Layer Management Entity)-SAP.
  • the superframe structure of the IEEE 802.22.1 system is shown in Figure 2.
  • a superframe period is divided into 31 slots, the first 30 slots are used to transmit beacon data, which is hereinafter referred to as the beacon period, and the 31st slot is used as inter-device communication period. , ICP ), hereinafter referred to as the inter-device communication period.
  • ICP inter-device communication period.
  • the superframe is divided into two channels: the Synchronization channel and the beacon channel.
  • the synchronization channel contains 30 Sync bursts for superframe synchronization; the beacon channel is used to transmit MAC beacon frames.
  • the communication period between devices is divided into two parts: the receiving period (Rx period) and the response period. (Acknowledgement/No acknowledgement period, ANP).
  • the inter-device communication period is one slot length, including 32 modulation symbols, including a reception period of 8 symbol lengths and a response period of 8 symbol lengths, as shown in FIG.
  • the protection device can send an RTS (Request to Send) request within the receiving period, and the primary protection device responds to the RTS request within the receiving period and then receives or rejects the response within the subsequent response period. If the primary protection device receives the RTS request, the corresponding ACK (Acknowledgement) codeword is sent during the response period; if the primary protection device rejects the RTS request, the NACK (No Acknowledgement) codeword is sent during the response period.
  • RTS Request to Send
  • the protection device is initialized first after it is turned on.
  • the steps for device initialization are as follows: Each protection device listens on a specified TV channel for several superframe periods to determine if there is a primary protection device on the channel. If the primary protection device is not detected, the protection device is promoted to be the primary protection device and starts to send the beacon frame; if the presence of one or more primary protection devices is detected, the protection device may decide to become the primary protection device and start Send your own beacon frame, or become a slave protection device and try to contact one of the primary protection devices.
  • the primary protection device should select a secondary protection device as an alternate protection device. If the primary protection device stops transmitting beacons, the alternate protection device will be promoted as the primary protection device, and the other secondary protection devices will eventually contact the new primary protection device. The new primary protection device should select one of the secondary protection devices to become new. Alternative protection device.
  • the primary protection device After the primary protection device is initialized, it needs to broadcast the beacon frame so that other protection devices can detect its presence and contact it to report the relevant protection information.
  • the initial transmission process of the primary protection device lasts for 100 super frame periods. In this process, only the primary protection device sends a beacon frame, so there is no need to set the communication period between devices, and the synchronization is sent on the synchronization channel corresponding to the 31st time slot. Burst, all zeros are sent on the beacon channel.
  • the structure of the superframe during the initialization of the primary protection device is shown in Figure 4.
  • protection devices There are two data transmission models between protection devices: the primary protection device sends data to the secondary protection device, and the protection device sends data to the primary user device.
  • the primary protection device Since the primary protection device controls the access of the wireless channel, the primary protection device sends the protection information to the MAC layer when the data is transmitted from the protection device (ie, the primary protection device broadcasts the beacon, and the protection device or other device listens for the beacon).
  • the beacon frame is sent through the PHY layer. Yes.
  • the slave protection device that is within the coverage of the primary protection device listens for beacons from the primary protection device and recovers the protection information therein. As shown in Figure 5.
  • the protection device When transmitting a beacon from the protection device to the primary protection device, it must send an RTS request to the primary protection device during the receiving period of the ICP, and after obtaining the ACK of the primary protection device in the response period of the ICP, in the beacon period of the next superframe period Send a beacon frame internally.
  • the RTS request from the protection device generally only obtains the transmission opportunity of the next superframe, that is, the primary protection device must respond to the NACK within the response period of the next superframe, and reclaim the transmission right of the next superframe. As shown in Figure 6.
  • the transmission opportunity is first obtained through the RTS request, and the NST (Next SPD Superframe to Transmit) bit is set to 1 in the transmitted beacon frame, indicating that the protection device needs to resend.
  • the primary protection device may reject the NST request from the protection device, or may agree to the requirement because the primary protection device is responsible for controlling access to the wireless channel. If the primary protection device agrees to the NST requirement from the protection device, it must send the Go-On codeword during the response period. It should be noted that the NST requirement is time-limited. If the Go-On codeword is not received from the protection device within two superframes after the beacon frame with the NST bit set, it must resend the RTS request. .
  • a slave protection device If a slave protection device is selected as an alternate protection device, it must periodically send an NPD codeword during the reception period to indicate its presence.
  • a superframe period includes a beacon period and an inter-device communication period, wherein the inter-device communication period includes a receiving period and a response period, and the medium access control sublayer must set the receiving and receiving state of the wireless transceiver of the protection device in time to assist in completing the corresponding Features.
  • the setting of the transceiver status is set by the PLME-SET-TRX-STATE primitive, which includes request and confirmation of two primitives, as shown in Figure 7.
  • the PLME-SET-TRX-STATE.request primitive is a physical layer management entity (PLME) generated and sent to the MAC sublayer Management Entity (MLME) of the protection device, and requires the physical layer.
  • PLME physical layer management entity
  • MLME MAC sublayer Management Entity
  • the entity changes the internal state of the transceiver.
  • Table 1 The parameters of this primitive are shown in Table 1.
  • Table 1 Parameters of the PLME-SET-TRX-STATE.request primitive Name type value range description
  • the transceiver has three states: Transceiver Invalid (TRXJ3FF), Transmit (TX_ON), and Receive (RX-ON).
  • TRXJ3FF Transceiver Invalid
  • TX_ON Transmit
  • RX-ON Receive
  • the PLME-SET-TRX-STATE.confirm primitive is the MAC sublayer management entity that the physical layer management entity of the protection device generates and sends to it, reporting the result of changing the transceiver status request.
  • the parameters of this primitive are shown in Table 2.
  • the MAC layer management entity Upon receipt of the PLME-SET-TRX-STATE.confirm primitive, the MAC layer management entity is informed that its request to change the state of the wireless transceiver has been received.
  • the state of the transceiver needs to be set three times in a beacon period, a receiving period, and a response period in one superframe period, and These settings are required for each superframe period, so the primitive interaction between the MAC sublayer and the physical layer is very frequent.
  • Embodiments of the present invention provide a setting method and setting apparatus for protecting a device transceiver state, which are used to reduce primitive interaction between a MAC sublayer and a physical layer in a superframe period, and improve efficiency of a communication protocol stack.
  • an embodiment of the present invention provides a method for setting a state of protecting a device transceiver, including: Obtaining a role and state of the protection device in a next superframe period; setting a state change of the transceiver of the protection device in a next superframe period according to the role and state.
  • An embodiment of the present invention further provides an apparatus for setting a state of a protection device transceiver, including:
  • An acquiring unit configured to acquire a role and a state of the protection device in a next super frame period; and a state setting unit, configured to set, according to the acquiring unit, the role and the state, the state of the transceiver of the protection device in a next super frame period Variety.
  • the possible transceiver state changes in a superframe period are analyzed, and the state transition of the transceiver of the protection device in one super frame period is combined, and the transceiver is performed in units of superframe periods.
  • the state setting effectively reduces the primitive interaction between the MAC sublayer and the physical layer in the superframe period, and greatly improves the efficiency of the communication protocol stack.
  • FIG. 1 is a schematic structural diagram of a protection device in the prior art
  • FIG. 2 is a schematic diagram of a superframe structure in the prior art
  • FIG. 3 is a schematic diagram of communication between devices in the prior art
  • FIG. 5 is a schematic diagram of communication from a primary protection device to a secondary protection device in the prior art
  • FIG. 6 is a schematic diagram of communication from a protection device to a primary protection device in the prior art
  • 7 is a schematic diagram of a state setting of a protection device transceiver in the prior art
  • FIG. 8 is a flowchart of a method for setting a state of a protection device transceiver according to Embodiment 1 of the present invention.
  • FIG. 9 is a schematic diagram of an apparatus for setting a state of a transceiver of a protection device according to a second embodiment of the present invention. detailed description
  • a method for setting a state of a protection device transceiver in the first embodiment of the present invention is as shown in FIG. 8, and includes the following steps:
  • Step s801 Acquire a role and a state of the protection device in a next super frame period.
  • the protection device can obtain the role and state of the protection device in the next super frame period according to the indication of the response period of the current super frame period, thereby setting the state change of the transceiver of the protection device in the next super frame period.
  • the indication of the response period may be an ANPResponse parameter carried in the received primitive, and the parameter may be ACK, NACK or Go-on.
  • the roles that the protection device is in may include: primary protection devices, secondary protection devices, and backup devices.
  • the roles and statuses include:
  • the protection device When the protection device is initialized, it is in the listening state; or
  • the protection device After the protection device is promoted as the primary protection device, it is in the initial transmission state; or as the primary protection device is in the transmitting beacon state or in the receiving beacon state; or as the secondary protection device is in the listening beacon state, sending the RTS request status or sending the beacon State; or
  • it is listening for a beacon and transmitting an NPD codeword status or transmitting a beacon and transmitting an NPD codeword status.
  • Step s802 Set a state change of the transceiver of the protection device in the next super frame period according to the role and the state.
  • the request primitive carrying the control parameter may be generated according to the role and the state; and the state change of the transceiver of the protection device in the next super frame period is set according to the request primitive carrying the control parameter.
  • the control parameters include: a state of the transceiver during the beacon period, a state of the transceiver during the receiving period, a state of the transceiver during the response period, and an expiration date of the control parameter, the validity period including being valid only for one superframe period, or always effective.
  • the protection device is in the initialization phase, and the corresponding control parameters are specifically: the beacon period is in the receiving state, the receiving period is in the receiving state, and the response period is in the receiving state, and is always valid;
  • the protection device is used as the primary protection device in the initial transmission phase.
  • the corresponding control parameters are as follows: The beacon period is in the transmitting state, the receiving period is in the transmitting state, and the response period is in the transmitting state, and is always valid.
  • the corresponding control parameters are specifically: the beacon period is in the transmitting state, the receiving period is in the receiving state, and the response period is in the transmitting state, and is always valid;
  • the corresponding control parameters are: the beacon period is in the receiving state, the receiving period is in the receiving state, the response period is in the transmitting state, and only in one superframe. Valid during the period;
  • the corresponding control parameters are specifically: the beacon period is in the receiving state, the receiving period is in the receiving state, and the response period is in the receiving state, and is always valid;
  • the corresponding control parameters are: the beacon period is in the receiving state, the receiving period is in the transmitting state, the response period is in the receiving state, and only in one super frame period.
  • the corresponding control parameters are: the beacon period is in the transmitting state, the receiving period is in the receiving state, the response period is in the receiving state, and only in one superframe. Valid during the period;
  • the corresponding control parameters are: the beacon period is in the receiving state, the receiving period is in the transmitting state, and the response period is in the receiving state. Only valid in one superframe period; when the protection device is in the next superframe period as the candidate protection device is transmitting the beacon and transmitting the NPD codeword state, the corresponding control parameters are specifically: the beacon period is in the transmitting state, and the receiving is The period is in the transmit state, the response period is in the receive state, and it is valid only in one superframe period.
  • the primary protection device is responsible for controlling the access of the wireless channel, and is responsible for broadcasting all the beacon information in the beacon network; the protection device is responsible for the protection of the low-power authorized device in a part of the area, and when there is information to be updated When the beacon content is sent to the primary user device. Therefore, most of the time, the primary protection device is sending beacon frames. And from the protection device are all listening to the beacon frame.
  • the device After the protection device is powered on, the device is initialized first, and each protection device listens to a plurality of superframe periods on the designated television channel to determine whether the primary protection device exists on the channel. Therefore, when the device is initialized, the state of the transceiver is received in several superframe periods. During the initial transmission, the primary protection device needs to continuously transmit a number of beacons without the communication period between the devices, so the transceiver is in the transmitting state during the initial transmission.
  • the superframe period includes the communication period between devices.
  • the transceiver state transition of the protection device in one superframe period is as shown in Table 3.
  • the embodiment of the present invention redesigns the parameters of the PLME-SET-TRX-STATE primitive according to the analysis of the state transition of the transceiver in different situations of different protection devices.
  • a request can directly specify a state transition within a superframe period.
  • the parameters of the PLME-SET-TRX-STATE.request primitive include (TRX State 1, TRX State2, TRX State3, Periodic), each parameter. The values and the meanings indicated are shown in Table 4.
  • the parameters TRX—Statel, TRX_State2, and TRX—State3 are all set to the same value.
  • the MAC sublayer management entity of the protection device needs to listen to several superframe periods on the channel to determine whether there is a primary protection device on the channel, and then set PLME-SET-
  • the parameters of the TRX-STATE.request primitive are (RX-ON, RX ON, RX-ON, TRUE), so that the wireless transceiver is always in the receiving state for several superframe periods.
  • the primary protection device During the primary protection device initialization transmission, the primary protection device is ready to start broadcasting its own beacon frame to ensure that other protection devices detect its existence. Only the primary protection device sends a beacon frame. Therefore, when the MAC sublayer management entity of the primary protection device receives the MLME-START-BEACON.request primitive and learns through the control parameters that the device is ready for the initial transmission process, the PLME-SET-TRX-STATE.request primitive is set.
  • the parameters are (TX-ON, TX-ON, TX-ON, TRUE), so that the wireless transceiver of the primary protection device is always in the transmitting state during several superframe periods in the initial transmission process, and the superframe period does not A communication period between devices is required.
  • the superframe period includes the communication period between devices.
  • the criteria for setting the transceiver state transition of the protection device during a superframe period are:
  • the secondary protection device needs The beacon is transmitted during the beacon period of the next superframe period, and the parameters of the PLME-SET-TRX-STATE.request primitive are set to (RX ON, RX ON, TX-ON, FALSE).
  • the conditions for setting the transceiver state of the protection device within a superframe period are:
  • the primary protection device needs to send the beacon during the beacon period of the next superframe period, and If the MLME-START-BEACON.request primitive is not received, ie the RTS request does not need to be sent within the receiving period of the next superframe period, the parameter of the PLME-SET-TRX-STATE.request primitive is set to (RX ON, RX ON, RX ON, TRUE ).
  • the ANPResponse parameter is NACK, that is, the primary protection device needs to send a beacon during the beacon period of the next superframe period, and receives the MLME-START-BEACON.request primitive, that is, the RTS request needs to be sent within the receiving period of the next superframe period. Then the parameters of the PLME-SET-TRX-STATE.request primitive are set to (RX-ON, TX ON, RX ON, FALSE).
  • the NPD codeword must be sent periodically during the receive period.
  • the conditions for setting the transceiver state transition of the protection device during a superframe period are:
  • the MAC sublayer management entity of the candidate protection device receives the ANPResponse parameter in the PLME-ANP-RESPONSE.indication primitive as NACK, that is, the primary protection device needs to send the beacon in the beacon period of the next superframe period, And need to send the NPD codeword within the current superframe receiving period, whether or not the PLME-INITIATE-RTS-BURST.request primitive is received (used to indicate that the RTS request is sent during the receiving period of the next superframe period)
  • the parameters of the PLME-SET-TRX-STATE.request primitive are (RX-ON, TX-ON, RX-ON, FALSE).
  • the candidate protection device needs to be in the beacon period of the next superframe period.
  • the beacon is transmitted internally, and the NPD codeword needs to be sent during the receiving period of the current superframe.
  • the parameters of the PLME-SET-TRX-STATE.request primitive are set to (TX_ON, TX ON, RX ON, FALSE).
  • the method of the embodiment of the present invention By using the method of the embodiment of the present invention, according to the role and state of the protection device, a possible change of the transceiver state in a superframe period is analyzed, and the state transition of the transceiver of the protection device in a super frame period is combined, and The transceiver state setting is performed in units of superframe periods, thereby effectively reducing primitive interaction between the MAC sublayer and the physical layer in the superframe period, and greatly improving the efficiency of the communication protocol stack.
  • the second embodiment of the present invention further provides an apparatus for setting a state of a protection device transceiver. As shown in FIG. 9, the method includes:
  • the obtaining unit 10 is configured to acquire a role and a state of the protection device in a next super frame period.
  • the state setting unit 20 is configured to set a state change of the transceiver of the protection device in the next super frame period according to the acquisition unit 10 acquiring the role and the state.
  • the obtaining unit 10 further includes:
  • the indication parsing unit 11 is configured to parse an indication of a response period of the current superframe period.
  • the state obtaining sub-unit 12 is configured to obtain, according to the parsing result of the parsing sub-unit 11, the role and state of the protection device in the next superframe period.
  • the state setting unit 20 further includes:
  • the primitive generating sub-unit 21 is configured to generate a request primitive carrying the control parameter according to the role and state of the protection device in the next super frame period.
  • the primitive is the PLME-SET-TRX-STATE primitive, and the parameters of a PLME-SET-TRX-STATE.request primitive include (TRX—State 1, TRX_State2, TRX_State3, Periodic), which can directly specify the receiver in a super State transitions within the frame period.
  • the setting subunit 22 is configured to set, according to the primitive generated by the primitive generating subunit 21, a state change of the transceiver of the protection device in the next super frame period.
  • the possible transceiver state changes in one superframe period are analyzed, and the state transition of the transceiver of the protection device in one super frame period is combined, and The transceiver state setting is performed in units of superframe periods, thereby effectively reducing primitive interaction between the MAC sublayer and the physical layer in the superframe period, and greatly improving the efficiency of the communication protocol stack.
  • the present invention can be implemented by hardware, or by software plus necessary general hardware platform.
  • the technical solution of the present invention may be embodied in the form of a software product, which may be stored in a non-volatile storage medium (which may be a CD-ROM, a USB flash drive, a mobile hard disk, etc.), including several Command to make a computer device (can be a personal computer, server, or network device, etc.)
  • a non-volatile storage medium which may be a CD-ROM, a USB flash drive, a mobile hard disk, etc.
  • a computer device can be a personal computer, server, or network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种保护设备收发机状态的设置方法和装置 本申请要求于 2007 年 11 月 5 日提交中国专利局, 申请号为 200710169620.8, 发明名称为 "一种保护设备收发机状态的设置方法 和装置" 的中国专利申请的优先权, 其全部内容通过引用结合在本申 请中。 技术领域
本发明实施例涉及通信技术领域,尤其涉及一种保护设备收发机 状态的设置方法和装置。 背景技术
随着数字电视的推广,原本用于模拟电视的频段的利用率越来越 低。 目前已批准免授权的设备在不造成干扰的前提下使用这部分未使 用的电视频段。 尽管这些电视信道没有被用来广播电视信号, 但其他 低功率的授权设备比如无线麦克风等, 也工作在这些电视信道上。 因 此保护这些低功率的设备免受干扰就显得尤为重要。
IEEE 802.22.1标准定义了一种保护设备 ( Protecting Device, PD ) 或信标设备 ( Beaconing Device ) 用来组成信标网络 ( Beaconing Network ), 加强对低功率的授权主用户设备 (比如无线麦克风)的保 护, 有利于与免授权设备进行频语共享。
信标网络中的信标传输都是广播的 ,发送的数据可以被网络覆盖 范围内的任何设备接收和处理。信标网络中的保护设备分为主保护设 备 ( Primary Protecting Device, PPD ) 和从保护设备 ( Secondary Protecting Device, SPD )。 主保护设备控制无线信道的接入, 融合其他 从保护设备的信标数据, 负责广播该信标网络中的所有信标信息; 从 保护设备负责一部分区域的低功率的授权设备的保护,把信标内容发 送给主用户设备。为了缩短主保护设备退出后重新选择新主保护设备 的时间, IEEE 802.22.1标准定义了一种特殊的从保护设备, 即备选保 护设备 ( Next-in-line Protecting Device, NPD )。
保护设备的体系结构是基于开放系统互连 ( Open System Interconnection, OSI )七层模型的多层结构, 如图 1所示。 每一层负 责一部分协议, 并向上层提供服务。 和介质接入控制 ( Medium Access Control, MAC )子层。 物理层包括 无线收发器以及底层的控制机制, 向 MAC层提供比特传输的服务。 介质接入控制子层提供物理信道的接入服务, 并进行 MAC帧的组装 和分解。 高层( Next Higher Layer, NHL )不属于标准规定的部分, 但 由于高层执行选择工作信道、 决定保护设备的工作模式(成为主保护 设备还是从保护设备)、 开始 /停止信标帧的传送、 处理接收到的信标 帧的信息、 融合数据以及处理安全机制的错误等功能, 高层的行为对 保护设备的正常工作非常重要, 因此 IEEE 802.22.1标准在附录中描 述了高层的行为。
各层之间的接口被称作服务接入点 ( Service Access Points, SAPs )。 每个服务接入点提供了相邻两层之间的信息交互方法。 高层 与介质接入控制子层之间通过 MLME ( MAC sublayer Management Entity, MAC子层管理实体) -SAP接口进行信息交互; 介质接入控 制子层与物理层之间的数据通过 PD-SAP 进行交互, 控制信息通过 PLME ( PHY Layer Management Entity, 物理层管理实体 ) -SAP进行 交互。
IEEE 802.22.1系统的超帧 ( superframe )结构如图 2所示。 一个 超帧周期分为 31个时隙(slot ), 前 30个时隙用于发送信标数据, 后 文称作信标期, 第 31 个时隙用作设备间通信 ( Inter-device communication period, ICP ), 后文称作设备间通信期。 信标期内超帧 分为两个還辑信道: 同步信道 ( Synchronization channel )和信标信道 ( beacon channel )。 同步信道包含 30个同步突发( Sync burst ), 用来 进行超帧同步; 信标信道用来发送信标数据 ( MAC beacon frame )。 设备间通信期又分为两部分: 接收期 (Rx period ) 和应答期 ( Acknowledgement/No acknowledgement period, ANP )。
设备间通信期为一个时隙长度, 包括 32个调制符号, 其中包括 8个符号长度的接收期和 8个符号长度的应答期, 如图 3所示。 从保 护设备可以在接收期内发送 RTS ( Request to Send )请求, 主保护设 备在接收期内检测到 RTS请求后, 在随后的应答期内做出接收或拒 绝的回复。 若主保护设备接收了 RTS请求, 则在应答期内发送对应 的 ACK ( Acknowledgement )码字; 若主保护设备拒绝了 RTS请求, 则在应答期内发送 NACK ( No Acknowledgement )码字。
保护设备开机后首先进行初始化。设备初始化的步骤如下: 每个 保护设备在指定的电视频道上侦听若干个超帧周期以判断该信道上 是否存在主保护设备。 若没有侦听到主保护设备, 该保护设备就提升 为主保护设备并开始发送信标帧;若侦听到一个或多个主保护设备的 存在, 该保护设备可决定成为主保护设备并开始发送自己的信标帧, 或成为从保护设备并尝试与其中一个主保护设备联系。当信标网络中 存在主保护设备时,主保护设备应该选择某个从保护设备作为备选保 护设备。 如果主保护设备停止发送信标,备选保护设备将提升为主保 护设备, 其他从保护设备最终会与新的主保护设备联系, 新的主保护 设备应该选择其中某个从保护设备成为新的备选保护设备。
主保护设备初始化完成后,它需要广播信标帧以便其他保护设备 能够侦听到它的存在, 并与之进行联系, 把相关的保护信息上报。 主 保护设备的初始化传输过程持续 100个超帧周期, 在这个过程中, 只 有主保护设备发送信标帧, 因此不需要设置设备间通信期, 在第 31 个时隙对应的同步信道上发送同步突发, 信标信道上发送全零。 主保 护设备初始化传输过程中超帧的结构如图 4所示。
保护设备之间存在两种数据传输模型:主保护设备向从保护设备 发送数据, 从保护设备向主用户设备发送数据。
由于主保护设备控制无线信道的接入, 因此主保护设备向从保护 设备发送数据时 (即主保护设备广播信标, 从保护设备或其他设备侦 听信标), 把保护信息发送给 MAC层构成信标帧通过 PHY层发送即 可。处于主保护设备覆盖范围内的从保护设备侦听来自主保护设备的 信标, 并恢复其中的保护信息。 如图 5所示。
当从保护设备向主保护设备发送信标时,它必须在 ICP的接收期 内向主保护设备发送 RTS请求, 在 ICP的应答期得到主保护设备的 ACK后, 在下一个超帧周期的信标期内发送信标帧。 从保护设备利 用 RTS请求一般只能得到下一个超帧的发送机会, 即主保护设备必 须在下一个超帧的应答期内回应 NACK, 收回再下一个超帧的发送 权。 如图 6所示。
若从保护设备需要连续两个超帧周期进行发送,则首先通过 RTS 请求得到发送机会, 在发送的信标帧中设置 NST ( Next SPD Superframe to Transmit )位为 1 , 表示从保护设备需要再发送一个信 标帧。 主保护设备收到该帧后, 可以拒绝从保护设备的 NST要求, 也可以同意该要求, 因为主保护设备负责控制无线信道的接入。 若主 保护设备同意从保护设备的 NST要求, 则它必须在应答期内发送 Go-On码字。 需要注意的是 NST要求是有时间限制的, 若从保护设 备在发出设置了 NST 位的信标帧后的两个超帧时间内没有收到 Go-On码字, 则它必须重新发送 RTS请求。
若某个从保护设备被选为备选保护设备,它必须周期性地在接收 期内发送 NPD码字, 以指示它的存在。
一个超帧周期内包括信标期和设备间通信期,其中设备间通信期 包括接收期和应答期,介质接入控制子层必须及时设置保护设备的无 线收发机的收发状态以辅助完成相应的功能。收发状态的设置是通过 PLME-SET-TRX-STATE原语来设置的, 该原语包括请求和确认两个 原语, 如图 7所示。
PLME-SET-TRX-STATE.request原语是保护设备的 MAC子层管 理实体( MAC sublayer Management Entity, MLME )产生并发送给它 的物理层管理实体 ( PHY Layer Management Entity, PLME ), 要求物 理层实体改变收发机的内部状态。 该原语的参数如表 1所示。
表 1: PLME-SET-TRX-STATE.request原语的参数 名称 类型 取值范围 描述
无线收发机的新
TRX State 枚举 RX— ΟΝ,ΤΧ— ON, TRX OFF
状态。
收发机共有三种状态: 收发机无效( TRXJ3FF )、发射(TX_ON ) 和接收(RX— ON )。 收到 PLME-SET-TRX-STATE.request原语后, 物 理层管理实体立即让物理层实体按请求的状态进行改变。
PLME-SET-TRX-STATE.confirm原语是保护设备的物理层管理 实体产生并发送给它的 MAC子层管理实体, 报告改变收发机状态请 求的结果。 该原语的参数如表 2所示。
表 2: PLME-SET-TRX-STATE.confirm原语的参数
Figure imgf000007_0001
收到 PLME-SET-TRX-STATE.confirm原语后, MAC层管理实体 就被告知它请求改变无线收发机状态的请求被接收了。
在实现本发明过程中, 发明人发现现有技术中至少存在如下问 题: 根据现有技术, 一个超帧周期内需要在信标期、 接收期和应答期 分三次设置收发机的状态,而且在每个超帧周期内都需要进行这些设 置, 因此 MAC子层与物理层之间的原语交互非常频繁。
发明内容
本发明的实施例提供一种保护设备收发机状态的设置方法和设 置装置, 用于减少超帧周期内 MAC子层与物理层之间的原语交互、 提高通信协议栈的效率。
为达到上述目的,本发明的实施例提供一种保护设备收发机状态 的设置方法, 包括: 获取保护设备在下一超帧周期内的角色和状态; 根据所述角色和状态设置所述保护设备的收发机在下一超帧周 期内的状态变化。
本发明的实施例还提供一种用于设置保护设备收发机状态的装 置, 包括:
获取单元, 用于获取保护设备在下一超帧周期内的角色和状态; 状态设置单元,用于根据所述获取单元获取角色和状态设置所述 保护设备的收发机在下一超帧周期内的状态变化。
与现有技术相比, 本发明的实施例具有以下优点:
根据保护设备的角色和状态,分析了一个超帧周期内可能的收发 机状态改变,对保护设备的收发机在一个超帧周期内的状态转换进行 组合, 并以超帧周期为单位进行收发机状态设置, 从而有效减少了超 帧周期内 MAC子层与物理层之间的原语交互, 大大提高了通信协议 栈的效率。 附图说明
图 1是现有技术中保护设备的体系结构示意图;
图 2是现有技术中超帧结构示意图;
图 3是现有技术中设备间通信期的示意图; 图 5是现有技术中主保护设备到从保护设备的通信示意图; 图 6是现有技术中从保护设备到主保护设备的通信示意图; 图 7是现有技术中保护设备收发机状态设置示意图;
图 8 是本发明的实施例一中一种保护设备收发机状态的设置方 法流程图;
图 9 是本发明的施例二中一种用于设置保护设备收发机状态的 装置示意图。 具体实施方式
本发明的实施例一中一种保护设备收发机状态的设置方法如图 8 所示, 包括以下步骤:
步骤 s801、 获取保护设备在下一超帧周期内的角色和状态。 具体的, 保护设备可以根据当前超帧周期的应答期的指示, 获取 保护设备在下一超帧周期内的角色和状态,从而设置保护设备的收发 机在下一超帧周期内的状态变化。该应答期的指示可以为接收到的原 语中所携带的 ANPResponse参数, 该参数可以为 ACK、 NACK或 Go-on。
保护设备处于的角色可能包括: 主保护设备、从保护设备和备保 护设备。
所处的角色和状态包括:
保护设备初始化时, 处于侦听状态; 或
保护设备提升为主保护设备后, 处于初始化传输状态; 或 作为主保护设备处于发送信标状态或处于接收信标状态; 或 作为从保护设备处于侦听信标状态、 发送 RTS请求状态或发送 信标状态; 或
作为备选保护设备处于侦听信标并发送 NPD码字状态或发送信 标并发送 NPD码字状态。
步骤 s802、根据该角色和状态设置保护设备的收发机在下一超帧 周期内的状态变化。
具体的, 可以根据角色和状态生成携带控制参数的请求原语; 根 据携带控制参数的请求原语设置保护设备的收发机在下一超帧周期 内的状态变化。 该控制参数包括: 收发机在信标期的状态、 收发机在 接收期的状态、 收发机在应答期的状态、 以及控制参数的有效期, 该 有效期包括只在一个超帧周期内有效、 或一直有效。
其中, 保护设备在初始化阶段, 对应的控制参数具体为: 信标期 处于接收态、 接收期处于接收态、 应答期处于接收态、 一直有效; 保护设备作为主保护设备在初始化传输阶段,对应的控制参数具 体为: 信标期处于发送态、 接收期处于发送态、 应答期处于发送态、 一直有效。
保护设备在下一超帧周期内作为主保护设备处于发送信标状态 时,对应的控制参数具体为:信标期处于发送态、接收期处于接收态、 应答期处于发送态、 一直有效;
保护设备在下一超帧周期内作为主保护设备处于接收信标状态 时,对应的控制参数具体为:信标期处于接收态、接收期处于接收态、 应答期处于发送态、 只在一个超帧周期内有效;
保护设备在下一超帧周期内作为从保护设备处于侦听信标状态 时,对应的控制参数具体为:信标期处于接收态、接收期处于接收态、 应答期处于接收态、 一直有效;
保护设备在下一超帧周期内作为从保护设备处于发送请求状态 时,对应的控制参数具体为:信标期处于接收态、接收期处于发送态、 应答期处于接收态、 只在一个超帧周期内有效;
保护设备在下一超帧周期内作为从保护设备处于发送信标状态 时,对应的控制参数具体为:信标期处于发送态、接收期处于接收态、 应答期处于接收态、 只在一个超帧周期内有效;
保护设备在下一超帧周期内作为备选保护设备处于侦听信标并 发送 NPD码字状态时, 对应的控制参数具体为: 信标期处于接收态、 接收期处于发送态、 应答期处于接收态、 只在一个超帧周期内有效; 保护设备在下一超帧周期内作为备选保护设备处于发送信标并 发送 NPD码字状态时, 对应的控制参数具体为: 信标期处于发送态、 接收期处于发送态、 应答期处于接收态、 只在一个超帧周期内有效。
以下结合具体的应用场景对上述步骤进行详细描述。
根据保护设备的定义, 主保护设备负责控制无线信道的接入, 负 责广播该信标网络中的所有信标信息;从保护设备负责一部分区域的 低功率的授权设备的保护, 当有信息需要更新时, 把信标内容发送给 主用户设备。 因此, 大多数的时间内,主保护设备都是在发送信标帧, 而从保护设备都是在侦听信标帧。
保护设备开机后, 首先进行设备初始化, 每个保护设备在指定的 电视频道上侦听若干个超帧周期以判断该信道上是否存在主保护设 备。 因此设备初始化时, 收发机的状态在若干个超帧周期内都是接收 状态。 主保护设备在初始化传输过程中, 需要连续发送若干个不带设 备间通信期的信标, 因此收发机在初始化传输过程中都是发射状态。
信标网络正常工作情况下, 保护设备之间存在信息交换, 即超帧 周期中包括设备间通信期。根据保护设备的角色和状态, 在一个超帧 周期内保护设备的收发机状态转换如表 3所示。
表 3: —个超帧周期内收发机的状态转换
Figure imgf000011_0001
为了减少 MAC子层与物理层之间的原语交互, 根据对不同保护 设备在不同情况下收发机状态转换的分析,本发明的实施例重新设计 了 PLME-SET-TRX-STATE原语的参数, 一次请求可以直接指定一个 超帧周期内的状态转换, PLME-SET-TRX-STATE.request原语的参数 包括(TRX State 1 , TRX State2, TRX State3 , Periodic ), 各个参数 的取值以及所表示的含义如表 4所示。
表 4: 修改后 PLME-SET-TRX-STATE.request原语的参数
Figure imgf000012_0001
保护设备初始化阶段, 参数 TRX— Statel 、 TRX_State2 和 TRX— State3都设置为相同的值。 初始化时, 保护设备的 MAC子层管 理实体收到 MLME-SEARCH.request原语后,需要在信道上侦听若干 个超帧周期以判断该信道上是否存在主保护设备, 则设置 PLME-SET-TRX-STATE.request 原语的参数为 ( RX— ON, RX ON, RX— ON, TRUE ),使得无线收发机在若干个超帧周期内一直处于接收 状态。
主保护设备初始化传输过程中,主保护设备准备开始广播自己的 信标帧以保证其他保护设备侦听到其存在 ,该过程中只有主保护设备 发送信标帧。 因此, 主保护设备的 MAC 子层管理实体收到 MLME-START-BEACON.request原语并通过控制参数获知设备准备 进行初始化传输过程时,则设置 PLME-SET-TRX-STATE.request原语 的参数为 ( TX— ON, TX— ON, TX— ON, TRUE ), 使得主保护设备的无 线收发机在初始化传输过程中的若干个超帧周期内一直处于发射状 态, 该超帧周期中不需要设备间通信期。
信标网络正常工作情况下, 保护设备之间存在信息交换, 即超帧 周期中包括设备间通信期。
对于主保护设备,设置一个超帧周期内保护设备的收发机状态转 换的标准为:
( 1 ) 若主保护设备的 MAC 子层管理 实体收到 PLME-ANP-DECISION.confirm原语中 ANPResponse参数为 NACK, 即主保护设备需要在下一个超帧周期内发送信标, 则 PLME-SET-TRX-STATE.request原语的参数设置为( TX— ON, RX ON, TX— ON, TRUE )。
( 2 ) 若主保护设备的 MAC 子层管理 实体收到 PLME-ANP-DECISION.confirm原语中 ANPResponse参数为 ACK或 Go-On, 即主保护设备接受了从保护设备的请求, 从保护设备需要在 下 一 个 超 帧 周 期 的 信 标 期 内 发 送 信 标 , 则 PLME-SET-TRX-STATE.request原语的参数设置为( RX ON, RX ON, TX— ON, FALSE )。
对于从保护设备,设置一个超帧周期内保护设备的收发机状态转 换的条件为:
( 1 ) 若从保护设备的 MAC 子层管理 实体收到 PLME-ANP-RESPONSE.indication 原语中 ANPResponse 参数为 NACK, 即主保护设备需要在下一个超帧周期的信标期内发送信标, 且没有收到 MLME-START-BEACON.request原语, 即不需要在下一 个 超 帧 周 期 内 的 接 收 期 内 发 送 RTS 请 求 , 则 PLME-SET-TRX-STATE.request原语的参数设置为( RX ON, RX ON, RX ON, TRUE )。
( 2 ) 若从保护设备的 MAC 子层管理 实体收到 PLME-ANP-RESPONSE.indication 原语中 ANPResponse 参数为 NACK, 即主保护设备需要在下一个超帧周期的信标期内发送信标, 且收到 MLME-START-BEACON.request原语, 即需要在下一个超帧 周期内的接收期内发送 RTS请求,则 PLME-SET-TRX-STATE.request 原语的参数设置为 ( RX— ON, TX ON, RX ON, FALSE )。
( 3 ) 若从保护设备的 MAC 子层管理 实体收到 PLME-ANP-RESPONSE.indication原语中 ANPResponse参数为 ACK 或 Go-On, 即从保护设备需要在下一个超帧周期的信标期内发送信 标, 则 PLME-SET-TRX-STATE.request原语的参数设置为 ( TX— ON, RX ON, RX ON, FALSE )。
对于备选保护设备, 必须周期性地在接收期内发送 NPD码字, 设置一个超帧周期内保护设备的收发机状态转换的条件为:
( 1 ) 若备选保护设备的 MAC 子层管理实体收到 PLME-ANP-RESPONSE.indication 原语中 ANPResponse 参数为 NACK, 即主保护设备需要在下一超帧周期的信标期内发送信标, 且 需要在当前超帧接收期内发送 NPD 码字, 则不管有没有收到 PLME-INITIATE-RTS-BURST.request原语(用于指示在下一超帧期的 接收期发送 RTS请求), 都设置 PLME-SET-TRX-STATE.request原语 的参数为 ( RX— ON, TX— ON, RX— ON, FALSE )。
( 2 ) 若备选保护设备的 MAC 子层管理实体收到 PLME-ANP-RESPONSE.indication原语中 ANPResponse参数为 ACK 或 Go-On,即备选保护设备需要在下一个超帧周期的信标期内发送信 标, 且需要在当前超帧的接收期内发送 NPD 码字, 则 PLME-SET-TRX-STATE.request原语的参数设置为( TX— ON, TX ON, RX ON, FALSE )。
通过使用本发明实施例的方法, 根据保护设备的角色和状态, 分 析了一个超帧周期内可能的收发机状态改变,对保护设备的收发机在 一个超帧周期内的状态转换进行组合,并以超帧周期为单位进行收发 机状态设置, 从而有效减少了超帧周期内 MAC子层与物理层之间的 原语交互, 大大提高了通信协议栈的效率。 本发明的实施例二还提供一种用于设置保护设备收发机状态的 装置, 如图 9所示, 包括:
获取单元 10, 用于获取保护设备在下一超帧周期内的角色和状 态。
状态设置单元 20, 用于根据获取单元 10获取角色和状态设置所 述保护设备的收发机在下一超帧周期内的状态变化。
具体的, 获取单元 10进一步包括:
指示解析子单元 11 , 用于解析当前超帧周期的应答期的指示。 状态获取子单元 12, 用于根据指示解析子单元 11的解析结果获 取保护设备在下一超帧周期内的角色和状态。
具体的, 状态设置单元 20进一步包括:
原语生成子单元 21 , 用于根据保护设备在下一超帧周期内的角 色和状态生成携带控制参数的请求原语。 该原语为 PLME-SET-TRX-STATE原语, 一条 PLME-SET-TRX-STATE.request 原语的参数包括(TRX— State 1 , TRX_State2, TRX_State3 , Periodic ), 可以直接指定接收机在一个超帧周期内的状态转换。
设置子单元 22, 用于根据原语生成子单元 21生成的原语设置保 护设备的收发机在下一超帧周期内的状态变化。
通过使用本发明实施例的装置, 根据保护设备的角色和状态, 分 析了一个超帧周期内可能的收发机状态改变,对保护设备的收发机在 一个超帧周期内的状态转换进行组合,并以超帧周期为单位进行收发 机状态设置, 从而有效减少了超帧周期内 MAC子层与物理层之间的 原语交互, 大大提高了通信协议栈的效率。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解 到本发明, 可以通过硬件实现, 也可以借助软件加必要的通用硬件平 台的方式来实现。基于这样的理解, 本发明的技术方案可以以软件产 品的形式体现出来, 该软件产品可以存储在一个非易失性存储介质 (可以是 CD-ROM, U盘, 移动硬盘等) 中, 包括若干指令用以使 得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等) 执行本发明各个实施例所述的方法。
总之, 以上所述仅为本发明的较佳实施例而已, 并非用于限定本 发明的保护范围。 凡在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权利要求
1、 一种保护设备收发机状态的设置方法, 其特征在于, 包括: 获取保护设备在下一超帧周期内的角色和状态;
根据所述角色和状态设置所述保护设备的收发机在下一超帧周 期内的状态变化。
2、 如权利要求 1所述保护设备收发机状态的设置方法, 其特征 在于, 所述获取保护设备在下一超帧周期内的角色和状态具体为: 根据当前超帧周期的应答期的指示,获取所述保护设备在下一超 帧周期内的角色和状态。
3、 如权利要求 2所述保护设备收发机状态的设置方法, 其特征 在于, 所述保护设备在下一超帧周期内的角色和状态包括:
保护设备初始化时, 处于侦听状态; 或
保护设备提升为主保护设备后, 处于初始化传输状态; 或 作为主保护设备处于发送信标状态或处于接收信标状态; 或 作为从保护设备处于侦听信标状态、 发送 RTS请求状态或发送 信标状态; 或
作为备选保护设备处于侦听信标并发送 NPD码字状态或发送信 标并发送 NPD码字状态。
4、 如权利要求 3所述保护设备收发机状态的设置方法, 其特征 在于,所述根据所述角色和状态设置所述保护设备的收发机在下一超 帧周期内的状态变化具体为:
根据所述角色和状态生成携带控制参数的请求原语;
根据所述携带控制参数的请求原语设置所述保护设备的收发机 在下一超帧周期内的状态变化。
5、 如权利要求 4所述保护设备收发机状态的设置方法, 其特征 在于, 所述控制参数包括: 收发机在信标期的状态、 收发机在接收期 的状态、 收发机在应答期的状态、 以及所述控制参数的有效期, 所述 有效期包括只在一个超帧周期内有效、 或一直有效。
6、 如权利要求 5所述保护设备收发机状态的设置方法, 其特征 在于,
所述保护设备在初始化阶段, 所述控制参数具体为: 信标期处于 接收态、 接收期处于接收态、 应答期处于接收态、 一直有效; 具体为:信标期处于发送态、接收期处于发送态、应答期处于发送态、 一直有效。
7、 如权利要求 5所述保护设备收发机状态的设置方法, 其特征 在于,
所述保护设备在下一超帧周期内作为主保护设备处于发送信标 状态时, 所述控制参数具体为: 信标期处于发送态、 接收期处于接收 态、 应答期处于发送态、 一直有效;
或,
所述保护设备在下一超帧周期内作为主保护设备处于接收信标 状态时, 所述控制参数具体为: 信标期处于接收态、 接收期处于接收 态、 应答期处于发送态、 只在一个超帧周期内有效;
或,
所述保护设备在下一超帧周期内作为从保护设备处于侦听信标 状态时, 所述控制参数具体为: 信标期处于接收态、 接收期处于接收 态、 应答期处于接收态、 一直有效;
或,
所述保护设备在下一超帧周期内作为从保护设备处于发送请求 状态时, 所述控制参数具体为: 信标期处于接收态、 接收期处于发送 态、 应答期处于接收态、 只在一个超帧周期内有效;
或,
所述保护设备在下一超帧周期内作为从保护设备处于发送信标 状态时, 所述控制参数具体为: 信标期处于发送态、 接收期处于接收 态、 应答期处于接收态、 只在一个超帧周期内有效;
或, 所述保护设备在下一超帧周期内作为备选保护设备处于侦听信 标并发送 NPD码字状态时, 所述控制参数具体为: 信标期处于接收 态、 接收期处于发送态、 应答期处于接收态、 只在一个超帧周期内有 效;
或,
所述保护设备在下一超帧周期内作为备选保护设备处于发送信 标并发送 NPD码字状态时, 所述控制参数具体为: 信标期处于发送 态、 接收期处于发送态、 应答期处于接收态、 只在一个超帧周期内有 效。
8、 一种用于设置保护设备收发机状态的装置, 其特征在于, 包 括:
获取单元, 用于获取保护设备在下一超帧周期内的角色和状态; 状态设置单元,用于根据所述获取单元获取角色和状态设置所述 保护设备的收发机在下一超帧周期内的状态变化。
9、 如权利要求 8所述用于设置保护设备收发机状态的装置, 其 特征在于, 所述获取单元进一步包括:
指示解析子单元, 用于解析当前超帧周期的应答期的指示; 状态获取子单元,用于根据所述指示解析子单元的解析结果获取 所述保护设备在下一超帧周期内的角色和状态。
10、如权利要求 8所述用于设置保护设备收发机状态的装置, 其 特征在于, 所述状态设置单元进一步包括:
原语生成子单元,用于根据所述保护设备在下一超帧周期内的角 色和状态生成携带控制参数的请求原语;
设置子单元,用于根据所述原语生成子单元生成的原语设置所述 保护设备的收发机在下一超帧周期内的状态变化。
PCT/CN2008/072958 2007-11-05 2008-11-05 Procédé et dispositif pour configurer les etats d'un émetteur-récepteur d'un dispositif de protection WO2009059566A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2007101696208A CN101431509B (zh) 2007-11-05 2007-11-05 一种保护设备收发机状态的设置方法和装置
CN200710169620.8 2007-11-05

Publications (1)

Publication Number Publication Date
WO2009059566A1 true WO2009059566A1 (fr) 2009-05-14

Family

ID=40625389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/072958 WO2009059566A1 (fr) 2007-11-05 2008-11-05 Procédé et dispositif pour configurer les etats d'un émetteur-récepteur d'un dispositif de protection

Country Status (2)

Country Link
CN (1) CN101431509B (zh)
WO (1) WO2009059566A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3175672B1 (en) * 2014-07-29 2019-05-01 Telefonaktiebolaget LM Ericsson (publ) Listen-before-talk based medium access

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1764089A (zh) * 2004-10-18 2006-04-26 索尼株式会社 无线通信系统和无线通信装置
CN1906893A (zh) * 2004-08-31 2007-01-31 松下电器产业株式会社 无线通信方法及无线通信装置
CN101044695A (zh) * 2004-10-20 2007-09-26 皇家飞利浦电子股份有限公司 用于通过信标协议进行数据速率和传输功率的动态自适应的系统和方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1906893A (zh) * 2004-08-31 2007-01-31 松下电器产业株式会社 无线通信方法及无线通信装置
CN1764089A (zh) * 2004-10-18 2006-04-26 索尼株式会社 无线通信系统和无线通信装置
CN101044695A (zh) * 2004-10-20 2007-09-26 皇家飞利浦电子股份有限公司 用于通过信标协议进行数据速率和传输功率的动态自适应的系统和方法

Also Published As

Publication number Publication date
CN101431509B (zh) 2012-11-21
CN101431509A (zh) 2009-05-13

Similar Documents

Publication Publication Date Title
EP3420759B1 (en) A source device broadcasts synchronization information associated with a bluetooth isochronous channel.
US20220132423A1 (en) Power saving mechanisms for multi-link communications
JP6775668B2 (ja) デバイスの無線通信モジュールをウェイクアップするためのシステムおよび方法
US8248982B2 (en) Wireless support for portable media player devices
JP5650219B2 (ja) 無認可スペクトルが輻輳しているとき、信号を送信するために認可スペクトルを使用するための方法および装置
EP2468051B1 (en) System and method for power saving by coordinated wake-up in a wireless multi-band network
US20120033620A1 (en) Synchronization for data transfers between physical layers
JP2014112861A (ja) 60GHzにおけるBSS/PBSSをサポートし且つスケジューリングがないネットワーキング
JP2004040373A (ja) 無線端末装置およびその制御方法
US20230345306A1 (en) Flexible negotiation of parameters in setup exchanges for wireless communication sessions
WO2001071981A2 (en) Multimedia extensions for wireless local area networks
WO2009059566A1 (fr) Procédé et dispositif pour configurer les etats d'un émetteur-récepteur d'un dispositif de protection
CN101496317B (zh) 便携式媒体播放器设备的无线支持
US20230224958A1 (en) Method, device, and computer program for selecting channel in wireless communication system, and recording medium therefor
WO2009059567A1 (fr) Dispositif servant à maintenir l'activité d'un dispositif de protection et procédé de mise en oeuvre associé
JP2014112942A (ja) エネルギー効率の良い統合ルーティングプロトコル
WO2009059560A1 (fr) Procédé pour contrôler l'initialisation d'un dispositif de protection et dispositif pour le mettre en oeuvre
WO2008083632A1 (fr) Procédé, dispositif et système de partage du spectre

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08847069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08847069

Country of ref document: EP

Kind code of ref document: A1