WO2009059000A1 - Panelized veneer with backer-to-backer locators - Google Patents

Panelized veneer with backer-to-backer locators Download PDF

Info

Publication number
WO2009059000A1
WO2009059000A1 PCT/US2008/081783 US2008081783W WO2009059000A1 WO 2009059000 A1 WO2009059000 A1 WO 2009059000A1 US 2008081783 W US2008081783 W US 2008081783W WO 2009059000 A1 WO2009059000 A1 WO 2009059000A1
Authority
WO
WIPO (PCT)
Prior art keywords
panel
backing
wall panel
wall
backing panel
Prior art date
Application number
PCT/US2008/081783
Other languages
French (fr)
Inventor
David Wolf
Harold Attebery Ii
Jeffrey Klotz
James Dottavio
David Hines
Joy Stickel
Joshua Broehl
Jamison Float
Original Assignee
Owens Corning Intellectual Capital, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Owens Corning Intellectual Capital, Llc filed Critical Owens Corning Intellectual Capital, Llc
Publication of WO2009059000A1 publication Critical patent/WO2009059000A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/07Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
    • E04F13/08Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements
    • E04F13/0862Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements composed of a number of elements which are identical or not, e.g. carried by a common web, support plate or grid
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/07Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
    • E04F13/08Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements
    • E04F13/18Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements of organic plastics with or without reinforcements or filling materials or with an outer layer of organic plastics with or without reinforcements or filling materials; plastic tiles
    • E04F13/185Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements of organic plastics with or without reinforcements or filling materials or with an outer layer of organic plastics with or without reinforcements or filling materials; plastic tiles with an outer layer imitating natural stone, brick work, tiled surface or the like
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F2201/00Joining sheets or plates or panels
    • E04F2201/01Joining sheets, plates or panels with edges in abutting relationship
    • E04F2201/0123Joining sheets, plates or panels with edges in abutting relationship by moving the sheets, plates or panels parallel to the abutting edges

Definitions

  • This invention relates generally to the construction field and, more particularly, to a cast veneer wall panel, a backing panel for a cast veneer wall panel and a method of making a cast veneer wall panel.
  • Cast veneer wall panels have been developed as a quick and efficient way to provide a masonry appearance for a building while simplifying construction and lowering construction costs. Such panels typically include a front plate or panel carrying a series of design or masonry elements. These design elements simulate brick, stone, tile and other masonry building components or materials commonly used in the construction of buildings. Examples of cast veneer wall panels are disclosed in U.S. Patent 3,332,187 to Arcari and co-pending U.S. Patent Application Serial No. 11/647,679, entitled "Fiber Reinforced Concrete Stone Panel System” owned by the assignee of the present invention and incorporated herein by reference.
  • Cast veneer wall panels are typically made from reinforced construction materials such as fiberglass reinforced concrete. While cast veneer wall panels made from such reinforced materials are more resistant to damage from handling during packaging, shipping and installation, further improvements in durability to reduce loss due to breakage are still desired.
  • the present invention relates to a cast veneer wall panel of enhanced durability providing significantly improved handling characteristics due to light weight construction and ability to fasten by nailing.
  • the cast veneer wall panel is also easier and quicker to orient, seat and install.
  • an improved cast veneer wall panel comprises a backing panel including a rear face and a front face.
  • the front face includes a casting field at least partially encircled by a boundary wall.
  • the cast veneer panel includes a facing panel formed from a cast material that is received and held within the casting field on the backing panel.
  • the facing panel includes at least one design element such as a simulated stone, brick or tile. Typically the facing panel includes multiple design elements at spaced locations.
  • the backing panel preferably further includes a continuous, or substantially continuous, abutment extending around a perimeter of the casting field. Further, the backing panel includes a mounting flange that extends beyond a first portion of the continuous abutment. In addition, at least one locating slot is provided in the first portion of the continuous abutment. That locating slot may extend into the mounting flange.
  • the cast veneer panel includes at least one locating tab projecting from a second portion of the continuous abutment.
  • the first and second portions of the continuous abutment are provided opposite one another on the backing panel.
  • the at least one locating tab on one cast veneer wall panel may be received in and held in the at least one locating slot of another, adjacent cast veneer wall panel and thereby properly align multiple panels during installation.
  • the rear face of the backing panel preferably includes a concavity and that concavity nests in the at least one design element.
  • the at least one locating slot may extend into the concavity.
  • the backing panel also includes apertures in the concavity. Casting material forming the facing panel extends through the apertures into the concavity to key the backing panel and the facing panel together.
  • the rear face of the backing panel includes a series of dimples that project outwardly from the rear face.
  • a row of dimples are provided along the mounting flange. The row of dimples provides a minimum flow area of about 65%.
  • a cast veneer wall panel comprises a backing panel including (a) a rear face, (b) a front face including a casting field, (c) at least one locating slot along a first edge and (d) at least one locating tab, which may form a hook, along a second edge.
  • the cast veneer wall panel also includes a facing panel formed from a cast material received and held on the casting field.
  • the facing panel includes at least one design element.
  • the wall panel further includes a mounting flange that extends beyond the first edge.
  • the at least one locating slot extends into the mounting flange.
  • the rear face of the backing panel includes a concavity and the concavity nests in the at least one design element. The at least one locating slot may extend into this concavity.
  • the backing panel includes apertures in the concavity. Casting material forming the facing panel extends through the apertures into the concavity to key the backing panel and the facing panel together.
  • a backing panel for a cast veneer wall panel.
  • the backing panel comprises a body including a rear face and a front face.
  • the front face includes a casting field at least partially encircled by a boundary wall.
  • the backing panel preferably further includes a continuous abutment extending around a perimeter of the casting field.
  • the backing panel has a first mounting flange extending beyond a first portion of the continuous abutment.
  • At least one locating slot is provided in the first portion of the continuous abutment. The at least one locating slot may also extend into the first mounting flange.
  • the backing panel further includes at least one locating tab projecting from a second portion of the continuous abutment.
  • the first and second portions of the continuous abutment are provided opposite one another on the backing panel.
  • the backing panel includes a series of dimples projecting outwardly from the rear face.
  • a row of dimples may be provided along the mounting flange.
  • the row of dimples may provide a minimum flow area of about 65%.
  • the backing panel includes a second mounting flange extending beyond a third portion of the continuous abutment provided between the first and second portions.
  • a backing panel for a cast veneer wall panel comprises a body including (a) a rear face, (b) a front face including a casting field, (c) at least one locating slot along a first edge and (d) at least one locating tab along a second edge.
  • a first mounting flange extends beyond the first edge.
  • the at least one locating slot extends into the first mounting flange.
  • the rear face of the backing panel includes a concavity and the at least one locating slot may extend into that concavity.
  • Figure 1 is a perspective view of the cast veneer wall panel of the present invention
  • Figure 2 is a schematical cross sectional view of two cast veneer wall panels of the type illustrated in Figure 1 illustrating how they are mounted to the sheeting of a building;
  • Figure 3 is a front elevational view of the backing panel used in the cast veneer wall panel illustrated in Figure 1 ;
  • Figure 4 is a rear elevational view illustrating the alignment and connection of two of the backing panels as illustrated in Figure 3;
  • Figure 5 is a cross sectional view of the backing panels illustrated in Figure 4.
  • Figure 6 is a detailed cross sectional view illustrating the connection of the locating tab on one cast veneer wall panel and the locating slot on another cast veneer wall panel;
  • Figure 7 is a perspective view of an alternative embodiment of a backing panel of the present invention.
  • Figure 8 is a rear plan view illustrating the connection of two backing panels of the type illustrated in Figure 7;
  • Figure 9 is a detailed rear plan view showing the connection of a hook shaped locating tab on one backing panel received in a locating slot in another backing panel; and Figure 10 is a rear perspective view of still another embodiment of the present invention.
  • the cast veneer wall panel 10 comprises a backing panel 12 and a facing panel 14.
  • the body of the backing panel 12 includes a rear face 16 and a front face 18.
  • the front face 18 includes a boundary wall 20 that at least partially encircles a casting field 22. More specifically, the wall 20 comprises a raised lip or ridge.
  • the backing panel 12 may be made from any suitable material such as wood, treated wood, metal, such as galvanized steel, aluminum, copper or as a single molded piece from a polymer material or a composite material.
  • Polymer materials useful for making the backing panel 12 include various thermoplastic and thermoset resins, including but not limited to polyolefins, polyesters, polyvinyl chloride, polypropylene, polyethylene, polyamide, epoxy, vinyl ester, acrylic, polystyrene, ABS, melamine and mixtures thereof.
  • Composite materials used to make the backing panel 20 include reinforcing material and a matrix binder.
  • Appropriate reinforcing materials useful in the present invention include but are not limited to glass fibers, natural fibers, mineral fibers, basalt fibers, carbon fibers, kanaf fibers, jutte fibers, hemp fibers, E-glass fibers, C-glass fibers, R-glass fibers, S-glass fibers, ECR-glass fibers, AR-glass fibers and mixtures thereof. It should be appreciated that substantially any type of glass fiber may be used for reinforcement fibers. Glass fibers appropriate for use in the present invention may be loose chopped strand or glass mat and include those available from Owens Corning with headquarters in Toledo, Ohio, under the trademarks Hypertex and Advantex.
  • Matrix binder materials useful for this purpose include but are not limited to polyolefins, polyesters, polyvinyl chloride, polypropylene, polyethylene, polyamide, epoxy, vinyl ester and mixtures thereof.
  • the facing panel 14 is formed from a cast material received and preferably held within the casting field 22 by the upstanding, encircling boundary wall 20.
  • the facing panel 14 includes at least one design element 24.
  • the cast veneer wall panel 10 includes a series of a masonry or design elements 24.
  • the design elements 24 are illustrated as simulated bricks aligned in a regimented pattern in accordance with standard masonry practices.
  • the design elements 24 comprise stones, such as ledgestones, limestone, or substantially any other stone texture available for example from Owens Corning of Toledo, Ohio under the Cultured Stone® brand.
  • the facing panel 14 also includes a mortar bed area 26 between the design elements 24. Following installation the mortar bed area 26 is typically grouted by injecting mortar between the design elements 24 so as to provide a finished masonry appearance. In an alternative embodiment, certain textures may resemble a dry stack, and not include the mortar.
  • the facing panel 14 is made from a cast material such as concrete, reinforced concrete, reinforced cementitious material and mixtures thereof.
  • the cast material reinforcement comprises fibers selected from a group of materials consisting of glass fibers, mineral fibers, natural fibers, polymer fibers and mixtures thereof. Where glass fibers are used they are typically of the E-glass or AR-glass type, which exhibit some alkali resistance.
  • the rear face 16 of the backing panel 12 preferably includes a series of concavities 28, and the front face 14 includes a series of corresponding, projecting pads 30 that nest within the design elements 24 of the facing panel 14. More specifically, during production of the cast veneer wall panel 10, some of the cast material enters the concavities 28 through the apertures 32 in the wall of the backing panel defining the concavities 28 and pads 30 (note set cast material 34 illustrated in Figure 2 that keys the panels 12, 14 together). The cast material 34 wraps around the margins of the backing panel 12 surrounding the apertures 32. When this cast material sets, the facing panel 14 and backing panel 12 are securely fastened together.
  • a continuous abutment 36 is formed by the boundary wall 20 and a wall portion of several of the concavities 28/pads 30. As illustrated, the abutment 36 extends completely around the perimeter of the casting field 22. The abutment 36 effectively maintains the casting material used to make the facing panel 14 inboard of the abutment on the casting field 22. At the same time, the abutment 36 provides a continuous abutment face 37 free and clear of any cast material. Such an abutment face 37 allow a better fit and finish in a manner described in greater detail below.
  • the abutment 26 is provided in a substantially continuous manner.
  • the abutment 36 may be provided in a discontinuous manner to provide a discrete mating surface at each interface to an adjacent panel.
  • the backing panel 12 further includes a mounting flange 44 that extends beyond a first portion 38 of the continuous abutment 36.
  • a series of locating slots 46 are provided in the first portion 38 of the abutment 36. In the illustrated embodiments each of the locating slots 46 extends into the mounting flange 44 and also communicates with the adjacent concavities 28 through the walls of the pads 30.
  • the backing panel 12 further includes a series of locating tabs 48 that project from a second portion 40 of the continuous abutment 36.
  • the second portion 40 is opposite the first portion 38 of the abutment 36.
  • the rear face 16 of the backing panel 12 is provided with a series of spaced dimples 50.
  • the dimples 50 project outwardly from the rear face 16 in order to provide an appropriate air gap G between the panel 10 and the sheeting S of the building framework in order to allow for moisture dissipation (see Figure 2).
  • a row of dimples 50 are provided along the rear of the mounting flange 44.
  • the dimples 50 have a depth of approximately 0.125 inches and provide a minimum flow area of about 65%.
  • Additional dimples 52 are provided at spaced locations along the rear face 16 between the concavities 28. Obviously, the dimples 50, 52 may be cut down or ground down as necessary in order to compensate for any bowing or deviation in the sheeting S that might otherwise cause a wall panel 10 to seat improperly.
  • FIG. 2 illustrating the installation of one cast veneer wall panel 10 over another cast veneer wall panel 10' previously installed to the sheeting S of a building.
  • the first cast veneer wall panel 10' is properly positioned on the sheeting S.
  • a series of nails or other fasteners F are then driven through the mounting flange 44 into the sheeting S and any underlying wall studs (not shown) in order to secure the first cast veneer wall panel 10' in position.
  • the installer places the second cast veneer wall panel 10 over the first cast veneer wall panel 10' by initially aligning the locating tabs 48 at the bottom of the wall panel 10 in the locating slots 46 at the top of the wall panel 10'.
  • the top edge of the wall panel 10 is then pivoted toward the sheeting S and the locating tabs 48 on the wall panel 10 drop fully down into the locating slots 46 on the wall panel 10' until the wall panel 10 is fully seated with the second portion 40 of the abutment 36 of the top wall panel 10 resting on and abutting the first portion 38 of the abutment 36 of the lower wall panel 10' (see Figure 6).
  • the cooperating locating slots and tabs 46, 48 ensure that the two wall panels 10, 10' are properly oriented so that each row of design elements 24 is properly staggered.
  • the continuous abutment 36 ensures that the abutment face 37 around each backing panel 12 is presented for direct contact/abutment with the abutment face 37 of any adjacent panel.
  • no cast material interferes with the manufactured fit of the wall panels 10, 10'.
  • the installer uses fasteners F driven through the mounting flange 44 of the wall panel 10 in order to secure the new wall panel 10 in position.
  • the interlocking locating slots 46 and locating tabs 48 on the wall panels 10, 10' mean that fasteners only need be provided in the mounting flanges 44 at the top of each wall panel in order to secure a wall panel in position. No fasteners are required along the bottom. This simplifies the installation process and allows a wall panel 10 to be installed in a shorter period of time.
  • FIG. 7-9 illustrating an alternative embodiment of a backing panel 12' of the present invention.
  • the backing panel 12' illustrated in Figures 7-9 is identical to the backing panel 12 illustrated in Figures 1-6 except in one respect. Specifically, the locating tabs 48' are shaped in the form of hooks.
  • the other structural features of the backing panel 12', corresponding with the backing panel 12, are identified with the same reference numerals.
  • the locating tabs or hooks 48' are inserted in the cooperating locating slots 46 of a previously mounted wall panel 10'. Once the locating hooks 48' are fully inserted in the locating slots 46 the new wall panel 10 is shifted laterally in the direction of arrow A (see Figure 9) so as to engage the hook with the abutment 36 of the underlying panel 10' and thereby securely interlock the two wall panels together.
  • a quick and efficient method of installing cast veneer wall panels includes the steps of (a) fastening a first cast veneer wall panel to a support structure, (b) aligning cooperating tabs and slots provided on the first cast veneer wall panel and a second cast veneer wall panel, (c) engaging the tabs in the slots and (d) fastening the second wall panel to the support structure.
  • the method effectively reduces the number of fasteners required to secure the cast veneer wall panels to a support structure such as a building and conveniently aligns the panels for installation.
  • Figure 10 illustrates a backing panel 12 including a series of spaced ribs 200 on the rear face of the mounting flange 44.
  • the ribs 200 are provided in place of the spaced dimples 50.
  • the ribs 200 are between about 0.05" and about 0.75" tall, between about 0.03" and about 0.5" wide and are spaced on centers of between about 0.25" and about 2.0".
  • the ribs are 0.1" wide, 0.125" tall and are spaced on 0.58" centers.
  • the ribs 200 function to maintain an air gap between the panel 10 and the sheeting of the building framework for drainage and ventilation.
  • the ribs 200 also function to strengthen the mounting flange 44 so that it will better hold a nail.
  • cooperating locating tabs and slots could be provided at the opposite ends/sides of the panels 12 if desired.
  • the optional structures could be similar to the locating tabs 48 and slots 46 provided along the top and bottom of the wall panel 12 (for example, a tab at the right end of the panel shown in Fig. 8) to provide further interlock of adjacent panels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Finishing Walls (AREA)

Abstract

A cast veneer wall panel (10) includes a backing panel having a rear face (16) and a front face (18). The front face includes a boundary wall (20) and a continuous abutment (36) extending around a perimeter of a casting field (22). The cast veneer wall panel further includes a facing panel formed from a cast material that is received and held within the casting field. The facing panel includes at least one design element (24).

Description

PANELIZED VENEER WITH BACKER-TO-BACKER LOCATORS
TECHNICAL FIELD AND INDUSTRIAL APPLICATBILITY OF THE INVENTION
This invention relates generally to the construction field and, more particularly, to a cast veneer wall panel, a backing panel for a cast veneer wall panel and a method of making a cast veneer wall panel.
BACKGROUND OF THE INVENTION
Cast veneer wall panels have been developed as a quick and efficient way to provide a masonry appearance for a building while simplifying construction and lowering construction costs. Such panels typically include a front plate or panel carrying a series of design or masonry elements. These design elements simulate brick, stone, tile and other masonry building components or materials commonly used in the construction of buildings. Examples of cast veneer wall panels are disclosed in U.S. Patent 3,332,187 to Arcari and co-pending U.S. Patent Application Serial No. 11/647,679, entitled "Fiber Reinforced Concrete Stone Panel System" owned by the assignee of the present invention and incorporated herein by reference.
Cast veneer wall panels are typically made from reinforced construction materials such as fiberglass reinforced concrete. While cast veneer wall panels made from such reinforced materials are more resistant to damage from handling during packaging, shipping and installation, further improvements in durability to reduce loss due to breakage are still desired. The present invention relates to a cast veneer wall panel of enhanced durability providing significantly improved handling characteristics due to light weight construction and ability to fasten by nailing. The cast veneer wall panel is also easier and quicker to orient, seat and install.
SUMMARY OF THE INVENTION
In accordance with the purposes of the present invention as described herein, an improved cast veneer wall panel is provided. The cast veneer wall panel comprises a backing panel including a rear face and a front face. The front face includes a casting field at least partially encircled by a boundary wall. In addition, the cast veneer panel includes a facing panel formed from a cast material that is received and held within the casting field on the backing panel. The facing panel includes at least one design element such as a simulated stone, brick or tile. Typically the facing panel includes multiple design elements at spaced locations.
The backing panel preferably further includes a continuous, or substantially continuous, abutment extending around a perimeter of the casting field. Further, the backing panel includes a mounting flange that extends beyond a first portion of the continuous abutment. In addition, at least one locating slot is provided in the first portion of the continuous abutment. That locating slot may extend into the mounting flange.
Further, the cast veneer panel includes at least one locating tab projecting from a second portion of the continuous abutment. The first and second portions of the continuous abutment are provided opposite one another on the backing panel. Accordingly, the at least one locating tab on one cast veneer wall panel may be received in and held in the at least one locating slot of another, adjacent cast veneer wall panel and thereby properly align multiple panels during installation. The rear face of the backing panel preferably includes a concavity and that concavity nests in the at least one design element. Further, the at least one locating slot may extend into the concavity. The backing panel also includes apertures in the concavity. Casting material forming the facing panel extends through the apertures into the concavity to key the backing panel and the facing panel together.
In accordance with an additional aspect of the present invention the rear face of the backing panel includes a series of dimples that project outwardly from the rear face. In one possible embodiment a row of dimples are provided along the mounting flange. The row of dimples provides a minimum flow area of about 65%.
In accordance with still another aspect of the present invention a cast veneer wall panel comprises a backing panel including (a) a rear face, (b) a front face including a casting field, (c) at least one locating slot along a first edge and (d) at least one locating tab, which may form a hook, along a second edge. The cast veneer wall panel also includes a facing panel formed from a cast material received and held on the casting field. The facing panel includes at least one design element. The wall panel further includes a mounting flange that extends beyond the first edge. In one possible embodiment the at least one locating slot extends into the mounting flange. Further, the rear face of the backing panel includes a concavity and the concavity nests in the at least one design element. The at least one locating slot may extend into this concavity.
Still further, the backing panel includes apertures in the concavity. Casting material forming the facing panel extends through the apertures into the concavity to key the backing panel and the facing panel together.
In accordance with yet another aspect of the present invention a backing panel is provided for a cast veneer wall panel. The backing panel comprises a body including a rear face and a front face. The front face includes a casting field at least partially encircled by a boundary wall. The backing panel preferably further includes a continuous abutment extending around a perimeter of the casting field. In addition, the backing panel has a first mounting flange extending beyond a first portion of the continuous abutment. At least one locating slot is provided in the first portion of the continuous abutment. The at least one locating slot may also extend into the first mounting flange.
The backing panel further includes at least one locating tab projecting from a second portion of the continuous abutment. The first and second portions of the continuous abutment are provided opposite one another on the backing panel.
Still further, the backing panel includes a series of dimples projecting outwardly from the rear face. A row of dimples may be provided along the mounting flange. The row of dimples may provide a minimum flow area of about 65%. In addition the backing panel includes a second mounting flange extending beyond a third portion of the continuous abutment provided between the first and second portions.
In accordance with yet another aspect of the present invention a backing panel for a cast veneer wall panel comprises a body including (a) a rear face, (b) a front face including a casting field, (c) at least one locating slot along a first edge and (d) at least one locating tab along a second edge. A first mounting flange extends beyond the first edge. The at least one locating slot extends into the first mounting flange. In addition the rear face of the backing panel includes a concavity and the at least one locating slot may extend into that concavity. In the following description there is shown and described several different embodiments of the invention, simply by way of illustration of some of the modes best suited to carry out the invention. As it will be realized, the invention is capable of other different embodiments and its several details are capable of modification in various, obvious aspects all without departing from the invention. Accordingly, the drawings and descriptions will be regarded as illustrative in nature and not as restrictive.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings incorporated herein and forming a part of the specification, illustrate several aspects of the present invention and together with the description serve to explain certain principles of the invention. In the drawings:
Figure 1 is a perspective view of the cast veneer wall panel of the present invention;
Figure 2 is a schematical cross sectional view of two cast veneer wall panels of the type illustrated in Figure 1 illustrating how they are mounted to the sheeting of a building;
Figure 3 is a front elevational view of the backing panel used in the cast veneer wall panel illustrated in Figure 1 ;
Figure 4 is a rear elevational view illustrating the alignment and connection of two of the backing panels as illustrated in Figure 3;
Figure 5 is a cross sectional view of the backing panels illustrated in Figure 4;
Figure 6 is a detailed cross sectional view illustrating the connection of the locating tab on one cast veneer wall panel and the locating slot on another cast veneer wall panel;
Figure 7 is a perspective view of an alternative embodiment of a backing panel of the present invention;
Figure 8 is a rear plan view illustrating the connection of two backing panels of the type illustrated in Figure 7;
Figure 9 is a detailed rear plan view showing the connection of a hook shaped locating tab on one backing panel received in a locating slot in another backing panel; and Figure 10 is a rear perspective view of still another embodiment of the present invention.
Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION
Reference is now made to Figures 1-2 illustrating the cast veneer wall panel 10 of the present invention. As illustrated, the cast veneer wall panel 10 comprises a backing panel 12 and a facing panel 14. The body of the backing panel 12 includes a rear face 16 and a front face 18. As further illustrated in Figure 3, the front face 18 includes a boundary wall 20 that at least partially encircles a casting field 22. More specifically, the wall 20 comprises a raised lip or ridge.
The backing panel 12 may be made from any suitable material such as wood, treated wood, metal, such as galvanized steel, aluminum, copper or as a single molded piece from a polymer material or a composite material. Polymer materials useful for making the backing panel 12 include various thermoplastic and thermoset resins, including but not limited to polyolefins, polyesters, polyvinyl chloride, polypropylene, polyethylene, polyamide, epoxy, vinyl ester, acrylic, polystyrene, ABS, melamine and mixtures thereof. Composite materials used to make the backing panel 20 include reinforcing material and a matrix binder. Appropriate reinforcing materials useful in the present invention include but are not limited to glass fibers, natural fibers, mineral fibers, basalt fibers, carbon fibers, kanaf fibers, jutte fibers, hemp fibers, E-glass fibers, C-glass fibers, R-glass fibers, S-glass fibers, ECR-glass fibers, AR-glass fibers and mixtures thereof. It should be appreciated that substantially any type of glass fiber may be used for reinforcement fibers. Glass fibers appropriate for use in the present invention may be loose chopped strand or glass mat and include those available from Owens Corning with headquarters in Toledo, Ohio, under the trademarks Hypertex and Advantex. Matrix binder materials useful for this purpose include but are not limited to polyolefins, polyesters, polyvinyl chloride, polypropylene, polyethylene, polyamide, epoxy, vinyl ester and mixtures thereof. The facing panel 14 is formed from a cast material received and preferably held within the casting field 22 by the upstanding, encircling boundary wall 20. The facing panel 14 includes at least one design element 24. In the illustrated embodiment the cast veneer wall panel 10 includes a series of a masonry or design elements 24. The design elements 24 are illustrated as simulated bricks aligned in a regimented pattern in accordance with standard masonry practices. In other embodiments, the design elements 24 comprise stones, such as ledgestones, limestone, or substantially any other stone texture available for example from Owens Corning of Toledo, Ohio under the Cultured Stone® brand. The facing panel 14 also includes a mortar bed area 26 between the design elements 24. Following installation the mortar bed area 26 is typically grouted by injecting mortar between the design elements 24 so as to provide a finished masonry appearance. In an alternative embodiment, certain textures may resemble a dry stack, and not include the mortar.
While the design elements 24 illustrated in the drawing figures correspond to simulated bricks, it should be appreciated that substantially any other masonry material known in the art may be simulated including bricks of different sizes, stones of different shapes and sizes, tiles of different shapes and sizes and the like. The facing panel 14 is made from a cast material such as concrete, reinforced concrete, reinforced cementitious material and mixtures thereof. Typically the cast material reinforcement comprises fibers selected from a group of materials consisting of glass fibers, mineral fibers, natural fibers, polymer fibers and mixtures thereof. Where glass fibers are used they are typically of the E-glass or AR-glass type, which exhibit some alkali resistance.
As best illustrated in Figure 4, the rear face 16 of the backing panel 12 preferably includes a series of concavities 28, and the front face 14 includes a series of corresponding, projecting pads 30 that nest within the design elements 24 of the facing panel 14. More specifically, during production of the cast veneer wall panel 10, some of the cast material enters the concavities 28 through the apertures 32 in the wall of the backing panel defining the concavities 28 and pads 30 (note set cast material 34 illustrated in Figure 2 that keys the panels 12, 14 together). The cast material 34 wraps around the margins of the backing panel 12 surrounding the apertures 32. When this cast material sets, the facing panel 14 and backing panel 12 are securely fastened together. As best illustrated in Figure 3, a continuous abutment 36 is formed by the boundary wall 20 and a wall portion of several of the concavities 28/pads 30. As illustrated, the abutment 36 extends completely around the perimeter of the casting field 22. The abutment 36 effectively maintains the casting material used to make the facing panel 14 inboard of the abutment on the casting field 22. At the same time, the abutment 36 provides a continuous abutment face 37 free and clear of any cast material. Such an abutment face 37 allow a better fit and finish in a manner described in greater detail below. In an alternative embodiment, the abutment 26 is provided in a substantially continuous manner. In yet another embodiment, the abutment 36 may be provided in a discontinuous manner to provide a discrete mating surface at each interface to an adjacent panel.
As best illustrated in Figures 3-5, the backing panel 12 further includes a mounting flange 44 that extends beyond a first portion 38 of the continuous abutment 36. A series of locating slots 46 are provided in the first portion 38 of the abutment 36. In the illustrated embodiments each of the locating slots 46 extends into the mounting flange 44 and also communicates with the adjacent concavities 28 through the walls of the pads 30.
The backing panel 12 further includes a series of locating tabs 48 that project from a second portion 40 of the continuous abutment 36. The second portion 40 is opposite the first portion 38 of the abutment 36. When the cast veneer panel 10 is properly installed on the framework of a building (see Figure 2), the first portion 38 is provided at the top of the cast veneer panel 10 while the second portion 40 is provided at the bottom or base. Thus, adjacent panels may be retained by an adjacent panel in an in/out relationship relative to the vertical wall, and/or in a side -to-side (lateral) manner with respect to an adjacent panel.
As best illustrated in Figure 4, the rear face 16 of the backing panel 12 is provided with a series of spaced dimples 50. The dimples 50 project outwardly from the rear face 16 in order to provide an appropriate air gap G between the panel 10 and the sheeting S of the building framework in order to allow for moisture dissipation (see Figure 2). In the illustrated embodiment, a row of dimples 50 are provided along the rear of the mounting flange 44. The dimples 50 have a depth of approximately 0.125 inches and provide a minimum flow area of about 65%. Additional dimples 52 are provided at spaced locations along the rear face 16 between the concavities 28. Obviously, the dimples 50, 52 may be cut down or ground down as necessary in order to compensate for any bowing or deviation in the sheeting S that might otherwise cause a wall panel 10 to seat improperly.
Reference is now made to Figures 2, and 4-6 illustrating the installation of one cast veneer wall panel 10 over another cast veneer wall panel 10' previously installed to the sheeting S of a building. The first cast veneer wall panel 10' is properly positioned on the sheeting S. A series of nails or other fasteners F are then driven through the mounting flange 44 into the sheeting S and any underlying wall studs (not shown) in order to secure the first cast veneer wall panel 10' in position. The installer places the second cast veneer wall panel 10 over the first cast veneer wall panel 10' by initially aligning the locating tabs 48 at the bottom of the wall panel 10 in the locating slots 46 at the top of the wall panel 10'. The top edge of the wall panel 10 is then pivoted toward the sheeting S and the locating tabs 48 on the wall panel 10 drop fully down into the locating slots 46 on the wall panel 10' until the wall panel 10 is fully seated with the second portion 40 of the abutment 36 of the top wall panel 10 resting on and abutting the first portion 38 of the abutment 36 of the lower wall panel 10' (see Figure 6). The cooperating locating slots and tabs 46, 48 ensure that the two wall panels 10, 10' are properly oriented so that each row of design elements 24 is properly staggered. At the same time, the continuous abutment 36 ensures that the abutment face 37 around each backing panel 12 is presented for direct contact/abutment with the abutment face 37 of any adjacent panel. As a consequence, no cast material interferes with the manufactured fit of the wall panels 10, 10'. By avoiding any cast material-to-cast material contact between adjacent wall panels 10, 10', it is possible to maintain closer dimensional tolerances and thereby provide a better fit and finish.
Once the wall panel 10 is properly seated on the wall panel 10' with the locating tabs 48 fully received in the locating slots 46 and the ridges 20 of the two panels in abutting engagement (see Figure 2), the installer uses fasteners F driven through the mounting flange 44 of the wall panel 10 in order to secure the new wall panel 10 in position. Significantly, it should be noted that the interlocking locating slots 46 and locating tabs 48 on the wall panels 10, 10' mean that fasteners only need be provided in the mounting flanges 44 at the top of each wall panel in order to secure a wall panel in position. No fasteners are required along the bottom. This simplifies the installation process and allows a wall panel 10 to be installed in a shorter period of time. While not illustrated, it should be appreciated that proper spacing between the design elements 24 of side -by-side wall panels 10 is maintained by the third and fourth portions 39 and 41 of the continuous abutment 36 and the second margin 54 as illustrated at the left side of wall panel 10 in Figure 3. Following installation of all the wall panels 10, the mortar bed area 26 is grouted between the design elements 24 in order to provide the desired finished masonry appearance.
Reference is now made to Figures 7-9 illustrating an alternative embodiment of a backing panel 12' of the present invention. The backing panel 12' illustrated in Figures 7-9 is identical to the backing panel 12 illustrated in Figures 1-6 except in one respect. Specifically, the locating tabs 48' are shaped in the form of hooks. The other structural features of the backing panel 12', corresponding with the backing panel 12, are identified with the same reference numerals.
During the installation of a wall panel 10, including the backing panel 12, over the top of another such panel, the locating tabs or hooks 48' are inserted in the cooperating locating slots 46 of a previously mounted wall panel 10'. Once the locating hooks 48' are fully inserted in the locating slots 46 the new wall panel 10 is shifted laterally in the direction of arrow A (see Figure 9) so as to engage the hook with the abutment 36 of the underlying panel 10' and thereby securely interlock the two wall panels together.
In summary, numerous benefits result from employing the concepts of the present invention. A quick and efficient method of installing cast veneer wall panels is created. The method includes the steps of (a) fastening a first cast veneer wall panel to a support structure, (b) aligning cooperating tabs and slots provided on the first cast veneer wall panel and a second cast veneer wall panel, (c) engaging the tabs in the slots and (d) fastening the second wall panel to the support structure. Specifically, the method effectively reduces the number of fasteners required to secure the cast veneer wall panels to a support structure such as a building and conveniently aligns the panels for installation. These benefits are accomplished by providing the wall panels with cooperating locating tabs and slots that are engaged during wall panel installation. The foregoing description of the preferred embodiments of the present invention have been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Obvious modifications or variations are possible in light of the above teachings. For example, Figure 10 illustrates a backing panel 12 including a series of spaced ribs 200 on the rear face of the mounting flange 44. The ribs 200 are provided in place of the spaced dimples 50. Typically, the ribs 200 are between about 0.05" and about 0.75" tall, between about 0.03" and about 0.5" wide and are spaced on centers of between about 0.25" and about 2.0". In one possible embodiment the ribs are 0.1" wide, 0.125" tall and are spaced on 0.58" centers. Like the dimples 50, the ribs 200 function to maintain an air gap between the panel 10 and the sheeting of the building framework for drainage and ventilation. The ribs 200 also function to strengthen the mounting flange 44 so that it will better hold a nail. Still further, cooperating locating tabs and slots could be provided at the opposite ends/sides of the panels 12 if desired. The optional structures could be similar to the locating tabs 48 and slots 46 provided along the top and bottom of the wall panel 12 (for example, a tab at the right end of the panel shown in Fig. 8) to provide further interlock of adjacent panels.
The embodiments were chosen and described to provide the best illustration of the principles of the invention and its practical application to thereby enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly, legally and equitably entitled. The drawings and preferred embodiments do not and are not intended to limit the ordinary meaning of the claims in their fair and broad interpretation in any way.

Claims

CLAIMS:What is Claimed:
1. A cast veneer wall panel (10), comprising: a backing panel (12) including a rear face (16) and a front face (18), said front face including a casting field (22) at least partially encircled by a boundary wall (20); a facing panel (14) formed from a cast material received and held within said casting field, said facing panel including at least one design element (24).
2. The wall panel of claim 1, wherein said backing panel includes a continuous abutment (36) extending around a perimeter of said casting field.
3. The wall panel of claim 2, wherein said backing panel includes a first mounting flange (44) extending beyond a first portion (38) of said continuous abutment.
4. The wall panel of claim 3, further including at least one locating slot (46) provided in said first portion of said continuous abutment.
5. The wall panel of claim 4, wherein said at least one locating slot also extends into said first mounting flange.
6. The wall panel of claim 5, further including at least one locating tab (48) projecting from a second portion (40) of said continuous abutment.
7. The wall panel of claim 6, wherein said first portion of said continuous abutment and said second portion of said continuous abutment are opposite one another.
8. The wall panel of claim 7, wherein said rear face of said backing panel includes a concavity (28) and said concavity nests in said at least one design element.
9. The wall panel of claim 8, wherein said at least one locating slot extends into said concavity.
10. The wall panel of claim 9, wherein said backing panel includes apertures (32) in said concavity and casting material forming said facing panel extends through said apertures into said concavity to key said backing panel and said facing panel together.
11. The wall panel of claim 10, wherein said rear face includes a series of dimples (50) or ribs projecting outwardly from said rear face.
12. The wall panel of claim 11, wherein a row of said dimples or ribs are provided along said mounting flange.
13. The wall panel of claim 12, wherein said row of said dimples or ribs provides a minimum flow area of 65%.
14. The wall panel of claim 9, wherein said backing panel includes a second mounting flange extending beyond a third portion of said continuous abutment provided between said first portion and said second portion.
15. A cast veneer wall panel (10), comprising: a backing panel including (12) (a) a rear face (16), (b) a front facing (18) including a casting field (22), (c) at least one locating slot (46) along a first edge and (d) at least one locating tab (48) along a second edge; and a facing panel (14) formed from a cast material received and held on said casting field, said facing panel including at least one design element (24).
16. The wall panel of claim 15 further including a first mounting flange (44) extending beyond said first edge.
17. The wall panel of claim 16, wherein said at least one locating slot extends into said first mounting flange.
18. The wall panel of claim 17, wherein said rear face of said backing panel includes a concavity (28) and said concavity nests in said at least one design element.
19. The wall panel of claim 18, wherein said at least one locating slot extends into said concavity.
20. The wall panel of claim 19, wherein said backing panel includes apertures (32) in said concavity and casting material forming said facing panel extends through said apertures into said concavity to key said backing panel and said facing panel together.
21. The wall panel of claim 20, wherein said backing panel includes a second mounting flange extending beyond a third edge provided between said first edge and said second edge.
22. The wall panel of claim 15, wherein said at least one locating tab forms a hook.
23. A backing panel for a cast veneer wall panel (10), comprising: a body including a rear face (16) and a front face (18), said front face including a casting field (22) at least partially encircled by a boundary wall (20).
24. The backing panel of claim 23, further including a continuous abutment (36) extending around a perimeter of said casting field.
25. The backing panel of claim 24, wherein said backing panel includes a first mounting flange (44) extending beyond a first portion (38) of said continuous abutment.
26. The backing panel of claim 25, further including at least one locating slot (46) provided in said first portion of said continuous abutment.
27. The backing panel of claim 26, wherein said at least one locating slot also extends into said first mounting flange.
28. The backing panel of claim 27, further including at least one locating tab projecting from a second portion (40) of said continuous abutment.
29. The backing panel of claim 28, wherein said first portion of said continuous abutment and said second portion of said continuous abutment are opposite one another.
30. The backing panel of claim 29, wherein said rear face includes a series of dimples (50) projecting outwardly from said rear face.
31. The backing panel of claim 30, wherein a row of said dimples are provided along said mounting flange.
32. The backing panel of claim 31, wherein said row of said dimples provides a minimum flow area of 65%.
33. The backing panel of claim 32, wherein said backing panel includes a second mounting flange extending beyond a third portion of said continuous abutment provided between said first portion and said second portion.
34. A backing panel for a cast veneer wall panel (10), comprising: a body including (a) a rear face (16), (b) a front face (18) including a cast field (22), (c) at least one locating slot (46) along a first edge and (d) at least one locating tab (48) along a second edge.
35. The backing panel of claim 34, further including a first mounting flange (44) extending beyond said first edge.
36. The backing panel of claim 35, wherein said at least one locating slot extends into said first mounting flange.
37. The backing panel of claim 36, wherein said rear face of said backing panel includes a concavity (28) and said at least one locating slot extends into said concavity.
38. A method of installing cast veneer wall panels to a support structure, comprising: fastening a first cast veneer wall panel to said support structure; aligning cooperating tabs and slots provided on said first cast veneer wall panel and a second cast veneer wall panel; engaging said tabs in said slots; and fastening said second wall panel to said support structure.
39. A method of simplifying installation of cast veneer wall panels on a support structure, comprising: reducing the number of fasteners required to secure said cast veneer wall panels to said support structure and conveniently aligning said cast veneer wall panels for installation by providing said cast veneer wall panels with cooperating locating tabs and slots that are engaged during wall panel installation.
PCT/US2008/081783 2007-10-31 2008-10-30 Panelized veneer with backer-to-backer locators WO2009059000A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US93321607A 2007-10-31 2007-10-31
US11/933,216 2007-10-31

Publications (1)

Publication Number Publication Date
WO2009059000A1 true WO2009059000A1 (en) 2009-05-07

Family

ID=40260823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/081783 WO2009059000A1 (en) 2007-10-31 2008-10-30 Panelized veneer with backer-to-backer locators

Country Status (1)

Country Link
WO (1) WO2009059000A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3332187A (en) * 1963-12-11 1967-07-25 Brix Corp Brick wall panel and method of making
FR2461073A1 (en) * 1979-02-14 1981-01-30 Thionvilloise Immobiliere Waterproof facing slabs with ventilated backing - allows dressed wall or ground to resist condensation and humidity by continuous circulation of air
EP0182567A2 (en) * 1984-11-10 1986-05-28 Plasmor Insulation Limited Wall cladding
FR2768452A1 (en) * 1997-09-18 1999-03-19 Comptoir Des Plastiques De L A Facade paneling for building
US20060260223A1 (en) * 2005-05-17 2006-11-23 Wang Dennis H Interlocking Frame System for Floor and Wall Structures

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3332187A (en) * 1963-12-11 1967-07-25 Brix Corp Brick wall panel and method of making
FR2461073A1 (en) * 1979-02-14 1981-01-30 Thionvilloise Immobiliere Waterproof facing slabs with ventilated backing - allows dressed wall or ground to resist condensation and humidity by continuous circulation of air
EP0182567A2 (en) * 1984-11-10 1986-05-28 Plasmor Insulation Limited Wall cladding
FR2768452A1 (en) * 1997-09-18 1999-03-19 Comptoir Des Plastiques De L A Facade paneling for building
US20060260223A1 (en) * 2005-05-17 2006-11-23 Wang Dennis H Interlocking Frame System for Floor and Wall Structures

Similar Documents

Publication Publication Date Title
US8042309B2 (en) Panelized veneer with backer-to-backer locators
US7997039B2 (en) Veneer panel
US11891814B2 (en) Prefabricated wall panel with tongue and groove construction
US6516578B1 (en) Thin brick panel system
US8136316B2 (en) Roof and wall covering with improved corner construction
US20080155938A1 (en) Fiber reinforced concrete stone panel system
CA2671305A1 (en) Modular stone panel
US10753092B1 (en) Fiber reinforced surface covering
US20110173922A1 (en) Trim kit for building construction
US7793474B2 (en) Over-mount corner
US8028481B2 (en) Caisson ceiling system
AU2006244688A1 (en) Masonry wall system
WO2009059000A1 (en) Panelized veneer with backer-to-backer locators
US20080196354A1 (en) Fiber Reinforced Concrete Exterior Wall System
JPH09112029A (en) Heat insulating panel made of polystyrene foaming body
RU143949U1 (en) CORNER FACADE FACING MODULE
US11332943B2 (en) Wall covering with adjustable spacing
KR20090023973A (en) Exterior panel for building and manufacturing method thereof
US20090282764A1 (en) Siding system with connecting arrangement
CA3123822A1 (en) Wall covering with adjustable spacing
KR20080005972U (en) Insulation of sound Plastic Panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08844432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08844432

Country of ref document: EP

Kind code of ref document: A1