WO2009059555A1 - Procédé, appareil et système de transmission de données en duplexage par répartition temporelle - Google Patents

Procédé, appareil et système de transmission de données en duplexage par répartition temporelle Download PDF

Info

Publication number
WO2009059555A1
WO2009059555A1 PCT/CN2008/072907 CN2008072907W WO2009059555A1 WO 2009059555 A1 WO2009059555 A1 WO 2009059555A1 CN 2008072907 W CN2008072907 W CN 2008072907W WO 2009059555 A1 WO2009059555 A1 WO 2009059555A1
Authority
WO
WIPO (PCT)
Prior art keywords
time slot
symbols
length
compatible
uppts
Prior art date
Application number
PCT/CN2008/072907
Other languages
English (en)
French (fr)
Inventor
Shiqiang Suo
Guojun Xiao
Xueming Pan
Shaohui Sun
Yingmin Wang
Original Assignee
Da Tang Mobile Communications Equipment Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 200710176798 external-priority patent/CN101425844B/zh
Priority claimed from CN2007101771158A external-priority patent/CN101431364B/zh
Application filed by Da Tang Mobile Communications Equipment Co., Ltd. filed Critical Da Tang Mobile Communications Equipment Co., Ltd.
Priority to EP08846282.5A priority Critical patent/EP2216915B1/en
Priority to US12/741,020 priority patent/US8457032B2/en
Priority to KR1020107012253A priority patent/KR101093479B1/ko
Publication of WO2009059555A1 publication Critical patent/WO2009059555A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures

Definitions

  • the present invention relates to a long-term evolution scheme for a time division duplex system, and more particularly to a time division duplex data transmission method, apparatus and system. Background of the invention
  • the third-generation mobile communication system uses CDMA multiple access mode to support multimedia services and has high competitiveness.
  • 3GPP launched the Long Term Evolution (LTE) research project for 3G wireless interface technology.
  • LTE Long Term Evolution
  • TD-SCDMA is the only one of the three major international standards for third-generation mobile communication systems that uses Time Division Duplex (TDD).
  • TD TDD Long Term Evolution
  • TD TDD Long Term Evolution
  • TD TDD Long Term Evolution
  • Each field consists of 7 service slots (labeled 0 ⁇ 6) and 3 special slots, namely downlink pilot time slot (DwPTS), guard interval time slot (GP) and uplink pilot time slot (UpPTS).
  • DwPTS downlink pilot time slot
  • GP guard interval time slot
  • UpPTS uplink pilot time slot
  • Each subframe is defined as one traffic slot.
  • the subframe 0 and downlink pilot slots are always used for downlink transmission, and the uplink pilot slot and subframe 1 are always used for uplink transmission.
  • the LTE TDD system is based on Orthogonal Frequency Division Multiplexing (OFDM) technology, and its subcarrier spacing is set to 15 kHz, and the corresponding OFDM symbol length is 66.67 us, which is to achieve OFDM symbol timing during demodulation, and is added before each OFDM symbol.
  • Cyclic prefix CP
  • the symbol length is 66.67us+4.76us 71.4us; when supporting multi-cell broadcast service and large coverage application, a long CP with a length of 16.66us is used, and the complete OFDM symbol length thus formed is 66.67us+16.66us 88.3us.
  • the switching point of the downlink time slot to the uplink time slot needs a guard interval. Therefore, as described above, in the wireless frame structure of the LTE TDD system, the special time slot There is a guard interval time slot (GP).
  • the specific design method for the GP is to provide a large downlink-to-up guard interval GP corresponding to the supported coverage area by vacating one or consecutive uplink time slots.
  • three types of GP lengths are generally provided for the base station to select according to the coverage of the cell.
  • the basic TDD type II frame structure has insufficient GP length.
  • the basic TDD type II frame structure has insufficient GP length.
  • GP and UpPTS By combining GP and UpPTS to form a new GP with a length of 191.66us, it can just support Approximately 29km coverage.
  • the random access is performed in TS1 or any subsequent uplink time slot.
  • the frame structure of the TDD second type frame structure supporting the medium coverage is shown in Fig. 3.
  • the TDD second frame structure is used by vacating the entire TS1 and merging with the GP and UpPTS to form an overall GP with a length of 866.66us, which is sufficient for support. Coverage of cells over 100km. At this time, random access is performed in TS2 and subsequent consecutive uplink time slots. TDD second type frame knot The frame structure supporting the large coverage is as shown in FIG. 4.
  • the base station and the user equipment respectively store the frame structures corresponding to the above three GP length schemes.
  • the base station selects one of the foregoing three solutions according to the coverage of the cell, and notifies the user equipment of the cell by using the selected GP length scheme.
  • the frame structure corresponding to the corresponding GP length scheme carries data for communication.
  • the granularity of the GP length adjustment is an uplink time slot
  • the level difference between the levels is large, and the coverage coverage is not flexible enough, resulting in waste of radio resources.
  • Reduce transmission efficiency For example, for a cell with a coverage of 50 km, the third GP length and the corresponding frame structure need to be selected for data transmission. In this case, a large part of the time slot is actually wasted as a guard interval, which actually affects the transmission efficiency. . Summary of the invention
  • the present invention provides a data transmission method and system in a time division duplex system, which can support different levels of coverage with finer granularity, save radio resources, and improve transmission efficiency.
  • a data transmission method for a time division duplex system includes:
  • the base station sets the lengths of the guard interval GP time slot, the DwPTS time slot, and the UpPTS time slot in units of the OFDM symbol length according to the current coverage range, and sends the setting result to the user equipment in the range of the duration occupied by the special area of the wireless field. ;
  • the user equipment and the base station utilize the wireless field for data transmission.
  • the embodiment of the present invention further provides a time division duplex system, including a base station and a user equipment, where the base station is configured to set a GP in units of OFDM symbols according to a coverage range within a duration occupied by a special area of the wireless field.
  • the length of the slot, and the length of the DwPTS slot and the UpPTS slot are set according to the length of the GP slot, and the setting result is sent to the user.
  • the user equipment is configured to receive a setting result sent by the base station, and perform data transmission with the base station by using the wireless field.
  • the embodiment of the present invention further provides another time division duplex system, including a base station and a user equipment, where the base station is configured to preset a set of guard intervals including symbol length units respectively for whether or not a compatible TD-CDMA system is required.
  • Special area configuration of GP time slot, DwPTS time slot and UpPTS time slot length also used to determine a set of special area configurations corresponding to the current TD-SCDMA system; and according to coverage and system performance, Selecting one of the determined set of special area configurations, and transmitting the selected special area configuration to the user equipment; constructing a wireless field according to the selected special area configuration for data transmission;
  • the user equipment is configured to receive a special area configuration sent by the base station, and construct a wireless field according to the special area configuration for data transmission.
  • the base station sets the length of the GP time slot, the length of the DwPTS time slot and the UpPTS time slot in units of OFDM symbol length, according to the coverage range, within the duration of the special area occupied by the wireless field. And transmitting the setting result to the user equipment; the user equipment and the base station perform data transmission by using a wireless field including the GP time slot, the DwPTS time slot, and the UpPTS time slot length.
  • the GP slot length is set in units of OFDM symbols, the duration of one OFDM symbol is much smaller than the duration of the regular slot in the frame structure shown in FIG. 1, and therefore, for the GP.
  • the granularity of the gap length is reduced, so that it can support different levels of coverage with finer granularity, save radio resources, and improve transmission efficiency.
  • Figure 1 is a schematic diagram of the frame structure of the current LTE TDD system.
  • Figure 2 is a schematic diagram of the structure of a small coverage frame of the current LTE TDD system.
  • Figure 3 is a schematic diagram of the medium coverage frame structure of the current LTE TDD system.
  • Figure 4 is a schematic diagram of the structure of a large coverage frame of the current LTE TDD system.
  • FIG. 5 is a general flow chart of a data transmission method of a time division duplex system according to the present invention.
  • FIG. 6 is a general structural diagram of a time division duplex system provided by the present invention.
  • FIG. 7 is a schematic structural diagram of a radio frame of an LTE TDD system according to an embodiment of the present invention.
  • FIG. 8 is a specific flow chart of a data transmission method of a time division duplex system according to Embodiment 1 of the present invention.
  • FIG. 9 is a schematic diagram showing the manners of setting GP time slot, DwPTS time slot and UpPTS time slot length when a short CP is used in the minimum coverage requirement according to the first embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing the manners of setting the lengths of GP time slots, DwPTS time slots, and UpPTS time slots when the long CP is used for the minimum coverage requirement according to the first embodiment of the present invention.
  • FIG. 11 is a specific flow chart of a data transmission method of a time division duplex system according to Embodiment 2 of the present invention.
  • FIG. 12 is a schematic diagram showing the manners of setting GP time slot, DwPTS time slot and UpPTS time slot length under different coverage and compatibility requirements in the second embodiment of the present invention.
  • FIG. 13 is a schematic diagram showing the manners of setting the lengths of GP time slots, DwPTS time slots, and UpPTS time slots according to different coverage ranges and compatibility requirements in the second embodiment of the present invention.
  • FIG. 14 is a general flow chart of a data transmission method of a time division duplex system according to Embodiment 3 of the present invention.
  • FIG. 15 is a specific flow chart of a data transmission method of a time division duplex system according to Embodiment 3 of the present invention.
  • 16 is a GP time slot, when a short CP is used for the minimum coverage requirement in the third embodiment of the present invention, Schematic diagram of setting the DwPTS time slot and UpPTS time slot length.
  • FIG. 17 is a schematic diagram showing the manners of setting the lengths of GP time slots, DwPTS time slots, and UpPTS time slots when the long CP is used for the minimum coverage requirement according to the third embodiment of the present invention. Mode for carrying out the invention
  • the basic idea of the invention is to reduce the granularity of the adjustment of the GP slot length, thereby providing a more flexible coverage of different levels.
  • FIG. 5 is a general flow chart of a data transmission method of a time division duplex system according to the present invention. As shown in Figure 1, the method includes:
  • Step 501 The base station sets the length of the guard interval GP time slot in units of OFDM symbol length according to the coverage range, and sets the lengths of the DwPTS time slot and the UpPTS time slot in a range of duration occupied by the special area of the wireless field.
  • the special area in the present invention refers to an area composed of three special time slots in a 5 ms radio half frame in the second type of frame structure.
  • Step 502 The base station sends the setting result in step 501 to the user equipment.
  • Step 503 The user equipment and the base station perform data transmission by using the wireless field constructed according to the setting result in step 501.
  • FIG. 6 is a general structural diagram of a time division duplex system provided by the present invention. As shown in FIG. 6, the system includes: a base station and a user equipment.
  • the base station is configured to set the length of the GP time slot in units of OFDM symbols according to the coverage, within the duration of the special area occupied by the wireless field, and set the DwPTS time slot and the UpPTS according to the length of the GP time slot.
  • the length of the time slot is sent to the user equipment; and the data transmission is performed by using the wireless field with the user equipment.
  • a user equipment configured to receive a setting result sent by the base station, and perform data transmission with the base station by using the wireless half frame.
  • the base station may include:
  • Corresponding relationship storage unit configured to establish different coverage ranges and different compatibility requirements of the base station and GP time slots, DwPTS time slots, and UpPTS according to different coverage ranges of the base station and compatibility requirements of the TD-SCDMA system in advance a correspondence between the gap lengths, and storing the corresponding relationship;
  • a selecting unit configured to select, according to the current coverage and the compatibility requirement, a length of the corresponding GP time slot, the DwPTS time slot, and the UpPTS time slot from the correspondence stored by the corresponding relationship storage unit.
  • the granularity of the GP slot length of the method of the present invention is reduced, thereby providing more flexible coverage of different levels and improving transmission efficiency.
  • the GP time slot length adjustment range is limited by the duration of the special area, that is, the maximum coverage supported by the wireless field is limited by the duration of the special area.
  • the frame structure lengthens the duration of the special area, thereby expanding the modulation range of the GP slot length, thereby expanding the maximum coverage.
  • the change of the duration of the special area affects the duration of other regular time slots.
  • a specific radio frame structure is taken as an example to illustrate a specific embodiment of the present invention.
  • FIG. 7 is a new radio frame structure in an embodiment of the present invention.
  • Each 5ms radio half frame is divided into 8 regular time slots of length 0.5ms and a special area of length 1ms, which is composed of DwPTS time slots, GP time slots and UpPTS time slots. Bu, each two regular time slot pairs form one subframe.
  • a specific embodiment of the present invention will be described based on the radio frame structure.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 8 is a specific flow chart of a data transmission method of a time division duplex system according to Embodiment 1 of the present invention. As shown in Figure 8, the method includes:
  • Step 801 Calculate a required GP length according to the coverage of the base station.
  • T CP 2 * R cell /C.
  • Step 802 setting the lengths of the GP time slot, the DwPTS time slot, and the UpPTS time slot according to the GP length.
  • the length of the GP time slot is equal to or greater than the length of the GP calculated in step 801.
  • the GP slot length is set as small as possible, and the P-SCH is implemented in the DwPTS slot, occupying 1 symbol (S). Therefore, the DwPTS slot occupies at least one symbol, and the PRACH is implemented in the UpPTS slot, occupying 2 S. Therefore, the UpPTS slot occupies at least two symbols; the total length of the GP slot, the DwPTS slot, and the UpPTS slot, that is, special The duration of the area, as mentioned earlier, is lms.
  • GP time slot can be set arbitrarily.
  • the length of each slot in the special area may also be set by using the following restriction, and the DwPTS slot takes up at least two symbols.
  • TD-SCDMA Time Division Multiple Access
  • compatibility means that in the area where the two systems exist at the same time, the uplink and downlink relationships of the two systems need to be consistent, that is, the uplink and downlink switching points are aligned, thereby ensuring that the two systems do not interfere with each other.
  • the LTE TDD system is an evolved system of the TD-SCDMA system, generally, a system in which TD-SCDMA exists first in the area, when applying the method of the embodiment of the present invention, preferably, in the LTE TDD system radio frame design, Consistent with the TD-SCDMA system.
  • the time slot setting in this step requires the following processing:
  • Step 802a determining whether it is necessary to be compatible with the TD-SCDMA system, and if so, executing step 802b, otherwise performing step 802c.
  • step 802b When setting the GP time slot, DwPTS time slot and UpPTS time slot length in the LTE TDD system radio half frame, if the base station coverage exists in the TD-SCDMA system, then the compatibility problem is usually considered, and the setting is as described in step 802b. GP time slot, DwPTS time slot and UpPTS time slot length. If there is no TD-SCDMA system, the length of each time slot in the special area can be set according to step 802c regardless of the compatibility problem.
  • Step 802b setting the lengths of the GP time slot, the DwPTS time slot, and the UpPTS time slot according to the GP length calculated in step 801, the uplink and downlink time slot ratio of the TD-SCDMA system, and the structure of the regular time slot.
  • the radio frame structure of the TD-SCDMA system is the same as the frame structure shown in FIG. 2 described in the background art.
  • TD-SCDMA GP time slot length is 75us, to ensure compatibility, There are two requirements: First, the GP time slot length of the LTE TDD system cannot be less than 75us, which is calculated in units of OFDM symbols. When a short CP is used, the GP time slot length of the LTE TDD system is at least two OFDM symbols. When a long CP is used, the GP time slot length of the LTE TDD system is at least one OFDM symbol; 2.
  • the proportional relationship between the time occupied by the uplink and downlink resources is consistent with that in the TD-SCDMA system, and in consideration of this, the LTE is implemented.
  • the structure needs to be further configured according to the structure of the regular time slot. Specifically, the structure includes the duration of the regular time slot and the positional relationship with the special area.
  • the structure of the conventional time slot in this embodiment is as shown in FIG.
  • Two adjacent regular time slots are used as one subframe.
  • two regular time slots in one subframe are either uplink time slots or both downlink time slots.
  • the GP time slot in the LTE TDD system covers the GP time slot in the TD-SCDMA system, and the GP time slot and the DwPTS time slot can be calculated for different coverage requirements.
  • UpPTS slot length setting The following is an example to meet the minimum coverage requirement.
  • the first behavior is a frame structure of the TD-SCDMA system, in which the switching point positions under different uplink and downlink ratios are marked.
  • 6: 1 indicates that the ratio of the downlink and uplink slots is 6:1, and the uplink and downlink switching points are vertical dashed lines corresponding to 6:1.
  • the second row to the seventh row respectively represent the wireless half frame setting of the LTE TDD system corresponding to different time slot ratios of the TD-SCDMA system.
  • the D column indicates a downlink subframe (a subframe formed by two regular slots), the U is indicated as an uplink subframe, and the shaded portion indicates a special region.
  • the special area includes 14 symbols, and is represented below the special area.
  • the 1 area represents a DwPTS time slot, which can be regarded as a downlink time slot.
  • Zone 2 represents the GP time slot, and Zone 3 represents the UpPTS time slot, which can be regarded as a downlink time slot. It can be seen from FIG.
  • the LTE TDD system can use the time slot setting mode of the first line, that is, the GwPTS time slot occupies one OFDM symbol, when the GP is used.
  • the slot occupies 2 OFDM symbols
  • the UpPTS slot occupies 11 OFDM symbols.
  • the uplink and downlink switching points (the end of the special area) in the LTE TDD system are consistent with the uplink and downlink switching points in the TD-SCDMA system, and the GP time slot coverage GP time slot in TD-SCDMA system. It can be seen from the figure that the above conditions are also satisfied in the manner shown in FIG. 9 under other time slot ratios, and will not be described in detail here.
  • the GP time slot, DwPTS time slot and UpPTS time slot length settings in the LTE TDD system radio field shown in Figure 9 can also be represented by Table 1.
  • the GP time slot, the DwPTS time slot, and the UpPTS time slot length setting mode shown in FIG. 10 can be obtained.
  • the setting method shown in Fig. 10 can be expressed by Table 2.
  • the time slot settings in Figures 9, 10, 1, and 2 above are obtained with minimum coverage requirements.
  • the GP slot length can be adjusted according to the coverage requirements to obtain the slot settings under different coverage requirements. Specifically, the length of the GP slot can be extended based on the minimum coverage setting according to the requirement of the coverage, that is, the DwPTS degree adjacent to the GP slot is removed.
  • the coverage is expanded by one level, that is, the GP time slot is 3 OFDM symbols, and then the third line in the setting mode shown in FIG. 9 (ie, compatible downlink and uplink time slots 5) : 2 case), there are two ways to set it up:
  • the OFDM symbol on the left side of the GP time slot is also used as the GP time slot, so that the GP time slot occupies 3 symbols.
  • the DwPTS time slot occupies 5 symbols
  • the UpPTS time slot occupies 6 symbols;
  • a symbol on the right side of the GP time slot is also used as a GP time slot, so that the GP time slot occupies 3 symbols.
  • the DwPTS time slot occupies 6 symbols
  • the UpPTS time slot occupies 5 symbols.
  • the DwPTS time slot is configured to a minimum length of 80.57us and the UpPTS time slot is configured to a minimum length of 141.66us (set GT is 8.33us)
  • the corresponding GP time slot length is approximately 777.8us, supporting a coverage of up to approximately 116km.
  • the PRACH can also be implemented in the uplink time slot after the special area to further expand the GP range.
  • a scheme can be arbitrarily selected for the slot length. Degree setting.
  • Step 802c Set the lengths of the GP time slot, the DwPTS time slot, and the UpPTS time slot according to the GP length calculated in step 801.
  • This method is the above-mentioned setting method when the coverage requirement is separately considered, and will not be described here.
  • Step 803 The base station sends the setting result in step 802 to the user equipment.
  • the base station may send the setting result to the user equipment by means of high layer signaling, such as a broadcast channel.
  • Step 804 The user equipment receives the setting result, and determines a GP time slot in the wireless field,
  • the length of the DwPTS time slot and the UpPTS time slot; the user equipment and the base station use the wireless field to perform data transmission.
  • the process of setting different schemes of different time slot lengths according to the compatibility requirements and the coverage requirements in step 802 may also be completed in advance, and then the various different schemes are saved in the base station and the user equipment, and performed. Numbering.
  • the base station needs to actually set the length of the specific GP time slot, the DwPTS time slot, and the UpPTS time slot used by the local area, the solution number that meets the current compatibility requirements and the coverage requirement may be selected according to different saved schemes, and notified to the base station.
  • User equipment The user equipment determines a specific scheme selected by the base station according to the received number and various schemes saved by itself, so that the user equipment and the base station can use the wireless field to which the scheme is applied for data transmission. This approach is illustrated below by a specific embodiment.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • FIG. 11 is a specific flow chart of a data transmission method of a time division duplex system according to Embodiment 2 of the present invention. As shown in Figure 11, the method includes:
  • Step 1101 Establish a GP time slot and a DwPTS corresponding to different coverage ranges and compatibility requirements of the base station according to different coverage requirements and compatibility requirements for the TD-SCDMA system. The correspondence between the time slot and the length of the UpPTS time slot, and the correspondence is saved.
  • the correspondence is established according to the manner described in the first step 802a of the first embodiment. As mentioned earlier, there are many setup options that actually exist. This embodiment provides a simplified solution. In the established correspondence, all the setting schemes are not included, and some of the setting schemes are selected.
  • FIG. 12 A schematic diagram of a specific configuration scheme is shown in FIG. 12, where area 1 represents a DwPTS time slot, area 2 represents a GP time slot, and area 3 indicates that an UpPTS system can be represented in the form of table 3. There are 14 setting schemes, which are shown as numbers 0-13 respectively.
  • the UpPTS time slot has only four cases, which occupy 2, 6, 7, 11 symbols respectively. This is because the UpPTS time slot setting is more complicated and has a greater impact on the data transmission process. Therefore, to simplify the system design, the UpPTS has only four lengths.
  • FIG. 12 A schematic diagram of a specific configuration scheme is shown in FIG. 12, where area 1 represents a DwPTS time slot, area 2 represents a GP time slot, and area 3 represents an UpPTS time slot, which is represented in Table 4. There are 12 setting schemes, as shown in the sequence number 0-11.
  • the time slot length of the UpPTS is only four cases, which occupy 2, 5, 6, 9 OFDM symbols, respectively.
  • the complete list contents of Tables 3 and 4 are stored in the base station; the contents of the sequence number and the GP time slot, the DwPTS time slot, and the UpPTS time slot length column are stored in the user equipment.
  • Step 1002 The base station determines the current compatibility requirement and the coverage requirement, and selects a corresponding setting scheme in Table 3 or Table 4, and sends the sequence number corresponding to the setting scheme to the user equipment.
  • the base station sends the sequence number corresponding to the setting scheme to the cell through the cell broadcast.
  • User equipment Since Tables 3 and 4 respectively hold 14 and 12 setting schemes, the base station can indicate the selected setting scheme to the user by using 4 bits.
  • Step 1003 The user equipment receives the sequence number, determines a setting scheme selected by the base station according to the saved correspondence, and constructs a wireless field according to the setting scheme.
  • the user equipment and the base station use the wireless field to perform data transmission.
  • the method flow provided by this embodiment ends.
  • the correspondence relationship is established in advance, so that the setting process is greatly simplified when the wireless frame setting is actually performed.
  • it can meet the flexible adjustment of multi-granular coverage and the requirements for different compatibility, while occupying the storage space of the base station and user equipment as little as possible, because of the numerous The setting scheme will result in a large occupation of the storage space, and the base station notifies the user of the selected setting scheme to occupy the information bits as little as possible.
  • the base station indicates the total possible configuration.
  • the ratio of uplink and downlink time slots of a TDD system is information that must be informed.
  • the time slot ratio is known, then for the various configurations of Tables 3 and 4 in the first embodiment, the subset can be divided according to the time slot ratio, then, When the indication is made, the number of bits required for the indication can be further reduced.
  • the correspondences in Table 3 and Table 4 are divided into subsets according to different compatibility requirements, and subset IDs are set for different subsets, and different GP slots and DwPTSs are used in each subset.
  • the slot and the length of the UpPTS slot correspond to the configuration number; when the base station saves the correspondence, it performs in a subset; similarly, the user equipment also stores different GP slots, DwPTS slots, and UpPTS slots in units of subsets. Length and corresponding number.
  • the base station determines the lengths of the corresponding GP time slots, DwPTS time slots, and UpPTS time slots according to the current coverage and compatibility requirements, first, according to the current compatibility requirements, the corresponding subset is found, and the current coverage range is determined in the subset.
  • GP time slot, DwPTS time slot and UpPTS The length of the time slot, and the corresponding subset number and configuration number are sent to the user equipment.
  • the user equipment receives the subset number and the configuration number, and determines a corresponding subset according to the subset number, and determines a corresponding GP time slot, a DwPTS time slot, and an UpPTS time slot length according to the received configuration number in the subset, to the wireless field frame.
  • the special area is set, and the data is transmitted by using the set wireless field and the base station.
  • the correspondence after dividing the subset can be as shown in Table 5 and Table 6.
  • Table 5 is for the case of short CP
  • Table 6 is for the case of long CP.
  • Table 5 is taken as an example for description.
  • the first line indicates the compatibility requirements of the TD-SCDMA system. It is divided into four categories. Correspondingly, the correspondence is divided into four subsets, as shown in Table 5. Shown. For the following line and uplink ratio 4: 3, the corresponding column of the compatibility requirement indicates various time slot length setting schemes in the subset. Wherein, since the length of the GP slot is uniformly represented in the leftmost column, only the lengths of the DwPTS slot and the UpPTS slot are listed in the slot length setting scheme marked by the 4:3 column.
  • the compatibility requirements may be divided into one subset, or multiple different compatibility requirements may be divided into one subset.
  • Table 5 and Table 6 when the ratio of the downlink and uplink time slots of the TD-SCDM system is 6:1 and 3:4, the setting scheme of the time slot length is the same, and these two The compatibility of the corresponding slot length setting scheme is divided into a subset.
  • the foregoing refers to a manner in which the base station transmits the subset number and the configuration number in the subset to the user equipment.
  • the user equipment may know the subset number by other means.
  • the base station may only send the configuration number in the subset to the user equipment.
  • the base station of the LTE TDD system necessarily informs the user equipment of the downlink and uplink time slot ratios of the system. As shown in FIG.
  • the compatible downlink TD-SCDMA system has a downlink and uplink time slot ratio of 5:2, and the compatibility requirement (compatible with the TD-SCDMA system downlink and uplink time slot ratio is 5:2) uniquely corresponds to a subset, then the user equipment In fact, the downlink and uplink time slot ratios of the LTE TDD system are obtained, and the subset number is determined relative to. In this case, you do not need to notify the user device subset number, you only need to notify the configuration number.
  • the base station selects the slot length setting scheme, when there is no requirement for compatibility, it can be first compatible with the scheme of the TD-SCDMA system.
  • Figure 14 is a flow chart showing the overall data transmission method of the time division duplex system in the third embodiment of the present invention. As shown in Figure 14, the method includes:
  • Step 1401 Pre-configure a set of special area configurations for incompatible and compatible TD-SCDMA systems, where the special area configuration includes: guard interval GP time slots, DwPTS time slots, and UpPTS time slots in symbol length units. length.
  • the special area in the present invention refers to an area composed of three special time slots in a 5 ms radio half frame in the second type of frame structure.
  • the length of the GP slot in the special area can be adjusted by the OFDM symbol length.
  • the reason why the GP slot length is set in units of OFDM symbol length is because the coding modulation scheme used in the LTE TDD system is OFDM modulation or extended OFDM modulation, and the symbol lengths of the two modulation methods are the same. It is a unit of one OFDM symbol, and therefore resource allocation is performed in units of one OFDM symbol. In the following text, the duration occupied by one OFDM symbol is referred to as a symbol.
  • Step 1402 The base station determines, according to whether it is currently required to be compatible with the TD-SCDMA system, to determine a plurality of special area configurations corresponding to the setting.
  • step 1403 the base station selects one of the multiple special area configurations determined in step 1402 according to the current coverage and system performance requirements, and sends the selected special area configuration to the user equipment.
  • step 1404 The user equipment and the base station construct a wireless field for data transmission according to the special area configuration selected in step 1403.
  • the base station is configured to preset a set of guard interval GP time slots in units of symbol lengths, DwPTS, respectively, for incompatible and compatible TD-CDMA systems.
  • Special area configuration of time slot and UpPTS time slot length also used to determine a corresponding set of special area configurations according to whether a TD-SCDMA system is currently required to be compatible; and according to the coverage and system performance, in the determined set Select one of the special area configurations, and send the selected special area configuration to the user equipment; construct a wireless field for data transmission according to the selected special area configuration.
  • the user equipment is configured to receive a special area configuration sent by the base station, and construct a wireless field according to the special area configuration for data transmission.
  • the granularity of the GP slot length of the method of the present invention is reduced, thereby providing more flexible coverage of different levels and improving transmission efficiency.
  • the corresponding special area configurations are respectively set, and therefore, the compatibility requirements of the LTE TDD system and the TD-SCDMA system can be satisfied.
  • the flexible adjustment of the GP time slot length is performed in a special area, the GP time slot length adjustment range is limited by the duration of the special area, that is, the maximum coverage supported by the wireless field is limited by the duration of the special area.
  • the length of the special area is lengthened compared to the frame structure shown in FIG.
  • FIG. 15 is a specific flowchart of a data transmission method of a time division duplex system according to Embodiment 3 of the present invention. As shown in Figure 15, the method includes: Step 1501: Set a special group area configuration corresponding to the incompatible and compatible TD-SCDMA system.
  • TD-SCDMA Time Division Duplex
  • the special area configuration may be performed without considering the compatibility requirement.
  • the special area configuration scheme is first divided into two types: a compatible TD-SCDMA system and an incompatible TD-SCDMA system configuration.
  • TD-SCDMA system When it is not compatible with TD-SCDMA system, it is not necessary to be constrained by compatibility. It can completely set the special area configuration scheme from the aspects of performance and implementation complexity.
  • it When it is compatible with TD-SCDMA system, it can only be compatible under compatible limits.
  • the downlink uplink time slot ratio of the TD-SCDMA system is set. In this way, future systems can choose the best solution based on whether they have compatibility requirements.
  • Step 1501a the setting of two types of special area configurations is performed by the following two sub-steps: Step 1501a, for a case where the TD-SCDMA system is not compatible, a set of special area configurations are correspondingly set, and the special area configurations are numbered.
  • a short CP When a short CP is used, as shown in Table 7, a plurality of special area configuration schemes have 14 types of GP slot lengths, which ensure various coverage ranges, and the level difference between different levels of coverage is one symbol corresponding. The coverage is greatly reduced compared to the way in the background art.
  • the implementation of the scheme is simple. Specifically, on the one hand, the UpPTS slot length is only 0 symbols and 2 symbols, because it is considered that when the UpPTS slot length is different, the specific UpPTS slot design may be difficult, such as pilot and control channels.
  • the UpPTS time slot length is limited to two options, and only needs to be designed when the UpPTS time slot length is 2 symbols; on the other hand, when the GP is extended by sequentially deleting the symbols occupied by one DwPTS time slot The length of the gap does not require changes to the design of the pilot of the DwPTS.
  • Step 1501b for the case of compatible TD-SCDMA system, correspondingly set a special area configuration scheme, and number the special area configuration.
  • the so-called compatibility means that in the area where two systems exist at the same time, the uplink and downlink relationship of the two systems needs to be consistent, that is, the uplink and downlink switching points are aligned, thereby ensuring that the two systems do not interfere with each other.
  • the LTE TDD system is an evolved system of the TD-SCDMA system, generally, a system in which TD-SCDMA exists first in the area, and when the method of the embodiment of the present invention is applied, when the LTE TDD system is designed for the radio frame, it can be combined with the TD- SCDMA systems are compatible.
  • the radio frame structure of the TD-SCDMA system is the same as the frame structure shown in Fig. 2 described in the background art.
  • the so-called compatibility requirement with the TD-SCDMA system refers to the value of the downlink uplink time slot ratio of the TD-SCDMA system.
  • the LTE time slot length of the LTE TDD system can not be less than 75us, calculated in units of OFDM symbols.
  • the GP time slot length of the LTE TDD system is at least two OFDM symbols.
  • the GP time slot length of the LTE TDD system is at least one OFDM symbol; 2.
  • the proportional relationship between the time occupied by the uplink and downlink resources is consistent with that in the TD-SCDMA system, and in consideration of this, the LTE is implemented.
  • the structure needs to be further configured according to the structure of the regular time slot. Specifically, the structure includes the duration of the regular time slot and the positional relationship with the special area.
  • the structure of the conventional time slot in this embodiment is as shown in FIG.
  • Two adjacent regular time slots are used as one subframe.
  • two regular time slots in one subframe are either uplink time slots or both downlink time slots.
  • the determined downlink uplink time slot ratio of the TD-SCDMA system if the above compatibility conditions are met (ie, the uplink and downlink switching points are consistent, and the GP time slot in the LTE TDD system covers the GP time slot in the TD-SCDMA system) , you can get all kinds of possible special area configuration options.
  • the following describes how to obtain various special area configuration schemes under the minimum coverage requirement (that is, the GP time slot length is 2 or 1).
  • the first behavior is a frame structure of the TD-SCDMA system, in which the switching point positions under different uplink and downlink ratios are marked.
  • 6: 1 indicates that the ratio of the downlink and uplink slots is 6:1, and the uplink and downlink switching points are vertical dashed lines corresponding to 6:1.
  • the second row to the seventh row respectively represent the wireless half frame setting of the LTE TDD system corresponding to different time slot ratios of the TD-SCDMA system.
  • the labeled D indicates the downlink subframe (two often A sub-frame consisting of a time slot)
  • labeled U indicates an uplink subframe
  • a shaded portion indicates a special area.
  • the special area includes 14 symbols, which are represented below the special area.
  • the 1 area represents the DwPTS time slot, which can be regarded as the downlink time slot
  • the 2 area represents the GP time slot
  • 3 The area represents the UpPTS slot and can be regarded as a downlink slot.
  • the LTE TDD system can use the time slot setting mode of the first line, that is, the GwPTS time slot occupies one OFDM symbol, when the GP is used.
  • the slot occupies 2 OFDM symbols
  • the UpPTS slot occupies 11 OFDM symbols.
  • the uplink and downlink switching points (the end of the special area) in the LTE TDD system are consistent with the uplink and downlink switching points in the TD-SCDMA system, and the GP time slot coverage GP time slot in TD-SCDMA system. It can be seen from the figure that the above conditions are also satisfied in the manner shown in FIG. 16 under other time slot ratios, and will not be described in detail here.
  • the GP time slot, DwPTS time slot and UpPTS time slot length settings in the LTE TDD system radio field shown in Fig. 16 can also be represented by Table 9. If the ratio of the downlink and uplink time slots of the TD-SCDMA system is 1:6, the LTE TDD system corresponds to the second line in FIG. 16 according to the embodiment, and it is obvious that there is no regular time for transmitting downlink data. Gap, so this special area configuration is not used in practical applications, so this is not included in Table 9.
  • TD-SCDMA system when the minimum coverage requirement is met, if a short CP is used, a plurality of special area configurations as shown in FIG. 17 may be obtained, including GP time slot, DwPTS time slot, and UpPTS time slot length setting. the way.
  • the setting method shown in FIG. 17 can be used in Table 10.
  • the GP length is 1 or 2 symbol lengths, and the coverage that can be supported is specifically:
  • the above special area configuration scheme is derived from the minimum coverage requirement.
  • the GP slot length can be adjusted according to the coverage requirement to obtain the slot setting under different coverage requirements.
  • the GP time slot length may be extended based on the minimum coverage setting, that is, the DwPTS time slot or the UpPTS time slot adjacent to the GP time slot is cancelled, for example, when the short CP is used, the coverage is expanded.
  • One level that is, the length of the GP time slot is 3 OFDM symbols, then based on the third line in the setting mode shown in FIG. 9 (that is, the case where the downlink and uplink time slots are compatible: 5: 2), there are two ways of setting. : 1.
  • the OFDM symbol on the left side of the GP time slot is also used as the GP time slot, so that the GP time slot occupies 3 symbols.
  • the DwPTS time slot occupies 5 symbols
  • the UpPTS time slot occupies 6 symbols;
  • a symbol on the right side of the GP time slot is also used as a GP time slot, so that the GP time slot occupies 3 symbols.
  • the DwPTS time slot occupies 6 symbols
  • the UpPTS time slot occupies 5 symbols.
  • the DwPTS time slot is configured to a minimum length of 80.57us and the UpPTS time slot is configured to a minimum length of 141.66us (set GT is 8.33us)
  • the corresponding GP time slot length is approximately 777.8us, supporting a coverage of up to approximately 116km.
  • the PRACH can also be implemented in the uplink time slot after the special area to further expand the GP range.
  • Table 11 is taken as an example to illustrate the contents of the table.
  • the first line indicates the compatibility requirements of the TD-SCDMA system. It is divided into four categories.
  • the ratio of downlink and uplink time slots is 4: 3, 6: 1 or 3: 4, 5: 2, 2: 5, respectively.
  • the column corresponding to the compatibility requirement represents a special zone configuration scheme for this compatibility requirement. Wherein, since the length of the GP slot is uniformly represented in the leftmost column, only the lengths of the DwPTS slot and the UpPTS slot are listed in the slot length setting scheme marked by the 4:3 column.
  • the setting of the special area configuration is completed, which is a table corresponding to the short CP and the long CP, respectively.
  • all the special area configuration schemes shown in Table 11 above are numbered, and since there are 14 schemes, they can be represented by 4 bits; all the special area configuration schemes shown in Table 12 above are numbered, due to a total of There are 13 schemes, so it can also be represented by 4 bits.
  • the special area configuration schemes shown in Tables 11 and 12 and their corresponding numbers are stored in the base station and user equipment.
  • Table 11 and Table 12 above are an exemplary setting in this embodiment.
  • other configuration schemes may be set according to compatibility requirements.
  • Step 1502 The base station determines whether it is currently compatible with the TD-SCDMA system. If compatibility is not required, step 1503 is performed. If compatibility is required, step 1504 is performed.
  • Step 1503 Determine a set of special area configuration schemes that are preset in a case where the TD-SCDMA system is not required to be compatible, and perform step 1505.
  • step 1501 in the case where a compatible TD-SCDMA system is not required, the corresponding special area configuration scheme is as shown in Table 7 and Table 8. Therefore, if the base station and the user equipment use a short CP, the determination in Table 7 is that all of the preset special area configuration schemes are set; if the base station and the user equipment use a long CP, then the determination table 8 is determined in this step. Description All special area configuration schemes preset.
  • Step 1504 Determine a set of special area configuration schemes that are preset in a case where the TD-SCDMA system is required to be compatible, and perform step 1505.
  • step 1501 in the case where a compatible TD-SCDMA system is required, the corresponding special area configuration scheme is as shown in Table 11 and Table 12. Therefore, if the base station and the user equipment use the short CP, the determination table 11 in this step is all the special area configuration schemes set in advance; if the base station and the user equipment use the long CP, the determination table 12 is determined in this step. All the special area configuration schemes set in advance.
  • Step 1505 Select one of the special area configurations determined in step 1503 or 1504 according to the current coverage and system performance requirements.
  • one type is selected according to the minimum length of the GP time slot, and if multiple configurations meet the minimum requirements of the GP time slot length, the system performance may be further determined. It is required to select the business requirements of the downlink data transmission as above.
  • Step 1506 The base station notifies the user equipment whether it needs to be compatible with the TD-SCDMA system, and sends the number corresponding to the special area configuration selected in step 1505 to the user equipment.
  • the base station may send the selected special area configuration to the user equipment by means of high layer signaling, such as a broadcast channel.
  • the method for the base station to send the selected special area configuration to the user equipment is as follows: On the one hand, the information about whether the TD-SCDMA system is compatible is required to be sent to the user equipment, and the number corresponding to the selected special area configuration is sent to the user equipment. Specifically, lbit can be used to indicate whether it is necessary to be compatible with the TD-SCDMA system. For example, setting the bit to 1 indicates that compatibility is required, and setting the bit to 0 indicates that compatibility is not required.
  • the 4-bit transmission number information can be utilized. Combining the above two aspects of information, a total of 5 bits can be used to transmit the selected special area configuration to the user equipment.
  • Step 1507 The user equipment receives the notification and number sent by the base station to determine a special area configuration, and constructs a data transmission between the wireless field and the base station.
  • the user equipment determines whether to find a special area configuration in the storage table 7, the table 8, or the table 11 and the table 12 according to whether the information sent by the base station needs to be compatible with the TD-SCDMA system. Specifically, when the received information indicates that compatibility is not required, it is looked up in Tables 7 and 8; when the received information indicates that compatibility is required, it is looked up in Tables 11 and 12.
  • a specific lookup table is determined.
  • the corresponding special area configuration scheme is searched in the finalized lookup table according to the received number, and the special area configuration is used to construct the data transmission between the wireless field and the base station.
  • the GP slot length can be further limited, thereby reducing the total number.
  • the length of the GP slot can be limited to 1, 3, 5 or 11 symbols for Table 7. Go to the special area configuration shown in Table 15:
  • the length of the GP slot can be limited to 0, 1, 2, 3, 4, 5, 8 or 11 symbols, and the special area configuration shown in Table 16 is obtained:
  • the GP slot length can be limited to 1, 2, 3 or 11 symbols for Table 8, and the special area configuration shown in Table 17 is obtained:
  • the GP slot length can be limited to 1, 2, 3 or 8 symbols for Table 8, and the special area configuration shown in Table 18 is obtained:
  • the length of the GP slot can be further limited.
  • the length of the GP slot can be limited to 2 or 11 symbols, and the table is obtained.
  • the configuration of Table 20 is the configuration of Table 9 when the short CP is used in the aforementioned minimum coverage.
  • the special area there are 4 schemes, and the number of the special area configuration needs only 2 bits.
  • the configuration of Table 22 is the configuration of Table 10 when the long CP is used in the minimum coverage.
  • this special area configuration there are 4 schemes, and the special area configuration number only needs 2 bits.
  • the GP slot length can be arbitrarily limited according to the system performance requirement, thereby simplifying the number of options for the special area configuration, and further reducing the number of bits required for transmitting the number information.
  • limiting the GP slot length means increasing the different coverage levels. The difference between the levels, but in any case, the level difference must be less than the level difference in the scheme described in the background art.
  • the number of bits required for the special area number is 3 bits or 2 bits, respectively, and if the transmission is compatible with 1 bit of the information, the base station can be notified of the special area configuration selected by the user equipment, which requires 4 bits or 3 Bit.
  • the coverage of the coverage range and the planning of system resources can be comprehensively considered, and the setting of the optional special area configuration scheme in step 1501 can be performed.
  • the method flow in the first embodiment, the second embodiment and the third embodiment of the present invention can be implemented in the system shown in FIG. 6.

Description

一种时分双工的数据传输方法、 装置和系统 技术领域
本发明涉及时分双工系统的长期演进方案, 特别涉及一种时分双工 的数据传输方法、 装置和系统。 发明背景
第三代移动通信系统(3G )釆用 CDMA多址方式, 支持多媒体业 务,具有较高的竟争能力。为了确保在更长的时间内保持这种竟争能力, 3GPP启动了 3G无线接口技术的长期演进( Long Term Evolution, LTE ) 研究项目。
目前, LTE系统确定支持 2种帧结构。 TD-SCDMA是第三代移动通 信系统的三种大国际标准中唯一釆用时分双工(TDD )方式的标准, 在 TD-SCDMA 的长期演进方案 (LTE TDD ) 中, 其首选帧结构为与 TD-SCDMA 系统兼容的第二类帧结构, 如图 1 所示。 其中, 一个无线 帧的帧长为 10ms, 包括两个 5ms的半帧。每个半帧由 7个业务时隙(标 记为 0 ~ 6 )和 3个特殊时隙, 即下行导频时隙 (DwPTS )、 保护间隔时 隙(GP )和上行导频时隙(UpPTS )组成。每子帧定义为一个业务时隙。 其中, 子帧 0和下行导频时隙总是用于下行传输, 而上行导频时隙和子 帧 1总是用于上行传输。
LTE TDD系统基于正交频分复用 (OFDM )技术, 其子载波间隔设 定为 15kHz,对应的 OFDM符号长度为 66.67us,为在解调时实现 OFDM 符号定时, 在每个 OFDM符号前加入循环前缀(CP )。 在支持单播业务 和小覆盖应用时, 使用长度为 4.76us的短 CP, 这样形成的完整 OFDM 符号长度为 66.67us+4.76us 71.4us; 在支持多小区广播业务和大覆盖应 用时, 使用长度为 16.66us的长 CP, 这样形成的完整 OFDM符号长度 为 66.67us+16.66us 88.3us。
对于 TDD 系统来说, 为避免上下行时隙间的干扰, 其下行时隙至 上行时隙的切换点需要保护间隔, 因此如前所述, 目前 LTE TDD系统 的无线帧结构中, 特殊时隙中存在保护间隔时隙 (GP )。 具体 GP的时 长等于电磁波传播小区半径两倍所经历的时间, 即 TGP = 2*Rcell/C, 其中 Rcell为小区半径, C表示光速 (3*108m/s)。
在图 1所示的帧结构中, GP的时长为 75us, 其对应的最大覆盖范 围为 ( 75us/2 ) x3xl08m/s = 11.25km0 为满足对不同覆盖范围的支持, 现有的 GP可以做适当修改, 具体关于 GP的设计方法是: 通过空置一 个或连续多个上行时隙来提供与所支持的覆盖范围对应的较大的下行 至上行的保护间隔 GP。详细地, 目前一般提供三种 GP长度供基站根据 本小区的覆盖范围进行选择。
一、 在小区半径小于 7.5km的情况下, 使用如图 2所示的小覆盖帧 结构进行支持,对应 GP时长为 50us。此时随机接入在 UpPTS时隙进行。
二、对于小区半径大于 7.5km且小于 30km的中等覆盖,基本的 TDD 第二类帧结构中 GP长度不够, 通过将 GP和 UpPTS进行合并形成新的 GP, 时间长度为 191.66us, 则刚好能够支持约 29km的覆盖范围。 此时, 随机接入在 TS1或其后任一上行时隙进行。 TDD第二类帧结构支持中 等覆盖的帧结构如图 3所示。
三、 对于小区半径大于 30km的大覆盖场景, TDD第二类帧结构釆 用的方法是将整个 TS1空出来, 与 GP, UpPTS进行合并, 形成一个整 体的时间长度为 866.66us的 GP, 足够支持 100km以上的小区覆盖。 此 时, 随机接入在 TS2及其后连续多个上行时隙进行。 TDD 第二类帧结 构支持大覆盖的帧结构如图 4所示。
基站和用户设备分别保存上述三种 GP长度方案所对应的帧结构。 基站根据本小区的覆盖范围, 选择上述三种方案中的一种, 并将选择的 GP 长度方案通知本小区的用户设备。 在之后基站与用户设备间进行数 据传输时, 利用相应 GP长度方案对应的帧结构承载数据进行通信。
当釆用上述方式进行数据传输时, 由于 GP长度的调整粒度为一个 上行时隙, 因此支持不同等级覆盖时, 等级间的级差较大, 对覆盖范围 的支持不够灵活, 导致无线资源的浪费, 减小传输效率。 例如, 对于覆 盖范围为 50km的小区, 需要选择第三中 GP长度及对应的帧结构进行 数据传输, 此时实际上很大一部分时隙被作为保护间隔浪费掉了, 实际 上也影响了传输效率。 发明内容
有鉴于此,本发明提供一种时分双工系统中的数据传输方法和系统, 能够支持更细粒度的不同等级覆盖, 节约无线资源, 提高传输效率。
本发明实施例提出的一种时分双工系统的数据传输方法, 该方法包 括:
基站根据当前的覆盖范围, 在无线半帧的特殊区域占用的时长范围 内, 以 OFDM符号长度为单位设置保护间隔 GP时隙、 DwPTS时隙和 UpPTS时隙的长度, 将设置结果发送给用户设备;
用户设备和基站利用所述无线半帧进行数据传输。
本发明实施例还提出一种时分双工系统, 包括基站和用户设备, 所述基站, 用于根据覆盖范围, 在无线半帧的特殊区域占用的时长 范围内, 以 OFDM符号为单位设置 GP时隙的长度, 并根据该 GP时隙 长度设置 DwPTS时隙和 UpPTS时隙的长度, 将设置结果发送给用户设 备; 利用所述无线半帧与用户设备进行数据传输;
所述用户设备, 用于接收所述基站发送的设置结果, 并利用所述无 线半帧与所述基站进行数据传输。
本发明实施例还提出另一种时分双工系统, 包括基站和用户设备, 所述基站, 用于预先针对是否需要兼容 TD-CDMA系统, 分别对应 设置一组包括以符号长度为单位的保护间隔 GP 时隙、 DwPTS 时隙和 UpPTS 时隙长度的特殊区域配置; 还用于根据当前是否需要兼容 TD-SCDMA 系统, 确定对应设置的一组特殊区域配置; 并根据覆盖范 围和系统性能, 在所述确定的一组特殊区域配置中选择一种, 并将选择 的特殊区域配置发送给用户设备; 根据选择的特殊区域配置构造无线半 帧进行数据传输;
所述用户设备, 用于接收基站发送的特殊区域配置, 并根据该特殊 区域配置构造无线半帧进行数据传输。
由上述技术方案可见, 本发明中, 基站根据覆盖范围, 在无线半帧 的特殊区域占用的时长范围内, 以 OFDM符号长度为单位设置 GP时隙 的长度, DwPTS时隙和 UpPTS时隙的长度, 将设置结果发送给用户设 备; 用户设备和基站利用包括上述 GP时隙、 DwPTS时隙和 UpPTS时 隙长度的无线半帧进行数据传输。 釆用上述本发明的方式后, 由于 GP 时隙长度以 OFDM符号为单位进行设置, 而一个 OFDM符号的时长要 远小于图 1所示帧结构中的常规时隙的时长, 因此, 对于 GP时隙长度 的调整粒度减小, 从而能够支持更细粒度的不同等级覆盖, 节约无线资 源, 提高传输效率。 附图简要说明
图 1为目前 LTE TDD系统的帧结构示意图。
图 2为目前 LTE TDD系统小覆盖帧结构示意图。
图 3为目前 LTE TDD系统中等覆盖帧结构示意图。
图 4为目前 LTE TDD系统大覆盖帧结构示意图。
图 5为本发明中时分双工系统的数据传输方法总体流程图。
图 6为本发明提供的时分双工系统的总体结构图。
图 7为本发明实施例中 LTE TDD系统的无线帧结构示意图。
图 8 为本发明实施例一中时分双工系统的数据传输方法具体流程 图。
图 9为本发明实施例一中最小覆盖要求下釆用短 CP时, GP时隙、 DwPTS时隙和 UpPTS时隙长度设置方式示意图。
图 10为本发明实施例一中最小覆盖要求下釆用长 CP时, GP时隙、 DwPTS时隙和 UpPTS时隙长度设置方式示意图。
图 11 为本发明实施例二中时分双工系统的数据传输方法具体流程 图。
图 12为本发明实施例二中釆用短 CP时, 不同覆盖范围和兼容性要 求下, GP时隙、 DwPTS时隙和 UpPTS时隙长度设置方式示意图。
图 13为本发明实施例二中釆用长 CP时, 不同覆盖范围和兼容性要 求下, GP时隙、 DwPTS时隙和 UpPTS时隙长度设置方式示意图。
图 14 为本发明实施例三中时分双工系统的数据传输方法总体流程 图。
图 15 为本发明实施例三中时分双工系统的数据传输方法具体流程 图。
图 16为本发明实施例三中最小覆盖要求下釆用短 CP时, GP时隙、 DwPTS时隙和 UpPTS时隙长度设置方式示意图。
图 17为本发明实施例三中最小覆盖要求下釆用长 CP时, GP时隙、 DwPTS时隙和 UpPTS时隙长度设置方式示意图。 实施本发明的方式
本发明的基本思想是: 降低 GP时隙长度的调整粒度, 从而提供更 灵活的不同等级覆盖。
图 5为本发明中时分双工系统的数据传输方法总体流程图。 如图 1 所示, 该方法包括:
步骤 501 , 基站根据覆盖范围, 在无线半帧的特殊区域占用的时长 范围内, 以 OFDM符号长度为单位设置保护间隔 GP时隙的长度, 并设 置 DwPTS时隙和 UpPTS时隙的长度。
本发明中特殊区域指第二类帧结构中, 5ms的无线半帧内三个特殊 时隙构成的区域。 本发明中, 特殊区域内 GP时隙长度可以以 OFDM符 号为粒度进行调整。 具体地, 根据覆盖范围计算所需的下行至上行切换 GP长度 TOT=2*Rcell/C, 将 GP时隙设置为占用 N个 OFDM符号, 并且 计算得到的 GP长度小于 N个 OFDM符号的时长、 大于 N-1个 OFDM 符号的时长。 一方面, GP长度小于 N个 OFDM符号的时长能够保证 GP时隙长度满足覆盖要求, 另一方面, GP长度大于 N-1个 OFDM符 号的时长, 能够保证为其他信息的传输保留更多的时频资源。
这里,之所以以 OFDM符号为单位设置 GP时隙长度,是因为在 LTE TDD系统中釆用的编码调制方案为 OFDM调制或扩展的 OFDM调制, 并且这两种调制方式的符号长度均相同, 为一个 OFDM符号为单位, 因 此以一个 OFDM符号为单位进行资源分配。在接下来的文字记载中,将 一个 OFDM符号所占用的时长称为一个符号。 步骤 502, 基站将步骤 501中的设置结果发送给用户设备。
步骤 503, 用户设备和基站利用按照步骤 501 中设置结果构造的无 线半帧进行数据传输。
至此, 本发明提供的数据传输方法流程结束。
图 6为本发明提供的时分双工系统的总体结构图。 如图 6所示, 该 系统包括: 基站和用户设备。
在该系统中, 基站用于根据覆盖范围, 在无线半帧的特殊区域占用 的时长范围内, 以 OFDM符号为单位设置 GP时隙的长度, 并根据该 GP时隙长度设置 DwPTS时隙和 UpPTS时隙的长度, 将设置结果发送 给用户设备; 利用所述无线半帧与用户设备进行数据传输。
用户设备, 用于接收所述基站发送的设置结果, 并利用所述无线半 帧与所述基站进行数据传输。
较佳地, 所述基站可以包括:
对应关系存储单元, 用于预先根据基站的不同覆盖范围和对所述 TD-SCDMA 系统的兼容性要求, 建立基站的不同覆盖范围和不同的兼 容性要求与 GP时隙、 DwPTS时隙和 UpPTS时隙长度间的对应关系, 并存储所述对应关系;
选择单元, 用于根据当前覆盖范围和兼容性要求, 从所述对应关系 存储单元所存储的对应关系中选择出相应的 GP 时隙、 DwPTS 时隙和 UpPTS时隙的长度。
以上是对本发明的总体概述, 由该过程可见, 本发明的方法 GP时 隙长度的设置粒度减小, 从而能够提供更灵活的不同等级覆盖, 提高传 输效率。 但由于 GP时隙长度的灵活调整是在特殊区域范围内进行, 因 此 GP时隙长度调整范围受特殊区域的时长限制, 也就是该无线半帧所 支持的最大覆盖范围受特殊区域的时长限制。 优选地, 相比于图 1所示 的帧结构, 加长特殊区域的时长, 从而能够将 GP时隙长度的调制范围 扩大, 进而扩大最大覆盖范围。 当然, 由于无线半帧的长度是固定的, 因此特殊区域时长的变化会影响到其他常规时隙的时长。 在下面本发明 的具体实施例中, 以一种新的无线帧结构为例, 说明本发明的具体实施 方式。
图 7为本发明实施例中新的无线帧结构。 其中, 每个 5ms的无线半 帧划分成 8个长度为 0.5ms的常规时隙和 1个长度为 1ms的特殊区域, 该特殊区域由 DwPTS时隙, GP时隙和 UpPTS时隙构成, 另夕卜, 每两个 常规时隙配对组成一个子帧。 以该无线帧结构为基础对本发明的具体实 施方式进行说明。
实施例一:
图 8 为本发明实施例一中时分双工系统的数据传输方法具体流程 图。 如图 8所示, 该方法包括:
步骤 801 , 根据基站的覆盖范围计算所需的 GP长度。
本步骤中, 计算所需 GP长度的方式为: TCP=2*Rcell/C。
步骤 802, 根据 GP长度设置 GP时隙、 DwPTS时隙和 UpPTS时隙 的长度。
在设置 GP时隙长度时, 如前所述以 OFDM符号所占用的时长为单 位分配, 分配后 GP时隙长度大于等于步骤 801中计算所得的 GP长度。 当单独考虑覆盖范围进行 GP时隙、 DwPTS时隙和 UpPTS时隙长度的 设置时, 将 GP时隙长度设置的尽可能小, 并且 P-SCH在 DwPTS时隙 实现,占用 1个符号(S ),因此, DwPTS时隙至少占用一个符号, PRACH 在 UpPTS时隙实现, 占用 2 S, 因此, UpPTS时隙至少占用两个符号; GP时隙、 DwPTS时隙和 UpPTS时隙的总长度, 即特殊区域的时长, 如 前所述, 为 lms。 只有满足上述条件, GP时隙、 DwPTS时隙和 UpPTS 时隙长度可以任意设置。 在另外一种实现方案中, 也可以釆用如下的限 制设置特殊区域中的各个时隙长度, DwPTS时隙至少占用两个符号。
实际应用中, 在 LTE TDD 系统的基站覆盖范围内, 可能存在 TD-SCDMA网络,为保证两个网络的信号质量,在设置 GP时隙、 DwPTS 时隙和 UpPTS时隙长度时,需要考虑两个系统的兼容性。所谓兼容性是 指, 在两个系统同时存在的区域内, 两种系统的上下行关系需要保持一 致, 即上行与下行切换点对齐, 从而保证两个系统间不互相干扰。 由于 LTE TDD系统是 TD-SCDMA系统的演进系统, 因此, 一般是在区域内 先存在 TD-SCDMA的系统, 应用本发明实施例的方法时, 优选地, 在 LTE TDD系统无线帧设计时, 能够与 TD-SCDMA系统一致。
因此, 如果考虑兼容性, 那么本步骤中进行时隙设置时需要进行如 下处理:
步骤 802a, 判断是否需要兼容 TD-SCDMA系统, 若是, 则执行步 骤 802b, 否则执行步骤 802c。
在进行 LTE TDD系统无线半帧中 GP时隙、 DwPTS时隙和 UpPTS 时隙长度设置时, 若该基站覆盖范围存在 TD-SCDMA系统, 那么通常 要考虑兼容性问题, 按照步骤 802b中所述设置 GP时隙、 DwPTS时隙 和 UpPTS时隙长度, 如果不存在 TD-SCDMA系统, 那么可以不考虑兼 容性问题, 按照步骤 802c中设置特殊区域内各时隙长度。
步骤 802b,根据步骤 801中计算得到的 GP长度、 TD-SCDMA系统 的上下行时隙比例以及常规时隙的结构设置 GP 时隙、 DwPTS 时隙和 UpPTS时隙的长度。
具体地, TD-SCDMA 系统的无线帧结构与背景技术中描述的图 2 所示的帧结构相同。 其中, 共存在六种上下行时隙比例关系和对应的上 下行切换点位置。 TD-SCDMA的 GP时隙长度为 75us, 为保证兼容性, 需要有两方面的要求:一、 LTE TDD系统的 GP时隙长度不能小于 75us, 以 OFDM符号为单位计算, 当釆用短 CP时, LTE TDD系统的 GP时隙 长度至少为两个 OFDM符号, 当釆用长 CP时, LTE TDD系统的 GP时 隙长度至少为一个 OFDM符号; 二、上下行资源所占用时长间的比例关 系要与 TD-SCDMA系统中一致, 考虑到这一点, 在进行 LTE TDD系统 中 GP时隙、 DwPTS时隙和 UpPTS时隙长度设置时, 还需要进一步根 据常规时隙的结构进行, 具体该结构包括常规时隙的时长以及与特殊区 域的位置关系等。
如前所述本实施例中常规时隙的结构如图 7所示。 两个相邻的常规 时隙作为一个子帧, 在进行资源分配时一个子帧中的两个常规时隙要么 均为上行时隙, 要么均为下行时隙。 根据上述兼容性要求, 即上下行切 换点一致, LTE TDD系统中的 GP时隙覆盖 TD-SCDMA系统中的 GP 时隙, 可以针对不同当覆盖范围要求, 计算得到 GP时隙、 DwPTS时隙 和 UpPTS时隙长度设置。 下面以满足最小覆盖要求为例进行说明。
根据兼容性要求, 在满足最小覆盖要求时, 若釆用短 CP, 则可以得 到图 9所示的 GP时隙、 DwPTS时隙和 UpPTS时隙长度设置方式。
在图 9中, 第一行为 TD-SCDMA系统的帧结构示意, 其中标注了 不同的上下行比例下的切换点位置。 如, 在该帧结构示意上方标有 6: 1 表示下行和上行时隙的比例为 6: 1 , 上下行切换点为 6: 1对应的垂直 虚线。 第二行到第七行分别代表 TD-SCDMA系统的不同时隙比例对应 的 LTE TDD系统无线半帧设置情况。
具体地, 在第二行到第七行中, 标注为 D的表示下行子帧(两个常 规时隙构成的子帧), 标注为 U的表示上行子帧, 阴影部分表示特殊区 域。 其中, 釆用短 CP时, 特殊区域包括 14个符号, 在该特殊区域下方 进行表示, 该特殊区域内, 1区表示 DwPTS时隙, 可以看作下行时隙, 2区表示 GP时隙, 3区表示 UpPTS时隙, 可以看作下行时隙。 由图 8 可见, 当 TD-SCDMA系统的下行与上行时隙比例为 6: 1时, LTE TDD 系统可以釆用第一行的时隙设置方式, 即 GwPTS时隙占用 1个 OFDM 符号, GP时隙占用 2个 OFDM符号, UpPTS时隙占用 11个 OFDM符 号, 这样, LTE TDD 系统中的上下行切换点 (特殊区域的末尾) 与 TD-SCDMA系统中上下行切换点一致, 同时 GP时隙覆盖 TD-SCDMA 系统中的 GP时隙。 由图可见, 在其他时隙比例下按照图 9所示的方式 设置也满足上述条件, 这里就不再一一详述。
图 9中所示的 LTE TDD系统无线半帧中 GP时隙、 DwPTS时隙和 UpPTS时隙长度设置也可以用表 1来表示。
Figure imgf000013_0001
表 1
类似地, 根据兼容性要求, 在满足最小覆盖要求时, 若釆用短 CP, 则可以得到图 10所示的 GP时隙、 DwPTS时隙和 UpPTS时隙长度设置 方式。 将图 10所示的设置方式可以用表 2表示。
Figure imgf000013_0002
表 2
如图 10所示, 在兼容 TD-SCDMA时隙比例为 4: 3时, LTE TDD 系统无线半帧中 UpPTS 的第一个符号已经进入了 TD-SCDMA 系统中 GP时隙的范围, 在极端情况下, 此符号的部分会受到 TD-SCDMA系统 DwPTS的干扰。幸运的是得益于 OFDM的 CP结构,此干扰仅影响 CP, 因此, 此干扰是可以忽略的。
上述图 9、 图 10、 表 1和表 2中的时隙设置是在最小覆盖要求时得 出的。 基于该最小覆盖设置, 可以根据覆盖要求调整 GP时隙长度, 获 得不同覆盖要求下的时隙设置。 具体地, 可以根据覆盖范围的需要, 基 于该最小覆盖设置, 扩展 GP时隙长度, 即打掉 GP时隙相邻的 DwPTS 度。
例如, 当釆用短 CP时, 覆盖范围扩大一级, 也就是使 GP时隙长 度为 3个 OFDM符号,那么基于图 9所示设置方式中的第三行(即兼容 下行与上行时隙 5: 2的情况), 可以有两种设置方式:
一、 将 GP时隙左边的一个 OFDM符号也作为 GP时隙, 从而使 GP时隙占用 3个符号, 这时, DwPTS时隙占用 5个符号, UpPTS时隙 占用 6个符号;
二、 将 GP时隙右边的一个符号也作为 GP时隙, 从而使 GP时隙 占用 3个符号, 这时, DwPTS时隙占用 6个符号, UpPTS时隙占用 5 个符号。
以此类推, 可以得到很多具体的特殊区域配置方案。 如果 DwPTS 时隙配置为最小长度 80.57us,同时 UpPTS时隙配置为最小长度 141.66us (设 GT为 8.33us ),此时对应的 GP时隙长度约为 777.8us, 支持最大约 116km的覆盖范围。 对应特殊大覆盖需求, 也可以将 PRACH放在特殊 区域之后的上行时隙实现, 进一步扩大 GP范围。
根据 TD-SCDMA系统中的时隙比例任意选择一种方案进行时隙长 度设置。
步骤 802c, 根据步骤 801 中计算得到的 GP长度设置 GP时隙、 DwPTS时隙和 UpPTS时隙的长度。
这种方式即前述单独考虑覆盖要求时的设置方式, 这里就不再赘 述。
步骤 803, 基站将步骤 802中的设置结果发送给用户设备。
本步骤中, 基站可以通过高层信令的方式, 例如广播信道等, 将设 置结果发送给用户设备。
步骤 804, 用户设备接收设置结果, 确定无线半帧中 GP 时隙、
DwPTS时隙和 UpPTS时隙的长度; 用户设备和基站利用该无线半帧进 行数据传输。
至此,本发明实施例中的方法流程结束。在上述实施例中,步骤 802 中根据兼容性要求和覆盖要求得到的各种不同时隙长度设置方案的过 程也可以预先完成, 然后将该各种不同方案保存在基站和用户设备中, 并进行编号。 当基站需要实际设置本小区釆用的具体 GP时隙、 DwPTS 时隙和 UpPTS时隙的长度时,可以根据保存的各种不同方案,选择符合 当前兼容性要求和覆盖要求的方案编号, 通知给用户设备。 用户设备根 据接收的编号和本身保存的各种方案确定基站选用的特定方案, 从而用 户设备和基站间可以利用应用这种方案的无线半帧进行数据传输。 下面 通过一个具体实施例说明这种方式。
实施例二:
图 11 为本发明实施例二中时分双工系统的数据传输方法具体流程 图。 如图 11所示, 该方法包括:
步骤 1101 , 预先根据不同的覆盖要求和对 TD-SCDMA系统的兼容 性要求,建立基站的不同覆盖范围和兼容性要求对应的 GP时隙、 DwPTS 时隙和 UpPTS时隙长度间的对应关系, 并将对应关系进行保存。
本步骤中, 根据实施例一步骤 802a 中所述的方式建立对应关系。 如前所述, 实际存在的设置方案有很多。 本实施例提供一种简化方案, 在建立的对应关系中, 并未包括所有的设置方案, 而是选择其中一部分 设置方案。
具体地, 当釆用短 CP时, 根据覆盖范围的分布规律, GP时隙的长 度有七种选择, 分别为占用 1 , 2, 3, 4, 5, 10, 12个符号。 其中, 当 覆盖范围较小时, 不同覆盖范围间的级差也较小; 当覆盖范围较大时, 不同覆盖范围间的级差也相应较大。具体釆用的设置方案示意图如图 12 所示,其中, 1区表示 DwPTS时隙, 2区表示 GP时隙, 3区表示 UpPTS 系可以以表 3形式表示。 其中共有 14种设置方案, 分别如序号 0-13对 应所示。
Figure imgf000016_0001
9 <42.8 兼容( 5:2和 2:5 )或 4 4 6
不兼容
10 <53.5 兼容( 1:6和 4:3 )或 7 5 2 不兼容
11 <53.5 兼容( 5:2和 2:5 )或 3 5 6 不兼容
12 <107 兼容所有时隙比例 2 10 2 或不兼容
13 <128.4 兼容所有时隙比例 2 12 0 或不兼容
14 保留
15 保留
表 3
在上述 14种设置方案中, UpPTS时隙长度只有四种情况, 分别为 占用 2, 6, 7, 11个符号, 这是考虑到 UpPTS时隙设置较复杂, 对于数 据传输过程影响也较大,因此为简化系统设计,使 UpPTS只有四种长度。
类似地, 当釆用长 CP时, GP时隙的长度有六种选择, 分别为占用
1 , 2, 3, 4, 8, 10个符号。 具体釆用的设置方案示意图如图 12所示, 其中, 1区表示 DwPTS时隙, 2区表示 GP时隙, 3区表示 UpPTS时隙, 以表 4形式表示。 其中共有 12种设置方案, 分别如序号 0-11对应所示。
Figure imgf000017_0001
4 <24.8 兼容(3:4和 6:1 ) 1 2 9 或不兼容
5 <37.2 兼容(4:3和 1:6 ) 7 3 2 或不兼容
6 <37.2 兼容( 5:2和 2:5 ) 4 3 5 或不兼容
7 <37.2 兼容 ( 2:5 )或不兼容 3 3 6
8 <49.6 兼容( 5:2和 2:5 ) 3 4 5 或不兼容
9 <49.6 兼容(4:3和 1:6 ) 6 4 2 或不兼容
10 <99.2 兼容 (4:3、 1:6、 2:5和 2 8 2
5:2)或不兼容
11 <124 兼容 (4:3、 1:6、 2:5和 2 10 0
5:2)或不兼容
12 保留
13 保留
14 保留
15 保留
表 4
与短 CP时的情况类似, 本实施例中釆用长 CP时, UpPTS的时隙 长度也只有四种情况, 分别为占用 2, 5, 6, 9个 OFDM符号。
在保存对应关系时, 优选地, 在基站中保存表 3和表 4的完整列表 内容; 在用户设备中保存序号和 GP时隙、 DwPTS时隙和 UpPTS时隙 长度列的内容。
步骤 1002,基站确定当前的兼容性要求和覆盖要求, 并在表 3或表 4中选择对应的一种设置方案,将设置方案对应的序号发送给用户设备。
本步骤中,基站将设置方案对应的序号通过小区广播发送给小区内 的用户设备。 由于表 3和表 4分别保存了 14和 12种设置方案, 因此基 站利用 4比特就可以向用户指示所选的设置方案。
步骤 1003, 用户设备接收序号, 根据保存的对应关系, 确定基站选 择的设置方案, 按照该设置方案构造无线半帧; 用户设备与基站利用无 线半帧进行数据传输。
至此, 本实施例提供的方法流程结束。 依照本实施例中的流程, 预 先建立了对应关系, 这样在实际进行无线帧设置时, 大大简化了设置过 程。 同时, 釆用表 3和表 4所示的简化设置方案, 既能满足多粒度覆盖 范围的灵活调整以及对不同兼容性的要求, 同时尽量少地占用基站和用 户设备的存储空间, 因为众多的设置方案将导致存储空间的大量占用, 基站通知用户所选的设置方案时尽量少地占用信息比特。
对于实施例二, 已经根据 UpPTS 简化, 保证覆盖, 保证兼容等特 点进行了优化。 但实施例一中基站是对总的可能配置进行指示的。 一般 来说, TDD系统的上下行时隙比例是必须告知的信息。 换句话说, 系统 进行特殊时隙配置时, 时隙比例是已知的, 那么对于实施例一中表 3和 表 4的各种配置情况, 可以根据时隙比例进行子集分割, 那么, 在进行 指示时, 可以进一步降低指示所需要的比特数。
具体地,将表 3和表 4中的对应关系按照不同的兼容性要求进行子 集划分, 为不同的子集对应设置子集编号, 并在各个子集内为不同的 GP时隙、 DwPTS时隙和 UpPTS时隙长度对应设置配置编号;基站在保 存对应关系时, 以子集为单位进行; 类似地, 用户设备也以子集为单位 保存不同的 GP时隙、 DwPTS时隙和 UpPTS时隙长度及对应的编号。 基站根据根据当前覆盖范围和兼容性要求确定对应的 GP时隙、 DwPTS 时隙和 UpPTS时隙的长度时,首先根据当前兼容性要求,找到对应的子 集,在该子集中确定当前覆盖范围对应的 GP时隙、 DwPTS时隙和 UpPTS 时隙的长度, 并将对应的子集编号和配置编号发送给用户设备。 用户设 备接收子集编号和配置编号, ^据子集编号确定对应的子集, 在该子集 中根据接收的配置编号确定对应的 GP时隙、 DwPTS时隙和 UpPTS时 隙长度, 对无线半帧的特殊区域进行设置, 并利用设置后的无线半帧与 基站进行数据传输。
例如, 划分子集后的对应关系可以如表 5和表 6所示。 其中, 表 5 是针对短 CP的情况, 表 6是针对长 CP的情况。 以表 5为例进行说明, 第一行表示 TD-SCDMA系统的兼容性要求, 共分为四类, 相应地, 将 对应关系分为四个子集, 如表 5中各种时隙比例所在列所示。 以下行和 上行比例 4: 3 为例, 该兼容性要求对应的列表示该子集中的各种时隙 长度设置方案。 其中, 由于 GP时隙长度统一在最左列表示, 因此 4: 3 所在列标出的时隙长度设置方案中仅列出了 DwPTS时隙和 UpPTS时隙 的长度。
Figure imgf000020_0001
表 5
Figure imgf000020_0002
4 6 2 2 6 3 5 3 5
5 5 2 2 5 2 5 2 5
8 2 2 2 2 1 3 2 2
10 2 0 2 0 2 0 2 0 表 6
在上述过程中, 进行子集划分时根据对 TD-SCDMA系统的兼容性 要求进行, 可以将兼容性要求相同的划分为一个子集, 也可以将多个不 同兼容性要求的划分为一个子集,例如,如表 5和表 6所示,当 TD-SCDM 系统的下行和上行时隙比例为 6: 1和 3: 4时, 时隙长度的设置方案是 相同的, 这时可以将这两个兼容性要求对应的时隙长度设置方案划分在 一个子集内部。
另外, 在通知用户设备当前所釆用的时隙长度设置方案时, 前述提 到的是基站将子集编号和子集内的配置编号发送给用户设备的方式。 事 实上, 用户设备可能通过其他方式获知子集编号, 这种情况下, 基站可 以仅将子集内的配置编号发送给用户设备即可。 例如, LTE TDD系统的 基站必然将本系统下行和上行时隙比例通知用户设备, 如图 9可见, 当 釆用短 CP时, 如果 LTE TDD系统的下行和上行时隙比例为 3: 1 , 则 能够兼容的 TD-SCDMA系统的下行和上行时隙比例为 5: 2, 同时该兼 容性要求(兼容 TD-SCDMA系统下行和上行时隙比例为 5: 2 )唯一对 应一个子集, 那么用户设备事实上获得了 LTE TDD系统的下行和上行 时隙比例, 就相对于确定了子集编号。 这时, 不需要通知用户设备子集 编号, 只需要通知配置编号即可。 在基站选择时隙长度设置方案时, 当 对兼容性没有要求时, 可以首先兼容 TD-SCDMA系统的方案。
为每种时隙比例下, 短 CP时, 都满足 GP=1 , 2, 3, 4, 5, 10, 12; 长 CP时, 都满足 GP=1 , 2, 3, 4, 8, 10; 在实施例二所示的表 3 和表 4中, 优先选择兼容的方案。 这样, 长短 CP时都只需要 3比特来 指示。 另夕卜, 上述实施例二中表 3和表 4所列的特殊区域设置方案是以下 列 GP长度为前提得到的: 短 CP时, GP=1 , 2, 3, 4, 5, 10, 12; 长 CP时, GP=1 , 2, 3, 4, 8, 10。 当然, 也可以基于其他的 GP时隙长 度进行特殊区域的设置。 例如短 CP时, GP=1 , 2, 4, 5, 7, 10, 12; 长 CP时, GP=1 , 2, 4, 6, 8, 10; 此时, 仍然按照实施例二中的方式 建立对应关系, 记录各种不同的设置方案, 最后形成的具体特殊区域设 置方案会有所不同。 这里就不再赘述。
图 14为本发明实施例三中时分双工系统的数据传输方法总体流程 图。 如图 14所示, 该方法包括:
步骤 1401 , 预先针对不兼容和兼容 TD-SCDMA系统, 分别对应设 置一组特殊区域配置, 其中, 特殊区域配置包括: 以符号长度为单位的 保护间隔 GP时隙、 DwPTS时隙和 UpPTS时隙的长度。
本发明中特殊区域指第二类帧结构中, 5ms的无线半帧内三个特殊 时隙构成的区域。 本发明中, 特殊区域内 GP时隙长度可以以 OFDM符 号长度为粒度进行调整。
这里,之所以以 OFDM符号长度为单位设置 GP时隙长度,是因为 在 LTE TDD系统中釆用的编码调制方案为 OFDM调制或扩展的 OFDM 调制, 并且这两种调制方式的符号长度均相同, 为一个 OFDM符号为单 位, 因此以一个 OFDM符号为单位进行资源分配。在接下来的文字记载 中, 将一个 OFDM符号所占用的时长称为一个符号。
步骤 1402, 基站根据当前是否需要兼容 TD-SCDMA系统, 确定对 应设置的多个特殊区域配置。
步骤 1403, 基站根据当前覆盖范围和系统性能要求, 在步骤 1402 确定的多个特殊区域配置中选择一种, 并将选择的特殊区域配置发送给 用户设备。 步骤 1404,用户设备和基站根据步骤 1403中选择的特殊区域配置, 构造无线半帧进行数据传输。
至此, 本发明实施例三提供的数据传输方法流程结束。
在本发明实施例三提出的基站和用户设备组成的系统中,基站用于 预先针对不兼容和兼容 TD-CDMA系统,分别对应设置一组包括以符号 长度为单位的保护间隔 GP时隙、 DwPTS时隙和 UpPTS时隙长度的特 殊区域配置; 还用于根据当前是否需要兼容 TD-SCDMA系统, 确定对 应设置的一组特殊区域配置; 并根据覆盖范围和系统性能, 在所述确定 的一组特殊区域配置中选择一种, 并将选择的特殊区域配置发送给用户 设备; 根据选择的特殊区域配置构造无线半帧进行数据传输。
用户设备, 用于接收基站发送的特殊区域配置, 并根据该特殊区域 配置构造无线半帧进行数据传输。
由该过程可见, 本发明的方法 GP时隙长度的设置粒度减小, 从而 能够提供更灵活的不同等级覆盖, 提高传输效率。 同时, 针对与 TD-SCDMA系统的兼容性要求, 分别设置对应的特殊区域配置, 因此, 能够满足 LTE TDD系统与 TD-SCDMA系统的兼容性要求。 但由于 GP 时隙长度的灵活调整是在特殊区域范围内进行, 因此 GP时隙长度调整 范围受特殊区域的时长限制, 也就是该无线半帧所支持的最大覆盖范围 受特殊区域的时长限制。 优选地, 相比于图 1所示的帧结构, 加长特殊 区域的时长, 从而能够将 GP时隙长度的调制范围扩大, 进而扩大最大 覆盖范围。 当然, 由于无线半帧的长度是固定的, 因此特殊区域时长的 变化会影响到其他常规时隙的时长。 在下面釆用图 7所示的一种新的无 线帧结构为例, 对本发明实施例三的实现方式进行具体说明。 图 15 为 本发明实施例三中时分双工系统的数据传输方法具体流程图。 如图 15 所示, 该方法包括: 步骤 1501 , 针对不兼容和兼容 TD-SCDMA系统的情况, 分别对应 设置一组特殊区域配置。
实际应用中, 在 LTE TDD 系统的基站覆盖范围内, 可能存在 TD-SCDMA网络,为保证两个网络的信号质量,在设置 GP时隙、 DwPTS 时隙和 UpPTS 时隙长度时, 需要考虑两个系统的兼容性。 当然, 如果 LTE TDD系统的基站覆盖范围内不存在 TD-SCDMA网络, 那么在进行 特殊区域配置时, 可以不考虑兼容性要求来进行。
基于上述考虑, 本实施例中, 首先将特殊区域配置方案分为兼容 TD-SCDMA 系统与不兼容 TD-SCDMA 系统配置两类。 不兼容 TD-SCDMA 系统时, 不必受兼容性的约束, 可以完全从性能、 实现复 杂度等方面来设置特殊区域配置方案; 而兼容 TD-SCDMA系统时, 只 能在兼容的限制下, 根据兼容的 TD-SCDMA系统的下行上行时隙比例 进行设置。 这样, 使得未来的系统可根据是否有兼容性需求, 来选择最 优的方案。
具体地, 通过下述两个分步骤进行两类特殊区域配置的设置: 步骤 1501a, 针对不兼容 TD-SCDMA系统的情况, 对应设置一组 特殊区域配置, 并为特殊区域配置进行编号。
这里, 当没有兼容性要求时, 可以根据系统性能及方案复杂度等来 设计。 考虑图 7所示的特殊区域的结构与内容, 当符号釆用短 CP和长
CP时, 设置的特殊区域配置分别如表 7和表 8所示。
Figure imgf000024_0001
4 8+4+2
5 7+5+2
6 6+6+2
7 5+7+2
8 4+8+2
9 3+9+2
10 2+10+2
11 1+11+2
12 2+12+0
13 1+13+0
表 7
GP时隙长度 DwPTS时隙长度 + GP时隙长度
(付 ) + UpPTS时隙长度(符号)
0 10+0+2
1 9+1+2
2 8+2+2
3 7+3+2
4 6+4+2
5 5+5+2
6 4+6+2
7 3+7+2
8 2+8+2
9 1+9+2
10 2+10+0
11 1+11+0
表 8
当釆用短 CP时,如表 7所示的多个特殊区域配置方案中, GP时隙 长度有 14种选择, 保证了各种覆盖范围, 并且不同等级的覆盖范围间 的级差为一个符号对应的覆盖范围, 相对于背景技术中的方式, 级差大 大降低。 同时,由表 7可以看出,该方案的实现简单。具体地,一方面,UpPTS 时隙长度只有 0个符号和 2个符号两种情况,这是因为考虑到当 UpPTS 时隙长度不同时,具体 UpPTS时隙设计可能比较困难,例如导频和控制 信道的设计等, 因此将 UpPTS 时隙长度限制为两种选择, 只需要对 UpPTS时隙长度为 2个符号时进行设计; 另一方面, 通过依次打掉一个 DwPTS时隙占用的符号来扩展 GP时隙长度, 不需要改变 DwPTS的导 频等设计。
对于表 8中釆用长 CP的情况与表 1中相同, 这里就不再赘述。 接下来, 为上述表 7中示出的所有特殊区域配置方案进行编号, 由 于一共有 14种方案, 因此可以由 4比特表示; 为上述表 8示出的所有 特殊区域配置方案进行编号, 由于一共有 12种方案, 因此也可以由 4 比特表示。 将表 7和表 8所示的特殊区域配置方案与其对应的编号保存 在基站和用户设备中。
步骤 1501b, 针对兼容 TD-SCDMA系统的情况, 对应设置特殊区 域配置方案, 并为特殊区域配置进行编号。
所谓兼容性是指, 在两个系统同时存在的区域内, 两种系统的上下 行关系需要保持一致, 即上行与下行切换点对齐, 从而保证两个系统间 不互相干扰。由于 LTE TDD系统是 TD-SCDMA系统的演进系统,因此, 一般是在区域内先存在 TD-SCDMA的系统, 应用本发明实施例的方法 时, 在 LTE TDD系统无线帧设计时, 能够与 TD-SCDMA系统兼容。
具体地, TD-SCDMA 系统的无线帧结构与背景技术中描述的图 2 所示的帧结构相同。 其中, 共存在六种上下行时隙比例关系和对应的上 下行切换点位置。 所谓与 TD-SCDMA 系统的兼容性要求即指: TD-SCDMA系统的下行上行时隙比例的数值。
由于 TD-SCDMA的 GP时隙长度为 75us, 因此为保证兼容性, 需 要满足两方面的条件:一、 LTE TDD系统的 GP时隙长度不能小于 75us, 以 OFDM符号为单位计算, 当釆用短 CP时, LTE TDD系统的 GP时隙 长度至少为两个 OFDM符号, 当釆用长 CP时, LTE TDD系统的 GP时 隙长度至少为一个 OFDM符号; 二、上下行资源所占用时长间的比例关 系要与 TD-SCDMA系统中一致 , 考虑到这一点 , 在进行 LTE TDD系统 中 GP时隙、 DwPTS时隙和 UpPTS时隙长度设置时, 还需要进一步根 据常规时隙的结构进行, 具体该结构包括常规时隙的时长以及与特殊区 域的位置关系等。
如前所述本实施例中常规时隙的结构如图 7所示。 两个相邻的常规 时隙作为一个子帧, 在进行资源分配时一个子帧中的两个常规时隙要么 均为上行时隙, 要么均为下行时隙。 根据确定的 TD-SCDMA系统的下 行上行时隙比例, 在满足上述兼容性条件(即上下行切换点一致, LTE TDD系统中的 GP时隙覆盖 TD-SCDMA系统中的 GP时隙 )的情况下, 可以得到各类可能的特殊区域配置方案。 为简化描述, 下面以满足最小 覆盖要求下 (即 GP时隙长度为 2或 1 )得到各种特殊区域配置方案的 方式为例进行说明。
根据 TD-SCDMA系统的各种下行上行时隙比例, 在满足最小覆盖 要求时, 若釆用短 CP, 则可以得到图 16所示的不同的特殊区域配置方 案, 包括 GP时隙、 DwPTS时隙和 UpPTS时隙长度设置。
在图 16中, 第一行为 TD-SCDMA系统的帧结构示意, 其中标注了 不同的上下行比例下的切换点位置。 如, 在该帧结构示意上方标有 6: 1 表示下行和上行时隙的比例为 6: 1 , 上下行切换点为 6: 1对应的垂直 虚线。 第二行到第七行分别代表 TD-SCDMA系统的不同时隙比例对应 的 LTE TDD系统无线半帧设置情况。
具体地, 在第二行到第七行中, 标注为 D的表示下行子帧(两个常 规时隙构成的子帧), 标注为 U的表示上行子帧, 阴影部分表示特殊区 域。 其中, 釆用短 CP时, 特殊区域包括 14个符号, 在该特殊区域下方 进行表示, 该特殊区域内, 1区表示 DwPTS时隙, 可以看作下行时隙, 2区表示 GP时隙, 3区表示 UpPTS时隙, 可以看作下行时隙。 由图 16 可见, 当 TD-SCDMA系统的下行与上行时隙比例为 6: 1时, LTE TDD 系统可以釆用第一行的时隙设置方式, 即 GwPTS时隙占用 1个 OFDM 符号, GP时隙占用 2个 OFDM符号, UpPTS时隙占用 11个 OFDM符 号, 这样, LTE TDD 系统中的上下行切换点 (特殊区域的末尾) 与 TD-SCDMA系统中上下行切换点一致, 同时 GP时隙覆盖 TD-SCDMA 系统中的 GP时隙。 由图可见, 在其他时隙比例下按照图 16所示的方式 设置也满足上述条件, 这里就不再一一详述。
图 16中所示的 LTE TDD系统无线半帧中 GP时隙、 DwPTS时隙和 UpPTS时隙长度设置也可以用表 9来表示。 其中, 如果 TD-SCDMA系 统的下行和上行时隙比例为 1: 6, 则按照本实施例的方式, LTE TDD 系统对应图 16中的第二行, 显然这时不存在传输下行数据的常规时隙, 因此在实际应用中不会釆用这种特殊区域配置, 于是在表 9中未包括此 种情况。
Figure imgf000028_0001
表 9
类似地, 根据兼容性要求, 在满足最小覆盖要求时, 若釆用短 CP, 则可以得到图 17所示的多种特殊区域配置,具体包括 GP时隙、 DwPTS 时隙和 UpPTS时隙长度设置方式。将图 17所示的设置方式可以用表 10 TD-SCDMA系统的
时隙比例 (下: 上) DwPTS(S) GP(S) UpPTS(S)
2: 5 5 1 6
3: 4, 6: 1 1 2 9
4: 3 9 1 2
5: 2 5 2 5
表 10
如图 17所示, 在兼容 TD-SCDMA时隙比例为 4: 3时, LTE TDD 系统无线半帧中 UpPTS 的第一个符号已经进入了 TD-SCDMA 系统中 GP时隙的范围, 在极端情况下, 此符号的部分会受到 TD-SCDMA系统 DwPTS的干扰。幸运的是得益于 OFDM的 CP结构,此干扰仅影响 CP, 因此, 此干扰是可以忽略的。
上述图 16、 图 17、 表 9和表 10中的特殊区域配置方案中 GP长度 为 1或 2个符号长度, 其所能够支持的覆盖范围具体为:
( 1 )短 CP时, 覆盖范围为 ( 2x71.4us/2 ) x3xl0+8=21.4km。
( 2 )长 CP 时, 对应于 GP 时隙长度为 1 个符号的覆盖范围为: ( 83.3us/2 ) x3xl0+8=12.5km; 对应于 GP时隙长度为 2个符号的覆盖 范围为: ( 2 X 83.3us/2 ) x3xl0+8=25km。
以上特殊区域配置方案是在最小覆盖要求时得出的。基于该最小覆 盖设置, 可以根据覆盖要求调整 GP时隙长度, 获得不同覆盖要求下的 时隙设置。 具体地, 可以根据覆盖范围的需要, 基于该最小覆盖设置, 扩展 GP时隙长度, 即打掉 GP时隙相邻的 DwPTS时隙或 UpPTS时隙 例如, 当釆用短 CP时, 覆盖范围扩大一级, 也就是使 GP时隙长 度为 3个 OFDM符号,那么基于图 9所示设置方式中的第三行(即兼容 下行与上行时隙 5: 2的情况), 可以有两种设置方式: 一、 将 GP时隙左边的一个 OFDM符号也作为 GP时隙, 从而使 GP时隙占用 3个符号, 这时, DwPTS时隙占用 5个符号, UpPTS时隙 占用 6个符号;
二、 将 GP时隙右边的一个符号也作为 GP时隙, 从而使 GP时隙 占用 3个符号, 这时, DwPTS时隙占用 6个符号, UpPTS时隙占用 5 个符号。
以此类推, 可以得到很多具体的特殊区域配置方案。 如果 DwPTS 时隙配置为最小长度 80.57us,同时 UpPTS时隙配置为最小长度 141.66us (设 GT为 8.33us ),此时对应的 GP时隙长度约为 777.8us, 支持最大约 116km的覆盖范围。 对应特殊大覆盖需求, 也可以将 PRACH放在特殊 区域之后的上行时隙实现, 进一步扩大 GP范围。
本实施例中, 基于 GP保护间隔大小及方案实现复杂度的考虑, 釆 用短 CP和长 CP时,兼容 TD-SCDMA系统的特殊区域配置分别如表 11 和表 12所示。
Figure imgf000030_0001
表 11
TD-SCDMA下 4:3 6:1, 3:4 5:2 2:5 行和上行时隙比
Dw:GP:Up Dw:GP:Up Dw:GP:Up Dw:GP:Up 9: 1 :2 1:2:9 5:2: 5 5: 1 :6
GP after puncture DwPTS UpPTS DwPTS UpPTS DwPTS UpPTS DwPTS UpPTS
1 9 2 5 6
2 8 2 1 9 5 5 4 6 3 7 2 4 5 3 6
4 6 2 3 5 2 6
8 2 2 2 2 2 2 表 12
以表 11为例说明该表中的内容。 第一行表示 TD-SCDMA系统的兼 容性要求, 共分为四类, 下行和上行时隙比例为分别 4: 3, 6: 1或 3: 4, 5: 2, 2: 5 , 每一种兼容性要求对应的列表示针对该兼容性要求的 特殊区域配置方案。 其中, 由于 GP时隙长度统一在最左列表示, 因此 4: 3所在列标出的时隙长度设置方案中仅列出了 DwPTS时隙和 UpPTS 时隙的长度。
如上所示, 针对兼容 TD-SCDMA系统的情况下, 特殊区域配置的 设置完成, 分别为对应短 CP和长 CP的表。 接下来, 为上述表 11中示 出的所有特殊区域配置方案进行编号, 由于一共有 14种方案, 因此可 以由 4比特表示; 为上述表 12示出的所有特殊区域配置方案进行编号, 由于一共有 13种方案, 因此也可以由 4比特表示。 将表 11和表 12所 示的特殊区域配置方案与其对应的编号保存在基站和用户设备中。
当然, 上述表 11和表 12是本实施例中一种示例性的设置, 当然, 也可以根据兼容性要求, 设置其他的配置方案。
上述步骤 1501a和 801b的操作可以并行执行。
步骤 1502, 基站判断当前是否需要兼容 TD-SCDMA系统, 如果不 需要兼容, 则执行步骤 1503, 如果需要兼容, 则执行步骤 1504。
步骤 1503, 确定不需要兼容 TD-SCDMA系统的情况下, 预先设置 的一组特殊区域配置方案, 并执行步骤 1505。
如前所述,步骤 1501中,在不需要兼容 TD-SCDMA系统的情况下, 对应设置的特殊区域配置方案如表 7和表 8所示。 因此, 基站和用户设 备若釆用短 CP, 则本步骤中确定表 7为所述预先设置的所有特殊区域 配置方案; 基站和用户设备若釆用长 CP, 则本步骤中确定表 8为所述 预先设置的所有特殊区域配置方案。
步骤 1504, 确定需要兼容 TD-SCDMA系统的情况下, 预先设置的 一组特殊区域配置方案, 并执行步骤 1505。
如前所述, 步骤 1501中, 在需要兼容 TD-SCDMA系统的情况下, 对应设置的特殊区域配置方案如表 11和表 12所示。 因此, 基站和用户 设备若釆用短 CP, 则本步骤中确定表 11为所述预先设置的所有特殊区 域配置方案; 基站和用户设备若釆用长 CP, 则本步骤中确定表 12为所 述预先设置的所有特殊区域配置方案。
步骤 1505,根据当前覆盖范围和系统性能要求,在步骤 1503或 1504 中确定的所有特殊区域配置中选择一种。
本步骤中, 根据覆盖范围, 能够确定 GP时隙的最小长度, 具体方 式为: 根据覆盖范围计算所需的下行至上行切换 GP 长度 TGP=2*Rcell/C, 将 GP时隙的最小长度设置为占用 N个符号, 并且计 算得到的 GP长度小于 N个符号的时长、 大于 N-1个符号的时长。
接下来, 在步骤 1503或 1504中确定的所有特殊区域配置中根据该 GP时隙的最小长度选择一种,如果有多个配置均满足该 GP时隙长度的 最小要求, 则可以进一步根据系统性能要求, 如上下行数据传输的业务 要求等进行选择。
步骤 1506, 基站通知用户设备是否需要兼容 TD-SCDMA系统, 并 将步骤 1505中选择的特殊区域配置对应的编号发送给用户设备。
本步骤中, 本步骤中, 基站可以通过高层信令的方式, 例如广播信 道等, 将选择的特殊区域配置发送给用户设备。
基站将选择的特殊区域配置发送给用户设备的方式为: 一方面将是 否需要兼容 TD-SCDMA系统的信息发送给用户设备, 另一方面, 将选 择的特殊区域配置对应的编号发送给用户设备。 具体地, 可以利用 lbit表示是否需要兼容 TD-SCDMA系统, 例如, 该比特置为 1表示需要兼容, 该比特置为 0表示不需要兼容; 将编号发 送给用户设备时, 根据前述步骤 1501a和 1501b中设置的编号可见, 对 于兼容和不兼容的状况, 均可以利用 4比特传输编号信息。 综合上述两 方面的信息, 一共可以釆用 5比特将选择的特殊区域配置发送给用户设 备。
步骤 1507, 用户设备接收基站发送的通知和编号确定特殊区域配 置, 并构造无线半帧与基站进行数据传输。
本步骤中, 用户设备根据基站发送的是否需要兼容 TD-SCDMA系 统的信息确定在保存表 7、 表 8还是表 11、 表 12中查找特殊区域配置。 具体地, 当收到的信息表明不需要兼容时, 则在表 7和表 8中查找; 当 收到的信息表明需要兼容时, 则在表 11和表 12中查找。
进一步根据当前釆用的是短 CP还是长 CP确定具体釆用的查找表。 接下来, 根据接收的编号在最终确定的查找表中查找对应的特殊区 域配置方案, 并利用该特殊区域配置构造无线半帧与基站进行数据传 输。
至此, 本发明实施例三中的方法流程结束。
在上述实施例三中, 针对不兼容 TD-SCDMA 系统的情况得到表 7 和表 8所示的一组特殊区域配置; 针对兼容 TD-SCDMA系统的情况得 到表 11和表 12所示的一组特殊区域配置。 这两组特殊区域配置中均包 括十几种方案, 需要利用 4比特信息传输特殊区域配置的编号。
为进一步减少每组种特殊区域配置的方案数, 节省传输编号所需的 比特数, 在上述通过步骤 1501a和 1501b进行特殊区域配置的设置时, 还可以进一步限定 GP时隙长度, 从而减少总的特殊区域配置的方案数 量。 具体地, 针对于步骤 1501a中建立的表 7和表 8, 可以进一步限制 GP时隙长度, 例如, 当釆用短 CP时, 针对表 7, 可以限制 GP时隙长 度为 0,1,2,3,4,5,11或 13个符号, 得到表 13所示的特殊区域配置:
Figure imgf000034_0001
表 13
当釆用表 13所示的特殊区域配置时,共 8种方案,特殊区域配置的 编号只需要 3比特表示。
或者, 也可以针对表 7限制 GP时隙长度为 1,2,3或 11个符号, 得 到表 14所示的特殊区域配置:
Figure imgf000034_0002
表 14
当釆用表 14所示的特殊区域配置时,共 4种方案,特殊区域配置的 编号只需要 2比特表示。
或者, 也可以针对表 7限制 GP时隙长度为 1,3,5或 11个符号, 得 到表 15所示的特殊区域配置:
Figure imgf000035_0001
表 15
当釆用表 15所示的特殊区域配置时,共 4种方案,特殊区域配置的 编号只需要 2比特表示。
当釆用长 CP时, 针对表 2, 可以限制 GP时隙长度为 0,1,2,3,4,5,8 或 11个符号, 得到表 16所示的特殊区域配置:
Figure imgf000035_0002
表 16
当釆用表 16所示的特殊区域配置时,共 8种方案,特殊区域配置的 编号只需要 3比特表示。
或者, 也可以针对表 8限制 GP时隙长度为 1,2,3或 11个符号, 得 到表 17所示的特殊区域配置:
GP时隙长度 DwPTS时隙长度 + GP时隙长度 (付 ) + UpPTS时隙长度(符号)
1 9+1+2
2 8+2+2
3 7+3+2
11 1+11+0
表 17
当釆用表 17所示的特殊区域配置时,共 4种方案,特殊区域配置的 编号只需要 2比特表示。
或者, 也可以针对表 8限制 GP时隙长度为 1,2,3或 8个符号, 得到 表 18所示的特殊区域配置:
Figure imgf000036_0001
表 18
当釆用表 18所示的特殊区域配置时,共 4种方案,特殊区域配置的 只需要 2比特表示。
针对于步骤 1501b中建立的表 11和表 12, 也可以进一步限制 GP 时隙长度, 例如, 当釆用短 CP时, 针对表 11 , 可以限制 GP时隙长度 为 2或 11个符号, 得到表 19所示的特殊区域配置:
Figure imgf000036_0002
表 19
当釆用表 19所示的特殊区域配置时,共 5种方案,特殊区域配置的 需要 3比特表示。
或者, 也可以针对表 11限制 GP时隙长度为最小, 得到表 20所示 的特殊区域配置:
Figure imgf000037_0001
表 20
事实上,表 20的配置即前述最小覆盖范围下釆用短 CP时表 9的配 置, 当釆用该特殊区域配置时, 共 4种方案, 特殊区域配置的编号只需 要 2比特表示。
当釆用长 CP时, 针对表 11 , 可以限制 GP时隙长度为 1或 2或 8 个符号, 得到表 21所示的特殊区域配置:
Figure imgf000037_0002
表 21
当釆用表 21所示的特殊区域配置时,共 5种方案,特殊区域配置的 需要 3比特表示。
或者, 也可以针对表 12限制 GP时隙长度为最小, 得到表 22所示 的特殊区域配置:
Figure imgf000037_0003
2 8 2 1 9 5 5
表 22
事实上, 表 22的配置即前述最小覆盖范围下釆用长 CP时表 10的 配置, 当釆用该特殊区域配置时, 共 4种方案, 特殊区域配置的编号只 需要 2比特表示。
如上, 可以任意根据系统性能需要限定 GP时隙长度, 从而简化特 殊区域配置的可选方案数量, 进一步减少传输编号信息所需的比特数, 当然限定 GP时隙长度则意味着增大不同覆盖等级间的级差, 但无论如 何, 该级差一定小于背景技术所述方案中的级差。
在如上方案中,特殊区域编号所需的比特数分别为 3比特或 2比特, 再加上传输是否兼容信息的 1比特, 可以得到基站通知用户设备所选特 殊区域配置时, 需要 4比特或 3比特。 根据上述原则, 可以综合考虑覆 盖范围的级差需求和系统资源的规划, 进行步骤 1501 中可选特殊区域 配置方案的设置。
上述本发明实施例一、 实施例二和实施例三中的方法流程均可以在 图 6所示的系统中实施。
以上仅为本发明的较佳实施例而已, 并非用于限定本发明的保护范 围。 凡在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进 等, 均应包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种时分双工系统的数据传输方法, 其特征在于, 该方法包括: 基站根据当前的覆盖范围, 在无线半帧的特殊区域占用的时长范围 内, 以 OFDM符号长度为单位设置保护间隔 GP时隙、 DwPTS时隙和 UpPTS时隙的长度, 将设置结果发送给用户设备;
用户设备和基站利用所述无线半帧进行数据传输。
2、 根据权利要求 1 所述的方法, 其特征在于, 所述设置保护间隔 GP时隙、 DwPTS时隙和 UpPTS时隙的长度包括: 所述 DwPTS时隙、 GP时隙与 UpPTS时隙的总长度保持为 1ms。
3、 根据权利要求 1所述的方法, 其特征在于, 所述设置 DwPTS时 隙和 UpPTS时隙的长度包括:所述 DwPTS时隙长度至少为 1个 OFDM 符号, 所述 UpPTS时隙长度至少为 2个 OFDM符号。
4、 根据权利要求 1所述的方法, 其特征在于, 所述设置 DwPTS时 隙和 UpPTS时隙的长度包括:所述 DwPTS时隙长度至少为 2个 OFDM 符号。
5、 根据权利要求 1所述的方法, 其特征在于, 该方法进一步包括: 预先根据基站的不同覆盖范围和对所述 TD-SCDMA 系统的兼容性要 求, 建立基站的不同覆盖范围和不同的兼容性要求与 GP时隙、 DwPTS 时隙和 UpPTS时隙长度间的对应关系, 并将该对应关系保存在基站中; 所述设置 GP时隙、 DwPTS时隙和 UpPTS时隙的长度为: 基站根 据保存的所述对应关系, 确定当前覆盖范围和兼容性要求对应的 GP时 隙、 DwPTS时隙和 UpPTS时隙的长度。
6、根据权利要求 5所述的方法, 其特征在于, 在建立所述对应关系 后, 该方法进一步包括: 在基站中为所述所有不同的 GP时隙、 DwPTS 时隙和 UpPTS时隙长度组合对应设置编号,并在用户设备中保存不同的 GP时隙、 DwPTS时隙和 UpPTS时隙长度组合, 并进行统一编号;
所述将设置结果发送给用户设备为:基站将确定的 GP时隙、 DwPTS 时隙和 UpPTS时隙长度对应的编号发送给用户设备。
7、根据权利要求 5所述的方法, 其特征在于, 所述建立基站的不同 覆盖范围和不同的兼容性要求与 GP时隙、 DwPTS时隙和 UpPTS时隙 长度间的对应关系包括:
当需要兼容 TD-SCDMA 系统时, 根据所述无线半帧的常规时隙结 构, 计算不同的 TD-SCDMA系统的上下行时隙比例、 基站的覆盖范围 所对应的 GP时隙、 DwPTS时隙和 UpPTS时隙的长度;
当不需要兼容 TD-SCDMA 系统时, 根据所述无线半帧的常规时隙 结构, 计算不同的基站的覆盖范围所对应的 GP 时隙、 DwPTS 时隙和 UpPTS时隙的长度。
8、 根据权利要求 7 所述的方法, 其特征在于, 所述计算不同的 TD-SCDMA系统的上下行时隙比例、基站的覆盖范围所对应的 GP时隙、
DwPTS时隙和 UpPTS时隙的长度为:
针对 OFDM符号循环前缀 CP的不同类型,在基站最小覆盖范围下, 建立不同的 TD-SCDMA系统的上下行时隙比例和 GP时隙、 DwPTS时 隙和 UpPTS时隙的长度间的对应关系;
根据不同的覆盖范围要求, 基于基站最小覆盖范围下的所述对应关 系, 扩展 GP时隙长度, 建立不同覆盖范围和所述上下行时隙比例与 GP 时隙、 DwPTS时隙和 UpPTS时隙的长度间的对应关系。
9、根据权利要求 5所述的方法, 其特征在于, 在保存所述对应关系 前进一步包括: 将所述对应关系按照不同的 TD-SCDMA系统上下行时 隙比例的兼容性进行子集划分, 为不同的子集设置编号, 并在各个子集 内为所述不同的 GP时隙、 DwPTS时隙和 UpPTS时隙长度对应设置配 置编号;
所述保存对应关系时以子集为单位进行, 并进一步在用户设备中以 子集为单位保存不同的 GP时隙、 DwPTS时隙和 UpPTS时隙长度组合 对应的配置编号。
10、 根据权利要求 9所述的方法, 其特征在于, 所述将设置结果发 送给用户设备为: 将确定的 GP时隙、 DwPTS时隙和 UpPTS时隙长度 组合对应的配置编号和所在子集的编号发送给用户设备。
11、 根据权利要求 9所述的方法, 其特征在于, 所述将设置结果发 送给用户设备包括: 基站仅将确定的 GP时隙、 DwPTS时隙和 UpPTS 时隙长度组合对应的配置编号发送给用户设备。
12、 根据权利要求 7所述的方法, 其特征在于, 所述常规时隙结构 为: 一个无线半帧中包括 8个长度为 0.5ms的常规时隙, 每两个常规时 隙配对组成一个子帧;
当所述 CP类型为短 CP时, 所述在基站最小覆盖范围下,建立的所 述上下行时隙比例和 GP时隙、 DwPTS时隙和 UpPTS时隙的长度间的 ^"应关系为:
Figure imgf000041_0001
当所述 CP类型为长 CP时, 所述在基站最小覆盖范围下,建立的所 述上下行时隙比例和 GP时隙、 DwPTS时隙和 UpPTS时隙的长度间的 ^"应关系为:
Figure imgf000042_0001
13、 根据权利要求 5所述的方法, 其特征在于, 所述常规时隙结构 为: 一个无线半帧中包括 8个长度为 0.5ms的常规时隙, 每两个常规时 隙配对组成一个子帧;
当 OFDM符号中釆用短 CP时, 所述建立的不同覆盖范围和不同的 兼容性要求与 GP时隙、 DwPTS时隙和 UpPTS时隙长度间的对应关系 为:
Figure imgf000042_0002
<21.4 km 兼容 2:5的下上行时隙 5个符号 2个符号 7个符号 比例或不兼容
<21.4 km 兼容 5:2的下上行时隙 6个符号 2个符号 6个符号 比例或不兼容
<32.1 km 兼容 4:3和 1:6的下上 9个符号 3个符号 2个符号 行时隙比例或不兼容
<32.1 km 兼容 6:1和 3:4的下上 4个符号 3个付 Τ 7个符号 行时隙比例或不兼容
<32.1 km 兼容 5:2和 2:5的下上 5个符号 3个符号 6个符号 行时隙比例或不兼容
<42.8 km 兼容 4:3和 1:6的下上 8个符号 4个符号 2个符号 行时隙比例或不兼容
<42.8 km 兼容 5:2和 2:5的下上 4个符号 4个符号 6个符号 行时隙比例或不兼容
<53.5 km 兼容 4:3和 1:6的下上 7个符号 5个符号 2个符号 行时隙比例或不兼容
<53.5 km 兼容 5:2和 2:5的下上 3个符号 5个符号 6个符号 行时隙比例或不兼容
<107 km 兼容所有时隙比例或 2个符号 10个符号 2个符号 不兼容
<128.4 km 兼容所有时隙比例或 2个符号 12个符号 0个符号 不兼容
当 OFDM符号中釆用长 CP时, 所述建立的不同覆盖范围和不同的 兼容性要求与 GP时隙、 DwPTS时隙和 UpPTS时隙长度间的对应关系 为:
Figure imgf000043_0001
比例或不兼容
<24.8km 兼容 4:3和 1:6的下上 8个符号 2个符号 2个符号 行时隙比例或不兼容
<24.8km 兼容 5:2和 2:5的下上 5个符号 2个符号 5个符号 行时隙比例或不兼容
<24.8km 兼容 3:4和 6:1的下上 1个符号 2个符号 9个符号 行时隙比例或不兼容
<37.2km 兼容 4:3和 1:6的下上 7个符号 3个符号 2个符号 行时隙比例或不兼容
<37.2km 兼容 5:2和 2:5的下上 4个符号 3个付 Τ 5个符号 行时隙比例或不兼容
<37.2km 兼容 2:5的下上行时隙 3个符号 3个符号 6个符号 比例或不兼容
<49.6km 兼容 5:2和 2:5的下上 6个符号 4个符号 2个符号 行时隙比例或不兼容
<49.6km 兼容 4:3和 1:6的下上 3个符号 4个符号 5个符号 行时隙比例或不兼容
<99.2km 兼容 4:3、 1:6、 2:5和 2个符号 8个符号 2个符号
5:2的下上行时隙比例
或不兼容
<124km 兼容 4:3、 1:6、 2:5和 2个符号 10个符号 0个符号
5:2的下上行时隙比例
或不兼容
14、根据权利要求 1所述的方法, 其特征在于, 该方法进一步包括: 预先针对不兼容和兼容 TD-SCDMA 系统, 分别对应设置一组包括 以符号长度为单位的保护间隔 GP时隙、 DwPTS时隙和 UpPTS时隙长 度的特殊区域配置;
所述基站根据当前的覆盖范围, 在无线半帧的特殊区域占用的时长 范围内, 以 OFDM符号长度为单位设置保护间隔 GP时隙、 DwPTS时 隙和 UpPTS时隙的长度的步骤包括:
基站根据当前是否需要兼容 TD-SCDMA系统, 确定对应设置的一 组特殊区域配置; 并根据当前覆盖范围和系统性能要求, 在所述确定的 一组特殊区域配置中选择一种。
15、 根据权利要求 1所述的方法, 其特征在于, 所述无线半帧的常 规时隙结构为: 一个无线半帧中包括 8个长度为 0.5ms的常规时隙, 每 两个常规时隙配对组成一个子帧;
当所述符号釆用短 CP时, 所述针对不需要兼容 TD-SCDMA系统, 对应设置的一组特殊区域配置为:
Figure imgf000045_0001
当所述符号釆用短 CP时, 所述针对不需要兼容 TD-SCDMA系统, 对应设置的多个特殊区域配置为:
Figure imgf000045_0002
3 7 2
2 8 2
1 9 2
2 10 0
1 11 0 其中, DwPTS时隙、 GP时隙和 UpPTS时隙的长度均以符号为单位。
16、根据权利要求 14所述的方法, 其特征在于, 所述对应设置一组 特殊区域配置时进一步根据 GP时隙长度的限制进行。
17、根据权利要求 16所述的方法, 其特征在于, 所述无线半帧的常 规时隙结构为: 一个无线半帧中包括 8个长度为 0.5ms的常规时隙, 每 两个常规时隙配对组成一个子帧;
所述符号釆用短 CP;
所述 GP时隙长度的限制为: GP时隙长度只能为 0或 1或 2或 3或 4或 5或 11或 13个符号,所述针对不需要兼容 TD-SCDMA系统,对应 设置的一组特殊区域配置为:
Figure imgf000046_0001
或者, 所述 GP时隙长度的限制为: GP时隙长度只能为 1或 2或 3 或 11个符号; 所述针对不需要兼容 TD-SCDMA系统, 对应设置的多个 特殊区域配置为: DwPTS时隙长度 GP时隙长度 UpPTS时隙长度
11 1 2
10 2 2
9 3 2
1 11 2 或者, 所述 GP时隙长度的限制为: GP时隙长度只能为 1或 3或 5 或 11个符号, 所述针对不需要兼容 TD-SCDMA系统, 对应设置的多个 特殊区域配置为:
Figure imgf000047_0001
其中, DwPTS时隙、 GP时隙和 UpPTS时隙的长度均以符号为单位。
18、根据权利要求 16所述的方法, 其特征在于, 所述无线半帧的常 规时隙结构为: 一个无线半帧中包括 8个长度为 0.5ms的常规时隙, 每 两个常规时隙配对组成一个子帧;
所述符号釆用长 CP;
所述对 GP时隙长度的限制为: GP时隙长度只能为 0或 1或 2或 3 或 4或 5或 8或 11个符号, 所述针对不需要兼容 TD-SCDMA系统, 对 应设置的多个特殊区域配置为:
Figure imgf000047_0002
5 5 2
2 8 2
1 11 0 或者, 所述对 GP时隙长度的限制为: GP时隙长度只能为 1或 2或 3或 11个符号, 所述针对当前不需要兼容 TD-SCDMA系统, 对应设置 的多个特殊区域配置为:
Figure imgf000048_0001
或者, 所述对 GP时隙长度的限制为: GP时隙长度只能为 1或 2或 3或 8个符号, 所述针对当前不需要兼容 TD-SCDMA系统, 对应设置 的多个特殊区域配置为:
Figure imgf000048_0002
其中, DwPTS时隙、 GP时隙和 UpPTS时隙的长度均以符号为单位。
19、 根据权利要求 14 所述的方法, 其特征在于, 针对需要兼容 TD-SCDMA 系统的情况, 对应设置一组特殊区域配置为: 根据 TD-SCDMA 系统的不同下行上行时隙比例和不同的覆盖要求, 设置所 述特殊区域配置。
20、 根据权利要求 19所述的方法, 其特征在于, 兼容 GP时隙长度 为 75us的 TD-SCDMA系统, 覆盖要求为最小覆盖下的一组特殊区域配 置为: 当釆用短 CP时:
Figure imgf000049_0001
其中, DwPTS时隙、 GP时隙和 UpPTS时隙的长度均以符号为单位。
21、根据权利要求 19所述的方法, 其特征在于, 所述特殊区域配置 5 进一步根据 GP时隙长度的限制进行。
22、 根据权利要求 21所述的方法, 其特征在于,
当所述符号釆用短 CP时, 所述 GP长度限制为: GP时隙长度为 2 或 3或 4或 5或 11个符号, 所述针对需要兼容 TD-SCDMA系统, 对应 设置的一组特殊区域配置为:
Figure imgf000049_0002
0 当所述符号釆用长 CP时, 所述 GP长度限制为: GP时隙长度为 1 或 2或 3或 4或 8个符号, 所述针对需要兼容 TD-SCDMA系统, 对应 设置的一组特殊区域配置为: TD-SCDMA系统的 4:3 6:1, 3:4 5:2 2:5 下行上行时隙比例
Dw:G rP:Up Dw:GP:Up Dw:GP:Up Dw:G rP:Up 9:1 :2 1:2:9 5:2: 5 5:1 :6
GP时隙长度 DwPTS UpPTS DwPTS UpPTS DwPTS UpPTS DwPTS UpPTS
1 9 2 5 6
2 8 2 1 9 5 5 4 6
3 7 2 4 5 3 6
4 6 2 3 5 2 6
8 2 2 2 2 2 2 其中, DwPTS时隙、 GP时隙和 UpPTS时隙的长度均以符号为单位。
23、根据权利要求 21所述的方法, 其特征在于, 当所述符号釆用短 CP时,所述 GP时隙长度的限制为: GP时隙长度只能为 2或 11个符号, 所述针对需要兼容 TD-SCDMA系统,对应设置的一组特殊区域配置为:
Figure imgf000050_0001
5 其中, DwPTS时隙、 GP时隙和 UpPTS时隙的长度均以符号为单位。
24、根据权利要求 21所述的方法, 其特征在于, 当所述符号釆用长 CP时,
所述 GP时隙长度的限制为: GP时隙长度只能为 1或 2或 8个符号, 所述针对需要兼容 TD-SCDMA系统,对应设置的多个特殊区域配置为:
Figure imgf000050_0002
0 其中, DwPTS时隙、 GP时隙和 UpPTS时隙的长度均以符号为单位。
25、 根据权利要求 14到 24中任一所述的方法, 其特征在于, 在预 先对应设置一组特殊区域配置后, 进一步分别为兼容和不兼容 TD-SCDMA 系统对应的一组特殊区域配置设置编号, 并在基站和用户 设备中保存所述特殊区域配置与编号的对应关系;
所述基站将选择的特殊区域配置发送给用户设备为: 基站通知用户 设备是否需要兼容 TD-SCDMA系统, 并将选择的特殊区域配置对应的 编号发送给用户设备;
所述用户设备根据选择的特殊区域配置构造无线半帧为: 用户设备 根据是否需要兼容 TD-SCDMA的信息,确定对应的多个特殊区域配置, 并根据接收的编号, 在确定的多个特殊区域配置中确定基站选择对应的 特殊区域配置, 并根据该特殊区域配置构造无线半帧。
26、 一种时分双工系统, 包括基站和用户设备, 其特征在于, 所述基站, 用于根据覆盖范围, 在无线半帧的特殊区域占用的时长 范围内, 以 OFDM符号为单位设置 GP时隙的长度, 并根据该 GP时隙 长度设置 DwPTS时隙和 UpPTS时隙的长度, 将设置结果发送给用户设 备; 利用所述无线半帧与用户设备进行数据传输;
所述用户设备, 用于接收所述基站发送的设置结果, 并利用所述无 线半帧与所述基站进行数据传输。
27、 根据权利要求 26所述的系统, 其特征在于, 所述基站包括: 对应关系存储单元, 用于预先根据基站的不同覆盖范围和对所述
TD-SCDMA 系统的兼容性要求, 建立基站的不同覆盖范围和不同的兼 容性要求与 GP时隙、 DwPTS时隙和 UpPTS时隙长度间的对应关系, 并存储所述对应关系;
选择单元, 用于根据当前覆盖范围和兼容性要求, 从所述对应关系 存储单元所存储的对应关系中选择出相应的 GP 时隙、 DwPTS 时隙和 UpPTS时隙的长度。
28、 一种时分双工系统, 包括基站和用户设备, 其特征在于, 所述基站, 用于预先针对是否需要兼容 TD-CDMA系统, 分别对应 设置一组包括以符号长度为单位的保护间隔 GP 时隙、 DwPTS 时隙和 UpPTS 时隙长度的特殊区域配置; 还用于根据当前是否需要兼容 TD-SCDMA 系统, 确定对应设置的一组特殊区域配置; 并根据覆盖范 围和系统性能, 在所述确定的一组特殊区域配置中选择一种, 并将选择 的特殊区域配置发送给用户设备; 根据选择的特殊区域配置构造无线半 帧进行数据传输;
所述用户设备, 用于接收基站发送的特殊区域配置, 并根据该特殊 区域配置构造无线半帧进行数据传输。
PCT/CN2008/072907 2007-11-02 2008-10-31 Procédé, appareil et système de transmission de données en duplexage par répartition temporelle WO2009059555A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP08846282.5A EP2216915B1 (en) 2007-11-02 2008-10-31 Time division duplexing data transmission
US12/741,020 US8457032B2 (en) 2007-11-02 2008-10-31 Method and apparatus for data transmission in a time division duplexing system
KR1020107012253A KR101093479B1 (ko) 2007-11-02 2008-10-31 시분할 듀플렉싱 데이터 전송 방법 및 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN 200710176798 CN101425844B (zh) 2007-11-02 2007-11-02 一种时分双工系统的数据传输方法和系统
CN200710176798.5 2007-11-02
CN200710177115.8 2007-11-09
CN2007101771158A CN101431364B (zh) 2007-11-09 2007-11-09 一种时分双工系统及其数据传输方法

Publications (1)

Publication Number Publication Date
WO2009059555A1 true WO2009059555A1 (fr) 2009-05-14

Family

ID=40625384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/072907 WO2009059555A1 (fr) 2007-11-02 2008-10-31 Procédé, appareil et système de transmission de données en duplexage par répartition temporelle

Country Status (4)

Country Link
US (1) US8457032B2 (zh)
EP (1) EP2216915B1 (zh)
KR (1) KR101093479B1 (zh)
WO (1) WO2009059555A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012019327A1 (en) * 2010-08-13 2012-02-16 Telefonaktiebolaget L M Ericsson (Publ) Automatic guard period adjustment in a base station for time division duplexed wireless communications
US20130176977A1 (en) * 2010-08-06 2013-07-11 Kyocera Corporation Wireless base station and wireless communication method
CN103210598A (zh) * 2010-08-13 2013-07-17 爱立信(中国)通信有限公司 基站中用于时分双工无线通信的自动保护期调整
CN110402576A (zh) * 2017-03-14 2019-11-01 英国电讯有限公司 数字用户线路收发器

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8537688B2 (en) * 2007-02-23 2013-09-17 Telefonaktiebolaget Lm Ericsson (Publ) Method and a device for enhanced performance in a cellular wireless TDD system
BRPI1009456B1 (pt) 2009-03-13 2021-11-03 Blackberry Limited Sistema e método de sincronização de recepção de retransmissão
US9485069B2 (en) * 2010-04-15 2016-11-01 Qualcomm Incorporated Transmission and reception of proximity detection signal for peer discovery
KR20150063604A (ko) * 2010-11-15 2015-06-09 노키아 솔루션스 앤드 네트웍스 오와이 서브­프레임 구성
WO2012134580A1 (en) * 2011-04-01 2012-10-04 Intel Corporation Flexible adjustment of uplink and downlink ratio configuration
CN102811191B (zh) 2011-05-31 2016-06-08 华为技术有限公司 一种数据传输方法和装置
US9036491B2 (en) 2011-08-12 2015-05-19 Sharp Laboratories Of America, Inc. Devices for converting a downlink subframe
US8934424B2 (en) 2011-09-29 2015-01-13 Sharp Laboratories Of America, Inc. Devices for reconfiguring a subframe allocation
US9602251B2 (en) 2012-01-27 2017-03-21 Sharp Kabushiki Kaisha Devices for reconfiguring uplink and downlink allocations in time domain duplexing wireless systems
CN103458513B (zh) * 2012-06-01 2016-09-14 华为技术有限公司 无线通信方法和基站及终端
WO2014019213A1 (en) * 2012-08-03 2014-02-06 Qualcomm Incorporated Subframe configurations for lte tdd systems
CN104904135A (zh) * 2012-10-05 2015-09-09 美国博通公司 用于半双工频分双工的方法、设备以及计算机程序
US20150085834A1 (en) * 2013-09-26 2015-03-26 Qualcomm Incorporated Time division long term evolution (td-lte) frame structure modification
CN106160838B (zh) * 2015-04-16 2020-02-07 电信科学技术研究院 一种传输数据的方法和设备
US10484989B2 (en) 2016-01-22 2019-11-19 Electronics And Telecommunications Research Institute Method and apparatus for receiving or transmitting data
US10623153B2 (en) 2016-02-03 2020-04-14 Intel IP Corporation Dynamic resource allocations and transmission schemes for XPUCCH (5G PUCCH)
CN107306450A (zh) 2016-04-20 2017-10-31 中国移动通信有限公司研究院 一种确定保护时隙的方法及设备、终端
WO2017200327A2 (en) 2016-05-19 2017-11-23 Samsung Electronics Co., Ltd. Method and apparatus for transmission and reception in wireless communication system supporting scalable frame structure
US10454657B2 (en) 2017-02-28 2019-10-22 Qualcomm Incorporated Narrowband time-division duplex frame structure for narrowband communications
US11064566B2 (en) * 2018-05-16 2021-07-13 Apple Inc. Symbol puncture for unlicensed narrowband internet of things (NB IoT)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1592147A (zh) * 2003-08-27 2005-03-09 西门子公司 在无线电通信系统中传送信号的方法
CN1913418A (zh) * 2005-08-08 2007-02-14 大唐移动通信设备有限公司 时分双工系统支持可变覆盖范围的方法
CN101005305A (zh) * 2006-01-17 2007-07-25 上海原动力通信科技有限公司 一种时分双工移动通信系统的传输方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10008653A1 (de) * 2000-02-24 2001-09-06 Siemens Ag Verbesserungen an einem Funkkommunikationssystem
EP1223776A1 (en) * 2001-01-12 2002-07-17 Siemens Information and Communication Networks S.p.A. A collision free access scheduling in cellular TDMA-CDMA networks
US7768953B2 (en) * 2001-10-19 2010-08-03 Interdigital Technology Corporation System for improved power savings during full DTX mode of operation in the downlink
CN100486144C (zh) * 2003-04-15 2009-05-06 大唐移动通信设备有限公司 多时隙cdma无线通信系统中提高传输速率的方法
KR100518600B1 (ko) * 2003-11-12 2005-10-04 삼성전자주식회사 가드 인터벌 및 고속 푸리에 변환 모드 검출기를 구비하는디지털 비디오 방송 수신기, 및 그 방법
EP1746743B1 (en) * 2005-07-21 2010-01-06 Mitsubishi Electric R&D Centre Europe B.V. Method for transmission in a TDD system with variable length guard period
CN100534027C (zh) 2005-08-17 2009-08-26 大唐移动通信设备有限公司 时分双工系统传输方法
WO2008053342A2 (en) * 2006-11-02 2008-05-08 Nokia Corporation Alternative time division duplex frame structure optimization
US20090125363A1 (en) * 2007-10-22 2009-05-14 Nokia Siemens Networks Oy Method, apparatus and computer program for employing a frame structure in wireless communication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1592147A (zh) * 2003-08-27 2005-03-09 西门子公司 在无线电通信系统中传送信号的方法
CN1913418A (zh) * 2005-08-08 2007-02-14 大唐移动通信设备有限公司 时分双工系统支持可变覆盖范围的方法
CN101005305A (zh) * 2006-01-17 2007-07-25 上海原动力通信科技有限公司 一种时分双工移动通信系统的传输方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2216915A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130176977A1 (en) * 2010-08-06 2013-07-11 Kyocera Corporation Wireless base station and wireless communication method
US8995408B2 (en) * 2010-08-06 2015-03-31 Kyocera Corporation Wireless base station and wireless communication method
WO2012019327A1 (en) * 2010-08-13 2012-02-16 Telefonaktiebolaget L M Ericsson (Publ) Automatic guard period adjustment in a base station for time division duplexed wireless communications
CN103210598A (zh) * 2010-08-13 2013-07-17 爱立信(中国)通信有限公司 基站中用于时分双工无线通信的自动保护期调整
US8982892B2 (en) 2010-08-13 2015-03-17 Telefonaktiebolaget L M Ericsson (Publ) Automatic guard period adjustment in a base station for time division duplexed wireless communications
US9204455B2 (en) 2010-08-13 2015-12-01 Telefonaktiebolaget L M Ericsson (Publ) Automatic guard period adjustment in time division duplexed wireless communication
US9357556B2 (en) 2010-08-13 2016-05-31 Telefonaktiebolaget Lm Ericsson (Publ) Automatic guard period adjustment in a base station for time division duplexed wireless communications
CN103210598B (zh) * 2010-08-13 2017-03-22 爱立信(中国)通信有限公司 基站中用于时分双工无线通信的自动保护期调整
CN110402576A (zh) * 2017-03-14 2019-11-01 英国电讯有限公司 数字用户线路收发器
CN110402576B (zh) * 2017-03-14 2021-05-28 英国电讯有限公司 数字用户线路收发器
US11159230B2 (en) 2017-03-14 2021-10-26 British Telecommunications Public Limited Company Digital subscriber line transceiver

Also Published As

Publication number Publication date
US20100238847A1 (en) 2010-09-23
KR20100085160A (ko) 2010-07-28
EP2216915B1 (en) 2013-09-04
US8457032B2 (en) 2013-06-04
EP2216915A4 (en) 2012-10-31
KR101093479B1 (ko) 2011-12-13
EP2216915A1 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
WO2009059555A1 (fr) Procédé, appareil et système de transmission de données en duplexage par répartition temporelle
US9584997B2 (en) D2D device discovery method and apparatus based on LTE cellular communications system
EP2352328B1 (en) Method and network device for determining resource mapping in coordinated multi-point transmission, and sysytem thereof
US8472465B2 (en) Method and an apparatus for determining the radio frame structure of time division duplex system
JP5620528B2 (ja) 通信システム、基地局装置および移動局装置
RU2426235C2 (ru) Способ конфигурирования восходящего и нисходящего канала связи в системе радиосвязи
US8830933B2 (en) Method for communicating by using a convergence carrier wave, access network device, and terminal
WO2009052752A1 (en) Transmission method and device in long term evolution time division duplex system
CN102938690B (zh) 应答信息的发送、接收方法和设备
EP2039202B1 (en) Resource allocation for co-existin networks
US20150372734A1 (en) Method for transmitting sounding reference signal in multiple antenna wireless communication system and apparatus therefor
US20110103272A1 (en) Method for transmitting the pdcch signal
EP2328291A1 (en) Mobile communication system
KR101689940B1 (ko) 플렉시블한 기준 신호 구성을 지원하도록 시그널링하기 위한 방법 및 장치
EP3255928B1 (en) Random access method and user equipment
JP2015523785A (ja) 無線通信方法、基地局及び端末
KR20110084965A (ko) 캐리어 집적
CN101686534A (zh) 选择下行主载波进行数据传输的方法、终端及系统
CN111182638B (zh) 用户设备、网络侧设备及用户设备的控制方法
WO2009046668A1 (fr) Procédé et appareil de transmission de service dans le système de duplexage par répartition dans le temps
CN105471791A (zh) 循环前缀类型的配置方法及装置
WO2013044719A1 (zh) 终端接入网络的方法和设备
CN102246573A (zh) 一种随机接入方法、演进基站及终端设备
CN101400146A (zh) 一种扩大覆盖范围的方法、装置和系统
WO2010133034A1 (zh) 协调多点通信的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08846282

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12741020

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 3227/CHENP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2008846282

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107012253

Country of ref document: KR

Kind code of ref document: A