WO2009050536A1 - Sphère d'intégration pour l'analyse optique de matériaux luminescents - Google Patents

Sphère d'intégration pour l'analyse optique de matériaux luminescents Download PDF

Info

Publication number
WO2009050536A1
WO2009050536A1 PCT/IB2007/054187 IB2007054187W WO2009050536A1 WO 2009050536 A1 WO2009050536 A1 WO 2009050536A1 IB 2007054187 W IB2007054187 W IB 2007054187W WO 2009050536 A1 WO2009050536 A1 WO 2009050536A1
Authority
WO
WIPO (PCT)
Prior art keywords
integrating sphere
sphere
sample
outlet opening
quantum yield
Prior art date
Application number
PCT/IB2007/054187
Other languages
English (en)
Inventor
Frédéric GUMY
Original Assignee
Ecole Polytechnique Federale De Lausanne (Epfl)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecole Polytechnique Federale De Lausanne (Epfl) filed Critical Ecole Polytechnique Federale De Lausanne (Epfl)
Priority to PCT/IB2007/054187 priority Critical patent/WO2009050536A1/fr
Publication of WO2009050536A1 publication Critical patent/WO2009050536A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6489Photoluminescence of semiconductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/065Integrating spheres

Definitions

  • the present invention relates to the analysis of luminescent materials using optical means.
  • it relates to the analysis of materials by using infrared optical beams, in the visible or ultraviolet range, which are aimed toward the sample material.
  • an optical beam When an optical beam is directed at a luminescent material, at least a part of the beam is absorbed by the material while another part of the beam is reflected or transmitted. The absorbed part of the beam interacts with the atoms constituting the luminescent material, thereby causing the emission of a new beam of light from said material.
  • This splitting of the initial optical beam is characteristic of the physical properties of the material.
  • the quantum yield ⁇ is a value frequently used in order to characterize a luminescent material. It corresponds to the ratio between the number of photons emitted and the number of photons absorbed by the material .
  • Another way consists in making absolute measurement of the absorption and emission by placing the sample to be analyzed in an integrating sphere.
  • the quantum yield is determined by subtracting the indirect excitation results from those of the direct excitation. More precisely, five measurements are needed in order to determine the quantum yield:
  • This measurement procedure requires a large diameter integrating sphere as, for the indirect measurement, the sample must be repositioned away from the incident beam.
  • the larger sphere creates a degradation of the level of detection. For example, when the diameter of the sphere is doubled, the light intensity emitted decreases by a factor of four.
  • the existing integrating spheres are solely used to measure the quantum yield.
  • the main manufacturers of integrating spheres one can mention Horiba Jobin-Yvon Horiba http;//w ⁇ and
  • Integrating spheres are also described in the following patents: US 4583860, US 4012144, US 5537203, US 6424413, WO 2005/074615, US 6147350, JP 2003214946, JP 9292281 and JP 2004309323.
  • the invention is based on the surprising experimental observation that the determination of the quantum yield can be considerably simplified compared to the current method used, which requires the use of the following equation:
  • This invention relates to an integrating sphere used to measure the quantum yield characterized by its diameter of 5 cm or less.
  • the integrating sphere according to the present invention can also be used for the determination of other optical properties of materials, such as degree of absorbance.
  • the samples are introduced into the integrating sphere using a retractable shaft. Therefore the opening-up of the integrating sphere is no longer necessary, thereby significantly reducing risk of contamination.
  • the baffle is retractable, offering the possibility to easily switch between a qualitative measurement (no baffle in front of the exit opening) and a quantitative measurement (baffle in front of the exit opening) of the quantity of photons absorbed and emitted.
  • the samples are introduced into the integrating sphere using a retractable holder, formed by the extremity of a capillary of any diameter.
  • the integrating sphere includes a quartz tube inside which the capillary is introduced, thus allowing avoidance of any contact between the inside of the sphere and the ambient air.
  • figure 2 shows a side view (2a) and a top view (2b) of an integrating sphere according to the present invention.
  • this invention uses a small diameter (5 cm or less) integrating sphere, and this is thanks to the fact that the quantum yield determination can now be obtained using direct measurements only.
  • the utilization of the integrating sphere shown in figure 2 is as follows: The sample is introduced in a capillary 7, for example in suprasil quartz. A small quantity of material is sufficient, the maximum volume being about 60 ⁇ l.
  • the capillary 7 is then introduced into the sphere 1 , without having to opening it, by gliding it through the provided orifice 8.
  • the material to be measured should preferably be positioned in the centre of the integrating sphere 1 in order to maximize the reflected waves captured.
  • the excitation beam 10 is focused on the sample, covering as much of it's surface as possible.
  • the injected light 10 is preferably monochromatic and non-coherent.
  • the capillary 7 is protected by a cylindrical quartz tube 12 thus isolating the inside of the sphere 1 from any contamination.
  • the baffle 6 In order to perform quantitative measurements, the baffle 6 is positioned in front of the sample. The signal is then less intense, but the light is homogeneous.
  • This technique allows performing quantitative absorption and emission measurements.
  • the quantum yield is then expressed by the relationship between the quantity of photons emitted divided by the quantity of photons absorbed, measured solely by direct excitation of the sample, as shown in the following equation:

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

L'invention porte sur une sphère d'intégration pour mesurer le rendement quantique, qui comprend un support d'échantillon, par exemple un capillaire (7) apte à être disposé dans un tube de quartz (12) compris dans la sphère, une ouverture d'entrée pour introduire un faisceau d'excitation (10), et une ouverture de sortie pour délivrer en sortie un faisceau de mesure, la sphère ayant un diamètre inférieur ou égal à 5 cm.
PCT/IB2007/054187 2007-10-15 2007-10-15 Sphère d'intégration pour l'analyse optique de matériaux luminescents WO2009050536A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/IB2007/054187 WO2009050536A1 (fr) 2007-10-15 2007-10-15 Sphère d'intégration pour l'analyse optique de matériaux luminescents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2007/054187 WO2009050536A1 (fr) 2007-10-15 2007-10-15 Sphère d'intégration pour l'analyse optique de matériaux luminescents

Publications (1)

Publication Number Publication Date
WO2009050536A1 true WO2009050536A1 (fr) 2009-04-23

Family

ID=39535527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2007/054187 WO2009050536A1 (fr) 2007-10-15 2007-10-15 Sphère d'intégration pour l'analyse optique de matériaux luminescents

Country Status (1)

Country Link
WO (1) WO2009050536A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915609A (zh) * 2010-08-02 2010-12-15 中国科学院长春光学精密机械与物理研究所 一种用于光学测量的积分球装置
EP2357465A1 (fr) * 2010-01-25 2011-08-17 BAM Bundesanstalt für Materialforschung und -prüfung Dispositif et procédé de détermination du rendement quantique de photoluminescence et autres propriétés optiques d'un échantillon
CN102359817A (zh) * 2011-03-08 2012-02-22 中国科学院福建物质结构研究所 一种上转换发光绝对量子产率测试系统
EP2634560A2 (fr) * 2012-03-01 2013-09-04 BAM Bundesanstalt für Materialforschung und -prüfung Procédé de détermination de la luminosité d'une particule luminescente
KR20150099767A (ko) * 2013-02-04 2015-09-01 하마마츠 포토닉스 가부시키가이샤 분광 측정 장치 및 분광 측정 방법
CN104969061A (zh) * 2013-02-04 2015-10-07 浜松光子学株式会社 分光测定装置、分光测定方法及试样容器
WO2015178113A1 (fr) * 2014-05-23 2015-11-26 浜松ホトニクス株式会社 Dispositif de mesure optique et procédé de mesure optique
WO2017098053A1 (fr) * 2015-12-11 2017-06-15 Dsm Ip Assets B.V. Système et procédé destinés à des mesures optiques sur une feuille transparente
CN109374585A (zh) * 2018-09-25 2019-02-22 北京卓立汉光仪器有限公司 测量荧光量子产率的方法及装置
CN109781681A (zh) * 2019-01-14 2019-05-21 广州大学 一种荧光量子产率测试仪及其测试方法
JP2021515245A (ja) * 2018-02-27 2021-06-17 ユニバーシティー コート オブ ザ ユニバーシティー オブ セイント アンドリューズUniversity Court Of The University Of St Andrews 粒子を含む液体試料を分析する装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LAURENT PORRÈS ET AL: "Absolute Measurements of Photoluminescence Quantum Yields of Solutions Using an Integrating Sphere", JOURNAL OF FLUORESCENCE, KLUWER ACADEMIC PUBLISHERS-PLENUM PUBLISHERS, NE, vol. 16, no. 2, 14 February 2006 (2006-02-14), pages 267 - 273, XP019400522, ISSN: 1573-4994 *
MATTOUSSI HEDI ET AL: "Photoluminescence quantum yield of pure and molecularly doped organic solid films", JOURNAL OF APPLIED PHYSICS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, vol. 86, no. 5, 1 September 1999 (1999-09-01), pages 2642 - 2650, XP012048541, ISSN: 0021-8979 *
WESTPHAELING R ET AL: "MEASUREMENTS OF THE ABSOLUTE EXTERNAL LUMINESCENCE QUANTUM EFFICIENCY IN ZNSE/ZNMGSSE MULTIPLE QUANTUM WELLS AS A FUNCTION OF TEMPERATURE", JOURNAL OF APPLIED PHYSICS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, vol. 84, no. 12, 15 December 1998 (1998-12-15), pages 6871 - 6876, XP000834977, ISSN: 0021-8979 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2357465A1 (fr) * 2010-01-25 2011-08-17 BAM Bundesanstalt für Materialforschung und -prüfung Dispositif et procédé de détermination du rendement quantique de photoluminescence et autres propriétés optiques d'un échantillon
CN101915609A (zh) * 2010-08-02 2010-12-15 中国科学院长春光学精密机械与物理研究所 一种用于光学测量的积分球装置
CN102359817A (zh) * 2011-03-08 2012-02-22 中国科学院福建物质结构研究所 一种上转换发光绝对量子产率测试系统
EP2634560A2 (fr) * 2012-03-01 2013-09-04 BAM Bundesanstalt für Materialforschung und -prüfung Procédé de détermination de la luminosité d'une particule luminescente
EP2634560A3 (fr) * 2012-03-01 2013-11-27 BAM Bundesanstalt für Materialforschung und -prüfung Procédé de détermination de la luminosité d'une particule luminescente
EP2952882A4 (fr) * 2013-02-04 2016-11-30 Hamamatsu Photonics Kk Dispositif ainsi que procédé de spectrométrie
US10209189B2 (en) 2013-02-04 2019-02-19 Hamamatsu Photonics K.K. Spectrum measuring device, spectrum measuring method, and specimen container
EP2952881A4 (fr) * 2013-02-04 2016-08-10 Hamamatsu Photonics Kk Dispositif et procédé de mesure de spectre, et récipient contenant un spécimen
KR20150099767A (ko) * 2013-02-04 2015-09-01 하마마츠 포토닉스 가부시키가이샤 분광 측정 장치 및 분광 측정 방법
KR102052786B1 (ko) 2013-02-04 2019-12-05 하마마츠 포토닉스 가부시키가이샤 분광 측정 장치 및 분광 측정 방법
KR20180031809A (ko) * 2013-02-04 2018-03-28 하마마츠 포토닉스 가부시키가이샤 분광 측정 장치, 분광 측정 방법 및 시료 용기
CN104969061A (zh) * 2013-02-04 2015-10-07 浜松光子学株式会社 分光测定装置、分光测定方法及试样容器
WO2015178113A1 (fr) * 2014-05-23 2015-11-26 浜松ホトニクス株式会社 Dispositif de mesure optique et procédé de mesure optique
JP2015222215A (ja) * 2014-05-23 2015-12-10 浜松ホトニクス株式会社 光計測装置及び光計測方法
CN106461463A (zh) * 2014-05-23 2017-02-22 浜松光子学株式会社 光测量装置及光测量方法
US10094779B2 (en) 2014-05-23 2018-10-09 Hamamatsu Photonics K.K. Optical measurement device and optical measurement method
CN108603834A (zh) * 2015-12-11 2018-09-28 帝斯曼知识产权资产管理有限公司 在透明片材上用于光学测量的系统和方法
WO2017098053A1 (fr) * 2015-12-11 2017-06-15 Dsm Ip Assets B.V. Système et procédé destinés à des mesures optiques sur une feuille transparente
JP2021515245A (ja) * 2018-02-27 2021-06-17 ユニバーシティー コート オブ ザ ユニバーシティー オブ セイント アンドリューズUniversity Court Of The University Of St Andrews 粒子を含む液体試料を分析する装置
CN109374585A (zh) * 2018-09-25 2019-02-22 北京卓立汉光仪器有限公司 测量荧光量子产率的方法及装置
CN109374585B (zh) * 2018-09-25 2021-05-18 北京卓立汉光仪器有限公司 测量荧光量子产率的方法及装置
CN109781681A (zh) * 2019-01-14 2019-05-21 广州大学 一种荧光量子产率测试仪及其测试方法

Similar Documents

Publication Publication Date Title
WO2009050536A1 (fr) Sphère d'intégration pour l'analyse optique de matériaux luminescents
Smith et al. A portable pulsed cavity ring-down transmissometer for measurement of the optical extinction of the atmospheric aerosol
US5621522A (en) Fiber optic probe for determination of trace levels of organic pollutants using Raman spectroscopy
US7154595B2 (en) Cavity enhanced optical detector
EP2315003B1 (fr) Dispositif de mesure de rendement quantique et procédé de mesure de rendement quantique
EP2315004B1 (fr) Spectromètre, spectrométrie et programme de spectrométrie pour utilisation avec une sphère intégrante
Chan et al. Detection of trace materials with Fourier transform infrared spectroscopy using a multi-channel detector
Bykov et al. Steady-state and transient ultraviolet resonance Raman spectrometer for the 193–270 nm spectral region
McCreery Photometric standards for Raman spectroscopy
US5870188A (en) Measuring method and measuring apparatus by light scattering
US20030048831A1 (en) Optical device and method for the non-intrusive measuring of the temperature of a flowing liquid
US20130308127A1 (en) Enhancement of raman scattering
Bogatyrev et al. Measurement of mean size and evaluation of polydispersity of gold nanoparticles from spectra of optical absorption and scattering
Athalin et al. A correlated method for quantifying mixed and dispersed carbon nanotubes: analysis of the Raman band intensities and evidence of wavenumber shift
EP0256474A2 (fr) Méthode et appareil pour détecter une substance particulaire déterminée
Mukhtar et al. Application of total-reflection X-ray fluorescence spectrometry to elemental determinations in water, soil and sewage sludge samples
WO2005038436A2 (fr) Systeme et procede de spectroscopie par temps de declin de cavite mettant en oeuvre une excitation d'ondes continues variant continuellement
Mendl et al. Novel SERS-based process analysis for label-free segmented flow screenings
JP3009445B2 (ja) ガス状混合物の濃度測定装置
Mäkynen et al. Optical particle counters: Response, resolution and counting efficiency
JPH0416749A (ja) オゾン濃度測定方法及び装置
JP3101707B2 (ja) ラマン散乱光増強装置
CN208049951U (zh) 一种微流控芯片及微流控检测装置
EP3769082A1 (fr) Procédés de détermination de concentration de protéine à adjuvant et de pourcentage d'adsorption utilisant une fluorescence intrinsèque
JP2005520132A (ja) サンプルの特性パラメータを偏光測定する方法と装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07826744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/06/2010)

122 Ep: pct application non-entry in european phase

Ref document number: 07826744

Country of ref document: EP

Kind code of ref document: A1