WO2009054428A1 - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
WO2009054428A1
WO2009054428A1 PCT/JP2008/069176 JP2008069176W WO2009054428A1 WO 2009054428 A1 WO2009054428 A1 WO 2009054428A1 JP 2008069176 W JP2008069176 W JP 2008069176W WO 2009054428 A1 WO2009054428 A1 WO 2009054428A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
temperature
refrigerant
cell system
state
Prior art date
Application number
PCT/JP2008/069176
Other languages
French (fr)
Japanese (ja)
Inventor
Naoki Kanie
Masahiro Okuyoshi
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007332474A external-priority patent/JP4618294B2/en
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to US12/531,266 priority Critical patent/US8192880B2/en
Priority to DE112008002872.9T priority patent/DE112008002872B4/en
Publication of WO2009054428A1 publication Critical patent/WO2009054428A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04358Temperature; Ambient temperature of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04634Other electric variables, e.g. resistance or impedance
    • H01M8/04649Other electric variables, e.g. resistance or impedance of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04761Pressure; Flow of fuel cell exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a fuel cell system including a fuel cell.
  • a fuel cell system including a storage device that stores water discharged from the fuel cell As a fuel cell system including a storage device that stores water discharged from the fuel cell, a fuel cell system including a temperature sensor in the storage device is known in order to determine the state of the storage device.
  • the present invention has been made in view of the above problems, and an object of the present invention is to reduce the size or weight of a fuel cell system including a storage device.
  • a fuel cell system includes a fuel cell, a storage device that stores water discharged from the fuel cell, and a state in which the state of the storage device is estimated based on the state of the fuel cell An estimation unit;
  • the fuel cell system since the state of the storage device can be estimated without providing a temperature sensor or the like in the storage device, the fuel cell system can be reduced in size or weight.
  • the state estimation unit may estimate whether or not the water is stored in the storage device based on an internal resistance value of the fuel cell. In this way, the storage state of the water in the storage device is changed to the storage device. The estimation can be performed without providing a temperature sensor or the like.
  • the state estimation unit determines whether or not the water is stored in the storage device, in the fuel cell, the internal resistance value at the end of the previous power generation. In this way, the storage state of the water in the storage device can be estimated based on the internal resistance value at the end of the previous power generation of the fuel cell without providing a temperature sensor or the like in the storage device. Can be estimated.
  • the fuel cell system according to the first aspect further includes a refrigerant flow path for flowing a refrigerant for cooling the fuel cell,
  • the state estimation unit may estimate the state of the water based on the refrigerant temperature of the refrigerant flow path. In this way, the state of water in the storage device can be estimated without providing a temperature sensor or the like in the storage device.
  • the storage device includes a high-order part and a low-order part of the refrigerant flow path.
  • the state estimation unit is in a state in which the refrigerant in the refrigerant flow path is stopped before the fuel cell power generation is started, and is disposed in contact with the fuel cell.
  • the water state may be estimated as a liquid that is not in the supercooled state. In this way, the state of water in the storage device can be estimated without providing a temperature sensor or the like in the storage device.
  • the storage device includes a high-order part and a low-order part of the refrigerant flow path.
  • the state estimation unit is in a state in which the refrigerant in the refrigerant flow path is stopped before the fuel cell power generation is started, and is disposed in contact with the fuel cell.
  • the refrigerant temperature in the lower part of the flow path is equal to or lower than a second threshold value, and the refrigerant temperature in the higher part of the refrigerant flow path is smaller than the second threshold value. If it is greater than the third threshold, the water state may be estimated as a supercooled state. In this way, the state of water in the storage device can be estimated without providing a temperature sensor or the like in the storage device.
  • a fuel cell system comprising: a discharge valve for discharging the water from the storage device; and a valve control unit that controls opening and closing of the discharge valve, wherein the valve control unit includes the state
  • the estimation unit estimates the water state as a supercooled state
  • the discharge valve may be opened until a predetermined condition is satisfied. In this way, when the supercooled water in the storage device reaches the discharge valve, it can be prevented from freezing and the discharge valve becoming uncontrollable.
  • the storage device includes a high-order part and a low-order part of the refrigerant flow path.
  • the state estimation unit is in a state in which the refrigerant in the refrigerant flow path is stopped before the fuel cell power generation is started, and is disposed in contact with the fuel cell.
  • a fourth threshold value When the temperature of the refrigerant in the lower portion of the flow path is equal to or lower than a fourth threshold value, and the temperature of the refrigerant in the higher portion of the refrigerant flow path is equal to or lower than a fifth threshold value that is smaller than the fourth threshold value.
  • the water state may be estimated as a frozen state. In this way, the state of the water in the storage device can be estimated without providing a temperature sensor or the like in the storage device.
  • the storage device includes a discharge valve for discharging the water, and the fuel cell system includes a refrigerant flow path for flowing a cooling medium for cooling the fuel cell, and A valve temperature estimation unit that estimates the discharge valve temperature; and a valve temperature storage unit that stores the discharge valve temperature estimated by the valve temperature estimation unit, wherein the valve temperature estimation unit generates power from the fuel cell.
  • the refrigerant temperature is detected, and the detected temperature of the refrigerant and the discharge valve temperature stored in the valve temperature storage unit at the end of the previous power generation, the lower temperature is started
  • the exhaust valve temperature at the time may be estimated.
  • the fuel cell finishes generating electricity
  • the drain valve temperature at the end of the previous fuel cell power generation is Since it is estimated as the valve temperature, it is possible to suppress misjudgment that the drain valve temperature is equal to or higher than the predetermined value, and accordingly, misjudgment that the drain valve may be frozen is suppressed. can do. As a result, it is possible to prevent the drain valve from becoming uncontrollable.
  • the valve temperature estimation unit detects the refrigerant temperature when newly estimating the exhaust valve temperature during power generation of the fuel cell, and detects the detected refrigerant temperature. You may estimate based on refrigerant
  • the valve temperature estimation unit may determine whether or not the discharge valve is likely to freeze based on the estimated discharge valve temperature. In this way, it is possible to accurately determine whether or not the discharge valve may freeze.
  • the fuel cell system further comprising: a discharge valve freezing information storage unit, wherein if the valve temperature estimation unit determines that the discharge valve may be frozen, the discharge valve freezing information storage unit The unit may store freezing possibility information indicating that the discharge valve may be frozen. In this way, it is possible to quickly determine whether or not the discharge valve can be controlled to open.
  • the fuel cell system further comprising: a discharge valve freezing information storage unit, wherein the valve temperature estimation unit determines that the discharge valve is not likely to freeze, The portion may store freezing possibility release information indicating that the discharge valve has almost no possibility of freezing. In this way, it is possible to quickly determine whether or not the discharge valve can be controlled to open.
  • the refrigerant flow path includes the fuel cell.
  • the temperature distribution of the refrigerant in the refrigerant flow path quickly corresponds to the temperature distribution of the fuel cell, so that the state of the water in the reservoir can be accurately estimated based on the refrigerant temperature. .
  • the present invention can be realized in the form of a control circuit of the fuel cell system, or an apparatus invention of a vehicle or the like equipped with the fuel cell system. Further, the present invention is not limited to the device invention, and can be realized as a method invention such as a control method for a fuel cell system. Furthermore, an aspect as a computer program for constructing these methods and apparatuses, an aspect as a recording medium recording such a computer program, and a data signal embodied in a carrier wave including the above computer program It can also be realized in various ways.
  • the present invention when configured as a computer program or a recording medium that records the program, it may be configured as an entire program for controlling the operation of the apparatus, or only a part that performs the function of the present invention. What constitutes
  • FIG. 1 is a block diagram showing a schematic configuration of a fuel cell system according to a first embodiment of the present invention.
  • FIG. 2 is a front view of an end plate disposed at one end of the fuel cell.
  • FIG. 3 is a flowchart showing a processing routine of the water state estimation processing executed by the fuel cell system of the first embodiment.
  • FIG. 4 is a block diagram showing a schematic configuration of the fuel cell system according to the second embodiment of the present invention.
  • FIG. 5 is a flowchart showing the process of the exhaust drainage valve temperature estimation process executed by the fuel cell system of the second embodiment.
  • FIG. 6 is an explanatory diagram showing an example of a timing chart in the exhaust drainage valve temperature estimation process.
  • FIG. 1 is a block diagram showing a schematic configuration of a fuel cell system 1000 according to the first embodiment of the present invention.
  • the X direction is defined as the direction indicated by the arrow in the figure.
  • the fuel cell system 1 000 of the present embodiment mainly includes a fuel cell 100, a hydrogen tank 200, a compressor 230, a control circuit 400, a refrigerant circulation pump 500, and a temperature sensor 5 2 0, 5 30.
  • the fuel cell 100 is a polymer electrolyte fuel cell that is relatively small and excellent in power generation efficiency.
  • the fuel cell 100 includes a fuel cell 20, end plates 300 A and 300 B, a tension plate 3 10, insulators 3 30 A and 3 30 B, and terminals 34 OA and 34 OB. Yes.
  • the fuel cell 100 is laminated in the order of an end plate 300A, an insulator 330A, a terminator 340A, a plurality of fuel cells 20, a terminal 340B, an insulator 33OB, and an end plate 300B.
  • the tension plates 3 10 are coupled to the end plates 300 by bolts 3 20, whereby each fuel cell 20 is fastened with a predetermined force in the stacking direction.
  • the fuel battery cell 20 includes a membrane electrode assembly (not shown), an anode side separator (not shown), and a force sword side separator (not shown).
  • Membrane electrode contact The coalescence includes an electrolyte membrane (not shown), a force sword (not shown) and an anode (not shown) as electrodes, and a gas diffusion layer (not shown). It consists of an electrolyte membrane on the surface of which a positive electrode is sandwiched between gas diffusion layers.
  • the fuel cell 20 is configured by further sandwiching this membrane electrode assembly with an anode side separator and a cathode side separator.
  • the hydrogen tank 200 is a storage device for storing high-pressure hydrogen gas, and is connected to a fuel cell 100 (a fuel gas supply manifold described later) via a fuel gas supply channel 20 4. Yes.
  • a hydrogen shut-off valve 2 10 and a pressure regulating valve are provided in order from the hydrogen tank 2 0 0.
  • hydrogen gas is supplied to the fuel cell 1 0 0 as fuel gas.
  • hydrogen may be generated by a reforming reaction using alcohol, hydrocarbon, aldehyde, or the like as a raw material, and supplied to the anode side.
  • the compressor 2 3 0 is connected to the fuel cell 1 0 0 (oxidizing gas supply manifold described later) via the oxidizing gas supply flow path 2 3 4, and compresses air and supplies it to the power sword as oxidizing gas To do.
  • the fuel cell 100 (the oxidizing gas discharge manifold described later) is connected to the oxidizing gas discharge flow path 2 36 and the oxidizing gas after being subjected to the electrochemical reaction with the power sword is the oxidizing gas. It is discharged to the outside of the fuel cell system 1 0 0 0 through the discharge flow path 2 3 6.
  • FIG. 2 is a front view of the end plate 300 B arranged at one end of the fuel cell 100. Specifically, FIG. 2 corresponds to a view of the end plate 300 B of FIG. 1 viewed from the X direction. Furthermore, in FIG. 2, the downward direction is the vertical downward direction, and the upward direction is the vertical upward direction.
  • the fuel cell system 100 will be described with reference to FIG. 1 and FIG.
  • a fuel gas supply MH I (see Fig. 2)
  • a fuel gas discharge MH OH (see Fig. 2)
  • an oxidant gas supply mulch (see Fig. 2). 8
  • Fuel gas supply manifold MH I supplies fuel gas to each fuel cell 20, and fuel gas discharge manifold MH O discharges fuel gas from each fuel cell 20 to the outside of the fuel cell 10 0 0
  • the oxidizing gas supply manifold supplies the oxidizing gas to each fuel cell 20, and the oxidizing gas discharge manifold discharges the oxidizing gas from each fuel cell 20 to the outside of the fuel cell 100.
  • the refrigerant supply manifold MLI supplies refrigerant between the fuel cells 20.
  • the external connection port of the refrigerant supply manifold MLI (hereinafter also referred to as the refrigerant supply port) is located vertically below the fuel cell 100 and the external connection port of the refrigerant discharge manifold (hereinafter referred to as (Also referred to as a refrigerant outlet) is arranged on the upper side in the vertical direction of the fuel cell 100.
  • the refrigerant water or a mixed liquid of water and ethylene glycol (antifreeze) can be used.
  • the refrigerant supply manifold M L I (refrigerant supply port) and the refrigerant discharge manifold M L O (refrigerant discharge port) of the fuel cell 100 are respectively connected to the refrigerant circulation flow path 5 10.
  • the flow path formed by the refrigerant supply manifold M L I, the refrigerant discharge manifold M L O, and the refrigerant circulation flow path 51 is also referred to as a refrigerant circulation system flow path.
  • a refrigerant circulation pump 500 and a radiator 55 are provided on the refrigerant circulation channel 51.
  • the radiator 55 50 cools the refrigerant warmed by the fuel cell 100, and the refrigerant circulation pump 50 00 supplies the refrigerant cooled by the radiator 55 50 to the fuel cell 100.
  • the fuel cell 100 can be continuously cooled by the refrigerant.
  • a temperature sensor 5 20 is disposed at the refrigerant supply port, and a temperature sensor 5 30 is disposed at the refrigerant discharge port. That is, the temperature sensor 5 20 is a sensor for detecting the refrigerant temperature [° C] (hereinafter also referred to as the low refrigerant temperature T 1) in the lower part of the refrigerant circulation system flow path. 5 3 0 is the refrigerant temperature [° C] (higher refrigerant temperature T 2 at the higher position in the refrigerant circulation system flow path. It is also a sensor for detecting.
  • the gas-liquid separator 600 is connected to the fuel gas discharge manifold MH O of the fuel cell 100 via the fuel gas discharge flow path 206.
  • the gas-liquid separator 60 is composed of a condensing unit 60 A that condenses water vapor contained in the fuel gas discharged from the fuel cell 100, a condensed water condensed by the condensing unit 60 OA, and a fuel cell.
  • the storage unit 6 0 0 B stores water discharged as liquid water from 1 0 0.
  • the water stored in the storage unit 6 10 B is referred to as stored water. Further, as shown in FIG.
  • the gas-liquid separator 600 is vertically disposed between the refrigerant supply port (refrigerant discharge manifold MLO) and the refrigerant discharge port (refrigerant supply manifold MLI). And the side surface of the fuel cell 10 0 0 0 is arranged in contact with the end plate 3 0 0 B of the fuel cell 1. Further, the gas / liquid separator 60 is provided with an exhaust drain valve 6 10. The exhaust / drain valve 6 1 0 is connected to the exhaust / drain passage 6 2 0. During operation of the fuel cell system 1 0 0 0, by periodically opening the exhaust drain valve 6 1 0, the concentration of impurities (for example, nitrogen) after being subjected to an electrochemical reaction at the anode increases.
  • impurities for example, nitrogen
  • the fuel gas in the reservoir 6 0 0 B is periodically stored in the fuel gas discharge channel 2 0 6, gas-liquid separator 6 0 0, exhaust drain valve 6 1 0, and exhaust drain
  • the fuel cell system 10 0 0 is discharged to the outside through the flow path 6 2 0.
  • the gas-liquid separator 60 0 0 is connected to the fuel gas supply flow path 20 4 via the gas circulation flow path 2 07 as shown in FIGS.
  • a hydrogen circulation pump 25 50 is provided on the gas circulation flow path 20 7.
  • the fuel gas discharged from the fuel cell 10 0 (fuel gas discharge mold MH O) to the gas-liquid separator 6 0 0 is passed through the gas circulation flow path 2 0 7 by the hydrogen circulation pump 2 5 0. Then, it is introduced into the fuel gas supply flow path 204. In this way, the hydrogen gas contained in the fuel gas circulates and is used as a fuel gas for power generation.
  • an ion exchange device for removing ions in the liquid water that can be discharged from the fuel cell 100 is provided at the connection between the gas-liquid separator 600 and the fuel gas discharge flow path 206.
  • the resistance measuring device 900 is connected to the terminals 340A and 340B of the fuel cell 100 via the wiring 9 1 0, and measures the internal resistance value of the fuel cell 100 (hereinafter referred to as the FC resistance value). To do. Specifically, the resistance measuring apparatus 900 applies an alternating current of a predetermined frequency between the terminator 34 OA and 34 OB and detects the voltage between the terminator 340A and 340B. The resistance measuring device 900 measures the FC resistance value based on the phase difference between the AC component of the applied current and the AC component of the detected voltage, and the frequency of the AC component of the current and voltage.
  • the electrolyte membrane in each fuel cell 20 of the fuel cell 100 has a property that the membrane resistance is low in the wet state and the membrane resistance is high in the dry state. Therefore, in the fuel cell 100, if a large amount of water stays inside the FC resistance value, the FC resistance value becomes low, and if there is little water staying inside, the FC resistance value becomes high. That is, the FC resistance value can be considered as an index of the water retention state inside the fuel cell 100.
  • the higher refrigerant temperature T 2 is reduced to the lower refrigerant temperature T by the refrigerant convection in the refrigerant circulation passage.
  • a temperature distribution occurs in which the temperature is higher than 1.
  • the refrigerant supply manifold ML I in the fuel cell 1001 has a higher heat capacity than the other members in the refrigerant discharge manifold MLO. Temperature distribution occurs to correspond to the temperature distribution of the Mull Hold ML I and the refrigerant discharge manifold MLO.
  • the gas-liquid separator 600 is disposed between the refrigerant supply port from which the lower refrigerant temperature T1 is detected and the refrigerant outlet from which the higher refrigerant temperature T2 is detected. Since the side surface of the fuel cell 100 is in contact with the end plate 300 B of the fuel cell 100, the temperature of the stored water in the gas-liquid separator 600 is equal to the high refrigerant temperature T 2 and the low refrigerant temperature T 1. It can be estimated that the temperature is between.
  • the control circuit 400 is configured as a logic circuit centered on a microcomputer. It is. Specifically, a CPU (not shown) that executes predetermined calculations according to a preset control program, and control programs and control data necessary for executing various calculation processes by the CPU are stored in advance. ROM (not shown), RAM 4 2 0 for reading and writing various data necessary to perform various arithmetic operations on the CPU, and input / output ports for inputting / outputting various signals (not shown) ) Etc.
  • the control circuit 40 0 is connected to an input / output port through a control signal line (not shown), a hydrogen shutoff valve 2 1 0, a compressor 2 3 0, a hydrogen circulation pump 2 5 0, and a refrigerant circulation pump 5 0.
  • the control circuit 400 also receives detection signals from various sensors including a temperature sensor via a detection signal line (not shown).
  • the control circuit 40 0 also functions as a state estimation unit 4 10, and executes water state estimation processing described later.
  • the control circuit 400 at the end of power generation of the fuel cell 10 0, causes the resistance measuring device 90 0 to connect to the FC resistance value of the fuel cell 1 0 0 (hereinafter referred to as the same resistance value 1 1). Is detected and stored in RAM 4 2 0.
  • FIG. 3 is a flowchart showing a processing routine of water state estimation processing executed by the fuel cell system 100 according to this embodiment.
  • This water state estimation process is executed before the power generation of the fuel cell 100 is started. That is, it is executed before the refrigerant circulation pump 5 0 0, the compressor 2 3 0, and the hydrogen circulation pump 2 5 0 are driven, and the hydrogen cutoff valve 2 1 0 and the exhaust drain valve 6 1 0 are closed Executed in state.
  • the water state estimation process is a process for estimating the state in the gas-liquid separator 600 before the start of power generation of the fuel cell 100. That is, whether or not the stored water exists in the gas-liquid separator 600, and if the stored water exists, the stored water is liquid water that is not supercooled water, supercooled water, and a frozen state. It is the process which estimates which state is.
  • the state estimation unit 4 1 0 first sets the resistance value 1 1 to 18 Read from M420 (step S 1 0). Next, the state estimation unit 4 10 estimates whether or not the FC resistance value R i is equal to or less than the threshold value R th (step S 20).
  • step S 20 When the FC resistance value R i is larger than the threshold value R th (step S 20: No), the state estimation unit 4 1 0 is in the fuel cell 1 00 when the previous power generation of the fuel cell 1 0 0 ends. Therefore, it is estimated that there is no stored water (or almost no stored water) in the gas-liquid separator 600 (step S 30). Thereafter, the state estimation unit 4 10 ends this process.
  • step S20 When the FC resistance value R i is equal to or less than the threshold value R th (step S20: Y es), the state estimation unit 4 10 0 causes water to enter the fuel cell 100 when the previous power generation of the fuel cell 100 ends. It is presumed that there was a large amount of stagnation, and it is presumed that there is retained water in the gas-liquid separator 600 (step S 35).
  • the state estimation unit 4 10 detects the lower refrigerant temperature T 1 from the temperature sensor 5 20 (step S 40).
  • the state estimation unit 4 10 estimates whether or not the lower refrigerant temperature T 1 is equal to or lower than the threshold value T th h 1 (step S 50).
  • This threshold value T t h 1 is appropriately determined based on the specific design of the fuel cell system 1 000 and the like, and can be set to “0” indicating the melting point of water, for example.
  • step S 50 When the lower refrigerant temperature T 1 is higher than the threshold T th 1 (step S 50: No), the state estimation unit 4 10 0 determines that the temperature of the stored water in the gas-liquid separator 600 is the threshold T th 1 Therefore, it is estimated that the stored water in the gas-liquid separator 600 is not a supercooled liquid (step S60). Thereafter, the state estimation unit 4 10 ends this process.
  • step S 50 If the lower refrigerant temperature T 1 is equal to or lower than the threshold T th 1 (step S 50: Y es), the state estimating unit 4 10 subsequently detects the higher refrigerant temperature T 2 from the temperature sensor 53. (Step S70).
  • the state estimation unit 4 1 0 estimates whether or not the higher refrigerant temperature T 2 is equal to or lower than a threshold T th 2 (Step S 80).
  • This threshold value T th 2 is smaller than the threshold value T th 1.
  • the threshold value T th 2 is appropriately determined based on the specific design of the fuel cell system 100 °. For example, the threshold value T th 2 can be changed from the supercooled state to the frozen state when the supercooled water is stable. The temperature may be between “1 2 0” to “1 4 0”.
  • the state estimating unit 4 1 0 determines that the temperature of the stored water in the gas-liquid separator 60 0 is the threshold T th. It is estimated that the stored water in the gas-liquid separator 60 0 is in a supercooled state because it is considered to be higher than 2 and within the range of the threshold value T th 1 (step S 90). Thereafter, the state estimation unit 4 10 ends this process.
  • the state estimation unit 4 10 0 determines that the temperature of the stored water in the gas-liquid separator 60 0 is the threshold value. Since it is considered that T th is 2 or less, it is estimated that the water stored in the gas-liquid separator 60 0 is in a frozen state (step S 1 0 0). Thereafter, the state estimation unit 4 10 ends this process.
  • the control circuit 40 0 drives the refrigerant circulation pump 5 0 0, the compressor 2 3 0, the hydrogen circulation pump 2 5 0, etc., and opens the hydrogen shut-off valve 2 1 0, and the fuel cell 1 0 0 power generation starts.
  • the control circuit 40 0 estimates that there is no stored water (Fig. 3: Step S 3 0), or if the stored water is estimated as liquid water that is not supercooled ( Fig. 3: Step S 60 0) or when the stored water is estimated to be frozen (Fig.
  • Step S 1 0 0 Step S 1 0 0
  • open / close control of the exhaust drain valve 6 1 0 periodically without restriction Then, the fuel gas with a high impurity concentration and the stored water in the storage unit 600 B are discharged to the outside of the fuel cell system 100 0 0.
  • the control circuit 400 when the state estimation unit 4 10 has estimated that the stored water is in a supercooled state (FIG. 3: step S90), the fuel After the start of power generation of the battery 100, the exhaust drain valve 61 0 is not controlled until the stored water escapes from the supercooled state.
  • the control circuit 4 0 0 is, for example, a fuel cell 1 0 0 0
  • a predetermined time has elapsed from the start of power generation, heat transferred from the fuel cell 100 to the gas-liquid separator 60, condensation heat when water vapor in the fuel gas condenses, or fuel cell 100 It is estimated that the stored water has escaped from the supercooled state due to the heat of the liquid water discharged from the tank, and the open / close control of the exhaust drain valve 6 10 is released.
  • the state of the gas-liquid separator 6 0 0 is changed to the FC resistance of the fuel cell without providing a temperature sensor in the gas-liquid separator 6 0 0. It is estimated based on the value R i, or the lower refrigerant temperature T l, or the higher refrigerant temperature ⁇ 2. In this way, it is possible to realize a small size or a light weight of the fuel cell system 100.
  • the control circuit 4 0 0 determines that the state estimation unit 4 1 0 estimates that the stored water is in a supercooled state (FIG. 3: step S 9
  • valve opening control of the exhaust / drain valve 6 10 is not performed until the stored water escapes from the supercooled state. In this way, it is possible to prevent the control of opening / closing of the exhaust drain valve 6 1 0 from being caused by freezing of the overcooled stored water flowing through the exhaust drain valve 6 10. be able to.
  • the gas-liquid separator 6 0 0 and the exhaust drain valve 6 1 0 correspond to the storage device in the claims, and the exhaust drain valve 6 1 0 corresponds to the discharge valve in the claims, and the state estimation unit 4 1 0 Corresponds to the state estimation unit in the claims, and the refrigerant discharge manifold ML ⁇ , the refrigerant supply manifold MLI, the refrigerant circulation channel 5 10, or the refrigerant circulation system channel is the refrigerant in the claims
  • the threshold value T th 1 corresponds to one of the first threshold value, the second threshold value, and the fourth threshold value in the claim range, and the threshold value T th 2 corresponds to the third threshold value in the claim range or
  • the control circuit 400 corresponds to the valve control unit in the claims.
  • FIG. 4 is a block diagram showing a schematic configuration of the fuel cell system 100 O A according to the second embodiment of the present invention.
  • the fuel cell system 100 A OA of the present embodiment has basically the same configuration as the fuel cell system 100 00 of the first embodiment, but the control circuit 40 0 0 has a valve temperature estimation unit 4 30 is different, and is different in that RAM 4 2 0 is provided with a reference value table KB, a flag table FB, and test data KD.
  • the other configuration of the fuel cell system 10 0 O A is the same as that of the fuel cell system 100 0 0.
  • the fuel cell system 100 0 A performs water state estimation processing in the same manner as the fuel cell system 1 0 0 0 of the first embodiment, and further, exhaust drainage provided in the gas-liquid separator 6 0 0 Estimate the temperature of the valve 6 10, and based on that temperature, the exhaust drain valve freezing flag that indicates whether or not the exhaust drain valve 6 1 0 is likely to freeze. An estimation process is also performed.
  • the valve temperature estimator 4 30 performs exhaust drainage valve temperature estimation processing.
  • Reference value table ⁇ KB stores the exhaust drain valve temperature Tb estimated in the exhaust drain valve temperature estimation process.
  • the exhaust drainage valve temperature stored in this reference value table KB then becomes the reference value for estimating the repeat exhaust drainage valve temperature Tb, and is also referred to below as the previous estimated temperature KK.
  • the flag table FB stores the exhaust drain valve freezing possibility flag FG.
  • the test formula data KD is data representing a test formula obtained experimentally in advance, and details will be described later.
  • the exhaust drain valve temperature estimation process will be described below.
  • FIG. 5 is a flowchart showing a processing routine of exhaust drainage valve temperature estimation processing executed by the fuel cell system 100 A of this embodiment.
  • FIG. 5 is a flowchart showing a processing routine of exhaust drainage valve temperature estimation processing executed by the fuel cell system 100 A of this embodiment.
  • FIG. 6 is an explanatory diagram showing an example of a timing chart in the exhaust drain valve temperature estimation process.
  • the horizontal axis represents time t.
  • the exhaust drain valve temperature estimation process is performed from immediately before power generation of the fuel cell 100 0 in the fuel cell system 100 OA until after the end of power generation.
  • power generation of the fuel cell 100 is not performed.
  • the refrigerant circulation pump 5 0 0, the compressor 2 3 0, and the hydrogen circulation pump 2 5 0 are not driven, and the hydrogen cutoff valve 2 1 0 and the exhaust drain valve 6 1 0
  • the valve is closed.
  • the power generation of the fuel cell 100 is started after the process of step S 1 00 described later.
  • the valve temperature estimating unit 4 30 detects the lower refrigerant temperature T 1 from the temperature sensor 520 (step S 100). After this processing, power generation of the fuel cell 100 is started, that is, the refrigerant circulation pump 500, the compressor 230, and the hydrogen circulation pump 250 are driven, and the hydrogen shut-off valve 2 10 is opened. (See Figure 6: tl, t 3).
  • valve temperature estimation unit 430 reads the previous estimated temperature KK from the reference value table KB (step S 1 1 0). The valve temperature estimation unit 430 compares the lower refrigerant temperature T 1 detected in the process of step S 100 with the read previous estimated temperature KK (step S 120).
  • step S 120 When the lower refrigerant temperature T 1 is equal to or lower than the previous estimated temperature KK (step S 120: Y es), the valve temperature estimation unit 43 0 sets the lower refrigerant temperature T 1 as the previous estimated temperature KK in the reference value table KB.
  • Step S 1 3 ⁇ When the lower refrigerant temperature T 1 is higher than the previous estimated temperature KK (step S 120: No), the valve temperature estimation unit 430 proceeds to the process of step S 140.
  • the valve temperature estimating unit 430 redetects the lower refrigerant temperature T 1 (step S 140).
  • the valve temperature estimation unit 4 3 0 reads the verification formula data KD, and substitutes the lower refrigerant temperature T l and the previous estimated temperature KK into the verification formula indicated by the verification formula data KD, so that the exhaust drain valve temperature at that time T b is estimated (step S 150).
  • the test formula indicated by the test formula data KD will be described.
  • the lower refrigerant temperature T 1 is easily affected by the fuel cell 100, and the exhaust drain valve temperature Tb is more responsive than the lower refrigerant temperature T 1. Is bad.
  • the test formula takes into account such a response delay in temperature, and uses the previously estimated temperature KK as a reference value. This is an equation for estimating the exhaust drainage valve temperature Tb from the value of the lower refrigerant temperature T1.
  • the valve temperature estimation unit 430 performs the process of step S 150 at the beginning of power generation of the fuel cell 100 (for example, FIG. 6: at time t 3), that is, the fuel cell 100 0
  • the previous estimated temperature KK stored in the reference value table KB is estimated as the exhaust drainage valve temperature Tb.
  • “At the start of power generation” is a concept including from immediately before the start of power generation to immediately after the start of power generation.
  • the previous estimated temperature KK is the lower one of the lower refrigerant temperature T 1 detected in step S 100 and the exhaust drain valve temperature Tb at the end of power generation of the previous fuel cell 100. It is.
  • the lower temperature of the exhaust drain valve temperature Tb at the end of power generation of the previous fuel cell 100 or the lower refrigerant temperature T1 detected at the start of power generation is the initial temperature of the exhaust drain valve 6 10.
  • the power generation of the fuel cell 100 starts at t3, but the lower refrigerant temperature T1 at that time is larger than the threshold Tth1, and the exhaust drain valve temperature Tb at the time t2 (previous Since the estimated temperature KK) is less than the threshold value T thi, the exhaust drainage valve temperature T b (previously estimated temperature KK) at t 2, that is, at the end of power generation of the previous fuel cell, is Estimated as valve temperature T b.
  • valve temperature estimation unit 4 30 stores the estimated exhaust drain valve temperature Tb in the reference value table KB as the previous estimated temperature KK (step S 1 60).
  • the valve temperature estimation unit 430 determines whether or not the exhaust / drain valve temperature T b is equal to or lower than a threshold value T th 1 (see the first embodiment) (step S 1 70).
  • the valve temperature estimation unit 4 30 indicates that the exhaust drain valve 6 10 may be frozen.
  • the exhaust drain valve freezing possibility flag FG stored in the flag table FB is turned ON (step S 1 80). For example, in FIG. 6, at t1, which is the start of power generation, the exhaust drain valve temperature T b is less than the threshold T th 1, so the exhaust drain valve freezing possibility flag FG is turned ON.
  • step S 1 70: No when the exhaust drain valve temperature T b is larger than the threshold value T th 1 (step S 1 70: No), the valve temperature estimation unit 43 0 determines that the exhaust drain valve 6 10 may be frozen. If not, the exhaust drainage valve freezing possibility flag FG stored in the flag table FB is set to OF (step S 1 90). For example, in FIG. 6, when the exhaust drain valve temperature Tb slightly exceeds the threshold value T t h 1 (at t4), the exhaust drain valve freezing flag FG is set to OFF.
  • the valve temperature estimation unit 430 determines whether or not the power generation of the fuel cell 100 is finished (step S 200). When the power generation of the fuel cell 100 does not end (step S 200: No), the valve temperature estimation unit 430 returns to the process of step S 140, and performs the process of steps S 140 to S 180 Or, the processing from step S 1 4 ⁇ to step S 1 90 is repeated. On the other hand, when the power generation of the fuel cell 100 ends (step S200: Y e s), the valve temperature estimation unit 430 ends the exhaust drain valve temperature estimation process.
  • the control circuit 400 controls to open the exhaust drainage valve 6 1 0 as necessary.
  • the valve freezing possibility flag FG is OF F, the exhaust drain valve 6 10 is not controlled to open.
  • the lower refrigerant temperature T 1 is equal to or higher than the threshold T th 1 due to power generation of the fuel cell 100, but the temperature of the exhaust drain valve 6 10 is less than the threshold T th 1 and the fuel cell 100
  • the lower refrigerant temperature T1 at that time is exhausted and drained.
  • the lower refrigerant temperature T 1 may be equal to or higher than the threshold value T thi.
  • the actual temperature of the exhaust drain valve 6 10 is less than the threshold T th 1 but is erroneously determined to be equal to or higher than the threshold T th 1 and the exhaust drain valve freezing possibility flag FG becomes OF F. There was a risk of it. In this situation, T ⁇ 08/069176
  • the exhaust drain valve temperature estimation process performed by the fuel cell system 100 A of this embodiment when the exhaust drain valve temperature T b is estimated for the first time at the start of power generation of the fuel cell 100, it is detected at that time.
  • the lower one of the lower refrigerant temperature T 1 and the exhaust drain valve temperature T b at the end of power generation of the previous fuel cell 10 0 is estimated as the exhaust drain valve temperature ⁇ b .
  • the temperature of the lower refrigerant temperature T 1 is equal to or higher than the threshold T th 1 and actually If the exhaust drain valve temperature Tb is less than the threshold T th 1, the exhaust drain valve temperature T b at the end of power generation of the previous fuel cell 100 is estimated as the current exhaust drain valve temperature T b It is possible to prevent the exhaust drain valve freezing flag FG from being turned OFF by erroneously determining that the exhaust drain valve temperature ⁇ b is equal to or higher than the threshold value T th 1. As a result, the exhaust drain valve 6 10 can be prevented from becoming uncontrollable.
  • the initial value of the exhaust drain valve temperature T b is estimated, and then the previous estimated temperature KK is used as a reference value, and the exhaust drain valve temperature T b Is estimated. In this way, the exhaust drain valve temperature T b can be accurately estimated.
  • the exhaust drain valve temperature estimation process performed by the OA determines whether the exhaust drain valve 6 10 may freeze based on the exhaust drain valve temperature Tb. Is determined. In this way, it is possible to accurately determine whether or not the exhaust / drain valve 6 10 may freeze.
  • the exhaust drain valve 6 10 corresponds to the discharge valve in the claims
  • the refrigerant circulation channel 5 10 corresponds to the refrigerant channel in the claims
  • the state that the exhaust drainage valve freezing possibility flag FG is ON corresponds to the freezing possibility information in the claim
  • the exhaust drainage valve freezing flag FG is OFF
  • the flag table FB corresponds to the discharge valve freezing information storage unit in the claims.
  • the control circuit 400 detects whether or not there is stored water in the gas-liquid separator 60
  • the fuel cell 1 0 0 was based on the FC resistance value R i at the end of the previous power generation, but the present invention is not limited to this.
  • the control circuit 400 causes the resistance measurement device 900 to detect the FC resistance value of the fuel cell 100 before executing the water state estimation process or during the previous power generation of the fuel cell 100. Based on the FC resistance value, it may be estimated whether or not there is stored water in the gas-liquid separator 60. Even if it does in this way, there can exist an effect similar to the said Example.
  • control circuit 400 detects the fuel cell temperature of the fuel cell 10 0 during the previous power generation of the fuel cell 100 0 or at the end of the power generation, and the gas-liquid is detected based on the fuel cell temperature. It may be possible to estimate whether or not there is stored water in the separator 600. In this case, the control circuit 400 detects, for example, the higher refrigerant temperature T2, which is the refrigerant outlet temperature, as the fuel cell temperature. In this way, the presence / absence of the stored water in the gas-liquid separator 600 can be estimated without providing the resistance measuring device 900. 08 069176
  • the fuel cell system 100 can be reduced in size or weight.
  • control circuit 40 0 detects the output current value of the fuel cell 10 0 during the previous power generation of the fuel cell 100 0 or at the end of the power generation, and based on the output current value, the gas-liquid separator It may be estimated whether or not there is stored water in 600. In this way, it is possible to estimate the presence / absence of the stored water in the gas-liquid separator 600 without providing the resistance measuring device 900, so the fuel cell system 100 can be downsized. Or, weight reduction can be realized.
  • the fuel cell system 100 of the above embodiment can be mounted on, for example, a vehicle such as an automobile, a ship, an airplane, or a linear motor force. In this way, it is possible to reduce the size or weight of such a mounting device.
  • the lower refrigerant temperature T 1 is used as the refrigerant temperature, but the present invention is not limited to this, The higher refrigerant temperature T 2 may be used. Even in this case, the same effects as in the above embodiment can be obtained.
  • the low refrigerant temperature T 1 and the previous estimated temperature KK are calculated in the process from step S 1 0 0 to step S 1 3 0.
  • the smaller temperature is stored in the reference value table KB as a new previous estimated temperature KK, but the present invention is not limited to this.
  • the higher refrigerant temperature T 2 is detected, the lower refrigerant temperature T 1, the higher refrigerant temperature ⁇ 2 and the previous estimated temperature ⁇ ⁇ are compared, and the lowest temperature is set as the new previous estimated temperature ⁇ It may be stored in the value table KB. in this way The effect of the Example can be exhibited.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

A fuel cell system comprises a fuel cell, a containing device for containing water discharged from the fuel cell, and a state estimation section for estimating the state of the containing device based on the state of the fuel cell.

Description

明細書  Specification
燃料電池システム  Fuel cell system
技術分野 Technical field
本発明は、 燃料電池を備えた燃料電池システムに関する。  The present invention relates to a fuel cell system including a fuel cell.
背景技術 Background art
燃料電池から排出される水を貯留する貯留装置を備える燃料電池システムとし て、 貯留装置の状態を判断するために、 貯留装置に温度センサを備える燃料電池 システムが知られている。  As a fuel cell system including a storage device that stores water discharged from the fuel cell, a fuel cell system including a temperature sensor in the storage device is known in order to determine the state of the storage device.
一方、 車両等に搭载するために、 燃料電池システムを小型化、 軽量化等するこ とが望まれており、 上述のような燃料電池システムにおいて、 温度センサを用い ずに、 貯留装置の状態を判断する技術が望まれていた。 発明の開示  On the other hand, it is desired to reduce the size and weight of the fuel cell system in order to be mounted on a vehicle or the like. In the fuel cell system as described above, the state of the storage device can be changed without using a temperature sensor. The technology to judge was desired. Disclosure of the invention
本発明は、 上記課題に鑑みてなされたもので、 貯留装置を備える燃料電池シス テムの小型化、 または、 軽量化を目的とする。  The present invention has been made in view of the above problems, and an object of the present invention is to reduce the size or weight of a fuel cell system including a storage device.
本発明は、 上述の課題の少なくとも一部を解決するためになされたものであり 、 第 1の態様は、 燃料電池システムを提供する。 第 1の態様に係る燃料電池シス テムは、 燃料電池と、 前記燃料電池から排出される水を貯留する貯留装置と、 前 記貯留装置の状態を、 前記燃料電池の状態に基づいて推定する状態推定部と、 を 備える。  The present invention has been made to solve at least a part of the problems described above, and the first aspect provides a fuel cell system. A fuel cell system according to a first aspect includes a fuel cell, a storage device that stores water discharged from the fuel cell, and a state in which the state of the storage device is estimated based on the state of the fuel cell An estimation unit;
上記構成の燃料電池システムによれば、 貯留装置に温度センサ等を設けること なく、 貯留装置の状態を推定することができるので、 燃料電池システムを小型化 、 または、 軽量化することができる。  According to the fuel cell system configured as described above, since the state of the storage device can be estimated without providing a temperature sensor or the like in the storage device, the fuel cell system can be reduced in size or weight.
第 1の態様に係る燃料電池システムにおいて、 前記状態推定部は、 前記貯留装 置内に前記水が貯留されているか否かを、 前記燃料電池の内部抵抗値に基づいて 推定しても良い。 このようにすれば、 貯留装置内の水の貯留状態を、 貯留装置に 温度センサ等を設けることなく、 推定することができる。 In the fuel cell system according to the first aspect, the state estimation unit may estimate whether or not the water is stored in the storage device based on an internal resistance value of the fuel cell. In this way, the storage state of the water in the storage device is changed to the storage device. The estimation can be performed without providing a temperature sensor or the like.
第 1の態様に係る燃料電池システムにおいて、 前記状態推定部は、 前記貯留装 置内に前記水が貯留されているか否かを、 前記燃料電池において、 前回の発電終 了時における前記内部抵抗値に基づいて推定しても良いこのようにすれば、 貯留 装置内の水の貯留状態を、 貯留装置に温度センサ等を設けることなく、 燃料電池 の前回の発電終了時の内部抵抗値に基づいて推定することができる。  In the fuel cell system according to the first aspect, the state estimation unit determines whether or not the water is stored in the storage device, in the fuel cell, the internal resistance value at the end of the previous power generation. In this way, the storage state of the water in the storage device can be estimated based on the internal resistance value at the end of the previous power generation of the fuel cell without providing a temperature sensor or the like in the storage device. Can be estimated.
第 1の態様に係る燃料電池システムはさらに、 前記燃料電池を冷却する冷媒を 流すための冷媒流路を備え、  The fuel cell system according to the first aspect further includes a refrigerant flow path for flowing a refrigerant for cooling the fuel cell,
前記状態推定部は、 前記貯留装置内に前記水が貯留されている場合において、 前記水の状態を、 前記冷媒流路の冷媒温度に基づいて推定しても良い。 このよう にすれば、 貯留装置内の水の状態を、 貯留装置に温度センサ等を設けることなく 、 推定することができる。  In the case where the water is stored in the storage device, the state estimation unit may estimate the state of the water based on the refrigerant temperature of the refrigerant flow path. In this way, the state of water in the storage device can be estimated without providing a temperature sensor or the like in the storage device.
第 1の態様に係る燃料電池システムにおいて、 前記冷媒流路は、 少なくとも一 部が、 鉛直方向に高低差を有しており、 前記貯留装置は、 前記冷媒流路の高位部 分と、 低位部分との間であって、 前記燃料電池に接して配置されており、 前記状 態推定部は、 前記燃料電池の発電開始前であって前記冷媒流路の前記冷媒が停止 した状態で、 前記冷媒流路の前記低位部分の前記冷媒温度が第 1閾値より大きい 場合に、 前記水の状態を、 過冷却状態ではない液体と推定しても良い。 このよう にすれば、 貯留装置内の水の状態を、 貯留装置に温度センサ等を設けることなく 、 推定することができる。  In the fuel cell system according to the first aspect, at least a part of the refrigerant flow path has a height difference in the vertical direction, and the storage device includes a high-order part and a low-order part of the refrigerant flow path. The state estimation unit is in a state in which the refrigerant in the refrigerant flow path is stopped before the fuel cell power generation is started, and is disposed in contact with the fuel cell. When the refrigerant temperature in the lower portion of the flow path is higher than the first threshold, the water state may be estimated as a liquid that is not in the supercooled state. In this way, the state of water in the storage device can be estimated without providing a temperature sensor or the like in the storage device.
第 1の態様に係る燃料電池システムにおいて、 前記冷媒流路は、 少なくとも一 部が、 鉛直方向に高低差を有しており、 前記貯留装置は、 前記冷媒流路の高位部 分と、 低位部分との間であって、 前記燃料電池に接して配置されており、 前記状 態推定部は、 前記燃料電池の発電開始前であって前記冷媒流路の前記冷媒が停止 した状態で、 前記冷媒流路の前記低位部分の前記冷媒温度が第 2閾値以下の場合 であって、 前記冷媒流路の前記高位部分の前記冷媒温度が前記第 2閾値よりも小 さい第 3閾値より大きい場合に、 前記水の状態を、 過冷却状態と推定しても良い 。 このようにすれば、 貯留装置内の水の状態を、 貯留装置に温度センサ等を設け ることなく、 推定することができる。 In the fuel cell system according to the first aspect, at least a part of the refrigerant flow path has a height difference in the vertical direction, and the storage device includes a high-order part and a low-order part of the refrigerant flow path. The state estimation unit is in a state in which the refrigerant in the refrigerant flow path is stopped before the fuel cell power generation is started, and is disposed in contact with the fuel cell. The refrigerant temperature in the lower part of the flow path is equal to or lower than a second threshold value, and the refrigerant temperature in the higher part of the refrigerant flow path is smaller than the second threshold value. If it is greater than the third threshold, the water state may be estimated as a supercooled state. In this way, the state of water in the storage device can be estimated without providing a temperature sensor or the like in the storage device.
第 1の態様に係る燃料電池システムにおいて、 前記貯留装置から前記水を排出 するための排出弁と、 前記排出弁の開閉を制御する弁制御部と、 を備え、 前記弁 制御部は、 前記状態推定部が、 前記水の状態を、 過冷却状態と推定した場合には 、 所定条件を満たすまで前記排出弁を開弁させても良い。 このようにすれば、 貯 留装置内の過冷却水が排出弁に到達した際に、 凍結し、 排出弁が制御不能になる ことを抑制することができる。  A fuel cell system according to a first aspect, comprising: a discharge valve for discharging the water from the storage device; and a valve control unit that controls opening and closing of the discharge valve, wherein the valve control unit includes the state When the estimation unit estimates the water state as a supercooled state, the discharge valve may be opened until a predetermined condition is satisfied. In this way, when the supercooled water in the storage device reaches the discharge valve, it can be prevented from freezing and the discharge valve becoming uncontrollable.
第 1の態様に係る燃料電池システムにおいて、 前記冷媒流路は、 少なくとも一 部が、 鉛直方向に高低差を有しており、 前記貯留装置は、 前記冷媒流路の高位部 分と、 低位部分との間であって、 前記燃料電池に接して配置されており、 前記状 態推定部は、 前記燃料電池の発電開始前であって前記冷媒流路の前記冷媒が停止 した状態で、 前記冷媒流路の前記低位部分の前記冷媒の温度が第 4閾値以下の場 合であって、 前記冷媒流路の前記高位部分の前記冷媒温度が前記第 4閾値よりも 小さい第 5閾値以下の場合に、 前記水の状態を、 凍結状態と推定しても良い。 こ のようにすれば、 貯留装置内の水の状態を、 貯留装置に温度センサ等を設けるこ となく、 推定することができる。  In the fuel cell system according to the first aspect, at least a part of the refrigerant flow path has a height difference in the vertical direction, and the storage device includes a high-order part and a low-order part of the refrigerant flow path. The state estimation unit is in a state in which the refrigerant in the refrigerant flow path is stopped before the fuel cell power generation is started, and is disposed in contact with the fuel cell. When the temperature of the refrigerant in the lower portion of the flow path is equal to or lower than a fourth threshold value, and the temperature of the refrigerant in the higher portion of the refrigerant flow path is equal to or lower than a fifth threshold value that is smaller than the fourth threshold value. The water state may be estimated as a frozen state. In this way, the state of the water in the storage device can be estimated without providing a temperature sensor or the like in the storage device.
第 1の態様に係る燃料電池システムにおいて、 前記貯留装置は、 前記水を排出 するための排出弁を備え、 前記燃料電池システムは、 前記燃料電池を冷却する冷 媒を流すための冷媒流路と、 排出弁温度を推定する弁温度推定部と、 前記弁温度 推定部が推定した前記排出弁温度を記憶する弁温度記憶部と、 を備え、 前記弁温 度推定部は、 前記燃料電池の発電開始時において、 前記冷媒温度を検出し、 検出 した前記冷媒温度と、 前回の発電終了時において前記弁温度記憶部に記憶された 前記排出弁温度と、 のうち、 低い方の温度を前記発電開始時における前記排出弁 温度と推定しても良い。 このようにすれば、 例えば、 燃料電池が発電終了し、 す ぐに燃料電池の発電を開始した場合において冷媒温度が所定値以上であり、 実際 の排水弁温度が、 前記所定値未満の場合において、 前回の燃料電池の発電終了時 における排水弁温度を今回の排水弁温度として推定するので、 排水弁温度が前記 所定値以上であると誤判定することを抑制することができ、 それに伴い、 排水弁 に凍結の可能性があると誤判定してしまうことを抑制することができる。 その結 果、 排水弁が制御不能になることを抑制することができる。 In the fuel cell system according to the first aspect, the storage device includes a discharge valve for discharging the water, and the fuel cell system includes a refrigerant flow path for flowing a cooling medium for cooling the fuel cell, and A valve temperature estimation unit that estimates the discharge valve temperature; and a valve temperature storage unit that stores the discharge valve temperature estimated by the valve temperature estimation unit, wherein the valve temperature estimation unit generates power from the fuel cell. At the start, the refrigerant temperature is detected, and the detected temperature of the refrigerant and the discharge valve temperature stored in the valve temperature storage unit at the end of the previous power generation, the lower temperature is started The exhaust valve temperature at the time may be estimated. In this way, for example, the fuel cell finishes generating electricity, When the power generation of the fuel cell is immediately started and the refrigerant temperature is higher than the predetermined value and the actual drain valve temperature is lower than the predetermined value, the drain valve temperature at the end of the previous fuel cell power generation is Since it is estimated as the valve temperature, it is possible to suppress misjudgment that the drain valve temperature is equal to or higher than the predetermined value, and accordingly, misjudgment that the drain valve may be frozen is suppressed. can do. As a result, it is possible to prevent the drain valve from becoming uncontrollable.
第 1の態様に係る燃料電池システムにおいて、 前記弁温度推定部は、 前記燃料 電池の発電時において、 新たに前記排出弁温度を推定する場合には、 前記冷媒温 度を検出し、 検出した前記冷媒温度と、 前回推定した前記排出弁温度とに基づい て推定しても良い。 このようにすれば、 正確に排出弁温度を推定することができ る。  In the fuel cell system according to the first aspect, the valve temperature estimation unit detects the refrigerant temperature when newly estimating the exhaust valve temperature during power generation of the fuel cell, and detects the detected refrigerant temperature. You may estimate based on refrigerant | coolant temperature and the said discharge valve temperature estimated last time. In this way, it is possible to accurately estimate the discharge valve temperature.
第 1の態様に係る燃料電池システムにおいて、 前記弁温度推定部は、 推定した 前記排出弁温度に基づいて、 前記排出弁が凍結する可能性があるか否かを判定し ても良い。 このようにすれば、 排出弁が凍結する可能性があるか否かを正確に判 定することができる。  In the fuel cell system according to the first aspect, the valve temperature estimation unit may determine whether or not the discharge valve is likely to freeze based on the estimated discharge valve temperature. In this way, it is possible to accurately determine whether or not the discharge valve may freeze.
第 1の態様に係る燃料電池システムにおいて、 排出弁凍結情報記憶部を備え、 前記弁温度推定部は、 前記排出弁が凍結する可能性があると判定した場合には、 前記排出弁凍結情報記憶部に、 前記排出弁が凍結する可能性があることを示す凍 結可能性情報を記憶しても良い。 このようにすれば、 排出弁を開弁制御してよい か否かを素早く判断することができる。  The fuel cell system according to the first aspect, further comprising: a discharge valve freezing information storage unit, wherein if the valve temperature estimation unit determines that the discharge valve may be frozen, the discharge valve freezing information storage unit The unit may store freezing possibility information indicating that the discharge valve may be frozen. In this way, it is possible to quickly determine whether or not the discharge valve can be controlled to open.
第 1の態様に係る燃料電池システムにおいて、 排出弁凍結情報記憶部を備え、 前記弁温度推定部は、 前記排出弁が凍結する可能性がないと判定した場合には、 前記排出弁凍結情報記憶部に、 前記排出弁が凍結する可能性がほぼないことを示 す凍結可能性解除情報を記憶しても良い。 このようにすれば、 排出弁を開弁制御 してよいか否かを素早く判断することができる。  The fuel cell system according to the first aspect, further comprising: a discharge valve freezing information storage unit, wherein the valve temperature estimation unit determines that the discharge valve is not likely to freeze, The portion may store freezing possibility release information indicating that the discharge valve has almost no possibility of freezing. In this way, it is possible to quickly determine whether or not the discharge valve can be controlled to open.
第 1の態様に係る燃料電池システムにおいて、 前記冷媒流路は、 前記燃料電池 5 In the fuel cell system according to the first aspect, the refrigerant flow path includes the fuel cell. Five
内部、 または、 前記燃料電池近傍に形成されても良い。 このようにすれば、 冷媒 流路内の冷媒の温度分布は、 燃料電池の温度分布と、 素早く対応するので、 貯留 部内の水の状態推定を、 冷媒温度に基づいて、 精度よく行うことができる。 It may be formed inside or in the vicinity of the fuel cell. In this way, the temperature distribution of the refrigerant in the refrigerant flow path quickly corresponds to the temperature distribution of the fuel cell, so that the state of the water in the reservoir can be accurately estimated based on the refrigerant temperature. .
なお、 本発明は、 上記した燃料電池システムの他、 燃料電池システムの制御回 路ゃ上記燃料電池システムを搭載した車両等の装置発明の態様で実現することが 可能である。 また、 装置発明に限ることなく、 燃料電池システムの制御方法など の方法発明としての態様で実現することも可能である。 さらには、 それら方法や 装置を構築するためのコンピュータプログラムとしての態様や、 そのようなコン ピュータプログラムを記録した記録媒体としての態様や、 上記コンピュータプロ グラムを含み搬送波内に具現化されたデータ信号など、 種々の態様で実現するこ とも可能である。  In addition to the fuel cell system described above, the present invention can be realized in the form of a control circuit of the fuel cell system, or an apparatus invention of a vehicle or the like equipped with the fuel cell system. Further, the present invention is not limited to the device invention, and can be realized as a method invention such as a control method for a fuel cell system. Furthermore, an aspect as a computer program for constructing these methods and apparatuses, an aspect as a recording medium recording such a computer program, and a data signal embodied in a carrier wave including the above computer program It can also be realized in various ways.
また、 本発明をコンピュータプログラムまたはそのプログラムを記録した記録 媒体等として構成する場合には、 上記装置の動作を制御するプログラム全体とし て構成するものとしてもよいし、 本発明の機能を果たす部分のみを構成するもの  Further, when the present invention is configured as a computer program or a recording medium that records the program, it may be configured as an entire program for controlling the operation of the apparatus, or only a part that performs the function of the present invention. What constitutes
図面の簡単な説明 Brief Description of Drawings
図 1は本発明の第 1実施例に係る燃料電池システムの概略構成を示すプロック 図である。  FIG. 1 is a block diagram showing a schematic configuration of a fuel cell system according to a first embodiment of the present invention.
図 2は燃料電池の片側端部に配置されるエンドプレートの正面図である。 図 3は第 1実施例の燃料電池システムが実行する水状態推定処理の処理ルーチ ンを示すフローチヤ一 1、である。  FIG. 2 is a front view of an end plate disposed at one end of the fuel cell. FIG. 3 is a flowchart showing a processing routine of the water state estimation processing executed by the fuel cell system of the first embodiment.
図 4は本発明の第 2実施例に係る燃料電池システムの概略構成を示すプロック 図である。  FIG. 4 is a block diagram showing a schematic configuration of the fuel cell system according to the second embodiment of the present invention.
図 5は第 2実施例の燃料電池システムが実行する排気排水弁温度推定処理の処 理ノレーチンを示すフローチヤ一トである。 図 6は排気排水弁温度推定処理におけるタイミングチャートの一例を示す説明 図である。 発明を実施するための最良の形態 FIG. 5 is a flowchart showing the process of the exhaust drainage valve temperature estimation process executed by the fuel cell system of the second embodiment. FIG. 6 is an explanatory diagram showing an example of a timing chart in the exhaust drainage valve temperature estimation process. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明について、 図面を参照しつついくつかの実施例に基づいて説明す る。  Hereinafter, the present invention will be described based on several embodiments with reference to the drawings.
A. 第 1実施例:  A. First Example:
A 1. 燃料電池システム 1 000の構成:  A 1. Configuration of fuel cell system 1 000:
図 1は、 本発明の第 1実施例に係る燃料電池システム 1 000の概略構成を示 すプロック図である。 図 1において、 X方向を図に矢印で示した方向に規定する 。 本実施例の燃料電池システム 1 000は、 主に、 燃料電池 1 00と、 水素タン ク 200と、 コンプレッサ 23 0と、 制御回路 400と、 冷媒循環ポンプ 500 と、 温度センサ 5 2 0, 5 30と、 ラジェータ 5 5 0と、 気液分離器 6 00と、 排気排水弁 6 1 0と、 水素循環ポンプ 2 5 0と、 水素遮断弁 2 1 0と、 抵抗測定 装置 900と、 を備えている。  FIG. 1 is a block diagram showing a schematic configuration of a fuel cell system 1000 according to the first embodiment of the present invention. In Figure 1, the X direction is defined as the direction indicated by the arrow in the figure. The fuel cell system 1 000 of the present embodiment mainly includes a fuel cell 100, a hydrogen tank 200, a compressor 230, a control circuit 400, a refrigerant circulation pump 500, and a temperature sensor 5 2 0, 5 30. , A radiator 5 5 0, a gas-liquid separator 6 00, an exhaust / drain valve 6 1 0, a hydrogen circulation pump 2 5 0, a hydrogen shut-off valve 2 1 0, and a resistance measuring device 900. .
燃料電池 1 0 0は、 比較的小型で発電効率に優れる固体高分子型燃料電池であ る。 燃料電池 1 00は、 燃料電池セル 20と、 エンドプレート 300 A, 300 Bと、 テンションプレート 3 1 0と、 インシュレータ 3 30A, 3 30 Bと、 タ 一ミナル 34 OA, 34 O Bと、 を備えている。 具体的には、 燃料電池 1 00は 、 エンドプレート 3 00A, インシユレータ 3 30A, ターミナノレ 340A, 複 数の燃料電池セル 2 0, ターミナル 340 B, インシュレータ 3 3 O B, エンド プレート 3 00 Bの順に積層され、 テンションプレート 3 1 0がボルト 3 20に よって各ェンドプレート 300に結合されることによって、 各燃料電池セル 20 を、 積層方向に所定の力で締結する構造となっている。  The fuel cell 100 is a polymer electrolyte fuel cell that is relatively small and excellent in power generation efficiency. The fuel cell 100 includes a fuel cell 20, end plates 300 A and 300 B, a tension plate 3 10, insulators 3 30 A and 3 30 B, and terminals 34 OA and 34 OB. Yes. Specifically, the fuel cell 100 is laminated in the order of an end plate 300A, an insulator 330A, a terminator 340A, a plurality of fuel cells 20, a terminal 340B, an insulator 33OB, and an end plate 300B. The tension plates 3 10 are coupled to the end plates 300 by bolts 3 20, whereby each fuel cell 20 is fastened with a predetermined force in the stacking direction.
燃料電池セル 20は、 膜電極接合体 (図示せず) と、 アノード側セパレータ ( 図示せず) と、 力ソード側セパレータ (図示せず) と、 を備えている。 膜電極接 合体は、 電解質膜 (図示せず) と、 電極である力ソード (図示せず) およびァノ ード (図示せず) と、 ガス拡散層 (図示せず) と、 を備え、 力ソードおよぴァノ ードが表面に形成された電解質膜を、 ガス拡散層で挟持して構成される。 燃料電 池セル 2 0は、 この膜電極接合体を、 さらにアノード側セパレータおよぴカソ一 ド側セパレータで挟持して構成される。 The fuel battery cell 20 includes a membrane electrode assembly (not shown), an anode side separator (not shown), and a force sword side separator (not shown). Membrane electrode contact The coalescence includes an electrolyte membrane (not shown), a force sword (not shown) and an anode (not shown) as electrodes, and a gas diffusion layer (not shown). It consists of an electrolyte membrane on the surface of which a positive electrode is sandwiched between gas diffusion layers. The fuel cell 20 is configured by further sandwiching this membrane electrode assembly with an anode side separator and a cathode side separator.
水素タンク 2 0 0は、 高圧の水素ガスが貯蔵される貯蔵装置であり、 燃料ガス 供給流路 2 0 4を介して燃料電池 1 0 0 (後述の燃料ガス供給マ二ホールド) に 接続されている。 燃料ガス供給流路 2 0 4上において、 水素タンク 2 0 0から近 い順番に、 水素遮断弁 2 1 0と、 調圧弁 (図示せず) とが設けられている。 水素 遮断弁 2 1 0を開弁することにより、 燃料電池 1 0 0に水素ガスを燃料ガスとし て供給する。 なお、 水素タンク 2 0 0に代えて、 アルコール、 炭化水素、 アルデ ヒ ドなどを原料とする改質反応によって水素を生成し、 アノード側へ供給するも のとしてもよい。  The hydrogen tank 200 is a storage device for storing high-pressure hydrogen gas, and is connected to a fuel cell 100 (a fuel gas supply manifold described later) via a fuel gas supply channel 20 4. Yes. On the fuel gas supply channel 20 4, a hydrogen shut-off valve 2 10 and a pressure regulating valve (not shown) are provided in order from the hydrogen tank 2 0 0. By opening the hydrogen shut-off valve 2 1 0, hydrogen gas is supplied to the fuel cell 1 0 0 as fuel gas. Instead of the hydrogen tank 200, hydrogen may be generated by a reforming reaction using alcohol, hydrocarbon, aldehyde, or the like as a raw material, and supplied to the anode side.
コンプレッサ 2 3 0は、 酸化ガス供給流路 2 3 4を介して燃料電池 1 0 0 (後 述の酸化ガス供給マ二ホールド) に接続され、 空気を圧縮して酸化ガスとして、 力ソードに供給する。 また、 燃料電池 1 0 0 (後述の酸化ガス排出マ二ホールド ) は、 酸化ガス排出流路 2 3 6と接続され、 力ソードで電気化学反応に供された 後の酸化ガスは、 この酸化ガス排出流路 2 3 6を介して、 燃料電池システム 1 0 0 0の外部に排出される。  The compressor 2 3 0 is connected to the fuel cell 1 0 0 (oxidizing gas supply manifold described later) via the oxidizing gas supply flow path 2 3 4, and compresses air and supplies it to the power sword as oxidizing gas To do. In addition, the fuel cell 100 (the oxidizing gas discharge manifold described later) is connected to the oxidizing gas discharge flow path 2 36 and the oxidizing gas after being subjected to the electrochemical reaction with the power sword is the oxidizing gas. It is discharged to the outside of the fuel cell system 1 0 0 0 through the discharge flow path 2 3 6.
図 2は、 燃料電池 1 0 0の片側端部に配置されるェンドプレート 3 0 0 Bの正 面図である。 具体的には、 この図 2は、 図 1のエンドプレート 3 0 0 Bを X方向 から見た図に相当する。 さらに、 図 2において、 下向きを、 鉛直方向下向きとし 、 上向きを、 鉛直方向上向きとする。 以下では、 図 1と図 2とを用いて、 燃料電 池システム 1 0 0 0を説明する。  FIG. 2 is a front view of the end plate 300 B arranged at one end of the fuel cell 100. Specifically, FIG. 2 corresponds to a view of the end plate 300 B of FIG. 1 viewed from the X direction. Furthermore, in FIG. 2, the downward direction is the vertical downward direction, and the upward direction is the vertical upward direction. Hereinafter, the fuel cell system 100 will be described with reference to FIG. 1 and FIG.
燃料電池 1 0 0内部には、 燃料ガス供給マ-ホールド MH I (図 2参照) と、 燃料ガス排出マ-ホールド MH O (図 2参照) と、 酸化ガス供給マ-ホールド ( 8 Inside the fuel cell 100, there are a fuel gas supply MH I (see Fig. 2), a fuel gas discharge MH OH (see Fig. 2), and an oxidant gas supply mulch (see Fig. 2). 8
図示せず) と、 酸化ガス排出マ二ホールド (図示せず) と、 冷媒排出マユホール ド M L O (図 2参照) とが備えられている。 燃料ガス供給マ二ホールド MH Iは 各燃料電池セル 2 0に燃料ガスを供給し、 燃料ガス排出マ二ホールド MH Oは各 燃料電池セル 2 0からの燃料ガスを燃料電池 1 0 0外部に排出し、 酸化ガス供給 マ二ホールドは各燃料電池セル 2 0に酸化ガスを供給し、 酸化ガス排出マ二ホー ルドは各燃料電池セル 2 0からの酸化ガスを燃料電池 1 0 0外部に排出し、 冷媒 供給マ二ホールド M L Iは各燃料電池セル 2 0間に冷媒を供給する。 なお、 冷媒 供給マ二ホールド M L I の外部接続口 (以下では、 冷媒供給口とも呼ぶ) は、 燃 料電池 1 0 0の鉛直方向下側に、 冷媒排出マ二ホールドの外部接続口 (以下では 、 冷媒排出口とも呼ぶ) は、 燃料電池 1 0 0の鉛直方向上側に配置されている。 また、 冷媒としては、 水や、 水とエチレングリコールとの混合液 (不凍液) など を用いることができる。 (Not shown), an oxidizing gas discharge manifold (not shown), and a refrigerant discharge manifold M L O (see FIG. 2). Fuel gas supply manifold MH I supplies fuel gas to each fuel cell 20, and fuel gas discharge manifold MH O discharges fuel gas from each fuel cell 20 to the outside of the fuel cell 10 0 0 The oxidizing gas supply manifold supplies the oxidizing gas to each fuel cell 20, and the oxidizing gas discharge manifold discharges the oxidizing gas from each fuel cell 20 to the outside of the fuel cell 100. The refrigerant supply manifold MLI supplies refrigerant between the fuel cells 20. The external connection port of the refrigerant supply manifold MLI (hereinafter also referred to as the refrigerant supply port) is located vertically below the fuel cell 100 and the external connection port of the refrigerant discharge manifold (hereinafter referred to as (Also referred to as a refrigerant outlet) is arranged on the upper side in the vertical direction of the fuel cell 100. As the refrigerant, water or a mixed liquid of water and ethylene glycol (antifreeze) can be used.
燃料電池 1 0 0の冷媒供給マ二ホールド M L I (冷媒供給口) と冷媒排出マ二 ホールド M L O (冷媒排出口) は、 それぞれ冷媒循環流路 5 1 0に接続される。 なお、 冷媒供給マ二ホールド M L I、 冷媒排出マ二ホールド M L O、 および、 冷 媒循環流路 5 1 0とから形成される流路を、 冷媒循環系流路とも呼ぶ。  The refrigerant supply manifold M L I (refrigerant supply port) and the refrigerant discharge manifold M L O (refrigerant discharge port) of the fuel cell 100 are respectively connected to the refrigerant circulation flow path 5 10. The flow path formed by the refrigerant supply manifold M L I, the refrigerant discharge manifold M L O, and the refrigerant circulation flow path 51 is also referred to as a refrigerant circulation system flow path.
冷媒循環流路 5 1 0上には、 冷媒循環ポンプ 5 0 0とラジェータ 5 5 0とが設 けられる。 ラジェータ 5 5 0は、 燃料電池 1 0 0で暖められた冷媒を冷却し、 冷 媒循環ポンプ 5 0 0は、 ラジェータ 5 5 0によって冷却された冷媒を燃料電池 1 0 0に供給する。 これにより、 燃料電池 1 0 0を、 冷媒によって継続的に冷却す ることができる。  A refrigerant circulation pump 500 and a radiator 55 are provided on the refrigerant circulation channel 51. The radiator 55 50 cools the refrigerant warmed by the fuel cell 100, and the refrigerant circulation pump 50 00 supplies the refrigerant cooled by the radiator 55 50 to the fuel cell 100. As a result, the fuel cell 100 can be continuously cooled by the refrigerant.
冷媒循環系流路において、 冷媒供給口には温度センサ 5 2 0が配置され、 冷媒 排出口には温度センサ 5 3 0が配置されている。 すなわち、 温度センサ 5 2 0は 、 冷媒循環系流路において、 位置の低い部分の冷媒温度 [°C] (以下では、 低位 冷媒温度 T 1とも呼ぶ) を検出するためのセンサであり、 温度センサ 5 3 0は、 冷媒循環系流路において、 位置の高い部分の冷媒温度 [°C] (高位冷媒温度 T 2 とも呼ぶ) を検出するためのセンサである。 In the refrigerant circulation system flow path, a temperature sensor 5 20 is disposed at the refrigerant supply port, and a temperature sensor 5 30 is disposed at the refrigerant discharge port. That is, the temperature sensor 5 20 is a sensor for detecting the refrigerant temperature [° C] (hereinafter also referred to as the low refrigerant temperature T 1) in the lower part of the refrigerant circulation system flow path. 5 3 0 is the refrigerant temperature [° C] (higher refrigerant temperature T 2 at the higher position in the refrigerant circulation system flow path. It is also a sensor for detecting.
気液分離器 6 0 0は、 図 2に示すように、 燃料ガス排出流路 2 0 6を介して、 燃料電池 1 0 0の燃料ガス排出マ二ホールド MH Oと接続されている。 気液分離 器 6 0 0は、 燃料電池 1 0 0から排出される燃料ガス中に含まれる水蒸気を凝縮 する凝縮部 6 0 0 Aと、 凝縮部 6 0 O Aで凝縮された凝縮水や燃料電池 1 0 0か ら液水として排出される水を貯留する貯留部 6 0 0 Bとから構成される。 以下で は、 この貯留部 6 1 0 Bで貯留される水を貯留水と呼ぶ。 また、 気液分離器 6 0 0は、 図 2に示すように、 鉛直方向において、 冷媒供給口 (冷媒排出マ二ホール ド M L O ) と冷媒排出口 (冷媒供給マ二ホールド M L I ) との間に、 配置される と共に、 側面が燃料電池 1 0 0のエンドプレート 3 0 0 Bに接するように配置さ れる。 また、 気液分離器 6 0 0には、 排気排水弁 6 1 0が設けられている。 排気 排水弁 6 1 0は、 排気排水流路 6 2 0と接続されている。 燃料電池システム 1 0 0 0の運転中に、 排気排水弁 6 1 0を定期的に開弁することにより、 アノードで 電気化学反応に供された後の、 不純物 (例えば、 窒素) 濃度が高くなつた燃料ガ スゃ、 貯留部 6 0 0 Bの貯留水が、 定期的に、 燃料ガス排出流路 2 0 6、 気液分 離器 6 0 0、 排気排水弁 6 1 0、 および、 排気排水流路 6 2 0を介して燃料電池 システム 1 0 0 0の外部へ排出される。  As shown in FIG. 2, the gas-liquid separator 600 is connected to the fuel gas discharge manifold MH O of the fuel cell 100 via the fuel gas discharge flow path 206. The gas-liquid separator 60 is composed of a condensing unit 60 A that condenses water vapor contained in the fuel gas discharged from the fuel cell 100, a condensed water condensed by the condensing unit 60 OA, and a fuel cell. The storage unit 6 0 0 B stores water discharged as liquid water from 1 0 0. Hereinafter, the water stored in the storage unit 6 10 B is referred to as stored water. Further, as shown in FIG. 2, the gas-liquid separator 600 is vertically disposed between the refrigerant supply port (refrigerant discharge manifold MLO) and the refrigerant discharge port (refrigerant supply manifold MLI). And the side surface of the fuel cell 10 0 0 0 is arranged in contact with the end plate 3 0 0 B of the fuel cell 1. Further, the gas / liquid separator 60 is provided with an exhaust drain valve 6 10. The exhaust / drain valve 6 1 0 is connected to the exhaust / drain passage 6 2 0. During operation of the fuel cell system 1 0 0 0, by periodically opening the exhaust drain valve 6 1 0, the concentration of impurities (for example, nitrogen) after being subjected to an electrochemical reaction at the anode increases. The fuel gas in the reservoir 6 0 0 B is periodically stored in the fuel gas discharge channel 2 0 6, gas-liquid separator 6 0 0, exhaust drain valve 6 1 0, and exhaust drain The fuel cell system 10 0 0 is discharged to the outside through the flow path 6 2 0.
また、 気液分離器 6 0 0は、 図 1、 図 2に示すように、 ガス循環流路 2 0 7を 介して、 燃料ガス供給流路 2 0 4と接続される。 このガス循環流路 2 0 7上には 、 水素循環ポンプ 2 5 0が設けられる。 燃料電池 1 0 0 (燃料ガス排出マ-ホー ルド MH O ) から気液分離器 6 0 0へ排出された燃料ガスは、 水素循環ポンプ 2 5 0によって、 ガス循環流路 2 0 7を介して、 燃料ガス供給流路 2 0 4へ導入さ れる。 このようにして、 燃料ガスに含まれる水素ガスは、 循環して、 燃料ガスと して再ぴ発電に使用される。 なお、 気液分離器 6 0 0と燃料ガス排出流路 2 0 6 との接続部などに、 燃料電池 1 0 0から排出きれる液水中のイオンを除去するィ オン交換装置を設けるようにしてもよい。 抵抗測定装置 900は、 燃料電池 1 00のターミナル 340A, 340 Bと、 配線 9 1 0を介して接続されており、 燃料電池 1 00の内部抵抗値 (以下では、 FC抵抗値と呼ぶ) を測定する。 具体的には、 抵抗測定装置 900は、 ターミナ ノレ 34 OA, 34 O B間に、 所定周波数の交流電流を付与すると共に、 ターミナ ノレ 340A, 340 B間の電圧を検出する。 抵抗測定装置 9 00は、 付与した電 流の交流成分と検出した電圧の交流成分との位相差、 および、 電流と電圧の交流 成分の周波数に基づいて、 F C抵抗値を測定する。 Further, the gas-liquid separator 60 0 0 is connected to the fuel gas supply flow path 20 4 via the gas circulation flow path 2 07 as shown in FIGS. A hydrogen circulation pump 25 50 is provided on the gas circulation flow path 20 7. The fuel gas discharged from the fuel cell 10 0 (fuel gas discharge mold MH O) to the gas-liquid separator 6 0 0 is passed through the gas circulation flow path 2 0 7 by the hydrogen circulation pump 2 5 0. Then, it is introduced into the fuel gas supply flow path 204. In this way, the hydrogen gas contained in the fuel gas circulates and is used as a fuel gas for power generation. It should be noted that an ion exchange device for removing ions in the liquid water that can be discharged from the fuel cell 100 is provided at the connection between the gas-liquid separator 600 and the fuel gas discharge flow path 206. Good. The resistance measuring device 900 is connected to the terminals 340A and 340B of the fuel cell 100 via the wiring 9 1 0, and measures the internal resistance value of the fuel cell 100 (hereinafter referred to as the FC resistance value). To do. Specifically, the resistance measuring apparatus 900 applies an alternating current of a predetermined frequency between the terminator 34 OA and 34 OB and detects the voltage between the terminator 340A and 340B. The resistance measuring device 900 measures the FC resistance value based on the phase difference between the AC component of the applied current and the AC component of the detected voltage, and the frequency of the AC component of the current and voltage.
ところで、 燃料電池 1 00の各燃料電池セル 20における電解質膜は、 湿潤状 態において膜抵抗が低く、 乾燥状態において膜抵抗が高い性質を有している。 従 つて、 燃料電池 1 00において、 内部に水が多く滞留していると、 F C抵抗値は 低くなり、 内部における水の滞留が少ないと、 F C抵抗値は高くなる。 すなわち 、 F C抵抗値は、 燃料電池 1 0 0の内部における水の滞留状態の指標と考えるこ とができる。  By the way, the electrolyte membrane in each fuel cell 20 of the fuel cell 100 has a property that the membrane resistance is low in the wet state and the membrane resistance is high in the dry state. Therefore, in the fuel cell 100, if a large amount of water stays inside the FC resistance value, the FC resistance value becomes low, and if there is little water staying inside, the FC resistance value becomes high. That is, the FC resistance value can be considered as an index of the water retention state inside the fuel cell 100.
また、 燃料電池 1 00が発電停止中であって、 冷媒循環ポンプ 500が駆動し ていない場合には、 冷媒循環系流路において、 冷媒の対流により、 高位冷媒温度 T 2が、 低位冷媒温度 T 1より温度が高くなるような温度分布が生じる。 この場 合、 燃料電池 1 00において、 冷媒供給マ二ホールド ML Iゃ冷媒排出マ二ホー ルド MLO中の冷媒は、 他の部材に比べて、 熱容量が高いので、 燃料電池 1 00 では、 冷媒供給マ-ホールド ML Iおよび冷媒排出マ二ホールド MLOの温度分 布に対応するように温度分布が生じる。 ここで、 上述したように、 気液分離器 6 0 0は、 低位冷媒温度 T 1が検出される冷媒供給口と高位冷媒温度 T 2が検出さ れる冷媒排出口との間に配置されると共に、 側面が燃料電池 1 00のエンドプレ ート 3 00 Bに接するように配置されているので、 気液分離器 600内の貯留水 の温度は、 高位冷媒温度 T 2と低位冷媒温度 T 1との間の温度であると推定する ことができる。  In addition, when the fuel cell 100 is not generating power and the refrigerant circulation pump 500 is not driven, the higher refrigerant temperature T 2 is reduced to the lower refrigerant temperature T by the refrigerant convection in the refrigerant circulation passage. A temperature distribution occurs in which the temperature is higher than 1. In this case, the refrigerant supply manifold ML I in the fuel cell 1001 has a higher heat capacity than the other members in the refrigerant discharge manifold MLO. Temperature distribution occurs to correspond to the temperature distribution of the Mull Hold ML I and the refrigerant discharge manifold MLO. Here, as described above, the gas-liquid separator 600 is disposed between the refrigerant supply port from which the lower refrigerant temperature T1 is detected and the refrigerant outlet from which the higher refrigerant temperature T2 is detected. Since the side surface of the fuel cell 100 is in contact with the end plate 300 B of the fuel cell 100, the temperature of the stored water in the gas-liquid separator 600 is equal to the high refrigerant temperature T 2 and the low refrigerant temperature T 1. It can be estimated that the temperature is between.
制御回路 400は、 マイクロコンピュータを中心とした論理回路として構成さ れている。 具体的には、 予め設定された制御プログラムに従って所定の演算など を実行する C P U (図示せず) と、 C P Uで各種演算処理を実行するのに必要な 制御プログラムや制御データ等が予め格納された R OM (図示せず) と、 同じく C P Uで各種演算処理をするのに必要な各種データが一時的に読み書きされる R AM 4 2 0と、 各種信号を入出力する入出力ポート (図示せず) 等を備える。 制 御回路 4 0 0は、 入出力ポートと接続されている図示しない制御信号線を介して 、 水素遮断弁 2 1 0、 コンプレッサ 2 3 0、 水素循環ポンプ 2 5 0、 冷媒循環ポ ンプ 5 0 0、 排気排水弁 6 1 0、 抵抗測定装置 9 0◦などを制御し、 すなわち、 燃料電池システム 1 0 0 0全体の制御を行う。 制御回路 4 0 0はまた、 図示しな い検出信号線を介して温度センサを始めとする各種センサから検出信号を受け取 る。 The control circuit 400 is configured as a logic circuit centered on a microcomputer. It is. Specifically, a CPU (not shown) that executes predetermined calculations according to a preset control program, and control programs and control data necessary for executing various calculation processes by the CPU are stored in advance. ROM (not shown), RAM 4 2 0 for reading and writing various data necessary to perform various arithmetic operations on the CPU, and input / output ports for inputting / outputting various signals (not shown) ) Etc. The control circuit 40 0 is connected to an input / output port through a control signal line (not shown), a hydrogen shutoff valve 2 1 0, a compressor 2 3 0, a hydrogen circulation pump 2 5 0, and a refrigerant circulation pump 5 0. 0, exhaust drain valve 6 1 0, resistance measuring device 9 0 °, etc. are controlled, that is, the entire fuel cell system 1 0 0 0 is controlled. The control circuit 400 also receives detection signals from various sensors including a temperature sensor via a detection signal line (not shown).
また、 制御回路 4 0 0は、 状態推定部 4 1 0としても機能し、 後述する水状態 推定処理を実行する。 さらに、 制御回路 4 0 0は、 燃料電池 1 0 0の発電終了時 において、 随時、 抵抗測定装置 9 0 0に燃料電池 1 0 0の F C抵抗値 (以下では 、 じ抵抗値1 1 と呼ぶ) を検出させ、 それを R AM 4 2 0に記憶している。 A 2 . 水状態推定処理:  The control circuit 40 0 also functions as a state estimation unit 4 10, and executes water state estimation processing described later. In addition, the control circuit 400, at the end of power generation of the fuel cell 10 0, causes the resistance measuring device 90 0 to connect to the FC resistance value of the fuel cell 1 0 0 (hereinafter referred to as the same resistance value 1 1). Is detected and stored in RAM 4 2 0. A 2. Water condition estimation process:
図 3は、 本実施例の燃料電池システム 1 0 0 0が実行する水状態推定処理の処 理ルーチンを示すフローチャートである。 この水状態推定処理は、 燃料電池 1 0 0の発電開始前に実行される。 すなわち、 冷媒循環ポンプ 5 0 0、 コンプレッサ 2 3 0、 水素循環ポンプ 2 5 0が駆動される前に実行され、 また、 水素遮断弁 2 1 0および排気排水弁 6 1 0は、 閉弁された状態で実行される。 水状態推定処理 は、 燃料電池 1 0 0の発電開始前における気液分離器 6 0 0内の状態を推定する 処理である。 すなわち、 気液分離器 6 0 0内に貯留水が存在するか否か、 貯留水 が存在する場合には、 その貯留水が、 過冷却水でない液水、 過冷却水、 および、 凍結状態、 のうちどの状態であるかを推定する処理である。  FIG. 3 is a flowchart showing a processing routine of water state estimation processing executed by the fuel cell system 100 according to this embodiment. This water state estimation process is executed before the power generation of the fuel cell 100 is started. That is, it is executed before the refrigerant circulation pump 5 0 0, the compressor 2 3 0, and the hydrogen circulation pump 2 5 0 are driven, and the hydrogen cutoff valve 2 1 0 and the exhaust drain valve 6 1 0 are closed Executed in state. The water state estimation process is a process for estimating the state in the gas-liquid separator 600 before the start of power generation of the fuel cell 100. That is, whether or not the stored water exists in the gas-liquid separator 600, and if the stored water exists, the stored water is liquid water that is not supercooled water, supercooled water, and a frozen state. It is the process which estimates which state is.
水状態推定処理において、 まず、 状態推定部 4 1 0は、 じ抵抗値1 1を1 八 M420から読み込む (ステップ S 1 0) 。 次に、 状態推定部 4 1 0は、 F C抵 抗値 R iが閾値 R t h以下か否かを推定する (ステップ S 20) 。 In the water state estimation process, the state estimation unit 4 1 0 first sets the resistance value 1 1 to 18 Read from M420 (step S 1 0). Next, the state estimation unit 4 10 estimates whether or not the FC resistance value R i is equal to or less than the threshold value R th (step S 20).
状態推定部 4 1 0は、 F C抵抗値 R iが閾値 R t hより大きい場合には (ステ ップ S 20 : N o) 、 燃料電池 1 0 0の前回の発電終了時には、 燃料電池 1 00 内に水があまり滞留していなかつたと推定し、 気液分離器 6 00内には、 貯留水 が存在しない (または、 貯留水がほとんどない状態) と推定する (ステップ S 3 0) 。 状態推定部 4 1 0は、 その後、 この処理を終了する。  When the FC resistance value R i is larger than the threshold value R th (step S 20: No), the state estimation unit 4 1 0 is in the fuel cell 1 00 when the previous power generation of the fuel cell 1 0 0 ends. Therefore, it is estimated that there is no stored water (or almost no stored water) in the gas-liquid separator 600 (step S 30). Thereafter, the state estimation unit 4 10 ends this process.
状態推定部 4 1 0は、 F C抵抗値 R iが閾値 R t h以下の場合には (ステップ S 20 : Y e s ) 、 燃料電池 1 00の前回の発電終了時には、 燃料電池 1 00内 に水が多く滞留していたと推定し、 気液分離器 6 00内に貯留水があると推定す る (ステップ S 3 5) 。  When the FC resistance value R i is equal to or less than the threshold value R th (step S20: Y es), the state estimation unit 4 10 0 causes water to enter the fuel cell 100 when the previous power generation of the fuel cell 100 ends. It is presumed that there was a large amount of stagnation, and it is presumed that there is retained water in the gas-liquid separator 600 (step S 35).
状態推定部 4 1 0は、 次に、 温度センサ 5 20から低位冷媒温度 T 1を検出す る (ステップ S 4 0) 。  Next, the state estimation unit 4 10 detects the lower refrigerant temperature T 1 from the temperature sensor 5 20 (step S 40).
状態推定部 4 1 0は、 低位冷媒温度 T 1が閾値 T t h 1以下か否かを推定する (ステップ S 50) 。 この閾値 T t h 1は、 燃料電池システム 1 000の具体的 な設計等に基づいて、 適宜決定されるが、 例えば、 水の融点を示す 「0」 とする ことができる。  The state estimation unit 4 10 estimates whether or not the lower refrigerant temperature T 1 is equal to or lower than the threshold value T th h 1 (step S 50). This threshold value T t h 1 is appropriately determined based on the specific design of the fuel cell system 1 000 and the like, and can be set to “0” indicating the melting point of water, for example.
状態推定部 4 1 0は、 低位冷媒温度 T 1が閾値 T t h 1より大きい場合には ( ステップ S 50 : N o) 、 気液分離器 6 00の貯留水の温度は、 閾値 T t h 1よ り高いと考えられるので、 気液分離器 6 00の貯留水が、 過冷却状態でない液体 と推定する (ステップ S 60) 。 状態推定部 4 1 0は、 その後、 この処理を終了 する。  When the lower refrigerant temperature T 1 is higher than the threshold T th 1 (step S 50: No), the state estimation unit 4 10 0 determines that the temperature of the stored water in the gas-liquid separator 600 is the threshold T th 1 Therefore, it is estimated that the stored water in the gas-liquid separator 600 is not a supercooled liquid (step S60). Thereafter, the state estimation unit 4 10 ends this process.
状態推定部 4 1 0は、 低位冷媒温度 T 1が閾値 T t h 1以下の場合には (ステ ップ S 50 : Y e s ) 、 続いて、 温度センサ 5 30から高位冷媒温度 T 2を検出 する (ステップ S 70) 。  If the lower refrigerant temperature T 1 is equal to or lower than the threshold T th 1 (step S 50: Y es), the state estimating unit 4 10 subsequently detects the higher refrigerant temperature T 2 from the temperature sensor 53. (Step S70).
状態推定部 4 1 0は、 高位冷媒温度 T 2が閾値 T t h 2以下か否かを推定する (ステップ S 8 0 ) 。 この閾値 T t h 2は、 閾値 T t h 1より小さい値である。 また、 閾値 T t h 2は、 燃料電池システム 1 0 0 ◦の具体的な設計等に基づいて 、 適宜決定されるが、 例えば、 過冷却水が安定な状態で過冷却状態から凍結状態 に推移可能な温度を示す 「一 2 0」 〜 「一4 0」 の間とすることができる。 The state estimation unit 4 1 0 estimates whether or not the higher refrigerant temperature T 2 is equal to or lower than a threshold T th 2 (Step S 80). This threshold value T th 2 is smaller than the threshold value T th 1. The threshold value T th 2 is appropriately determined based on the specific design of the fuel cell system 100 °. For example, the threshold value T th 2 can be changed from the supercooled state to the frozen state when the supercooled water is stable. The temperature may be between “1 2 0” to “1 4 0”.
状態推定部 4 1 0は、 高位冷媒温度 T 2が閾値 T t h 2より大きい場合には ( ステップ S 8 0 : N o ) 、 気液分離器 6 0 0の貯留水の温度は、 閾値 T t h 2よ り高く、 閾値 T t h 1以下の範囲内であると考えられるので、 気液分離器 6 0 0 の貯留水が、 過冷却状態であると推定する (ステップ S 9 0 ) 。 状態推定部 4 1 0は、 その後、 この処理を終了する。  When the higher refrigerant temperature T 2 is higher than the threshold T th 2 (step S 80: No), the state estimating unit 4 1 0 determines that the temperature of the stored water in the gas-liquid separator 60 0 is the threshold T th. It is estimated that the stored water in the gas-liquid separator 60 0 is in a supercooled state because it is considered to be higher than 2 and within the range of the threshold value T th 1 (step S 90). Thereafter, the state estimation unit 4 10 ends this process.
状態推定部 4 1 0は、 高位冷媒温度 T 2が閾値 T t h 2以下の場合には (ステ ップ S 8 0 : Y e s ) 、 気液分離器 6 0 0の貯留水の温度は、 閾値 T t h 2以下 と考えられるので、 気液分離器 6 0 0の貯留水が、 凍結状態であると推定する ( ステップ S 1 0 0 ) 。 状態推定部 4 1 0は、 その後、 この処理を終了する。  When the higher refrigerant temperature T 2 is equal to or lower than the threshold value T th 2 (step S 80: Y es), the state estimation unit 4 10 0 determines that the temperature of the stored water in the gas-liquid separator 60 0 is the threshold value. Since it is considered that T th is 2 or less, it is estimated that the water stored in the gas-liquid separator 60 0 is in a frozen state (step S 1 0 0). Thereafter, the state estimation unit 4 10 ends this process.
水状態推定処理後、 制御回路 4 0 0は、 冷媒循環ポンプ 5 0 0、 コンプレッサ 2 3 0、 水素循環ポンプ 2 5 0などを駆動すると共に、 水素遮断弁 2 1 0を開弁 し、 燃料電池 1 0 0の発電を開始する。 制御回路 4 0 0は、 上記水状態推定処理 において、 貯留水が存在しないと推定した場合 (図 3 :ステップ S 3 0 ) 、 また は、 貯留水が過冷却状態でない液水と推定した場合 (図 3 : ステップ S 6 0 ) 、 または、 貯留水が凍結状態と推定した場合 (図 3 : ステップ S 1 0 0 ) には、 制 約なく、 定期的に、 排気排水弁 6 1 0の開閉制御を行い、 不純物濃度が高くなつ た燃料ガスや貯留部 6 0 0 Bの貯留水を、 燃料電池システム 1 0 0 0の外部へ排 出する。  After the water state estimation process, the control circuit 40 0 drives the refrigerant circulation pump 5 0 0, the compressor 2 3 0, the hydrogen circulation pump 2 5 0, etc., and opens the hydrogen shut-off valve 2 1 0, and the fuel cell 1 0 0 power generation starts. In the above water state estimation process, the control circuit 40 0 estimates that there is no stored water (Fig. 3: Step S 3 0), or if the stored water is estimated as liquid water that is not supercooled ( Fig. 3: Step S 60 0) or when the stored water is estimated to be frozen (Fig. 3: Step S 1 0 0), open / close control of the exhaust drain valve 6 1 0 periodically without restriction Then, the fuel gas with a high impurity concentration and the stored water in the storage unit 600 B are discharged to the outside of the fuel cell system 100 0 0.
一方、 制御回路 4 0 0は、 上記水状態推定処理において、 状態推定部 4 1 0が 、 貯留水が過冷却状態であると推定した場合 (図 3 :ステップ S 9 0 ) には、 燃 料電池 1 0 0の発電開始後、 貯留水が過冷却状態を脱却するまで排気排水弁 6 1 0の開弁制御を行わない。 なお、 制御回路 4 0 0は、 例えば、 燃料電池 1 0 0の 発電開始から所定時間経過した場合には、 燃料電池 1 0 0から気液分離器 6 0 0 に伝達される熱、 燃料ガス中の水蒸気が凝縮する際の凝縮熱、 または、 燃料電池 1 0 0から排出される液水が持つ熱等によって、 貯留水が過冷却状態から脱却し たと推定し、 排気排水弁 6 1 0の開閉制御を解禁する。 On the other hand, in the water state estimation process, the control circuit 400, when the state estimation unit 4 10 has estimated that the stored water is in a supercooled state (FIG. 3: step S90), the fuel After the start of power generation of the battery 100, the exhaust drain valve 61 0 is not controlled until the stored water escapes from the supercooled state. The control circuit 4 0 0 is, for example, a fuel cell 1 0 0 When a predetermined time has elapsed from the start of power generation, heat transferred from the fuel cell 100 to the gas-liquid separator 60, condensation heat when water vapor in the fuel gas condenses, or fuel cell 100 It is estimated that the stored water has escaped from the supercooled state due to the heat of the liquid water discharged from the tank, and the open / close control of the exhaust drain valve 6 10 is released.
以上のように、 本実施例の燃料電池システム 1 0 0 0では、 気液分離器 6 0 0 内の状態を、 気液分離器 6 0 0に温度センサを設けることなく、 燃料電池の F C 抵抗値 R i、 または、 低位冷媒温度 T l、 または、 高位冷媒温度 Τ 2に基づいて 推定するようにしている。 このようにすれば、 燃料電池システム 1 0 0 0の小型 ィ匕、 または、 軽量化を実現することができる。  As described above, in the fuel cell system 100 according to the present embodiment, the state of the gas-liquid separator 6 0 0 is changed to the FC resistance of the fuel cell without providing a temperature sensor in the gas-liquid separator 6 0 0. It is estimated based on the value R i, or the lower refrigerant temperature T l, or the higher refrigerant temperature Τ2. In this way, it is possible to realize a small size or a light weight of the fuel cell system 100.
また、 本実施例の燃料電池システム 1 0 0 0では、 制御回路 4 0 0は、 状態推 定部 4 1 0が、 貯留水が過冷却状態であると推定した場合 (図 3 :ステップ S 9 0 ) には、 燃料電池 1 0 0の発電開始後、 貯留水が過冷却状態を脱却するまで排 気排水弁 6 1 0の開弁制御を行わないようにしている。 このようにすれば、 過冷 却状態の貯留水が排気排水弁 6 1 0を流れる際に凍結することに起因して排気排 水弁 6 1 0の開閉の制御が不能になることを防止することができる。  Further, in the fuel cell system 100 according to the present embodiment, the control circuit 4 0 0 determines that the state estimation unit 4 1 0 estimates that the stored water is in a supercooled state (FIG. 3: step S 9 On the other hand, after the start of power generation of the fuel cell 10 0, valve opening control of the exhaust / drain valve 6 10 is not performed until the stored water escapes from the supercooled state. In this way, it is possible to prevent the control of opening / closing of the exhaust drain valve 6 1 0 from being caused by freezing of the overcooled stored water flowing through the exhaust drain valve 6 10. be able to.
気液分離器 6 0 0および排気排水弁 6 1 0は、 請求の範囲における貯留装置に 該当し、 排気排水弁 6 1 0は、 請求の範囲における排出弁に該当し、 状態推定部 4 1 0は、 請求の範囲における状態推定部に該当し、 冷媒排出マ二ホールド M L 〇、 冷媒供給マ二ホールド M L I、 冷媒循環流路 5 1 0、 または、 冷媒循環系流 路は、 請求の範囲における冷媒流路に該当し、 閾値 T t h 1は、 請求の範囲にお ける第 1閾値、 第 2閾値、 第 4閾値のいずれかに該当し、 閾値 T t h 2は、 請求 の範囲における第 3閾値または第 5閾値に該当し、 制御回路 4 0 0は、 請求項に おける弁制御部に該当する。 B . 第 2実施例:  The gas-liquid separator 6 0 0 and the exhaust drain valve 6 1 0 correspond to the storage device in the claims, and the exhaust drain valve 6 1 0 corresponds to the discharge valve in the claims, and the state estimation unit 4 1 0 Corresponds to the state estimation unit in the claims, and the refrigerant discharge manifold ML ○, the refrigerant supply manifold MLI, the refrigerant circulation channel 5 10, or the refrigerant circulation system channel is the refrigerant in the claims The threshold value T th 1 corresponds to one of the first threshold value, the second threshold value, and the fourth threshold value in the claim range, and the threshold value T th 2 corresponds to the third threshold value in the claim range or Corresponding to the fifth threshold value, the control circuit 400 corresponds to the valve control unit in the claims. B. Second embodiment:
B 1 . 燃料電池システム 1 0 0 0 Aの構成: 15 B 1. Fuel cell system 1 0 0 0 A configuration: 15
図 4は、 本発明の第 2実施例に係る燃料電池システム 1 0 0 O Aの概略構成を 示すブロック図である。 本実施例の燃料電池システム 1 0 0 O Aは、 第 1実施例 の燃料電池システム 1 0 0 0と基本的に同様の構成となっているが、 制御回路 4 0 0に、 弁温度推定部 4 3 0を備えており、 R AM 4 2 0に、 基準値テーブル K B、 フラグテーブル F B、 および、 検定式データ K Dを備えている点で相違する 。 燃料電池システム 1 0 0 O Aにおいて、 その他の構成は、 燃料電池システム 1 0 0 0と同様である。 また、 燃料電池システム 1 0 0 0 Aは、 第 1実施例の燃料 電池システム 1 0 0 0と同様に、 水状態推定処理を行うが、 さらに、 気液分離器 6 0 0に設けられる排気排水弁 6 1 0の温度を推定し、 その温度に基づいて、 排 気排水弁 6 1 0が凍結の可能性があるか否かを示す排気排水弁凍結可能性フラグ F Gを記憶する排気排水弁温度推定処理も行う。  FIG. 4 is a block diagram showing a schematic configuration of the fuel cell system 100 O A according to the second embodiment of the present invention. The fuel cell system 100 A OA of the present embodiment has basically the same configuration as the fuel cell system 100 00 of the first embodiment, but the control circuit 40 0 0 has a valve temperature estimation unit 4 30 is different, and is different in that RAM 4 2 0 is provided with a reference value table KB, a flag table FB, and test data KD. The other configuration of the fuel cell system 10 0 O A is the same as that of the fuel cell system 100 0 0. In addition, the fuel cell system 100 0 A performs water state estimation processing in the same manner as the fuel cell system 1 0 0 0 of the first embodiment, and further, exhaust drainage provided in the gas-liquid separator 6 0 0 Estimate the temperature of the valve 6 10, and based on that temperature, the exhaust drain valve freezing flag that indicates whether or not the exhaust drain valve 6 1 0 is likely to freeze. An estimation process is also performed.
弁温度推定部 4 3 0は、 排気排水弁温度推定処理を実行する。 基準値テーブル ■ K Bは、 排気排水弁温度推定処理において、 推定された排気排水弁温度 T bを記 憶する。 この基準値テーブル K Bに記憶された排気排水弁温度は、 次に、 再ぴ排 気排水弁温度 T bを推定するための基準値となり、 以下では、 前回推定温度 K K とも呼ぶ。 フラグテーブル F Bは、 排気排水弁凍結可能性フラグ F Gを記憶する 。 検定式データ K Dは、 予め実験的に求められた検定式を表すデータであり、 詳 細については、 後述する。 以下に、 排気排水弁温度推定処理について説明する。 図 5は、 本実施例の燃料電池システム 1 0 0 0 Aが実行する排気排水弁温度推 定処理の処理ルーチンを示すフローチャートである。 図 6は、 排気排水弁温度推 定処理におけるタイミングチヤ一トの一例を示す説明図である。 図 6において、 横軸は時間 tを表している。 排気排水弁温度推定処理は、 燃料電池システム 1 0 0 O Aにおける燃料電池 1 0 0の発電直前から発電終了後まで行われる。 排気排 水弁温度推定処理の開始時には、 燃料電池 1 0 0の発電は行われていない。 すな わち、 冷媒循環ポンプ 5 0 0、 コンプレッサ 2 3 0、 および、 水素循環ポンプ 2 5 0は駆動されておらず、 さらに、 水素遮断弁 2 1 0および排気排水弁 6 1 0は 、 閉弁された状態である。 燃料電池 1 00の発電は、 後述するステップ S 1 00 の処理後に開始される。 The valve temperature estimator 4 30 performs exhaust drainage valve temperature estimation processing. Reference value table ■ KB stores the exhaust drain valve temperature Tb estimated in the exhaust drain valve temperature estimation process. The exhaust drainage valve temperature stored in this reference value table KB then becomes the reference value for estimating the repeat exhaust drainage valve temperature Tb, and is also referred to below as the previous estimated temperature KK. The flag table FB stores the exhaust drain valve freezing possibility flag FG. The test formula data KD is data representing a test formula obtained experimentally in advance, and details will be described later. The exhaust drain valve temperature estimation process will be described below. FIG. 5 is a flowchart showing a processing routine of exhaust drainage valve temperature estimation processing executed by the fuel cell system 100 A of this embodiment. FIG. 6 is an explanatory diagram showing an example of a timing chart in the exhaust drain valve temperature estimation process. In Fig. 6, the horizontal axis represents time t. The exhaust drain valve temperature estimation process is performed from immediately before power generation of the fuel cell 100 0 in the fuel cell system 100 OA until after the end of power generation. At the start of the exhaust drain valve temperature estimation process, power generation of the fuel cell 100 is not performed. In other words, the refrigerant circulation pump 5 0 0, the compressor 2 3 0, and the hydrogen circulation pump 2 5 0 are not driven, and the hydrogen cutoff valve 2 1 0 and the exhaust drain valve 6 1 0 The valve is closed. The power generation of the fuel cell 100 is started after the process of step S 1 00 described later.
まず、 弁温度推定部 4 3 0は、 温度センサ 520から低位冷媒温度 T 1を検出 する (ステップ S 1 00) 。 この処理後、 燃料電池 1 00の発電が開始され、 す なわち、 冷媒循環ポンプ 5 00、 コンプレッサ 2 30、 および、 水素循環ポンプ 2 50が駆動され、 さらに、 水素遮断弁 2 1 0が開弁される (図 6 : t l、 t 3 参照) 。  First, the valve temperature estimating unit 4 30 detects the lower refrigerant temperature T 1 from the temperature sensor 520 (step S 100). After this processing, power generation of the fuel cell 100 is started, that is, the refrigerant circulation pump 500, the compressor 230, and the hydrogen circulation pump 250 are driven, and the hydrogen shut-off valve 2 10 is opened. (See Figure 6: tl, t 3).
続いて、 弁温度推定部 4 30は、 基準値テーブル KBから前回推定温度 KKを 読み込む (ステップ S 1 1 0) 。 弁温度推定部 430は、 ステップ S 1 00の処 理で検出した低位冷媒温度 T 1と、 読み込んだ前回推定温度 KKとを比較する ( ステップ S 1 20 ) 。  Subsequently, the valve temperature estimation unit 430 reads the previous estimated temperature KK from the reference value table KB (step S 1 1 0). The valve temperature estimation unit 430 compares the lower refrigerant temperature T 1 detected in the process of step S 100 with the read previous estimated temperature KK (step S 120).
弁温度推定部 43 0は、 低位冷媒温度 T 1が前回推定温度 KK以下の場合には (ステップ S 1 20 : Y e s ) 、 低位冷媒温度 T 1を前回推定温度 KKとして基 準値テーブル KBに記憶する (ステップ S 1 3◦) 。 弁温度推定部 430は、 低 位冷媒温度 T 1が前回推定温度 KKより大きい場合には (ステップ S 1 20 : N o ) 、 ステップ S 1 40の処理に移行する。  When the lower refrigerant temperature T 1 is equal to or lower than the previous estimated temperature KK (step S 120: Y es), the valve temperature estimation unit 43 0 sets the lower refrigerant temperature T 1 as the previous estimated temperature KK in the reference value table KB. Remember (Step S 1 3◦). When the lower refrigerant temperature T 1 is higher than the previous estimated temperature KK (step S 120: No), the valve temperature estimation unit 430 proceeds to the process of step S 140.
弁温度推定部 43 0は、 次に、 低位冷媒温度 T 1を再検出する (ステップ S 1 40) 。 弁温度推定部 4 3 0は、 検定式データ KDを読み出し、 検定式データ K Dが示す検定式に、 低位冷媒温度 T l、 前回推定温度 KKを代入することで、 そ の時点の排気排水弁温度 T bを推定する (ステップ S 1 50) 。 ここで、 検定式 データ KDが示す検定式について説明する。 燃料電池システム 1 000 Aにおい て、 位置的関係から、 低位冷媒温度 T 1は、 燃料電池 1 00からの影響を受けや すく、 排気排水弁温度 Tbは、 低位冷媒温度 T 1より温度の応答性が悪い。 従つ て、 燃料電池 1 00の温度が上昇すると、 低位冷媒温度 T 1は、 素早く上昇する 、 排気排水弁温度 T bは、 低位冷媒温度 T 1より少し遅れて上昇する。 検定式 は、 このような温度の応答遅れが加味され、 前回推定温度 KKを基準値として、 低位冷媒温度 T 1の値から排気排水弁温度 T bを推定するための式である。 Next, the valve temperature estimating unit 430 redetects the lower refrigerant temperature T 1 (step S 140). The valve temperature estimation unit 4 3 0 reads the verification formula data KD, and substitutes the lower refrigerant temperature T l and the previous estimated temperature KK into the verification formula indicated by the verification formula data KD, so that the exhaust drain valve temperature at that time T b is estimated (step S 150). Here, the test formula indicated by the test formula data KD will be described. In the fuel cell system 1 000 A, due to the positional relationship, the lower refrigerant temperature T 1 is easily affected by the fuel cell 100, and the exhaust drain valve temperature Tb is more responsive than the lower refrigerant temperature T 1. Is bad. Therefore, when the temperature of the fuel cell 100 rises, the lower refrigerant temperature T 1 rises quickly, and the exhaust drain valve temperature T b rises slightly later than the lower refrigerant temperature T 1. The test formula takes into account such a response delay in temperature, and uses the previously estimated temperature KK as a reference value. This is an equation for estimating the exhaust drainage valve temperature Tb from the value of the lower refrigerant temperature T1.
弁温度推定部 430は、 ステップ S 1 50の処理を、 燃料電池 1 00の発電開 始時において、 最初に行う場合 (例えば、 図 6 : t 3時点) 、 すなわち、 燃料電 池 1 0 0の発電開始時において、 初めて排気排水弁温度 T bの推定を行う場合に は、 基準値テーブル KBに記憶された前回推定温度 KKを排気排水弁温度 T bと して推定する。 なお、 「発電開始時」 とは、 発電開始直前から発電開始直後を含 む概念である。 この場合における前回推定温度 KKは、 ステップ S 1 00の処理 で検出された低位冷媒温度 T 1と、 前回の燃料電池 1 00の発電終了時における 排気排水弁温度 Tbとのうち、 低い方の温度である。 つまり、 所定の発電期間に おいて、 前回の燃料電池 1 00の発電終了時における排気排水弁温度 Tb、 若し くは、 その発電開始時に検出した低位冷媒温度 T 1のうち、 低い方の温度が、 排 気排水弁 6 1 0の温度の初期値となる。 例えば、 図 6において、 t 3時で、 燃料 電池 1 00の発電が開始されるが、 その時の低位冷媒温度 T 1は、 閾値 T t h 1 より大きく、 t 2時点の排気排水弁温度 Tb (前回推定温度 KK) は、 閾値 T t h i未満であるので、 t 2時、 つまり、 前回の燃料電池の発電終了時における排 気排水弁温度 T b (前回推定温度 KK) を、 t 3時における排気排水弁温度 T b として推定する。  The valve temperature estimation unit 430 performs the process of step S 150 at the beginning of power generation of the fuel cell 100 (for example, FIG. 6: at time t 3), that is, the fuel cell 100 0 When the exhaust drainage valve temperature Tb is estimated for the first time at the start of power generation, the previous estimated temperature KK stored in the reference value table KB is estimated as the exhaust drainage valve temperature Tb. “At the start of power generation” is a concept including from immediately before the start of power generation to immediately after the start of power generation. In this case, the previous estimated temperature KK is the lower one of the lower refrigerant temperature T 1 detected in step S 100 and the exhaust drain valve temperature Tb at the end of power generation of the previous fuel cell 100. It is. In other words, during the predetermined power generation period, the lower temperature of the exhaust drain valve temperature Tb at the end of power generation of the previous fuel cell 100 or the lower refrigerant temperature T1 detected at the start of power generation. However, this is the initial temperature of the exhaust drain valve 6 10. For example, in FIG. 6, the power generation of the fuel cell 100 starts at t3, but the lower refrigerant temperature T1 at that time is larger than the threshold Tth1, and the exhaust drain valve temperature Tb at the time t2 (previous Since the estimated temperature KK) is less than the threshold value T thi, the exhaust drainage valve temperature T b (previously estimated temperature KK) at t 2, that is, at the end of power generation of the previous fuel cell, is Estimated as valve temperature T b.
続いて、 弁温度推定部 4 3 0は、 推定した排気排水弁温度 Tbを前回推定温度 KKとして基準値テーブル KBに記憶する (ステップ S 1 60) 。  Subsequently, the valve temperature estimation unit 4 30 stores the estimated exhaust drain valve temperature Tb in the reference value table KB as the previous estimated temperature KK (step S 1 60).
弁温度推定部 43 0は、 排気排水弁温度 T bが、 閾値 T t h 1 (第 1実施例参 照) 以下であるか否かを判断する (ステップ S 1 70) 。 弁温度推定部 4 30は 、 排気排水弁温度 T bが、 閾値 T t h 1以下である場合には (ステップ S 1 70 : Y e s ) 、 排気排水弁 6 1 0の凍結の可能性があると判断し、 フラグテーブル F Bに記憶された排気排水弁凍結可能性フラグ FGを ONする (ステップ S 1 8 0) 。 例えば、 図 6において、 発電開始時である t 1時では、 排気排水弁温度 T bが閾値 T t h 1未満であるので、 排気排水弁凍結可能性フラグ FGが ONされ る。 The valve temperature estimation unit 430 determines whether or not the exhaust / drain valve temperature T b is equal to or lower than a threshold value T th 1 (see the first embodiment) (step S 1 70). When the exhaust drain valve temperature T b is equal to or lower than the threshold T th 1 (step S 1 70: Y es), the valve temperature estimation unit 4 30 indicates that the exhaust drain valve 6 10 may be frozen. The exhaust drain valve freezing possibility flag FG stored in the flag table FB is turned ON (step S 1 80). For example, in FIG. 6, at t1, which is the start of power generation, the exhaust drain valve temperature T b is less than the threshold T th 1, so the exhaust drain valve freezing possibility flag FG is turned ON. The
一方、 弁温度推定部 43 0は、 排気排水弁温度 T bが、 閾値 T t h 1より大き い場合には (ステップ S 1 70 : N o) 、 排気排水弁 6 1 0の凍結の可能性はな いと判断し、 フラグテーブル F Bに記憶された排気排水弁凍結可能性フラグ F G を OF Fする (ステップ S 1 9 0) 。 例えば、 図 6において、 排気排水弁温度 T bが閾値 T t h 1を少し越えた時点 (t 4時) で、 排気排水弁凍結可能性フラグ F Gが O F Fされている。  On the other hand, when the exhaust drain valve temperature T b is larger than the threshold value T th 1 (step S 1 70: No), the valve temperature estimation unit 43 0 determines that the exhaust drain valve 6 10 may be frozen. If not, the exhaust drainage valve freezing possibility flag FG stored in the flag table FB is set to OF (step S 1 90). For example, in FIG. 6, when the exhaust drain valve temperature Tb slightly exceeds the threshold value T t h 1 (at t4), the exhaust drain valve freezing flag FG is set to OFF.
続いて、 弁温度推定部 4 30は、 燃料電池 1 00の発電が終了するか否かを判 断する (ステップ S 200) 。 弁温度推定部 430は、 燃料電池 1 00の発電が 終了しない場合には (ステップ S 200 : N o ) 、 ステップ S 140の処理にリ ターンし、 上記ステップ S 1 40〜S 1 8 0の処理、 または、 ステップ S 1 4◦ 〜ステップ S 1 90の処理を繰り返す。 一方、 弁温度推定部 4 30は、 燃料電池 1 00の発電が終了する場合には (ステップ S 200 : Y e s ) 、 この排気排水 弁温度推定処理を終了する。  Subsequently, the valve temperature estimation unit 430 determines whether or not the power generation of the fuel cell 100 is finished (step S 200). When the power generation of the fuel cell 100 does not end (step S 200: No), the valve temperature estimation unit 430 returns to the process of step S 140, and performs the process of steps S 140 to S 180 Or, the processing from step S 1 4◦ to step S 1 90 is repeated. On the other hand, when the power generation of the fuel cell 100 ends (step S200: Y e s), the valve temperature estimation unit 430 ends the exhaust drain valve temperature estimation process.
制御回路 400は、 フラグテーブル F Bに記憶された排気排水弁凍結可能性フ ラグ FGが、 ONである場合には、 必要に応じて排気排水弁 6 1 0を開弁制御す るが、 排気排水弁凍結可能性フラグ FGが、 OF Fである場合には、 排気排水弁 6 1 0の開弁制御は、 行わない。  When the exhaust drainage valve freezing possibility flag FG stored in the flag table FB is ON, the control circuit 400 controls to open the exhaust drainage valve 6 1 0 as necessary. When the valve freezing possibility flag FG is OF F, the exhaust drain valve 6 10 is not controlled to open.
ところで、 例えば、 燃料電池 1 0 0の発電により低位冷媒温度 T 1が閾値 T t h 1以上であるが、 排気排水弁 6 1 0の温度は閾値 T t h 1未満の状態で燃料電 池 1 00が発電終了され (例えば、 図 6 : t 2時) 、 すぐに燃料電池 1 00の発 電が開始された場合 (例えば、 図 6 : t 3時) 、 その時の低位冷媒温度 T 1を排 気排水弁 6 1 0の温度とみなすと、 その低位冷媒温度 T 1は、 閾値 T t h i以上 であるおそれがある。 すなわち、 実際の排気排水弁 6 1 0の温度は、 閾値 T t h 1未満であるのに、 閾値 T t h 1以上であると誤判定して、 排気排水弁凍結可能 性フラグ FGが OF Fとなってしまうおそれがあった。 このような状況では、 気 T脑 08/069176 By the way, for example, the lower refrigerant temperature T 1 is equal to or higher than the threshold T th 1 due to power generation of the fuel cell 100, but the temperature of the exhaust drain valve 6 10 is less than the threshold T th 1 and the fuel cell 100 When power generation is completed (for example, Fig. 6: t2) and power generation of the fuel cell 100 is started immediately (for example, Fig. 6: t3), the lower refrigerant temperature T1 at that time is exhausted and drained. Considering the temperature of the valve 6 10, the lower refrigerant temperature T 1 may be equal to or higher than the threshold value T thi. That is, the actual temperature of the exhaust drain valve 6 10 is less than the threshold T th 1 but is erroneously determined to be equal to or higher than the threshold T th 1 and the exhaust drain valve freezing possibility flag FG becomes OF F. There was a risk of it. In this situation, T 脑 08/069176
19  19
液分離器 6 0 0の貯留水や排気排水弁 6 1 0内部に存在する水が過冷却水である 可能性があった。 そうすると、 この誤判定に基づいて、 排気排水弁 6 1 0を開弁 してしまい、 排気排水弁 6 1 0で過冷却水が開弁状態のまま凍結し、 排気排水弁 6 1 0の制御が不能になるおそれがあった。 There was a possibility that the water stored in the liquid separator 600 and the water present in the exhaust drain valve 61 were supercooled water. Then, based on this misjudgment, the exhaust drain valve 6 1 0 is opened, and the super exhaust water is frozen while the exhaust drain valve 6 1 0 is open, and the exhaust drain valve 6 1 0 is controlled. There was a risk of becoming impossible.
一方、 本実施例の燃料電池システム 1 0 0 O Aが行う排気排水弁温度推定処理 では、 燃料電池 1 0 0の発電開始時に、 初めて排気排水弁温度 T bの推定を行う 場合には、 その時検出した低位冷媒温度 T 1と、 前回の燃料電池 1 0 0の発電終 了時における排気排水弁温度 T bとのうち、 低い方の温度を、 排気排水弁温度 τ bとして推定するようにしている。 このようにすれば、 例えば、 燃料電池 1 0 0 が発電終了し、 すぐに燃料電池 1 0 0の発電を開始した場合において、 低位冷媒 温度 T 1の温度が閾値 T t h 1以上であり、 実際の排気排水弁温度 T bが、 閾値 T t h 1未満の場合には、 前回の燃料電池 1 0 0の発電終了時における排気排水 弁温度 T bを今回の排気排水弁温度 T bとして推定するので、 排気排水弁温度 τ bが閾値 T t h 1以上であると誤判定して、 排気排水弁凍結可能性フラグ F Gを O F Fにすることを抑制することができる。 その結果、 排気排水弁 6 1 0が制御 不能になることを抑制することができる。  On the other hand, in the exhaust drain valve temperature estimation process performed by the fuel cell system 100 A of this embodiment, when the exhaust drain valve temperature T b is estimated for the first time at the start of power generation of the fuel cell 100, it is detected at that time. The lower one of the lower refrigerant temperature T 1 and the exhaust drain valve temperature T b at the end of power generation of the previous fuel cell 10 0 is estimated as the exhaust drain valve temperature τ b . In this way, for example, when the power generation of the fuel cell 10 0 ends and the power generation of the fuel cell 100 immediately starts, the temperature of the lower refrigerant temperature T 1 is equal to or higher than the threshold T th 1 and actually If the exhaust drain valve temperature Tb is less than the threshold T th 1, the exhaust drain valve temperature T b at the end of power generation of the previous fuel cell 100 is estimated as the current exhaust drain valve temperature T b It is possible to prevent the exhaust drain valve freezing flag FG from being turned OFF by erroneously determining that the exhaust drain valve temperature τ b is equal to or higher than the threshold value T th 1. As a result, the exhaust drain valve 6 10 can be prevented from becoming uncontrollable.
本実施例の燃料電池システム 1 0 0 0 Aが行う排気排水弁温度推定処理では、 排気排水弁温度 T bの初期値を推定後、 前回推定温度 K Kを基準値として、 排気 排水弁温度 T bを推定している。 このようにすれば、.排気排水弁温度 T bを正確 に推定することができる。  In the exhaust drain valve temperature estimation process performed by the fuel cell system 1 0 0 0 A of this embodiment, the initial value of the exhaust drain valve temperature T b is estimated, and then the previous estimated temperature KK is used as a reference value, and the exhaust drain valve temperature T b Is estimated. In this way, the exhaust drain valve temperature T b can be accurately estimated.
また、 本実施例の燃料電池システム 1 0 0 O Aが行う排気排水弁温度推定処理 では、 排気排水弁温度 T bに基づいて、 排気排水弁 6 1 0が凍結する可能性があ るか否かを判定するようにしている。 このようにすれば、 排気排水弁 6 1 0が凍 結する可能性があるか否かを正確に判定することができる。  In addition, in the fuel cell system of the present embodiment, the exhaust drain valve temperature estimation process performed by the OA determines whether the exhaust drain valve 6 10 may freeze based on the exhaust drain valve temperature Tb. Is determined. In this way, it is possible to accurately determine whether or not the exhaust / drain valve 6 10 may freeze.
本実施例において、 排気排水弁 6 1 0は、 請求項における排出弁に該当し、 冷 媒循環流路 5 1 0は、 請求項における冷媒流路に該当し、 弁温度推定部 4 3 0は 008/069176 In this embodiment, the exhaust drain valve 6 10 corresponds to the discharge valve in the claims, the refrigerant circulation channel 5 10 corresponds to the refrigerant channel in the claims, and the valve temperature estimation unit 4 3 0 008/069176
20  20
、 請求項における弁温度推定部に該当し、 排気排水弁凍結可能性フラグ F Gが O Nの状態が、 請求項における凍結可能性情報に該当し、 排気排水弁凍結可能性フ ラグ F Gが O F Fの状態が、 請求項における凍結可能性解除情報に該当し、 フラ グテープル F Bは、 請求項における排出弁凍結情報記憶部に該当する。  Corresponds to the valve temperature estimator in the claim, and the state that the exhaust drainage valve freezing possibility flag FG is ON corresponds to the freezing possibility information in the claim, and the exhaust drainage valve freezing flag FG is OFF Corresponds to the freezing possibility release information in the claims, and the flag table FB corresponds to the discharge valve freezing information storage unit in the claims.
C . 変形例: C. Variations:
なお、 上記各実施例における構成要素の中の、 独立クレームでクレームされた 要素以外の要素は、 付加的な要素であり、 適宜省略可能である。 また、 この発明 は上記の実施例や実施形態に限られるものではなく、 その要旨を逸脱しない範囲 において種々の態様において実施することが可能であり、 例えば以下のような変 形も可能である。  It should be noted that elements other than those claimed in the independent claims among the constituent elements in each of the above embodiments are additional elements and can be omitted as appropriate. The present invention is not limited to the above-described examples and embodiments, and can be implemented in various modes without departing from the gist thereof. For example, the following modifications are possible.
C 1 . 変形例 1 :  C 1. Modification 1:
上記実施例の燃料電池システム 1 0 0 0において、 水状態推定処理 (図 3 ) で 、 制御回路 4 0 0は、 気液分離器 6 0 0内に貯留水があるか否かの推定を、 燃料 電池 1 0 0の前回の発電終了時の F C抵抗値 R iに基づいて行っていたが、 本発 明はこれに限られるものではない。 例えば、 制御回路 4 0 0は、 水状態推定処理 を実行する前や、 燃料電池 1 0 0の前回の発電中に、 抵抗測定装置 9 0 0に燃料 電池 1 0 0の F C抵抗値を検出させ、 その F C抵抗値に基づいて、 気液分離器 6 0 0内に貯留水があるか否かの推定を行うようにしてもよい。 このようにしても 上記実施例と同様の効果を奏することができる。  In the fuel cell system 100 of the above embodiment, in the water state estimation process (FIG. 3), the control circuit 400 detects whether or not there is stored water in the gas-liquid separator 60 The fuel cell 1 0 0 was based on the FC resistance value R i at the end of the previous power generation, but the present invention is not limited to this. For example, the control circuit 400 causes the resistance measurement device 900 to detect the FC resistance value of the fuel cell 100 before executing the water state estimation process or during the previous power generation of the fuel cell 100. Based on the FC resistance value, it may be estimated whether or not there is stored water in the gas-liquid separator 60. Even if it does in this way, there can exist an effect similar to the said Example.
また、 制御回路 4 0 0は、 燃料電池 1 0 0の前回の発電中または発電終了時に おいて、 燃料電池 1 0 0の燃料電池温度を検出し、 その燃科電池温度に基づいて 、 気液分離器 6 0 0内に貯留水があるか否かの推定を行うようにしてもよい。 こ の場合、 制御回路 4 0 0は、 例えば、 冷媒の出口温度である高位冷媒温度 T 2を 、 燃料電池温度として検出する。 このようにすれば、 抵抗測定装置 9 0 0を設け ることなく、 気液分離器 6 0 0内の貯留水の存在可否を推定することができるの 08 069176 Further, the control circuit 400 detects the fuel cell temperature of the fuel cell 10 0 during the previous power generation of the fuel cell 100 0 or at the end of the power generation, and the gas-liquid is detected based on the fuel cell temperature. It may be possible to estimate whether or not there is stored water in the separator 600. In this case, the control circuit 400 detects, for example, the higher refrigerant temperature T2, which is the refrigerant outlet temperature, as the fuel cell temperature. In this way, the presence / absence of the stored water in the gas-liquid separator 600 can be estimated without providing the resistance measuring device 900. 08 069176
21  twenty one
で、 燃料電池システム 1 0 0 0の小型化、 または、 軽量化を実現することができ る。 As a result, the fuel cell system 100 can be reduced in size or weight.
さらに、 制御回路 4 0 0は、 燃料電池 1 0 0の前回の発電中または発電終了時 において、 燃料電池 1 0 0の出力電流値を検出し、 その出力電流値に基づいて、 気液分離器 6 0 0内に貯留水があるか否かの推定を行うようにしてもよい。 この ようにすれば、 抵抗測定装置 9 0 0を設けることなく、 気液分離器 6 0 0内の貯 留水の存在可否を推定することができるので、 燃料電池システム 1 0 0 0の小型 化、 または、 軽量化を実現することができる。  Further, the control circuit 40 0 detects the output current value of the fuel cell 10 0 during the previous power generation of the fuel cell 100 0 or at the end of the power generation, and based on the output current value, the gas-liquid separator It may be estimated whether or not there is stored water in 600. In this way, it is possible to estimate the presence / absence of the stored water in the gas-liquid separator 600 without providing the resistance measuring device 900, so the fuel cell system 100 can be downsized. Or, weight reduction can be realized.
C 2 . 変形例 2 : C 2. Modification 2:
上記実施例の燃料電池システム 1 0 0 0は、 例えば、 自動車などの車両や、 船 舶、 飛行機、 リニアモーター力などに搭載することが可能である。 このようにす れば、 このような搭載装置の小型化、 または、 軽量化を実現することが可能とな る。  The fuel cell system 100 of the above embodiment can be mounted on, for example, a vehicle such as an automobile, a ship, an airplane, or a linear motor force. In this way, it is possible to reduce the size or weight of such a mounting device.
C 3 . 変形例 3 :  C 3. Modification 3:
上記実施例の燃料電池システム 1 0 0 O Aでは、 排気排水弁温度推定処理にお いて、 冷媒の温度として、 低位冷媒温度 T 1を用いているが、 本発明はこれに限 られるものではなく、 高位冷媒温度 T 2を用いるようにしてもよい。 このように しても上記実施例と同様の効果を奏することができる。  In the fuel cell system 100 OA of the above embodiment, in the exhaust drain valve temperature estimation process, the lower refrigerant temperature T 1 is used as the refrigerant temperature, but the present invention is not limited to this, The higher refrigerant temperature T 2 may be used. Even in this case, the same effects as in the above embodiment can be obtained.
C 4 . 変形例 4 : C 4. Modification 4:
上記実施例の燃料電池システム 1 0 0 O Aでは、 排気排水弁温度推定処理にお いて、 ステップ S 1 0 0〜ステップ S 1 3 0の処理で、 低位冷媒温度 T 1と前回 推定温度 K Kとを比較し、 小さい方の温度を新たな前回推定温度 K Kとして、 基 準値テーブル K Bに記憶するようにしているが、 本発明はこれに限られるもので はない。 例えば、 高位冷媒温度 T 2を検出し、 低位冷媒温度 T l、 高位冷媒温度 Τ 2、 および、 前回推定温度 Κ Κを比較し、 一番小さい温度を、 新たな前回推定 温度 Κ Κとして、 基準値テーブル K Bに記憶するようにしてもよい。 このように 記実施例の効果を奏することができる。 In the fuel cell system 1 00 OA of the above embodiment, in the exhaust drain valve temperature estimation process, the low refrigerant temperature T 1 and the previous estimated temperature KK are calculated in the process from step S 1 0 0 to step S 1 3 0. In comparison, the smaller temperature is stored in the reference value table KB as a new previous estimated temperature KK, but the present invention is not limited to this. For example, the higher refrigerant temperature T 2 is detected, the lower refrigerant temperature T 1, the higher refrigerant temperature Τ 2 and the previous estimated temperature Κ 比較 are compared, and the lowest temperature is set as the new previous estimated temperature Κ It may be stored in the value table KB. in this way The effect of the Example can be exhibited.

Claims

請求の範囲 The scope of the claims
1 . 燃料電池システムであって、  1. a fuel cell system,
燃料電池と、  A fuel cell;
前記燃料電池から排出される水を貯留する貯留装置と、  A storage device for storing water discharged from the fuel cell;
前記貯留装置の状態を、 前記燃料電池の状態に基づいて推定する状態推定部と を備える燃料電池システム。  A fuel cell system comprising: a state estimating unit that estimates the state of the storage device based on the state of the fuel cell.
2 . 請求の範囲 1に記載の燃料電池システムにおいて、 2. In the fuel cell system according to claim 1,
前記状態推定部は、 前記貯留装置内に前記水が貯留されているか否かを、 前記 燃料電池の内部抵抗値に基づいて推定する、 燃料電池システム。  The fuel cell system, wherein the state estimation unit estimates whether or not the water is stored in the storage device based on an internal resistance value of the fuel cell.
3 . 請求の範囲 2に記載の燃料電池システムにおいて、 3. In the fuel cell system according to claim 2,
前記状態推定部は、 前記貯留装置内に前記水が貯留されているか否かを、 前記 燃料電池において、 前回の発電終了時における前記内部抵抗値に基づいて推定す る、 燃料電池システム。  The fuel cell system, wherein the state estimating unit estimates whether or not the water is stored in the storage device based on the internal resistance value at the end of the previous power generation in the fuel cell.
4 . 請求の範囲 1力、ら 3のいずれかに記載の燃料電池システムはさらに、 前記燃料電池を冷却する冷媒を流すための冷媒流路を備え、 4. The fuel cell system according to any one of claims 1 and 3 further includes a refrigerant flow path for flowing a refrigerant for cooling the fuel cell,
前記状態推定部は、 前記貯留装置内に前記水が貯留されている場合において、 前記水の状態を、 前記冷媒流路の冷媒温度に基づいて推定する、 燃料電池システ ム。  The said state estimation part estimates the state of the said water based on the refrigerant | coolant temperature of the said refrigerant | coolant flow path, when the said water is stored in the said storage apparatus.
5 . 請求の範囲 4に記載の燃料電池システムにおいて、 5. In the fuel cell system according to claim 4,
前記冷媒流路は、 少なくとも一部が、 鉛直方向に高低差を有しており、 前記貯留装置は、 前記冷媒流路の高位部分と、 低位部分との間であって、 前記 燃料電池に接して配置されており、 At least a part of the refrigerant flow path has a vertical difference in the vertical direction, and the storage device is between a high-order part and a low-order part of the refrigerant flow path, and Placed in contact with the fuel cell,
前記状態推定部は、 前記燃料電池の発電開始前であって前記冷媒流路の前記冷 媒が停止した状態で、 前記冷媒流路の前記低位部分の前記冷媒温度が第 1閾値よ り大きい場合に、 前記水の状態を、 過冷却状態ではない液体と推定する、 燃料電 池システム。  The state estimating unit is in a state where the refrigerant temperature in the lower portion of the refrigerant flow path is larger than a first threshold value in a state in which the refrigerant in the refrigerant flow path is stopped before the start of power generation of the fuel cell. A fuel cell system that estimates the water state as a liquid that is not in a supercooled state.
6 . 請求の範囲 4に記載の燃料電池システムにおいて、 6. In the fuel cell system according to claim 4,
前記冷媒流路は、 少なく とも一部が、 鉛直方向に高低差を有しており、 前記貯留装置は、 前記冷媒流路の高位部分と、 低位部分との間であって、 前記 燃料電池に接して配置されており、  At least a part of the refrigerant flow path has a height difference in the vertical direction, and the storage device is between a high-order part and a low-order part of the refrigerant flow path, and is connected to the fuel cell. Arranged in contact,
前記状態推定部は、 前記燃料電池の発電開始前であって前記冷媒流路の前記冷 媒が停止した状態で、 前記冷媒流路の前記低位部分の前記冷媒温度が第 2閾値以 下の場合であって、 前記冷媒流路の前記高位部分の前記冷媒温度が前記第 2閾値 よりも小さい第 3閾値より大きい場合に、 前記水の状態を、 過冷却状態と推定す る、 燃料電池システム。  The state estimation unit is in a state where the refrigerant in the refrigerant flow path is stopped before the start of power generation of the fuel cell and the refrigerant temperature in the lower part of the refrigerant flow path is equal to or lower than a second threshold value. The fuel cell system estimates the water state as a supercooled state when the refrigerant temperature in the higher portion of the refrigerant flow path is larger than a third threshold value that is smaller than the second threshold value.
7 . 請求の範囲 5に記載の燃料電池システムにおいて、 7. In the fuel cell system according to claim 5,
前記状態推定部は、 前記燃料電池の発電開始前であって前記冷媒流路の前記冷 媒が停止した状態で、 前記冷媒流路の前記低位部分の前記冷媒温度が第 2閾値以 下の場合であって、 前記冷媒流路の前記高位部分の前記冷媒温度が前記第 2閾値 よりも小さい第 3閾値より大きい場合に、 前記水の状態を、 過冷却状態と推定す る、 燃料電池システム。  The state estimating unit is in a state where the refrigerant in the refrigerant flow path is stopped before the start of power generation of the fuel cell and the refrigerant temperature in the lower part of the refrigerant flow path is equal to or lower than a second threshold value. The fuel cell system estimates the water state as a supercooled state when the refrigerant temperature in the higher portion of the refrigerant flow path is larger than a third threshold value that is smaller than the second threshold value.
8 . 請求の範囲 6または 7に記載の燃料電池システムにおいて、 8. In the fuel cell system according to claim 6 or 7,
前記貯留装置は、 前記水を排出するための排出弁を備え、  The storage device includes a discharge valve for discharging the water,
前記燃料電池システムは、 前記排出弁の開閉を制御する弁制御部を備え、 前記弁制御部は、 前記状態推定部が、 前記水の状態を、 過冷却状態と推定した 場合には、 所定条件を満たすまで前記排出弁を開弁させない、 燃料電池システム 9 . 請求の範囲 4に記載の燃料電池システムにおいて、 The fuel cell system includes a valve control unit that controls opening and closing of the discharge valve, 5. The fuel cell system according to claim 4, wherein the valve control unit does not open the discharge valve until a predetermined condition is satisfied when the state estimation unit estimates the water state as a supercooled state. In the fuel cell system described in
前記冷媒流路は、 少なくとも一部が、 鉛直方向に高低差を有しており、 前記貯留装置は、 前記冷媒流路の高位部分と、 低位部分との間であって、 前記 燃料電池に接して配置されており、  At least a part of the refrigerant flow path has a height difference in the vertical direction, and the storage device is between a high-order part and a low-order part of the refrigerant flow path, and is in contact with the fuel cell. Arranged,
前記状態推定部は、 前記燃料電池の発電開始前であって前記冷媒流路の前記冷 媒が停止した状態で、 前記冷媒流路の前記低位部分の前記冷媒の温度が第 4閾値 以下の場合であって、 前記冷媒流路の前記高位部分の前記冷媒温度が前記第 4閾 値よりも小さい第 5閾値以下の場合に、 前記水の状態を、 凍結状態と推定する、 燃料電池システム。  The state estimating unit is in a state where the refrigerant in the refrigerant flow path is stopped before the fuel cell starts generating power, and the temperature of the refrigerant in the lower portion of the refrigerant flow path is equal to or lower than a fourth threshold value. The fuel cell system estimates the water state as a frozen state when the refrigerant temperature in the higher portion of the refrigerant flow path is equal to or lower than a fifth threshold value that is smaller than the fourth threshold value.
1 0 . 請求の範囲 5から 8のいずれかに記載の燃料電池システムにおいて、 前記状態推定部は、 前記燃料電池の発電開始前であって前記冷媒流路の前記冷 媒が停止した状態で、 前記冷媒流路の前記低位部分の前記冷媒の温度が第 4閾値 以下の場合であって、 前記冷媒流路の前記高位部分の前記冷媒温度が前記第 4閾 値よりも小さい第 5閾値以下の場合に、 前記水の状態を、 凍結状態と推定する、 燃料電池システム。  10. The fuel cell system according to any one of claims 5 to 8, wherein the state estimation unit is in a state in which the refrigerant in the refrigerant flow path is stopped before the start of power generation of the fuel cell. The temperature of the refrigerant in the lower portion of the refrigerant flow path is equal to or lower than a fourth threshold value, and the temperature of the refrigerant in the higher portion of the refrigerant flow path is equal to or lower than a fifth threshold value that is smaller than the fourth threshold value. In the case, the fuel cell system estimates the water state as a frozen state.
1 1 . 請求の範囲 1から 3のいずれかに記載の燃料電池システムにおいて、 前記貯留装置は、 前記水を排出するための排出弁を備え、  1 1. The fuel cell system according to any one of claims 1 to 3, wherein the storage device includes a discharge valve for discharging the water,
前記燃料電池システムはさらに、  The fuel cell system further includes
前記燃料電池を冷却する冷媒を流すための冷媒流路と、  A refrigerant flow path for flowing a refrigerant for cooling the fuel cell;
排出弁温度を推定する弁温度推定部と、 前記弁温度推定部が推定した前記排出弁温度を記憶する弁温度記憶部と、 を備え、 A valve temperature estimator for estimating the discharge valve temperature; A valve temperature storage unit that stores the discharge valve temperature estimated by the valve temperature estimation unit, and
前記弁温度推定部は、 前記燃料電池の発電開始時において、 前記冷媒温度を検 出し、 検出した前記冷媒温度と、 前回の発電終了時において前記弁温度記憶部に 記憶された前記排出弁温度と、 のうち、 低い方の温度を前記発電開始時における 前記排出弁温度と推定する、 燃料電池システム。  The valve temperature estimation unit detects the refrigerant temperature at the start of power generation of the fuel cell, and detects the detected refrigerant temperature, and the discharge valve temperature stored in the valve temperature storage unit at the end of the previous power generation. A fuel cell system that estimates a lower temperature of the exhaust valve temperature at the start of power generation.
1 2 . 請求の範囲 8に記載の燃料電池システムはさらに、 1 2. The fuel cell system according to claim 8 further includes:
排出弁温度を推定する弁温度推定部と、  A valve temperature estimator for estimating the discharge valve temperature;
前記弁温度推定部が推定した前記排出弁温度を記憶する弁温度記憶部と、 を備 、  A valve temperature storage unit for storing the discharge valve temperature estimated by the valve temperature estimation unit, and
前記弁温度推定部は、 前記燃料電池の発電開始時において、 前記冷媒温度を検 出し、 検出した前記冷媒温度と、 前回の発電終了時において前記弁温度記憶部に 記憶された前記排出弁温度と、 のうち、 低い方の温度を前記発電開始時における 前記排出弁温度と推定する、 燃料電池システム。  The valve temperature estimation unit detects the refrigerant temperature at the start of power generation of the fuel cell, and detects the detected refrigerant temperature, and the discharge valve temperature stored in the valve temperature storage unit at the end of the previous power generation. A fuel cell system that estimates a lower temperature of the exhaust valve temperature at the start of power generation.
1 3 . 請求の範囲 4から 7および 9から 1 1のいずれかに記載の燃料電池システ ム ίこお ヽ C、 1 3. The fuel cell system according to any one of claims 4 to 7 and 9 to 11 1.
前記貯留装置は、 前記水を排出するための排出弁を備え、  The storage device includes a discharge valve for discharging the water,
前記燃料電池システムはさらに、  The fuel cell system further includes
排出弁温度を推定する弁温度推定部と、  A valve temperature estimator for estimating the discharge valve temperature;
前記弁温度推定部が推定した前記排出弁温度を記憶する弁温度記憶部と、 を備え、  A valve temperature storage unit that stores the discharge valve temperature estimated by the valve temperature estimation unit, and
前記弁温度推定部は、 前記燃料電池の発電開始時において、 前記冷媒温度を検 出し、 検出した前記冷媒温度と、 前回の発電終了時において前記弁温度記憶部に 記憶された前記排出弁温度と、 のうち、 低い方の温度を前記発電開始時における 前記排出弁温度と推定する、 燃料電池システム。 The valve temperature estimation unit detects the refrigerant temperature at the start of power generation of the fuel cell, and detects the detected refrigerant temperature, and the discharge valve temperature stored in the valve temperature storage unit at the end of the previous power generation. , Of the lower temperature at the start of power generation A fuel cell system that estimates the exhaust valve temperature.
1 4 . 請求の範囲 1 1から 1 3のいずれかに記載の燃料電池システムにおいて、 前記弁温度推定部は、 前記燃料電池の発電時において、 新たに前記排出弁温度 を推定する場合には、 前記冷媒温度を検出し、 検出した前記冷媒温度と、 前回推 定した前記排出弁温度とに基づいて推定する、 燃料電池システム。  1 4. In the fuel cell system according to any one of claims 11 to 13, when the valve temperature estimation unit newly estimates the exhaust valve temperature during power generation of the fuel cell, A fuel cell system that detects the refrigerant temperature and estimates the refrigerant temperature based on the detected refrigerant temperature and the previously estimated exhaust valve temperature.
1 5 . 請求の範囲 1 1から 1 4のいずれかに記載の燃料電池システムにおいて、 前記弁温度推定部は、 推定した前記排出弁温度に基づいて、 前記排出弁が凍結 する可能性があるか否かを判定する、 燃料電池システム。  1 5. The fuel cell system according to any one of claims 1 to 14, wherein the valve temperature estimation unit may cause the discharge valve to freeze based on the estimated discharge valve temperature. A fuel cell system that determines whether or not.
1 6 . 請求の範囲 1 5に記載の燃料電池システムはさらに、  1 6. The fuel cell system according to claim 15 further comprises:
排出弁凍結情報記憶部を備え、  Equipped with a discharge valve freezing information storage unit,
前記弁温度推定部は、 前記排出弁が凍結する可能性があると判定した場合には 、 前記排出弁凍結情報記憶部に、 前記排出弁が凍結する可能性があることを示す 凍結可能性情報を記憶する、 燃料電池システム。  When the valve temperature estimation unit determines that the discharge valve may be frozen, the discharge valve freezing information storage unit indicates that the discharge valve may be frozen. Freezing possibility information Memorize the fuel cell system.
1 7 . 請求の範囲 1 6に記載の燃料電池システムにおいて、  1 7. In the fuel cell system according to claim 16,
前記弁温度推定部は、 前記排出弁が凍結する可能性がないと判定した場合には 、 前記排出弁凍結情報記憶部に、 前記排出弁が凍結する可能性がほぼないことを 示す凍結可能性解除情報を記憶する、 燃料電池システム。  When the valve temperature estimation unit determines that the discharge valve is not likely to freeze, the discharge valve freezing information storage unit indicates that there is almost no possibility of the discharge valve freezing. A fuel cell system that stores release information.
1 8 . 請求の範囲 4から 1 7のいずれかに記載の燃料電池システムにおいて、 前記冷媒流路は、 前記燃料電池内部、 または、 前記燃料電池近傍に形成されて いる、 燃料電池システム。  18. The fuel cell system according to any one of claims 4 to 17, wherein the refrigerant flow path is formed in the fuel cell or in the vicinity of the fuel cell.
PCT/JP2008/069176 2007-10-25 2008-10-16 Fuel cell system WO2009054428A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/531,266 US8192880B2 (en) 2007-10-25 2008-10-16 Fuel cell system
DE112008002872.9T DE112008002872B4 (en) 2007-10-25 2008-10-16 Method for controlling a fuel cell system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007277163 2007-10-25
JP2007-277163 2007-10-25
JP2007332474A JP4618294B2 (en) 2007-10-25 2007-12-25 Fuel cell system
JP2007-332474 2007-12-25

Publications (1)

Publication Number Publication Date
WO2009054428A1 true WO2009054428A1 (en) 2009-04-30

Family

ID=40579530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/069176 WO2009054428A1 (en) 2007-10-25 2008-10-16 Fuel cell system

Country Status (1)

Country Link
WO (1) WO2009054428A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005085537A (en) * 2003-09-05 2005-03-31 Nissan Motor Co Ltd Fuel cell system
JP2005114344A (en) * 2003-09-18 2005-04-28 Matsushita Electric Ind Co Ltd Cogeneration system
JP2006140044A (en) * 2004-11-12 2006-06-01 Nissan Motor Co Ltd Fuel cell system
JP2006216350A (en) * 2005-02-03 2006-08-17 Nissan Motor Co Ltd Fuel cell system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005085537A (en) * 2003-09-05 2005-03-31 Nissan Motor Co Ltd Fuel cell system
JP2005114344A (en) * 2003-09-18 2005-04-28 Matsushita Electric Ind Co Ltd Cogeneration system
JP2006140044A (en) * 2004-11-12 2006-06-01 Nissan Motor Co Ltd Fuel cell system
JP2006216350A (en) * 2005-02-03 2006-08-17 Nissan Motor Co Ltd Fuel cell system

Similar Documents

Publication Publication Date Title
US10312532B2 (en) Residual water scavenging processing method in fuel cell system and fuel cell system
CN106299416B (en) Fuel cell system
KR100988399B1 (en) Mobile body mounted with fuel cell
JP2011014429A (en) Fuel cell system
KR20190000229A (en) Apparatus for condensate drainage of fuel cell vehicle and control method thereof
US10290880B2 (en) Fuel cell cathode balance of plant freeze strategy
JP2018113126A (en) Fuel cell system for vehicle
JP4618294B2 (en) Fuel cell system
JP2003151597A (en) Fuel cell system
JP5324838B2 (en) Fuel cell system and operation method thereof
JP2007287540A (en) Fuel cell system, and vehicle mounted with fuel cell system
JP4414808B2 (en) Fuel cell system
EP2224527B1 (en) Fuel cell system and method for controlling the same
JP2008305700A (en) Fuel cell system
JP2008210646A (en) Fuel cell system
WO2009054428A1 (en) Fuel cell system
JP4673605B2 (en) Fuel cell system
JP2002246052A (en) Fuel cell device and starting method therefor
JP2009076261A (en) Fuel cell system and its starting method
JP4945938B2 (en) Fuel cell system
JP5323392B2 (en) Fuel cell system and method for starting fuel cell system
JP2003331894A (en) Fuel cell system
JP2007242337A (en) Fuel cell system
JP2009016282A (en) Fuel cell system
JP2008277075A (en) Fuel cell system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08841913

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12531266

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120080028729

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08841913

Country of ref document: EP

Kind code of ref document: A1

RET De translation (de og part 6b)

Ref document number: 112008002872

Country of ref document: DE

Date of ref document: 20101125

Kind code of ref document: P