WO2009056563A1 - Optimierung eines strömungssensors - Google Patents

Optimierung eines strömungssensors Download PDF

Info

Publication number
WO2009056563A1
WO2009056563A1 PCT/EP2008/064667 EP2008064667W WO2009056563A1 WO 2009056563 A1 WO2009056563 A1 WO 2009056563A1 EP 2008064667 W EP2008064667 W EP 2008064667W WO 2009056563 A1 WO2009056563 A1 WO 2009056563A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
sensor
flow
flow direction
angle
Prior art date
Application number
PCT/EP2008/064667
Other languages
English (en)
French (fr)
Inventor
Andreas Albert
Original Assignee
Andreas Albert
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Andreas Albert filed Critical Andreas Albert
Priority to US12/739,985 priority Critical patent/US20110046501A1/en
Priority to EP08845961A priority patent/EP2229099A1/de
Priority to DE202008017985U priority patent/DE202008017985U1/de
Publication of WO2009056563A1 publication Critical patent/WO2009056563A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/087Measuring breath flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • G01F1/42Orifices or nozzles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/091Measuring volume of inspired or expired gases, e.g. to determine lung capacity

Definitions

  • the invention relates to a flow sensor for measuring respiratory volume and flow rate in pulmonary function diagnostics and performance diagnostics according to the preamble of claim 1.
  • Sensors for flow measurement are used in a variety of different embodiments and methods.
  • Common measuring methods for flow measurement work, for example, according to the principle of the multiheated wire, with ultrasonic measurements or with the differential pressure measurement.
  • the test person breathes through a mouthpiece, which is connected to a flow sensor via appropriate hose connections, through which the test person breathes via the mouthpiece and the hose connection.
  • the flow rate of the exhaled air can be determined and based on the known cross sections of the flow measuring device from the respiratory volume can be calculated.
  • the invention relates to an improvement of a flow sensor for differential pressure measurement.
  • a flow resistance is introduced into the flow path.
  • the pressure drop that is, the difference between the pressure before the resistance and the pressure after the resistance.
  • This pressure drop represents a measure of the rate at which the air passes through the resistor.
  • the relationship between flow rate and pressure drop depends on the shape of the resistor. For example, in a fine mesh screen as a drag, the flow after passing through the screen remains laminar, i. There are no turbulences, and there is a linear relationship between differential pressure and flow velocity.
  • An inventive sensor has an interior, in which a surface formed resistance to the air flow is arranged.
  • This sheet resistance has an angle of its resistance plane against the flow direction, which differs from 90 degrees. Due to the arrangement of the resistor at an angle to the flow direction can be at the same a larger resistive area is used to reduce the resistance and thus the back pressure on the lung, without negatively affecting the linearity of the resistance.
  • the ratio of sensor area of the angled resistor to the vertical cross-sectional area of the flow sensor, which corresponds to the area of a conventionally arranged resistor, is a factor where alpha is the angle of the angled resistor to sin ⁇
  • the angle at which the resistance to the flow direction is arranged can vary in the range of 20 to less than 90 degrees. Angles that are shallower than 20 degrees to the flow direction do not bring significant
  • Range for the angle to the flow direction is between 30 and 80, more preferably between 40 and 50 degrees. Particularly preferably, the
  • Resistance can be arranged at an angle of 45 degrees.
  • an area of about 1200 to 2400 qmm is provided, wherein the cross-sectional area should preferably be in the range of 1600 to 200 mm2.
  • the shape of the cross section is generally relatively freely selectable, with a circular or oval cross-section is preferred. Particularly preferred is an elliptical cross section is used, in which the shorter major axis between 17 and 24 mm, preferably between 19 or 22 mm, and particularly preferably 21 mm, and a longer major axis between 22 and 32 mm, preferably between 25 and 29 mm and more preferably 28 mm long.
  • the sensor may have an angle only to one of the two main axes or to both main axes.
  • FIG. 1 a section through a flow sensor according to FIG.
  • FIG. 3 shows a flow sensor according to the invention in a cross section along the line A from FIG.
  • FIG 1 shows a flow sensor 1, as is customary in the prior art.
  • the flow sensor 1 consists of a housing 2, which is designed as a hollow profile in the manner of a tube.
  • the embodiment in Figure 1 shows a one-piece housing, multi-part housing but are also possible.
  • a flow resistance 3 is arranged, which is perpendicular in the prior art, i. is arranged at an angle 5 of 90 degrees to the flow direction 4.
  • connections for connection of the pressure measuring devices (not shown in the drawing).
  • FIG. 2 shows the flow sensor 11 according to the invention.
  • the resistor 13 is arranged, which has an angle 15 to the flow direction 14, which is smaller than 90 degrees. Even with flow sensor according to the invention are located in the flow direction 14 before and after the resistor 13 connections are not drawn to connect the pressure measuring devices, by means of which the pressure difference or the pressure drop can be measured at the flow resistance.
  • the housing 12 may also be designed in one or more parts. In a particularly preferred embodiment, the housing is integrated by injection molding with the Flow resistance produced. Depending on the requirements, a constant or variable flow resistance can be used.
  • Figure 3 shows a section through the flow sensor in Figure 2 along the line A.
  • the housing 12 has an elliptical cross-section, in which the flow resistance 13 is arranged at an angle, so that the section line A, the flow sensor 13 approximately in the Middle cuts.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physiology (AREA)
  • Molecular Biology (AREA)
  • Pulmonology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

Sensor für eine Strömungsmesseinrichtung zur Lungenfunktionsdiagnostik oder Leistungsdiagnostik, der einen Innenraum aufweist, insbesondere einen in Strömungsrichtung länglichen Innenraum, und einen Widerstand zur Erzeugung eines Differenzdrucks zwischen einem Innenraumabschnitt, der dem Widerstand vorgelagert ist, und einem Innenraumabschnitt, der dem Widerstand nachgelagert ist, wobei der Widerstand aus einem flächigen Bauteil besteht, das mit Öffnungen durchsetzt ist, wobei der Widerstand in einem Winkel zwischen 20° und weniger als 90° zur Strömungsrichtung bzw. zur Längserstreckung des Innenraumes angeordnet ist.

Description

Optimierung eines Strömungssensors
[0001] Die Erfindung bezieht sich auf einen Strömungssensor zur Messung von Atemvolumen und Strömungsgeschwindigkeit in der Lungenfunktionsdiagnostik und Leistungsdiagnostik gemäß Oberbegriff des Anspruchs 1.
[0002] Sensoren zur Strömungsmessung werden in einer Vielzahl unterschiedlicher Ausführungsformen und Verfahren eingesetzt. Gängige Messverfahren zur Strömungsmessung arbeiten beispielsweise nach dem Prinzip des Mehrfachhitzedrahts, mit Ultraschallmessungen oder mit der Differenzdruckmessung. Zur Nutzung in der Lungenfunktionsdiagnostik und der Leistungsdiagnostik atmet hierbei der Proband durch ein Mundstück, das über entsprechende Schlauchverbindungen mit einem Strömungssensor verbunden ist, durch den Proband über das Mundstück und die Schlauchverbindung atmet. Somit kann die Strömungsgeschwindigkeit der ausgeatmeten Luft festgestellt und anhand der bekannten Querschnitte der Strömungsmesseinrichtung daraus auch das Atemvolumen berechnet werden.
[0003] Die Erfindung bezieht sich auf eine Verbesserung eines Strömungssensors für Differenzdruckmessung. Bei der Differenzdruckmessung wird ein Strömungswiderstand in den Strömungsweg eingebracht. Durch Messung des Drucks vor und nach dem Widerstand kann der Druckabfall, d.h., die Differenz zwischen Druck vor dem Widerstand und Druck nach dem Widerstand, bestimmt werden. Dieser Druckabfall stellt ein Maß für die Geschwindigkeit, mit der die Luft durch den Widerstand tritt, dar. Die Beziehung zwischen Strömungsgeschwindigkeit und Druckabfall hängt hierbei von der Form des Widerstands ab. Bei einem feinmaschigen Sieb als Strömungswiderstand bleibt zum Beispiel die Strömung nach dem Durchtritt durch das Sieb laminar, d.h. es entstehen keine Turbolenzen, und es ergibt sich ein lineares Verhältnis zwischen Differenzdruck und Strömungsgeschwindigkeit.
[0004] Die DE 43 25 789 A1 beschreibt einen Strömungssensor in Form einer variablen Blende zum Einsatz in einem Rohrsystem für die Messung der Lungenfunktion in der Lungenfunktionsdiagnostik oder Leistungsdiagnostik. Bei einer derartigen variablen Blende ändert sich der Widerstand in Abhängigkeit von der Strömungsgeschwindigkeit, so dass ein breiterer Bereich abgedeckt werden kann. Allerdings weisen variable Blenden keinen linearen Zusammenhang zwischen Druckabfall und Strömungsgeschwindigkeit mehr auf.
[0005] Für die Lungenfunktionsdiagnostik ist es notwendig, Strömungsgeschwindigkeiten im Bereich von 20 ml pro Sekunde bis 15 L pro Sekunde mit einer Genauigkeit von 3% zu messen. Hierzu ist es notwendig, eine möglichst lineare Beziehung zwischen Strömungsgeschwindigkeit und daraus resultierendem Druck zur Verfügung zu stellen. Allerdings müssen weitere Kriterien eingehalten werden, die die Herstellung eines entsprechenden Sensors erschweren. So darf der Totraum des Sensors einen Grenzwert nicht überschreiten, um Gesundheitsgefährdungen des Probanden durch das Wiedereinatmen von verbrauchter Luft auszuschließen. Daher kann der Strömungssensor nicht beliebig vergrößert werden. Der Sensorwiderstand kann aber auch nicht beliebig erhöht werden, um so den Messbereich nach oben zu erweitern, da der Rückdruck durch den Sensor auf die Lunge ebenfalls einen Grenzwert nicht überschreiten darf. Ein zu geringer Widerstand wiederum beeinflusst die Lineahtät der Messung nachteilig.
[0006] Es besteht daher ein Bedürfnis, einen Sensor zur Verfügung zu stellen, der bei geringem Totraum einen niedrigen Widerstand bei gleichzeitig guter Linearität aufweist.
[0007] Die Lösung dieser Aufgabe gelingt mit einem Sensor gemäß Anspruch 1. Vorteilhafte Weiterbildungen ergeben sich aus den Unteransprüchen.
[0008] Ein erfindungsgemäßer Sensor weist einen Innenraum auf, in dem ein flächig ausgebildeter Widerstand gegen die Luftströmung angeordnet ist. Dieser flächige Widerstand weist einen Winkel seiner Widerstandsebene gegen die Strömungsrichtung auf, der sich von 90 Grad unterscheidet. Durch die Anordnung des Widerstands im Winkel zur Strömungsrichtung kann bei gleich bleibendem Sensorvolumen eine größere Widerstandfläche benutzt werden, wodurch der Widerstand und damit der Rückdruck auf die Lunge verringert wird, ohne dabei die Linearität des Widerstandes negativ zu beeinflussen. Das Verhältnis von Sensorfläche des gewinkelt angeordneten Widerstands zur senkrechten Querschnittsfläche des Strömungssensors, die der Fläche eines konventionell angeordneten Widerstands entspricht, entspricht einem Faktor , wobei Alpha der Winkel des gewinkelt angeordneten Widerstands zur sinα
Strömungsrichtung der Luft ist.
[0009] Der Winkel, in dem der Widerstand zur Strömungsrichtung angeordnet ist, kann dabei im Bereich von 20 bis unter 90 Grad variieren. Winkel, die flacher als 20 Grad zur Strömungsrichtung sind, bringen keine erhebliche
Verbesserung mehr, da in den flachen Ecken zwischen Innenraumwand und
Widerstand keine nennenswerte Strömung mehr stattfinden kann. Ein bevorzugter
Bereich für den Winkel zur Strömungsrichtung liegt zwischen 30 und 80, weiter vorzugsweise zwischen 40 und 50 Grad. Besonders vorzugsweise kann der
Widerstand im Winkel von 45 Grad angeordnet werden.
[0010] Für die senkrechte Querschnittsfläche des Innenraums ist bei einem erfindungsgemäßen Sensor zur Strömungsmessung eine Fläche von etwa 1200 bis 2400 qmm vorgesehen, wobei die Querschnittsfläche vorzugsweise im Bereich von 1600 bis 200 qmm liegen sollte. Die Form des Querschnitts ist grundsätzlich relativ frei wählbar, wobei ein kreisförmiger oder ovaler Querschnitt bevorzugt wird. Besonders bevorzugt wird ein elliptischer Querschnitt verwendet, bei dem die kürzere Hauptachse zwischen 17 und 24 mm, vorzugsweise zwischen 19 oder 22 mm, und besonders bevorzugt bei 21 mm, und eine längere Hauptachse zwischen 22 und 32 mm, bevorzugt zwischen 25 und 29 mm und besonders bevorzugt von 28 mm, lang ist.
[0011] Der Sensor kann dabei einen Winkel lediglich zu einer der beiden Hauptachsen oder zu beiden Hauptachsen aufweisen. [0012] Weitere Merkmale, Merkmalskombinationen, Vorteile und Eigenschaften ergeben sich aus der nachfolgenden Beschreibung eines bevorzugten Ausführungsbeispiels und aus den Zeichnungen. Diese zeigen in:
Figur 1 : Einen Schnitt durch einen Strömungssensor nach dem
Stand der Technik,
Figur 2: Einen erfindungsgemäßen Strömungssensor in Längsschnitt,
Figur 3: Einen erfindungsgemäßen Strömungssensor in Querschnitt entlang der Linie A aus Fig.2.
[0013] Figur 1 zeigt einen Strömungssensor 1 , wie er im Stand der Technik üblich ist. Der Strömungssensor 1 besteht aus einem Gehäuse 2, das als Hohlprofil in der Art eines Rohres ausgeführt ist. Die Ausführungsform in Figur 1 zeigt dabei ein einteiliges Gehäuse, mehrteilige Gehäuse sind aber ebenso möglich. Im Gehäuseinneren ist ein Strömungswiderstand 3 angeordnet, der im Stand der Technik senkrecht, d.h. mit einem Winkel 5 von 90 Grad zur Strömungsrichtung 4 angeordnet ist. In Strömungsrichtung 4 vor und nach dem Widerstand 3 befinden sich Anschlüsse zum Anschluss der Druckmesseinrichtungen (in der Zeichnung nicht dargestellt).
[0014] Figur 2 zeigt den Strömungssensor 11 gemäß der Erfindung.
Im Gehäuse 12 ist der Widerstand 13 angeordnet, der zur Strömungsrichtung 14 einen Winkel 15 aufweist, der kleiner als 90 Grad ist. Auch bei erfindungsgemäßen Strömungssensor befinden sich in Strömungsrichtung 14 vor und nach dem Widerstand 13 Anschlüsse nicht gezeichnet zur Verbindung der Druckmesseinrichtungen, mittels derer die Druckdifferenz bzw. der Druckabfall am Strömungswiderstand gemessen werden kann. Das Gehäuse 12 kann ebenfalls ein- oder mehrteilig ausgeführt sein. In einer besonders bevorzugten Ausführungsform wird das Gehäuse im Spritzgussverfahren integriert mit dem Strömungswiderstand hergestellt. Je nach Anforderung kann hierbei ein konstanter oder ein variabler Strömungswiderstand verwendet werden.
[0015] Figur 3 zeigt einen Schnitt durch den Strömungssensor in Figur 2 entlang der Linie A. Das Gehäuse 12 weist einen elliptischen Querschnitt auf, in dem der Strömungswiderstand 13 unter einem Winkel angeordnet ist, so dass die Schnittlinie A den Strömungssensor 13 ungefähr in der Mitte schneidet.
Bezugszeichenliste
1 Strömungssensor
2 Gehäuse Strömungssensor
3 Strömungswiderstand 4 Strömungsrichtung
5 Winkel Strömungswiderstand zur Strömungsrichtung
11 Strömungssensor
12 Gehäuse
13 Strömungswiderstand 14 Strömungsrichtung
15 Winkel Strömungswiderstand zur Strömungsrichtung

Claims

Patentansprüche
1. Sensor (11 ) für eine Strömungsmesseinrichtung zur Lungenfunktionsdiagnostik oder Leistungsdiagnostik, der einen Innenraum aufweist, insbesondere einen in Strömungsrichtung (14) länglichen Innenraum, und einen Widerstand (13) zur Erzeugung eines Differenzdrucks zwischen einem Innenraumabschnitt, der dem Widerstand vorgelagert ist, und einem Innenraumabschnitt, der dem Widerstand nachgelagert ist, wobei der Widerstand (13) aus einem flächigen Bauteil besteht, das mit Öffnungen durchsetzt ist, dadurch gekennzeichnet, dass der Widerstand (13) in einem Winkel (15) zwischen 20° und weniger als 90° zur Strömungsrichtung (14) bzw. zur Längserstreckung des Innenraumes angeordnet ist
2. Sensor (11 ) nach Anspruch 1 , dadurch gekennzeichnet, dass der Widerstand (13) im Winkel (15) zwischen 30° und 80°, vorzugsweise im
Winkel (15) zwischen 40° und 50°, besonders vorzugsweise im Winkel (15) von 45° zur Strömungsrichtung angeordnet ist.
3. Sensor (11 ) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Innenraum eine Querschnittsfläche senkrecht zur Strömungsrichtung (14) bzw. zur Längserstreckung des Innenraums von 1200 bis 2400
Quadratmillimetern, vorzugsweise von 1600 bis 2000 Quadratmillimetern aufweist.
4. Sensor (11 ) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Innenraum senkrecht zur Strömungsrichtung (14) bzw. Längserstreckung einen ovalen, insbesondere elliptischen
Querschnitt aufweist.
5. Sensor (11 ) nach Anspruch 4, dadurch gekennzeichnet, dass die kürzere Hauptachse des ovalen bzw. elliptischen Querschnitts zwischen 17 mm und 24 mm, insbesondere zwischen 19 mm und 22 mm, und die längere Hauptachse zwischen 22 mm und 32 mm, insbesondere zwischen 25 mm und 29 mm lang sind.
6. Sensor (11 ) nach Anspruch 5, dadurch gekennzeichnet, dass die kürzere Hauptachse 21 mm und die längere Hauptachse 28 mm lang ist.
7. Sensor (11 ) nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass der Widerstand (15) zu beiden Hauptachsen einen Winkel (15) von größer als 20° und kleiner als 90° aufweist.
PCT/EP2008/064667 2007-10-31 2008-10-29 Optimierung eines strömungssensors WO2009056563A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/739,985 US20110046501A1 (en) 2007-10-31 2008-10-29 Optimization of a flow sensor
EP08845961A EP2229099A1 (de) 2007-10-31 2008-10-29 Optimierung eines strömungssensors
DE202008017985U DE202008017985U1 (de) 2007-10-31 2008-10-29 Optimierung eines Strömungssensors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07119713 2007-10-31
EP07119713.1 2007-10-31

Publications (1)

Publication Number Publication Date
WO2009056563A1 true WO2009056563A1 (de) 2009-05-07

Family

ID=40279108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/064667 WO2009056563A1 (de) 2007-10-31 2008-10-29 Optimierung eines strömungssensors

Country Status (4)

Country Link
US (1) US20110046501A1 (de)
EP (1) EP2229099A1 (de)
DE (1) DE202008017985U1 (de)
WO (1) WO2009056563A1 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1342370A (en) * 1970-01-09 1974-01-03 Siemens Ag Monitoring the respiration of a subject
DE4325789A1 (de) * 1993-07-31 1995-02-02 Zan Mesgeraete Gmbh I G Verfahren zur Kalibrierung von Strömungsblenden sowie Strömungsmesser mit derartigen Strömungsblenden
WO2001042744A2 (en) * 1999-11-30 2001-06-14 Qrs Diagnostic, Llc. Slant fabric spirometer design

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2386639A1 (en) * 2002-05-16 2003-11-16 Dynamic Mt Gmbh Portable electronic spirometer
CN101072981A (zh) * 2004-12-09 2007-11-14 柯尼卡美能达医疗印刷器材株式会社 流量测定装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1342370A (en) * 1970-01-09 1974-01-03 Siemens Ag Monitoring the respiration of a subject
DE4325789A1 (de) * 1993-07-31 1995-02-02 Zan Mesgeraete Gmbh I G Verfahren zur Kalibrierung von Strömungsblenden sowie Strömungsmesser mit derartigen Strömungsblenden
WO2001042744A2 (en) * 1999-11-30 2001-06-14 Qrs Diagnostic, Llc. Slant fabric spirometer design

Also Published As

Publication number Publication date
US20110046501A1 (en) 2011-02-24
DE202008017985U1 (de) 2011-02-17
EP2229099A1 (de) 2010-09-22

Similar Documents

Publication Publication Date Title
DE10035054C1 (de) Atemstromsensor
DE4118404C2 (de) Atemgas-Strömungs-Meßsystem
DE19617738C1 (de) Atemstromsensor
EP3582840B1 (de) Vorrichtung zur beatmung mit differenzdrucksensor
DE102010064623B3 (de) Durchflussmessfühler mit über Laschen an dessen Gehäusewand verbundenem Leitelement
DE112019000883T5 (de) Ermittlungsvorrichtung
DE102006024363A1 (de) Vorrichtung zur Volumen- oder Fließgeschwindigkeitsmessung von Fluiden
WO2009056563A1 (de) Optimierung eines strömungssensors
EP3514505A1 (de) Strömungsmesser
DE2723337A1 (de) Messkopf fuer gasdurchsatz-messgeraet
DE102021113642A1 (de) Verbindungs-Anordnung mit einem Volumenfluss-Sensor und einer Homogenisierungseinheit zur künstlichen Beatmung eines Patienten sowie ein Herstellungsverfahren
DE102004055101A1 (de) Baueinheit aus einem Strömungssensor, einem Durchlaßkanal und einem innerhalb des Durchlaßkanals angeordneten Meßkanals
DE102012001160B4 (de) Messvorrichtung zur Messung eines Volumenstromes
EP4130687B1 (de) Durchflussmesssystem
EP0331773A1 (de) Strömungswiderstandsrohr für Gasströmungsmesser
DE19617318A1 (de) Meßkopf für einen Atemstrommesser
DE29623341U1 (de) Meßkopf für einen Atemstrommesser
DE10035543A1 (de) Vorrichtung zur Bestimmung zumindest eines Parameters eines strömenden Mediums
DE10205754A1 (de) Rohr-Luftmassemesser
WO2006079301A1 (de) Verfahren und vorrichtung zur druckregelung
DE2356725C3 (de) Strömungsmesser
DE202021104185U1 (de) Durchflussmesssystem
DE2719900A1 (de) Respirations-analysegeraet
DE1972148U (de) Atemrohr fuer pneumotachographen.
EP3284405A1 (de) Messgerät und verfahren zum bestimmen einer maximalen inhalationsleistung einer person

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08845961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008845961

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12739985

Country of ref document: US