WO2009050378A1 - Method for texturing the electrolyte of a fuel cell - Google Patents

Method for texturing the electrolyte of a fuel cell Download PDF

Info

Publication number
WO2009050378A1
WO2009050378A1 PCT/FR2008/051716 FR2008051716W WO2009050378A1 WO 2009050378 A1 WO2009050378 A1 WO 2009050378A1 FR 2008051716 W FR2008051716 W FR 2008051716W WO 2009050378 A1 WO2009050378 A1 WO 2009050378A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
electrolyte
texturing
membrane
wells
Prior art date
Application number
PCT/FR2008/051716
Other languages
French (fr)
Inventor
Antoine Latour
Christophe Serbutoviez
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Publication of WO2009050378A1 publication Critical patent/WO2009050378A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • H01M8/1006Corrugated, curved or wave-shaped MEA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1065Polymeric electrolyte materials characterised by the form, e.g. perforated or wave-shaped
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/06Surface irregularities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/08Patterned membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of polymer membrane fuel cells.
  • Figure 1 illustrates the structure of a core of a proton exchange membrane fuel cell, as conventionally described in the prior art.
  • the electrodes (anode and cathode) 2 are separated by an electronic insulating medium but protonic conductor, called electrolyte 3.
  • Current collectors 1 transfer the electrons to the outer surface of the electrodes.
  • the electrolyte is generally a membrane consisting of a cationic exchange polymer, such as Nafion® (Dupont) or Hyflon® R (Solvay). operating in an alkaline medium, there are also anion exchange polymer membranes, such as the Solvay Morgane membrane.
  • a cationic exchange polymer such as Nafion® (Dupont) or Hyflon® R (Solvay).
  • anion exchange polymer membranes such as the Solvay Morgane membrane.
  • the electrodes are the locus of the electrochemical reactions of oxidation of the fuel (anode) and reduction of the oxidant, in this case oxygen (cathode). These electrochemical reactions are kinetically favored by the presence of a catalyst constituting the electrodes. Several materials can be used depending on the type of reaction and fuel, but platinum proves to be the most effective catalyst for most reactions and fuels.
  • Fuel cells are intended to be integrated in electric generators, the performance of the battery are evaluated in terms of power delivered by the battery core (watt). The performance of the battery core is, in turn, brought back to the electrode surface: it is called power density (watt per unit area). Power is defined as the product of the voltage across the battery (electromotive force) by the current (amperes) delivered by the battery. Thus, the performance of the stack is even higher than one, the other or both terms are high.
  • the electromotive force at the terminals of the battery is therefore 1.23V under standard conditions.
  • this voltage corresponds to a state of equilibrium, that is to say that no current flows through the cell.
  • the system delivers a current, it is necessary to consider the kinetic aspect.
  • Figure 2 clearly shows that it is difficult to work over a wide range of potential and that an increase in potential implies low current densities.
  • Figure 3 shows a schematic sectional view of a conventional stack core.
  • the membrane 3 has a thickness of approximately 40 ⁇ m
  • the electrodes 2 approximately 10 ⁇ m
  • the collectors 1 have a thickness of less than 1 ⁇ m.
  • the total surface of the electrode is equal to the projected surface or geometric surface of the electrode.
  • the technical problem to be solved by the present invention is therefore to increase the developed surface of the electrode, without increasing the surface projected on the electrode, and this in order to increase the current densities of the core. stack.
  • the present invention proposes to increase the ratio surface area developed on projected surface (also called form factor) to increase the performance of a fuel cell, while maintaining a small footprint.
  • projected surface also called form factor
  • Several avenues have been explored to achieve this goal.
  • Taylor et al. ⁇ "Nanoimprinted electrodes for micro-fuel cell applications", 2007, Journal of Power Sources 171 (1): 218-223 have proposed to increase the developed surface of fuel cell electrodes, thanks to the 3D pattern inlay in the electrolyte membrane or in the electrodes.
  • the incrustation process is carried out under pressure, using molds, and makes it possible to give the electrodes or the electrolytic membrane 3D texturing.
  • the present invention is part of the search for alternative technical solutions for increasing the developed surface of the electrodes of a fuel cell.
  • the invention relates to a method of texturing the electrolyte of a fuel cell comprising depositing, on the surface of the electrolyte membrane, drops of a solvent of the electrolyte.
  • the drops of solvent deposited on the surface are intended to "dig wells" and, through this particular texturing, to obtain a larger developed surface, resulting in a higher current and higher powers.
  • the solvent by definition, must be chosen for its ability to locally attack and solubilize the electrolytic material in the presence.
  • the electrolyte is generally a polymeric membrane, the polymer may be a cationic exchange polymer or anion exchanger.
  • the solvent is advantageously chosen from the group comprising water, ethanol, isopropanol, tetrahydrofuran (THF) or N-methyl-2-pyrrolidone (NMP).
  • the electrolyte membrane may itself require different steps, such as the drying of the polymer mixture and / or an annealing step. Drying can be carried out at room temperature or in an oven at a relatively low temperature (below 50 ° C.) for periods generally ranging from 15 minutes to 2 hours. The annealing is generally carried out at higher temperatures of between 60 ° C. and 90 ° C. for a period ranging from 2 to 6 hours. These stages, prior to the deposition of the solvent, are preferred because, for the solvent to act precisely, the electrolyte must not be in solution but partially or completely dried before texturing.
  • the most appropriate moment for depositing the drops of solvent depends on the polymer / solvent pair in the presence and can take place before or after drying, and / or before or after annealing.
  • the drops are advantageously ejected or deposited by spraying on the surface of the electrolyte membrane.
  • inkjet inkjet
  • the solvent is placed in a print head comprising an ejection nozzle to be projected on the surface of the polymeric membrane. Thanks to the control of the dimensions of the nozzle (which typically varies from 20 to 80 ⁇ m), it is possible to control the size of the drops and thus the diameter of the wells formed by the impact of the drops (in this case microdroplets) of solvent on the surface of the polymer. It is clear that the wells formed on the surface of the membrane are substantially circular in shape.
  • the size of the drops is 1.5 to 2 times greater than the diameter of the nozzle.
  • the wells formed on the surface of the electrolyte and texture have a diameter less than 100 microns.
  • the depth of these wells depends on the number of deposited drops, more precisely the number of repetitions of the deposit at the same point of impact, and possibly the parameters of the deposit (height, pressure, ).
  • the ejection speed controlled by the voltage applied to the head when it is of the piezoelectric type, is also a parameter to control.
  • the depth of the wells which is advantageously greater than 5 ⁇ m for an electrolytic membrane which has a thickness generally of between 30 and 40 ⁇ m.
  • the displacement of the inkjet device or the membrane makes it possible to perfectly control the disposition of the formed wells, in particular the distance between them and their alignment.
  • the wells can thus be arranged according to a predetermined distribution.
  • the method according to the invention makes it possible to obtain a textured electrolyte having a form factor (ratio between the developed surface and the geometrical surface). between 1, 5 and 2.
  • the texturing of the electrolyte is only one step in the process of developing a fuel cell core. It allows the texturing of the electrodes subsequently deposited on the surface of the electrolyte membrane, then that of the current collectors. The increase of the surface of the current collectors thus allows a better collection of the current.
  • the developed surface is greater than the geometric surface of the chip, resulting in an increase in the current delivered by the battery core and an improvement in the power of the fuel cell.
  • This method therefore offers a simple technical solution, inexpensive and reproducible.
  • FIG. 1 represents a diagrammatic sectional view of a proton exchange membrane fuel cell core of the prior art.
  • FIG. 3 represents a diagrammatic sectional view of the membrane-electrode assembly (containing the catalyst) of a battery of the prior art.
  • FIG. 4 schematically represents the method allowing the texturing of the electrolyte (A) according to the invention and a section of the electrode-membrane assembly without (B) and with (C) texturing.
  • the polymer serving as electrolyte membrane 3 in a heart of a fuel cell for example Nafion ® (Dupont) is placed under the print head of an ink jet device, example Altadrop device "of Altatech. the 40 .mu.m Nafion ® are deposited on an Si substrate and dried 15 minutes at room temperature.
  • the chosen solvent for example isopropanol, is placed in the print head and is ejected perpendicularly to the surface of the polymer, 800 ⁇ m high, using a 60 ⁇ m diameter nozzle, applying 60 V on the piezoelectric head.
  • the impact of the drops of solvent on the surface of the polymer forms wells of diameter of the order of 80 microns and depth of the order of 25 microns.
  • the offset of the position of the print head or the polymer makes it possible to form wells on the entire surface of the electrolyte, in the form of a square mesh of 150 ⁇ m of pitch. Obviously, other meshes are possible (diamond, triangle, ...) with variable density distributions according to the desired structure.
  • the repetition of the projection at the same point of impact makes it possible to increase the depth of the well which can reach several tens of ⁇ m, compared with the conventional thickness of the electrolyte membrane of the order of 30 to 40 ⁇ m.
  • the electrodes 2 containing the catalyst and then the current collectors 1 are then deposited on the surface of the membrane and adopt the same texturing.
  • FIG. 4B illustrates the fact that, without texturing and in a conventional manner, the developed surface of the assembly is equal to its projected area.
  • Figure 4C after texturing ( Figure 4C), the developed surface is much larger than the projected area, the form factor can reach a value of 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

The invention relates to a method for texturing the electrolyte (3) of a fuel cell that comprises depositing drops of an electrolyte solvent on the surface thereof using an inkjet technique.

Description

PROCEDE DE TEXTURATION DE L'ELECTROLYTE D'UNE PILE A COMBUSTIBLE PROCESS FOR TEXTURING THE ELECTROLYTE OF A FUEL CELL
DOMAINE DE L'INVENTIONFIELD OF THE INVENTION
La présente invention concerne le domaine des piles à combustible à membrane polymère.The present invention relates to the field of polymer membrane fuel cells.
Il est proposé un procédé permettant de réaliser une membrane électrolytique en trois dimensions de manière aisée. Cette configuration permet d'augmenter la surface de l'interface entre l'électrolyte et les électrodes, et ainsi d'augmenter le courant délivré par la pile. Ceci conduit à une augmentation de la puissance de la pile à combustible.There is provided a method for producing a three-dimensional electrolytic membrane in an easy manner. This configuration makes it possible to increase the surface of the interface between the electrolyte and the electrodes, and thus to increase the current delivered by the battery. This leads to an increase in the power of the fuel cell.
ETAT ANTÉRIEUR DE LA TECHNIQUEPRIOR STATE OF THE ART
La Figure 1 illustre la structure d'un cœur d'une pile à combustible à membrane échangeuse de protons, telle que classiquement décrite dans l'art antérieur. Les électrodes (anode et cathode) 2 sont séparées par un milieu isolant électronique mais conducteur protonique, appelé électrolyte 3. Des collecteurs 1 de courant assurent le transfert des électrons à la surface externe des électrodes.Figure 1 illustrates the structure of a core of a proton exchange membrane fuel cell, as conventionally described in the prior art. The electrodes (anode and cathode) 2 are separated by an electronic insulating medium but protonic conductor, called electrolyte 3. Current collectors 1 transfer the electrons to the outer surface of the electrodes.
Dans le cas des piles à combustible à membrane échangeuse de protons, l'électrolyte est généralement une membrane constituée d'un polymère échangeur cationique, tel que le Nafion" (Dupont) ou l'HyflonR (Solvay). Dans le cas des piles fonctionnant en milieu alcalin, il existe également des membranes polymères échangeuses d'anions, telles que la membrane Morgane" de Solvay.In the case of proton exchange membrane fuel cells, the electrolyte is generally a membrane consisting of a cationic exchange polymer, such as Nafion® (Dupont) or Hyflon® R (Solvay). operating in an alkaline medium, there are also anion exchange polymer membranes, such as the Solvay Morgane membrane.
Les électrodes sont le lieu des réactions électrochimiques d'oxydation du combustible (anode) et de réduction du comburant, en l'espèce l'oxygène (cathode). Ces réactions électrochimiques sont cinétiquement favorisées par la présence d'un catalyseur constituant les électrodes. Plusieurs matériaux peuvent être utilisés selon le type de réaction et de combustible, mais le platine s'avère être le catalyseur le plus efficace pour la plupart des réactions et des combustibles. Les piles à combustibles étant destinées à être intégrés dans des générateurs électriques, les performances de la pile sont évaluées en termes de puissance délivrée par le coeur de pile (watt). Les performances du coeur de pile sont, quant à elles, ramenées à la surface d'électrode: on parle alors de densité de puissance (watt par unité de surface). La puissance est définie comme étant le produit de la tension aux bornes de la pile (force électromotrice) par le courant (ampère) délivré par la pile. Ainsi, les performances de la pile sont d'autant plus élevées que l'un, l'autre ou les deux termes sont élevés.The electrodes are the locus of the electrochemical reactions of oxidation of the fuel (anode) and reduction of the oxidant, in this case oxygen (cathode). These electrochemical reactions are kinetically favored by the presence of a catalyst constituting the electrodes. Several materials can be used depending on the type of reaction and fuel, but platinum proves to be the most effective catalyst for most reactions and fuels. Fuel cells are intended to be integrated in electric generators, the performance of the battery are evaluated in terms of power delivered by the battery core (watt). The performance of the battery core is, in turn, brought back to the electrode surface: it is called power density (watt per unit area). Power is defined as the product of the voltage across the battery (electromotive force) by the current (amperes) delivered by the battery. Thus, the performance of the stack is even higher than one, the other or both terms are high.
Les réactions électrochimiques ayant lieu aux électrodes mettent en jeu des espèces gazeuses (oxygène ou hydrogène), des espèces liquides (eau, combustible anodique en solution), des électrons e" et des protons H+. Ces réactions sont illustrées ci-après dans le cas où le combustible est l'hydrogène et le comburant l'oxygène :The electrochemical reactions occurring at the electrodes are operated with gaseous species (oxygen or hydrogen), liquid species (water, anodic fuel solution), electrons e "and protons H +. These reactions are illustrated below in the where the fuel is hydrogen and the oxidant oxygen:
Anode : H2 → 2H+ + 2e"
Figure imgf000004_0001
= 0 V/ENH Cathode : O2 + 4H+ + 4e" → 2H2O E°cathode = 1 ,23 V/ENH
Anode: H 2 → 2H + + 2e "
Figure imgf000004_0001
= 0 V / E NH Cathode: O 2 + 4H + + 4e "→ 2H 2 EO cathode ° = 1, 23 V / W NH
La réaction globale se déroulant aux bornes de la pile est donc la suivante :The overall reaction taking place at the terminals of the stack is therefore as follows:
H2 + Y2 O2 → H2O E°eq = E°cathode -
Figure imgf000004_0002
= 1 ,23 V
H 2 + Y 2 O 2 → H 2 OE ° eq = E ° cathode -
Figure imgf000004_0002
= 1, 23 V
La force électromotrice aux bornes de la pile est donc de 1,23V dans les conditions standards.The electromotive force at the terminals of the battery is therefore 1.23V under standard conditions.
Cependant, cette tension correspond à un état d'équilibre, c'est-à-dire qu'aucun courant ne traverse la pile. Dès que le système délivre un courant, il faut considérer l'aspect cinétique.However, this voltage corresponds to a state of equilibrium, that is to say that no current flows through the cell. As soon as the system delivers a current, it is necessary to consider the kinetic aspect.
Les cinétiques des réactions anodique et cathodique engendrent des surtensions qui entraînent une diminution du potentiel de la pile. De plus, ces surtensions sont fonction de la densité de courant délivrée. Ainsi, lorsque la pile délivre du courant, le potentiel aux bornes des électrodes est inférieur au potentiel standard de 1 ,23 V.The kinetics of the anodic and cathodic reactions generate overvoltages which lead to a decrease in the potential of the cell. In addition, these overvoltages are a function of the current density delivered. Thus, when the battery delivers current, the potential across the electrodes is lower than the standard potential of 1.23 V.
La Figure 2 montre clairement qu'il est difficile de travailler sur une large gamme de potentiel et qu'une augmentation du potentiel implique des densités de courant faibles.Figure 2 clearly shows that it is difficult to work over a wide range of potential and that an increase in potential implies low current densities.
Partant de ce constat et pour un coeur de pile donné (nature et quantité des catalyseurs fixes), une des solutions pour augmenter la puissance de la pile est d'augmenter la surface S de ces électrodes. En effet, on a les relations suivantes : P=U*I et I = i*S donc P = U*i*S où P : puissance U : potentiel de pileBased on this observation and for a given cell core (nature and quantity of fixed catalysts), one of the solutions to increase the power of the cell is to increase the surface S of these electrodes. Indeed, we have the following relations: P = U * I and I = i * S so P = U * i * S where P: power U: stack potential
I : courant i : densité de courant S : surface d'électrode.I: current i: current density S: electrode surface.
II ressort que le courant est d'autant plus important que la surface d'électrode est importante.It appears that the current is all the more important that the electrode surface is important.
Cependant, il est très difficile d'utiliser de grandes surfaces d'électrodes planes. En effet, les catalyseurs sont onéreux. En outre, il existe souvent des problèmes de « packaging » des électrodes, qui doivent tenir sur une surface la plus faible possible. Ceci est particulièrement critique dans le cas des applications portables, par exemple pour les téléphones, les lecteurs mp3, ou les appareils photos.However, it is very difficult to use large areas of flat electrodes. Indeed, the catalysts are expensive. In addition, there are often problems of "packaging" of the electrodes, which must fit on as small a surface as possible. This is particularly critical in the case of portable applications, for example for phones, mp3 players, or cameras.
Il est donc intéressant d'augmenter la surface des électrodes, sans pour autant augmenter la surface projetée de l'électrode.It is therefore interesting to increase the surface area of the electrodes, without increasing the projected area of the electrode.
La Figure 3 présente une vue schématique en section d'un coeur de pile classique. Dans le cas des micropiles à combustible, la membrane 3 a une épaisseur d'environ 40 μm, les électrodes 2 d'environ 10 μm et les collecteurs 1 ont une épaisseur inférieure à 1 μm.Figure 3 shows a schematic sectional view of a conventional stack core. In the case of fuel micro-cells, the membrane 3 has a thickness of approximately 40 μm, the electrodes 2 approximately 10 μm and the collectors 1 have a thickness of less than 1 μm.
Dans cette configuration classique, il apparaît donc que la surface totale de l'électrode est égale à la surface projetée ou surface géométrique de l'électrode.In this conventional configuration, it therefore appears that the total surface of the electrode is equal to the projected surface or geometric surface of the electrode.
Le problème technique que se propose de résoudre la présente invention est donc d'augmenter la surface développée de l'électrode, sans pour autant augmenter la surface projetée sur l'électrode, et ceci dans le but d'accroître les densités de courant du coeur de pile.The technical problem to be solved by the present invention is therefore to increase the developed surface of the electrode, without increasing the surface projected on the electrode, and this in order to increase the current densities of the core. stack.
En d'autres termes, la présente invention se propose d'augmenter le rapport surface développée sur surface projetée (également appelé facteur de forme) pour augmenter les performances d'une pile à combustible, tout en conservant un encombrement réduit. Plusieurs voies ont été explorées pour atteindre cet objectif. En particulier, Taylor et al. {« Nanoimprinted électrodes for micro-fuel cell applications », 2007, Journal of Power Sources 171(1) : 218-223) ont proposé d'augmenter la surface développée des électrodes de piles à combustible, grâce à l'incrustation de motifs 3D dans la membrane électrolytique ou dans les électrodes.In other words, the present invention proposes to increase the ratio surface area developed on projected surface (also called form factor) to increase the performance of a fuel cell, while maintaining a small footprint. Several avenues have been explored to achieve this goal. In particular, Taylor et al. {"Nanoimprinted electrodes for micro-fuel cell applications", 2007, Journal of Power Sources 171 (1): 218-223) have proposed to increase the developed surface of fuel cell electrodes, thanks to the 3D pattern inlay in the electrolyte membrane or in the electrodes.
En pratique, le procédé d'incrustation est réalisé sous pression, à l'aide de moules, et permet de conférer aux électrodes ou à la membrane électrolytique une texturation 3D.In practice, the incrustation process is carried out under pressure, using molds, and makes it possible to give the electrodes or the electrolytic membrane 3D texturing.
La présente invention s'inscrit dans la recherche de solutions techniques alternatives permettant d'augmenter la surface développée des électrodes d'une pile à combustible.The present invention is part of the search for alternative technical solutions for increasing the developed surface of the electrodes of a fuel cell.
EXPOSE DE L'INVENTIONSUMMARY OF THE INVENTION
Ainsi, l'invention concerne un procédé de texturation de l'électrolyte d'une pile à combustible consistant à déposer, à la surface de la membrane électrolytique, des gouttes d'un solvant de l'électrolyte.Thus, the invention relates to a method of texturing the electrolyte of a fuel cell comprising depositing, on the surface of the electrolyte membrane, drops of a solvent of the electrolyte.
Les gouttes de solvant déposées en surface ont pour but de « creuser des puits » et, via cette texturation particulière, d'obtenir une surface développée plus importante, d'où un courant plus élevé et des puissances plus importantesThe drops of solvent deposited on the surface are intended to "dig wells" and, through this particular texturing, to obtain a larger developed surface, resulting in a higher current and higher powers.
Le solvant, par définition, doit être choisi pour sa capacité à attaquer localement et à solubiliser le matériau électrolytique en présence. Comme mentionné ci-dessus, l'électrolyte est généralement une membrane polymérique, le polymère pouvant être un polymère échangeur cationique ou échangeur d'anions. Le solvant est avantageusement choisi dans le groupe comprenant l'eau, l'éthanol, l'isopropanol, le tétrahydrofurane (THF) ou la N-méthyl- 2-pyrrolidone (NMP).The solvent, by definition, must be chosen for its ability to locally attack and solubilize the electrolytic material in the presence. As mentioned above, the electrolyte is generally a polymeric membrane, the polymer may be a cationic exchange polymer or anion exchanger. The solvent is advantageously chosen from the group comprising water, ethanol, isopropanol, tetrahydrofuran (THF) or N-methyl-2-pyrrolidone (NMP).
Dans le cas du Nafion" (Dupont), polymère échangeur cationique couramment utilisé, l'eau, l'éthanol, ou l'isopropanol sont avantageusement choisis. L'élaboration de la membrane électrolytique peut elle-même nécessiter différentes étapes, telles que le séchage du mélange polymérique et/ou une étape de recuit. Le séchage peut se faire à température ambiante ou en étuve à température relativement basse (inférieure à 500C) sur des durées allant généralement de 15 minutes à 2 heures. Le recuit est généralement réalisé à des températures plus hautes comprises entre 600C et 900C pendant une durée allant de 2 à 6 heures. Ces étapes, antérieures au dépôt du solvant, sont privilégiées car, pour que le solvant agisse précisément, l'électrolyte ne doit pas être en solution mais partiellement ou totalement séché avant texturation.In the case of Nafion® (Dupont), a commonly used cation exchange polymer, water, ethanol, or isopropanol are advantageously chosen. The elaboration of the electrolyte membrane may itself require different steps, such as the drying of the polymer mixture and / or an annealing step. Drying can be carried out at room temperature or in an oven at a relatively low temperature (below 50 ° C.) for periods generally ranging from 15 minutes to 2 hours. The annealing is generally carried out at higher temperatures of between 60 ° C. and 90 ° C. for a period ranging from 2 to 6 hours. These stages, prior to the deposition of the solvent, are preferred because, for the solvent to act precisely, the electrolyte must not be in solution but partially or completely dried before texturing.
Le moment le plus approprié pour réaliser le dépôt des gouttes de solvant dépend toutefois du couple polymère/solvant en présence et peut avoir lieu avant ou après séchage, et/ou avant ou après recuit.The most appropriate moment for depositing the drops of solvent, however, depends on the polymer / solvent pair in the presence and can take place before or after drying, and / or before or after annealing.
Selon l'invention, les gouttes sont avantageusement éjectées ou déposées par projection à la surface de la membrane électrolytique.According to the invention, the drops are advantageously ejected or deposited by spraying on the surface of the electrolyte membrane.
Il a été mis en évidence par les Inventeurs que la technique dite du jet d'encre (« inkjet »), traditionnellement utilisée pour le dépôt d'encre sur un matériau, était particulièrement bien adaptée à la problématique de l'invention. En effet, celle-ci permet de créer une répétition de motifs individualisés, dont la structure et la disposition sont parfaitement contrôlées.It has been demonstrated by the inventors that the technique known as inkjet ("inkjet"), traditionally used for the deposition of ink on a material, was particularly well suited to the problem of the invention. Indeed, it allows to create a repetition of individualized patterns, whose structure and layout are perfectly controlled.
En pratique, le solvant est placé dans une tête d'impression comprenant une buse d'éjection pour être projeté à la surface de la membrane polymérique. Grâce au contrôle des dimensions de la buse (qui varie typiquement de 20 à 80 μm), il est possible de contrôler la taille des gouttes et ainsi le diamètre des puits formés par l'impact des gouttes (en l'occurrence microgouttes) de solvant à la surface du polymère. Il ressort clairement que les puits ainsi formés à la surface de la membrane sont de forme sensiblement circulaire.In practice, the solvent is placed in a print head comprising an ejection nozzle to be projected on the surface of the polymeric membrane. Thanks to the control of the dimensions of the nozzle (which typically varies from 20 to 80 μm), it is possible to control the size of the drops and thus the diameter of the wells formed by the impact of the drops (in this case microdroplets) of solvent on the surface of the polymer. It is clear that the wells formed on the surface of the membrane are substantially circular in shape.
Classiquement, la taille des gouttes est de 1,5 à 2 fois supérieure au diamètre de la buse. Avantageusement et en pratique, les puits formés à la surface de l'électrolyte ainsi texture présentent un diamètre inférieur à 100 μm.Conventionally, the size of the drops is 1.5 to 2 times greater than the diameter of the nozzle. Advantageously and in practice, the wells formed on the surface of the electrolyte and texture have a diameter less than 100 microns.
En outre, la profondeur de ces puits dépend du nombre de gouttes déposées, plus précisément du nombre de répétitions du dépôt au même point d'impact, et éventuellement des paramètres du dépôt (hauteur, pression, ... ). Dans le cas du jet d'encre, la vitesse d'éjection, contrôlée par la tension appliquée à la tête lorsque celle-ci est de type piézoélectrique, est aussi un paramètre à maîtriser.In addition, the depth of these wells depends on the number of deposited drops, more precisely the number of repetitions of the deposit at the same point of impact, and possibly the parameters of the deposit (height, pressure, ...). In the case of inkjet, the ejection speed, controlled by the voltage applied to the head when it is of the piezoelectric type, is also a parameter to control.
En tout état de cause, il est possible de contrôler la profondeur des puits, qui est avantageusement supérieure à 5 μm pour une membrane électrolytique qui présente une épaisseur généralement comprise entre 30 et 40 μm.In any case, it is possible to control the depth of the wells, which is advantageously greater than 5 μm for an electrolytic membrane which has a thickness generally of between 30 and 40 μm.
Par ailleurs, le déplacement du dispositif de jet d'encre ou de la membrane permet de contrôler parfaitement la disposition des puits formés, notamment la distance entre eux et leur alignement. Les puits peuvent ainsi être disposés selon une répartition prédéterminée.Moreover, the displacement of the inkjet device or the membrane makes it possible to perfectly control the disposition of the formed wells, in particular the distance between them and their alignment. The wells can thus be arranged according to a predetermined distribution.
En contrôlant l'ensemble de ces paramètres, notamment le diamètre, la profondeur et le nombre de puits, le procédé selon l'invention permet d'obtenir un électrolyte texture présentant un facteur de forme (rapport entre la surface développée et la surface géométrique) compris entre 1 ,5 et 2.By controlling all these parameters, in particular the diameter, the depth and the number of wells, the method according to the invention makes it possible to obtain a textured electrolyte having a form factor (ratio between the developed surface and the geometrical surface). between 1, 5 and 2.
La texturation de l'électrolyte n'est qu'une étape dans le procédé d'élaboration d'un cœur de pile à combustible. Elle permet la texturation des électrodes déposées par la suite à la surface de la membrane électrolytique, puis celle des collecteurs de courant. L'augmentation de la surface des collecteurs de courant permet ainsi une meilleure collecte du courant.The texturing of the electrolyte is only one step in the process of developing a fuel cell core. It allows the texturing of the electrodes subsequently deposited on the surface of the electrolyte membrane, then that of the current collectors. The increase of the surface of the current collectors thus allows a better collection of the current.
Après texturation, la surface développée est supérieure à la surface géométrique de la puce, d'où une augmentation du courant délivré par le coeur de pile et une amélioration de la puissance de la pile à combustible.After texturing, the developed surface is greater than the geometric surface of the chip, resulting in an increase in the current delivered by the battery core and an improvement in the power of the fuel cell.
Ce procédé offre donc une solution technique simple, peu coûteuse et reproductible.This method therefore offers a simple technical solution, inexpensive and reproducible.
EXEMPLE DE RÉALISATION DE L'INVENTIONEXAMPLE OF CARRYING OUT THE INVENTION
La manière dont l'invention peut être réalisée et les avantages qui en découlent, ressortiront mieux de l'exemple de réalisation qui suit, donné à titre indicatif et non limitatif, à l'appui des figures annexées.The way in which the invention can be realized and the advantages which result therefrom will emerge more clearly from the following exemplary embodiment, given by way of non-limiting indication, in support of the appended figures.
La figure 1 représente une vue schématique en section d'un coeur de pile à combustible à membrane échangeuse de protons de l'art antérieur. La figure 2 illustre un exemple de courbe E (potentiel) = f(i) (densité de courant). La figure 3 représente une vue schématique en section de l'ensemble membrane - électrodes (contenant le catalyseur) d'une pile de l'art antérieur.FIG. 1 represents a diagrammatic sectional view of a proton exchange membrane fuel cell core of the prior art. Figure 2 illustrates an example of curve E (potential) = f (i) (current density). FIG. 3 represents a diagrammatic sectional view of the membrane-electrode assembly (containing the catalyst) of a battery of the prior art.
La figure 4 représente schématiquement le procédé permettant la texturation de l'électrolyte (A) selon l'invention et une coupe de l'ensemble électrodes-membrane sans (B) et avec (C) texturation.FIG. 4 schematically represents the method allowing the texturing of the electrolyte (A) according to the invention and a section of the electrode-membrane assembly without (B) and with (C) texturing.
Comme illustré à la figure 4A, le polymère servant de membrane électrolyte 3 dans un cœur de pile à combustible, par exemple du Nafion® (Dupont), est placé sous la tête d'impression d'un dispositif à jet d'encre, par exemple le dispositif Altadrop" de Altatech. Les 40 μm de Nafion® sont déposés sur un substrat de Si puis séchés 15 minutes à température ambiante.As illustrated in Figure 4A, the polymer serving as electrolyte membrane 3 in a heart of a fuel cell, for example Nafion ® (Dupont), is placed under the print head of an ink jet device, example Altadrop device "of Altatech. the 40 .mu.m Nafion ® are deposited on an Si substrate and dried 15 minutes at room temperature.
Le solvant choisi, par exemple de l'isopropanol, est placé dans la tête d'impression et est éjecté perpendiculairement à la surface du polymère, à 800 μm de haut, à l'aide d'une buse de diamètre 60 μm, en appliquant 60 V sur la tête piézoélectrique.The chosen solvent, for example isopropanol, is placed in the print head and is ejected perpendicularly to the surface of the polymer, 800 μm high, using a 60 μm diameter nozzle, applying 60 V on the piezoelectric head.
L'impact des gouttes de solvant à la surface du polymère forme des puits de diamètre de l'ordre de 80 μm et de profondeur de l'ordre de 25 μm.The impact of the drops of solvent on the surface of the polymer forms wells of diameter of the order of 80 microns and depth of the order of 25 microns.
Le décalage de la position de la tête d'impression ou du polymère permet de former des puits sur l'ensemble de la surface de l'électrolyte, sous la forme d'un maillage carré de 150 μm de pas. Evidemment, d'autres maillages sont envisageables (losange, triangle, ...) avec des répartitions de densité variables selon la structuration souhaitée.The offset of the position of the print head or the polymer makes it possible to form wells on the entire surface of the electrolyte, in the form of a square mesh of 150 μm of pitch. Obviously, other meshes are possible (diamond, triangle, ...) with variable density distributions according to the desired structure.
La répétition de la projection à un même point d'impact permet d'accroître la profondeur du puits qui peut atteindre plusieurs dizaines de μm, à comparer à l'épaisseur classique de la membrane électrolytique de l'ordre de 30 à 40 μm.The repetition of the projection at the same point of impact makes it possible to increase the depth of the well which can reach several tens of μm, compared with the conventional thickness of the electrolyte membrane of the order of 30 to 40 μm.
Les électrodes 2 contenant le catalyseur puis les collecteurs de courant 1 sont ensuite déposés à la surface de la membrane et adoptent la même texturation.The electrodes 2 containing the catalyst and then the current collectors 1 are then deposited on the surface of the membrane and adopt the same texturing.
La figure 4B illustre le fait que, sans la texturation et de manière classique, la surface développée de l'ensemble est égale à sa surface projetée. En revanche, après texturation (Figure 4C), la surface développée est bien supérieure à la surface projetée, le facteur de forme pouvant atteindre une valeur de 2. FIG. 4B illustrates the fact that, without texturing and in a conventional manner, the developed surface of the assembly is equal to its projected area. On the other hand, after texturing (Figure 4C), the developed surface is much larger than the projected area, the form factor can reach a value of 2.

Claims

REVENDICATIONS
1. Procédé de texturation d'un électrolyte (3) de pile à combustible comprenant le dépôt de gouttes, à sa surface, d'un solvant dudit électrolyte, ledit dépôt étant réalisé par la technique du jet d'encre.1. A method of texturing a fuel cell electrolyte (3) comprising the deposition of drops, on its surface, of a solvent of said electrolyte, said deposit being produced by the ink jet technique.
2. Procédé de texturation d'un électrolyte de pile à combustible selon la revendication 1, caractérisé en ce que l'électrolyte est de nature polymérique et le solvant est choisi dans le groupe comprenant : l'eau, l'éthanol, l'isopropanol, la tétrahydrofurane (THF) ou le2. A method of texturing a fuel cell electrolyte according to claim 1, characterized in that the electrolyte is of polymeric nature and the solvent is selected from the group comprising: water, ethanol, isopropanol , tetrahydrofuran (THF) or
N-méthyl-2-pyrrolidone (NMP).N-methyl-2-pyrrolidone (NMP).
3. Electrolyte de pile à combustible obtenu à l'aide du procédé selon la revendication 1 ou 2 se présentant sous la forme d'une membrane avec, sur au moins l'une de ses surfaces, au moins un puits de forme sensiblement circulaire.3. Fuel cell electrolyte obtained by the method of claim 1 or 2 being in the form of a membrane with, on at least one of its surfaces, at least one well of substantially circular shape.
4. Electrolyte de pile à combustible selon la revendication 3, caractérisé en ce que les puits présentent un diamètre inférieur à 100 μm.4. Fuel cell electrolyte according to claim 3, characterized in that the wells have a diameter less than 100 microns.
5. Electrolyte de pile à combustible selon la revendication 3 ou 4, caractérisé en ce que les puits présentent une profondeur supérieure à 5 μm.5. fuel cell electrolyte according to claim 3 or 4, characterized in that the wells have a depth greater than 5 microns.
6. Electrolyte de pile à combustible selon l'une des revendications 3 à 5, caractérisé en ce que les puits sont disposés selon une répartition prédéterminée.6. Fuel cell electrolyte according to one of claims 3 to 5, characterized in that the wells are arranged in a predetermined distribution.
7. Electrolyte de pile à combustible selon l'une des revendications 3 à 6, caractérisé en ce qu'il présente un facteur de forme compris entre 1,5 et 2.7. Fuel cell electrolyte according to one of claims 3 to 6, characterized in that it has a form factor between 1.5 and 2.
8. Procédé de préparation d'un cœur de pile à combustible comprenant les étapes suivantes :A method of preparing a fuel cell core comprising the steps of:
* texturation de la membrane électrolytique (3) selon le procédé faisant l'objet de la revendication 1 ou 2 ;* texturing of the electrolytic membrane (3) according to the method of claim 1 or 2;
* dépôt des électrodes (2) sur la membrane texturée puis des collecteurs (1). depositing electrodes (2) on the textured membrane and then collectors (1).
PCT/FR2008/051716 2007-10-09 2008-09-26 Method for texturing the electrolyte of a fuel cell WO2009050378A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0758175A FR2922047A1 (en) 2007-10-09 2007-10-09 PROCESS FOR TEXTURING THE ELECTROLYTE OF A FUEL CELL
FR0758175 2007-10-09

Publications (1)

Publication Number Publication Date
WO2009050378A1 true WO2009050378A1 (en) 2009-04-23

Family

ID=39386442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/051716 WO2009050378A1 (en) 2007-10-09 2008-09-26 Method for texturing the electrolyte of a fuel cell

Country Status (2)

Country Link
FR (1) FR2922047A1 (en)
WO (1) WO2009050378A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6264811B1 (en) * 2000-03-21 2001-07-24 Praxair Technology, Inc. Ion conducting ceramic membrane and surface treatment
US20020012825A1 (en) * 2000-05-08 2002-01-31 Jun Sasahara Fuel cell with patterned electrolyte/electrode interface
JP2003173786A (en) * 2001-12-05 2003-06-20 Mitsubishi Electric Corp Forming method and device of catalyst layer for solid polymer fuel cell
US20050074650A1 (en) * 2002-02-20 2005-04-07 Ion America Corporaton Textured electrolyte for a solid oxide fuel cell
DE102005041529A1 (en) * 2005-08-31 2007-03-01 Forschungszentrum Jülich GmbH Production process for a membrane electrode unit for a polymer electrolyte fuel cell treats the protonated polymer membrane with water or solvent and presses together with the gas diffusion electrodes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6264811B1 (en) * 2000-03-21 2001-07-24 Praxair Technology, Inc. Ion conducting ceramic membrane and surface treatment
US20020012825A1 (en) * 2000-05-08 2002-01-31 Jun Sasahara Fuel cell with patterned electrolyte/electrode interface
JP2003173786A (en) * 2001-12-05 2003-06-20 Mitsubishi Electric Corp Forming method and device of catalyst layer for solid polymer fuel cell
US20050074650A1 (en) * 2002-02-20 2005-04-07 Ion America Corporaton Textured electrolyte for a solid oxide fuel cell
DE102005041529A1 (en) * 2005-08-31 2007-03-01 Forschungszentrum Jülich GmbH Production process for a membrane electrode unit for a polymer electrolyte fuel cell treats the protonated polymer membrane with water or solvent and presses together with the gas diffusion electrodes

Also Published As

Publication number Publication date
FR2922047A1 (en) 2009-04-10

Similar Documents

Publication Publication Date Title
EP3624241B1 (en) Method of manufacturing an electrochemical reactor flow guide
WO2011015505A1 (en) Electrochemical cell having a metal substrate, and method for manufacturing same
EP3474356A1 (en) Multilayer structure incorporating a carbon nanotube mat as the scattering layer in a pemfc
EP1955396A2 (en) Method for producing a fuel cell electrode, involving deposition on a support
WO2007063245A1 (en) Method for producing a thin-film fuel cell
FR2996065A1 (en) COMPONENT COMPRISING AN EHT ELECTROLYSER INTERCONNECTOR OR SOFC FUEL CELL AND METHODS OF MAKING SAME
EP2782175B1 (en) Method for manufacturing a membrane-electrode assembly
EP2680353B1 (en) Hollow platinum nanoparticles for fuel cells
EP2800825B1 (en) Porous electrode for proton exchange membrane
EP3108524B1 (en) Positive electrode for lithium-sulphur electrochemical accumulator having a specific structure
EP2559085A1 (en) Proton-exchange membrane fuel cell electrode structuration
EP2893583B1 (en) Formulation of an active layer having improved performances
EP2731184A1 (en) Structuring of PEMFC electrodes
EP2867947B1 (en) Method for manufacturing an electrode/proton-exchange membrane assembly
Zhang et al. Effects of the nanoimprint pattern on the performance of a MEMS-based micro direct methanol fuel cell
WO2014128371A2 (en) Method for producing 3d-structured thin films
WO2009050378A1 (en) Method for texturing the electrolyte of a fuel cell
FR2857163A1 (en) Fuel cell with electrodes and catalytic elements with the circulation of a fluid essentially parallel to its electrolytic membrane, notable for micro-fuel cells
Belatel et al. Contribution à l’étude d’une pile à combustible de type PEMFC utilisée pour la production d’énergie électrique verte
EP3836267B1 (en) Process of manufacturing a component constituting an interconnect of electrolyzer soec or a fuel cell sofc
FR3017135A1 (en) DEEP METAL DEPOSITION IN POROUS MATRIX BY HIPIMS HIGH POWER PULSED MAGNETRON SPRAY MATRIX, METALLIC CATALYST IMPORTED POROUS SUBSTRATES AND USES THEREOF
EP3629400B1 (en) Method for preparing lithium transition metal oxides
EP2165381A1 (en) Impermeable porous substrate for planar fuel cells and integrated packaging
EP2452388B1 (en) Method and device for increasing the lifespan of a proton exchange membrane fuel cell
FR3089135A1 (en) Process for the preparation of a catalytic material based on a W or Mo type mononuclear precursor for electrochemical reduction reactions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08839993

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08839993

Country of ref document: EP

Kind code of ref document: A1