WO2009051515A1 - Machine électrique synchrone - Google Patents

Machine électrique synchrone Download PDF

Info

Publication number
WO2009051515A1
WO2009051515A1 PCT/RU2007/000577 RU2007000577W WO2009051515A1 WO 2009051515 A1 WO2009051515 A1 WO 2009051515A1 RU 2007000577 W RU2007000577 W RU 2007000577W WO 2009051515 A1 WO2009051515 A1 WO 2009051515A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
rotor
electric machine
coil
machine according
Prior art date
Application number
PCT/RU2007/000577
Other languages
English (en)
French (fr)
Inventor
Andrey Borisovich Zakharenko
Oleg Grigorievich Dashko
Yury Prokopievich Krivospitskiy
Vladimir Nikonovich Litvinov
Andrey Mikhailovich Martynov
Original Assignee
Zakrytoe Akcionernoe Obschestvo Nauchno-Proizvodstvennoe Predpriyatie 'inkar-M'
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zakrytoe Akcionernoe Obschestvo Nauchno-Proizvodstvennoe Predpriyatie 'inkar-M' filed Critical Zakrytoe Akcionernoe Obschestvo Nauchno-Proizvodstvennoe Predpriyatie 'inkar-M'
Priority to PCT/RU2007/000577 priority Critical patent/WO2009051515A1/ru
Priority to KR1020087020278A priority patent/KR20090090996A/ko
Publication of WO2009051515A1 publication Critical patent/WO2009051515A1/ru

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to electrical engineering, in particular to electric machines, and can be used as low-speed high-torque motor-wheel motors for driving vehicles, elevator drive motors, automobile starter-generators and low-speed generators for wind turbines and damless hydroelectric stations, etc.
  • a three-phase generator is known (USSR Author's Certificate Ns 430471), the stator of which is made with the number of teeth less than the tripled number of pairs of poles and a high-voltage concentric winding is alternately located on each second tooth.
  • the disadvantage of this technical solution is the location of the winding is not on everyone, but only on every second tooth.
  • EMF electromotive force
  • the dependence of the electromotive force (EMF) on time has a wide range of higher harmonic components, which degrades the vibroacoustic performance of the generator and does not allow it to work in parallel with the network.
  • the stator pole iron and stator winding copper are not used optimally in this design.
  • the aim of the present invention is the creation of a synchronous electric machine with high efficiency, acceptable vibroacoustic performance and technological coil winding
  • each coil is located on a separate tooth.
  • k 1, 1.5, 2, 2.5, 3, 3.5 ... is a positive integer, or a number 15 different from it by 0.5 and
  • k in the relation (1) is an integer
  • the windings of the coil groups in each phase are connected according to, and when k is different from the integer by 0.5, the windings of the coil groups in each phase are connected in the opposite direction.
  • the EMF induced in 25 of each of the coil groups are geometrically added; when deviating from it, they are subtracted, which leads to a loss in the useful power of the machine.
  • Relation (1) allows one to obtain, in the generator operation mode of an electric machine, the same voltage and current phases in all coil groups of the same phase, ⁇ in the motor mode, the same position of the cores of each group of the same phase, relative to the poles of the inductor .
  • the technical result is a significant reduction in the amplitudes of the higher harmonic components of the EMF versus time, which leads to a decrease in the share of “additional” power losses from higher harmonic and to an increase in the efficiency of the electric machine by at least 2–4%.
  • FIG. 1 shows an exemplary embodiment of the active part of a synchronous electric machine in accordance with the present invention.
  • FIG. 2 shows an exemplary embodiment of the active part of a synchronous electric machine in accordance with the present invention, when the stator coil groups are connected in series. Examples of carrying out the invention
  • FIG. 1 which shows an embodiment of the machine with the number of teeth of the stator core equal to 18.
  • Three-phase winding 2 is placed on the core, where A, B, C are phase names, 0 is a neutral point, the phase consists of two coil groups 3 and 4 connected in parallel using conductors 5.
  • SUBSTITUTE SHEET (RULE 26) attached to the yoke of the 7 rotor.
  • the rotor yoke 7 can be made by machining from casting or forging structural steel with high magnetic permeability, for example, steel 10.
  • a stator core 5 consisting of teeth 1 and yoke 8 can be made similar to the yoke 7 of the rotor.
  • the stator core should be burdened from sheets of electrical steel, the direction of the burden should be parallel to the axis of rotation of the machine.
  • it can be made of ⁇ réelle soft magnetic powder material, for example, by pressing.
  • the stator winding coils 2 are wound from a winding wire, for example, copper enamel wire, onto electrically insulating frames, or on the tooth insulation on each tooth 1 of the stator core. To reduce electrical (“ohmic”) reel losses
  • the stator core can be made detachable, that is, teeth 1 and yoke 8 are made separately, winding 2 is wound on teeth 1, and then
  • teeth 1 fasten with a yoke 8.
  • the winding is impregnated with varnish or compound.
  • the device operates as follows.
  • the magnetic flux of each permanent magnet 6 passes through the air gap, the nearest tooth of the stator 1, yoke 8 of the stator, the next tooth of 1 stator, the air gap, the next permanent magnet b and closes by the yoke
  • SUBSTITUTE SHEET (RULE 26) current flows through the winding, causing the stator to rotate MDS.
  • the magnetic flux of the winding 2 interacts with the main magnetic flux of magnets 6.
  • EMF electromotive force
  • the magnitude of the EMF is due to the magnitude of the magnetic flux of the poles and the rotational speed of the rotor.
  • the rotor of a synchronous machine is driven into rotation by an external source of mechanical energy, for example, a wind turbine, while torque is applied to the rotor, for example, using a pulley with a belt drive.
  • an external source of mechanical energy for example, a wind turbine
  • torque is applied to the rotor, for example, using a pulley with a belt drive.
  • stator winding 1 is powered by a DC inverter for efficient operation of the machine in
  • the Hall sensor As a sensing element of the rotor position sensor, it can be placed between the stator and the rotor on the side of the stator facing the permanent magnets of the rotor, directly in the main working air gap between the tooth crowns. It is not necessary to create an additional magnetic system for the rotor position sensor. This makes it possible:
  • SUBSTITUTE SHEET (RULE 26) ⁇ simplify the design by eliminating the additional magnetic system; ⁇ reduce the requirements for the sensitivity of the used Hall sensors, since the magnetic field of the power permanent magnets is used; ⁇ more accurately provide the moments of phase switching, since it is in the working gap that the true front of the fields of permanent magnets passes; ⁇ provide higher stability of the sensors; ⁇ simplify control operations during production and diagnostics.
  • This arrangement of sensors became possible due to the fact that the magnetic field of the armature reaction is concentrated in the teeth, each of which is covered by a separate coil. As a result, the reaction field of the anchor is smaller than with the traditional design of the tooth zone, and is concentrated in the slotted areas of the grooves.
  • the rotor inductor can be made with an excitation winding, as in a traditional synchronous machine.

Description

СИНХРОННАЯ ЭЛЕКТРИЧЕСКАЯ МАШИНА
Область техники
Изобретение относится к электротехнике, в частности к электрическим машинам, и может быть использовано в качестве низкооборотных высокомоментных двигателей мотор-колёс для привода транспортных средств, двигателей привода лифтов, автомобильных стартёр-генераторов и низкооборотных генераторов для ветроустановок и бесплотинных гидростанций и т.п.
Уровень техники
Известен трехфазный генератор (Авторское свидетельство СССР Ns 430471), статор которого выполнен с числом зубцов, меньшим утроенного числа пар полюсов и на каждом втором зубце поочередно расположена высоковольтная концентрическая обмотка. Недостатком этого технического решения является расположение обмотки не на каждом, а лишь на каждом втором зубце. В результате зависимость электродвижущей силы (ЭДС) от времени обладает широким спектром высших гармонических составляющих, что ухудшает виброакустические показатели генератора и не позволяет ему работать параллельно с сетью. Кроме того, железо полюсов статора и медь обмотки статора в этой конструкции используется не оптимально.
Известен синхронный электродвигатель (Авторское свидетельство СССР SU Ns 1345291 ), содержащий статор с трехфазной обмоткой и активный ротор с чередующейся полярностью полюсов, катушки обмотки статора, принадлежащие одной фазе, расположены на полюсах, сдвинутых на 360 эл. град, включены встречно.
Сдвиг на 360 эл. град, между катушками одной фазы делает гармонический состав зависимости ЭДС от времени этого двигателя весьма обширным, что ухудшает виброакустические показатели, создает дополнительные потери мощности и ухудшает КПД.
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) Сущность изобретения
Целью настоящего изобретения является создание синхронной электрической машины с повышенным КПД, приемлемыми виброакустическими показателями и технологичной катушечной обмоткой
5 статора (якоря), в которой каждая катушка расположена на отдельном зубце.
Указанная цель достигается в соответствии с настоящим изобретением благодаря соблюдению следующих соотношений между числом катушечных групп в фазе d, числом зубцов статора Z и числом пар ю полюсов ротора р:
p f d = k, (1)
где: к = 1 , 1.5, 2, 2.5, 3, 3.5 ... - целое положительное число, или число, 15 отличающееся от него на 0.5 и
1 < Z / p < 4, (2)
при этом Z / p ≠ 2 и число катушек в катушечной группе статора 20 Л = 3, 5, 7... - целое положительное нечетное число больше 3.
В случае, если к в соотношении (1 ) целое число, обмотки катушечных групп в каждой фазе соединены согласно, а при к - отличном от целого числа на 0.5, обмотки катушечных групп в каждой фазе соединены встречно. При соблюдении этого соотношения наведенные в 25 каждой из катушечных групп ЭДС геометрически складываются, при отступлении от него вычитаются, что приводит к потере полезной мощности машины.
Соотношение (1 ) позволяет получить а в генераторном режиме работы электрической машины - одинаковые зо по фазе напряжение и ток во всех катушечных группах одной и той же фазы, α в двигательном режиме - одинаковое положение сердечников каждой группы одной и той же фазы, относительно полюсов индуктора.
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) Выражение (2) определяет границы соотношения числа зубцов статора и числа пар полюсов ротора при условии, что оно не равно 2. В случае если 2 = 2-p, положение ротора относительно статора, когда ось каждого зубца статора совпадает с осью каждого полюса ротора, является очень устойчивым. Для вывода электрической машины из этого положения необходимо затратить значительное количество энергии.
В то же время наиболее оптимальными вариантами является выполнение электрической машины с указанным соотношением близким к двум, в частности, исходя из соотношения (3):
р = 4 - λ - d 1 3, (3)
округленным до ближайшего целого числа.
Техническим результатом является существенное сокращение амплитуд высших гармонических составляющих зависимости ЭДС от времени, что приводит к снижению доли "добавочных" потерь мощности от высших гармонических и увеличению КПД электрической машины как минимум на 2 ÷ 4 %.
Краткое описание чертежей На фиг. 1 изображен пример выполнения активной части синхронной электрической машины в соответствии с настоящим изобретением.
На фиг. 2 показан пример выполнения активной части синхронной электрической машины в соответствии с настоящим изобретением, когда катушечные группы статора соединены между собой последовательно. Примеры осуществления изобретения
Обратимся к рассмотрению фиг. 1 , на которой изображен вариант выполнения машины с числом зубцов сердечника статора, равным 18. на сердечнике размещена трехфазная обмотка 2, где А, В, С - названия фаз, 0 - нейтральная точка, фаза состоит из двух катушечных групп 3 и 4, соединенных параллельно при помощи проводников 5. Число пар полюсов ротора р = 8, полюса ротора образованы при помощи шестнадцати постоянных магнитов 6 чередующейся полярности,
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) прикрепленных к ярму 7 ротора. Ярмо 7 ротора может быть изготовлено при помощи механообработки из отливки или поковки конструкционной стали с высокой магнитной проницаемостью, например, стали 10. При частотах перемагничивания, меньших 10 ÷ 15 Гц, сердечник статора, 5 состоящий из зубцов 1 и ярма 8, может быть изготовлен аналогично ярму 7 ротора. При больших значениях упомянутой частоты сердечник статора должен быть шихтован из листов электротехнической стали, направление шихтовки - параллельно оси вращения машины. С целью снижения стоимости изготовления сердечника статора он может быть изготовлен из ιо порошкового магнитомягкого материала, например, путем прессования.
Катушки обмотки 2 статора наматываются из обмоточного провода, например, медного эмаль-провода, на электроизолирующие каркасы, либо на зубцовую изоляцию на каждый зубец 1 сердечника статора. Для снижения электрических ("омических") потерь катушечная
15 группа, либо фаза в целом, может наматываться непрерывным проводом.
Для упрощения и автоматизации технологии намотки обмотки 2 сердечник статора может быть выполнен разъемным, то есть зубцы 1 и ярмо 8 изготавливаются отдельно, на зубцы 1 наматывается обмотка 2, а затем
. зубцы 1 скрепляют с ярмом 8. После окончания обмоточных работ для
20 увеличения электрической прочности изоляции и повышения её надежности производится пропитка обмотки лаком или компаундом.
Для получения ЭДС максимальной амплитуды число катушек в группе λ = 3. Для борьбы с высшими гармоническими составляющими зависимости ЭДС от времени, возможно выполнение групп с числом
25 катушек λ = 5 или 7. Соседние катушки в катушечной группе должны быть соединены встречно, поскольку они находятся в основном под полюсами ротора противоположной полярности.
Устройство работает следующим образом. Магнитный поток каждого постоянного магнита 6 проходит через воздушный зазор, зо ближайший зубец 1 статора, ярмо 8 статора, следующий зубец 1 статора, воздушный зазор, следующий постоянный магнит б и замыкается по ярму
7 ротора. В двигательном режиме на зажимы каждой фазы обмотки 2 статора синхронной машины подается переменное напряжение, по
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) обмотке протекает ток, вызывая вращающуюся МДС статора. При протекании электрического тока в обмотке 2 статора происходит силовое взаимодействие магнитного потока обмотки 2 с основным магнитным потоком магнитов 6. Перемещаясь, волна МДС статора вращает ротор, 5 магнитный поток полюсов 6 перемещается от одного зубца к следующему, при этом наводит электродвижущую силу (ЭДС) в активной части проводников обмотки 2, находящейся в пазах между зубцами. Величина ЭДС обусловлена величиной магнитного потока полюсов и частотой вращения ротора. При вращении ротора, синхронная машина будет ю отдавать механическую мощность в нагрузку. В режиме генератора ротор синхронной машины приводится во вращение сторонним источником механической энергии, например, ветродвигателем, при этом вращающий момент прикладывают к ротору, например, с помощью шкива с ременной передачей. Поле постоянных магнитов, перемещаясь вместе с
15 ротором, пересекает проводники обмотки статора, в которых наводится ЭДС. Если цепь нагрузки замкнута, по обмотке протекает ток. Получаемая при этом электрическая энергия передается в нагрузку.
Следует отметить, что при питании обмотки 1 статора от инвертора постоянного тока для эффективной работы машины в
20 двигательном режиме вводится обратная связь по положению ротора. Например, в трехфазной обмотке при помощи датчика в каждый момент времени должны быть включены те две фазы, ось центрального зубца катушечных групп которых ближе к оси ближайшего по ходу поворота межмагнитного промежутка, полярность включания катушечной группы
25 такова, чтобы зубцы притягивались к следующему по ходу поворота магниту, именно на зубцы этих двух фаз действует наибольшая электромагнитная сила. При использовании датчика Холла в качестве чувствительного элемента датчика положения ротора он может быть размещен между статором и ротором на стороне статора, обращенной к зо постоянным магнитам ротора, непосредственно в основном рабочем воздушном зазоре между коронками зубцов. Дополнительную магнитную систему для датчика положения ротора создавать не надо. Это дает возможность:
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) α упростить конструкцию за счет отказа от дополнительной магнитной системы; α снизить требования к чувствительности применяемых датчиков Холла, так как используется магнитное поле силовых постоянных магнитов; α более точно обеспечить моменты переключения фаз, так как именно в рабочем зазоре проходит истинный фронт полей постоянных магнитов; α обеспечивать более высокую стабильность работы датчиков; α упростить контрольные операции при производстве и диагностике. Такое размещение датчиков стало возможным благодаря тому, что магнитное поле реакции якоря сконцентрировано в зубцах, каждый из которых охватывается отдельной катушкой. В результате поле реакции якоря меньше, чем при традиционной конструкции зубцовой зоны, и концентрируется в шлицевых областях пазов. Оно перпендикулярно оси паза и направлено от одного зубца к соседнему по направлению минимальной чувствительности датчика Холла. Таким образом, датчик практически не реагирует на поле реакции якоря, что обеспечивает гарантированные условия надежной работы и плавного вращения. Следует отметить, что полюса индуктора ротора могут быть выполнены с обмоткой возбуждения, как в традиционной синхронной машине.
Согласно расчетам, можно привести следующие примеры оптимальной реализации электрической машины с трехфазной обмоткой статора (таблица).
Таблица
Figure imgf000007_0001
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) Промышленная применимость
При осуществлении изобретения в соответствии с примером Ns 2 (таблица) была получена величина длительно развиваемого момента упора 40 H-M, при массе двигателя 9 кг и максимальном КПД 92%. Максимальная частота вращения ротора составила 70 об/мин.
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26)

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ
1. Синхронная низкооборотная электрическая машина, содержащая статор с многофазной катушечной обмоткой, где каждая 5 катушка расположена на отдельном зубце, катушки в фазной группе соединены между собой встречно, и индуктор ротора, полюса которого образованы постоянными магнитами с чередующейся полярностью, отличающийся тем, что число катушек в катушечной группе статора λ - 3, 5, 1... — целое положительное нечетное число большее или равное ю 3, и число d катушечных групп в фазе, число Z зубцов статора и число р пар полюсов ротора связаны соотношениями:
1 < Z / p < 4,
15 при этом ZI p ≠ 2, и р / d = к,
где: к = 1 , 1.5, 2, 2.5, 3, 3.5 ... - целое положительное число, или число, отличающееся от него на 0.5, если к - целое число, обмотки катушечных 20 групп в каждой фазе соединены согласно, а при к - отличном от целого числа на 0.5, обмотки катушечных групп в каждой фазе соединены встречно.
2. Синхронная электрическая машина по п. 1 , отличающаяся тем, что на полюсах индуктора ротора расположена обмотка возбуждения. 25 3. Синхронная электрическая машина по п. 2, отличающаяся тем, что число пар полюсов ротора устанавливают при округлении до ближайшего целого числа результата формулы:
p = 4 - Л - d 1 3. зо 4. Синхронная электрическая машина по п. 3, отличающаяся наличием датчиков углового положения ротора, действие которых
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) основано на эффекте Холла, расположенных на статоре и обращенных своим чувствительным элементом к ротору.
5. Синхронная электрическая машина по п. 4, отличающаяся тем, что катушечные группы соединены между собой последовательно. 5
6. Синхронная электрическая машина по п. 4, отличающаяся тем, что катушечные группы соединены между собой параллельно.
7. Синхронная электрическая машина по любому из п. п. 1 - 6, отличающаяся тем, что индуктор ротора расположен с внутренней стороны по отношению к статору, ю 8. Синхронная электрическая машина по любому из п. п. 1 - 6, отличающаяся тем, что индуктор ротора расположен с внешней стороны по отношению к статору.
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26)
PCT/RU2007/000577 2007-10-19 2007-10-19 Machine électrique synchrone WO2009051515A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/RU2007/000577 WO2009051515A1 (fr) 2007-10-19 2007-10-19 Machine électrique synchrone
KR1020087020278A KR20090090996A (ko) 2007-10-19 2007-10-19 동기식 전기 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2007/000577 WO2009051515A1 (fr) 2007-10-19 2007-10-19 Machine électrique synchrone

Publications (1)

Publication Number Publication Date
WO2009051515A1 true WO2009051515A1 (fr) 2009-04-23

Family

ID=40567610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2007/000577 WO2009051515A1 (fr) 2007-10-19 2007-10-19 Machine électrique synchrone

Country Status (2)

Country Link
KR (1) KR20090090996A (ru)
WO (1) WO2009051515A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468731A (zh) * 2010-11-15 2012-05-23 Hrs风电技术有限公司 一种永磁同步电机定子
AT15621U1 (de) * 2015-02-26 2018-03-15 Toroidion Oy Elektrische Maschine für elektrisches Fahrzeug

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100970435B1 (ko) * 2010-04-30 2010-07-15 케이이티주식회사 하이브리드 풍력 발전기

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1539930A (en) * 1975-06-06 1979-02-07 Nordebo K Multi-phase inductor alternator without slip rings and brushes
RU2167482C1 (ru) * 2000-01-27 2001-05-20 Иванов-Смоленский Алексей Владимирович Электрическая машина переменного тока
RU2302692C1 (ru) * 2005-10-05 2007-07-10 Закрытое Акционерное Общество Научно-Производственное Предприятие "Инкар-М" Электромеханический преобразователь
RU67347U1 (ru) * 2007-06-07 2007-10-10 Владимир Михайлович Чернухин Синхронная электрическая машина
RU2311715C1 (ru) * 2006-03-27 2007-11-27 Андрей Борисович Захаренко Синхронная электрическая машина

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1539930A (en) * 1975-06-06 1979-02-07 Nordebo K Multi-phase inductor alternator without slip rings and brushes
RU2167482C1 (ru) * 2000-01-27 2001-05-20 Иванов-Смоленский Алексей Владимирович Электрическая машина переменного тока
RU2302692C1 (ru) * 2005-10-05 2007-07-10 Закрытое Акционерное Общество Научно-Производственное Предприятие "Инкар-М" Электромеханический преобразователь
RU2311715C1 (ru) * 2006-03-27 2007-11-27 Андрей Борисович Захаренко Синхронная электрическая машина
RU67347U1 (ru) * 2007-06-07 2007-10-10 Владимир Михайлович Чернухин Синхронная электрическая машина

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468731A (zh) * 2010-11-15 2012-05-23 Hrs风电技术有限公司 一种永磁同步电机定子
CN102468731B (zh) * 2010-11-15 2014-06-11 京能新能源科技(上海)有限公司 一种永磁同步电机定子
AT15621U1 (de) * 2015-02-26 2018-03-15 Toroidion Oy Elektrische Maschine für elektrisches Fahrzeug

Also Published As

Publication number Publication date
KR20090090996A (ko) 2009-08-26

Similar Documents

Publication Publication Date Title
KR100815429B1 (ko) 무변출력 무정류자 직류전동기를 이용한 발전장치
CN108964396B (zh) 定子分区式交替极混合励磁电机
CN104779760B (zh) 一种低转矩脉动电励磁双凸极无刷直流电机及其控制系统
EP2528207A1 (en) Brushless electric machine
US20150048704A1 (en) Double stator permanent magnet machine
RU2311715C1 (ru) Синхронная электрическая машина
RU2390086C1 (ru) Бесконтактная редукторная электрическая машина с комбинированным возбуждением
RU2441308C1 (ru) Электромеханический преобразователь
RU2302692C1 (ru) Электромеханический преобразователь
WO2009051515A1 (fr) Machine électrique synchrone
RU2339147C1 (ru) Электрическая машина
RU2652102C1 (ru) Вентильный электродвигатель
JP5150019B1 (ja) 発電モータ
US20100026103A1 (en) Driving or power generating multiple phase electric machine
CN202395551U (zh) 一种电励磁无刷起动、发电机
RU2716489C2 (ru) Электромеханический преобразователь
JP2002262531A (ja) 直流発電機
EP2894772A1 (en) Electromechanical converter
RU2437200C1 (ru) Бесконтактная редукторная машина с аксиальным возбуждением
RU2416858C1 (ru) Электрическая редукторная машина с явнополюсным якорем
RU2414793C1 (ru) Бесконтактная модульная магнитоэлектрическая машина
CN111082625A (zh) 一种交替磁极无刷混合励磁同步电机
RU2541427C1 (ru) Торцевая электрическая машина (варианты)
RU2437198C1 (ru) Электрическая редукторная машина с аксиальным возбуждением
RU2407134C2 (ru) Бесконтактная редукторная электрическая машина с электромагнитным возбуждением

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1020087020278

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07872133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07872133

Country of ref document: EP

Kind code of ref document: A1