WO2009047346A1 - Method for preparing porous scaffold for tissue engineering, cell culture and cell delivery - Google Patents

Method for preparing porous scaffold for tissue engineering, cell culture and cell delivery Download PDF

Info

Publication number
WO2009047346A1
WO2009047346A1 PCT/EP2008/063671 EP2008063671W WO2009047346A1 WO 2009047346 A1 WO2009047346 A1 WO 2009047346A1 EP 2008063671 W EP2008063671 W EP 2008063671W WO 2009047346 A1 WO2009047346 A1 WO 2009047346A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
scaffold
polysaccharide
porous scaffold
solution
Prior art date
Application number
PCT/EP2008/063671
Other languages
French (fr)
Inventor
Catherine Le Visage
Didier Letourneur
Original Assignee
INSERM (Institut National de la Santé et de la Recherche Médicale)
Universite Paris 7 - Denis Diderot
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INSERM (Institut National de la Santé et de la Recherche Médicale), Universite Paris 7 - Denis Diderot filed Critical INSERM (Institut National de la Santé et de la Recherche Médicale)
Priority to ES08838297T priority Critical patent/ES2408554T3/en
Priority to CA2701858A priority patent/CA2701858C/en
Priority to EP08838297.3A priority patent/EP2203194B1/en
Priority to US12/681,682 priority patent/US9522218B2/en
Priority to JP2010528419A priority patent/JP5579609B2/en
Priority to CN200880111763A priority patent/CN101848738A/en
Publication of WO2009047346A1 publication Critical patent/WO2009047346A1/en
Priority to HK10109188.1A priority patent/HK1144182A1/en
Priority to US15/347,595 priority patent/US20170080123A1/en
Priority to US16/363,471 priority patent/US11511016B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3834Cells able to produce different cell types, e.g. hematopoietic stem cells, mesenchymal stem cells, marrow stromal cells, embryonic stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3839Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by the site of application in the body
    • A61L27/3843Connective tissue
    • A61L27/3847Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3839Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by the site of application in the body
    • A61L27/3843Connective tissue
    • A61L27/3852Cartilage, e.g. meniscus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/507Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials for artificial blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0018Pullulan, i.e. (alpha-1,4)(alpha-1,6)-D-glucan; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0021Dextran, i.e. (alpha-1,4)-D-glucan; Derivatives thereof, e.g. Sephadex, i.e. crosslinked dextran
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0036Galactans; Derivatives thereof
    • C08B37/0039Agar; Agarose, i.e. D-galactose, 3,6-anhydro-D-galactose, methylated, sulfated, e.g. from the red algae Gelidium and Gracilaria; Agaropectin; Derivatives thereof, e.g. Sepharose, i.e. crosslinked agarose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0051Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Fructofuranans, e.g. beta-2,6-D-fructofuranan, i.e. levan; Derivatives thereof
    • C08B37/0054Inulin, i.e. beta-2,1-D-fructofuranan; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0072Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0075Heparin; Heparan sulfate; Derivatives thereof, e.g. heparosan; Purification or extraction methods thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0084Guluromannuronans, e.g. alginic acid, i.e. D-mannuronic acid and D-guluronic acid units linked with alternating alpha- and beta-1,4-glycosidic bonds; Derivatives thereof, e.g. alginates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/08Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • C08J9/283Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum a discontinuous liquid phase emulsified in a continuous macromolecular phase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/026Crosslinking before of after foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/048Elimination of a frozen liquid phase
    • C08J2201/0484Elimination of a frozen liquid phase the liquid phase being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/05Elimination by evaporation or heat degradation of a liquid phase
    • C08J2201/0504Elimination by evaporation or heat degradation of a liquid phase the liquid phase being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/02Foams characterised by their properties the finished foam itself being a gel or a gel being temporarily formed when processing the foamable composition
    • C08J2205/022Hydrogel, i.e. a gel containing an aqueous composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2207/00Foams characterised by their intended use
    • C08J2207/10Medical applications, e.g. biocompatible scaffolds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/02Dextran; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/10Heparin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/12Agar-agar; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • C12N2533/72Chitin, chitosan
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • C12N2533/74Alginate

Definitions

  • the present invention relates to a method for preparing a porous scaffold for tissue engineering. It is another object of the present invention to provide a porous scaffold obtainable by the method as above described, and its use for tissue engineering, cell culture and cell delivery
  • Tissue engineering is generally defined as the creation of tissue or organ equivalents by seeding of cells onto or into a scaffold suitable for implantation.
  • the scaffolds must be biocompatible and cells must be able to attach and proliferate on the scaffolds in order for them to form tissue or organ equivalents. These scaffolds may therefore be considered as substrates for cell growth either in vitro or in vivo.
  • the attributes of an ideal biocompatible scaffold would include the ability to support cell growth either in vitro or in vivo, the ability to support the growth of a wide variety of cell types or lineages, the ability to be endowed with varying degrees of flexibility or rigidity required, the ability to have varying degrees of biodegradabiiity, the ability to be introduced into the intended site in vivo without provoking secondary damage, and the ability to serve as a vehicle or reservoir for delivery of drugs or bioactive substances to the desired site of action.
  • Biodegradable polymeric materials are preferred in many cases since the scaffold degrades over time and eventually the cell-scaffold structure is replaced entirely by the cells.
  • gels, foams, sheets, and numerous porous particulate structures of different forms and shapes are included gels, foams, sheets, and numerous porous particulate structures of different forms and shapes.
  • fibronectin various constituents of the extracellular matrix including fibronectin, various types of collagen, and laminin, as well as keratin, fibrin and fibrinogen, hyaluronic acid, heparin sulfate, chondroitin sulfate and others.
  • PLG poly(lactide-co-glycolide)
  • PLG hydrolytically degradable polymers that are FDA approved for use in the body and mechanically strong
  • Thomson RC Yaszemski MJ 1 Powers JM, Mikos AG. Fabrication of biodegradable polymer scaffolds to engineer trabecular bone. J Biomater Sci Polym Ed. 1995;7(1):23-38; Wong WH. Mooney DJ. Synthesis and properties of biodegradable polymers used as synthetic matrices for tissue engineering. In: Atala A, Mooney DJ 1 editors; Langer R, Vacant! JP, associate editors. Synthetic biodegradable polymer scaffolds. Boston: Birkhauser: 1997. p. 51-82). However, they are hydrophobic and typically processed under relatively severe conditions, which make factor incorporation and entrapment of viable cells potentially a challenge.
  • hydrogels a class of highly hydrated polymer materials (water content higher than 30% by weight), have been used as scaffold materials. They are composed of hydrophilic polymer chains, which are either synthetic or natural in origin. The structural integrity of hydrogels depends on cross-links formed between polymer chains via various chemical bonds and physical interactions.
  • document US 6,586,246 B1 has disclosed a method for preparing a porous hydrogel scaffold which may be used as supports for tissue engineering or culture matrices.
  • the method of the document comprises the steps consisting of a) dissolving a biodegradable synthetic polymer in an organic solvent to prepare a polymeric solution of high viscosity b) adding a porogen agent to this solution; c) casting the polymer into a mould d) removing the organic solvent e) submerging the organic solvent-free polymer/salt gel slurry in a hot aqueous solution or acidic solution to cause the salt to effervesce at room temperature to form the porous scaffold.
  • this method of preparation of a porous hydrogel involves the use of an organic solvent with a synthetic polymer which renders the method according to this invention weakly compatible with biological and therapeutic purposes. Therefore there is still an existing need in the art to develop a method for preparing porous scaffold matrices that can be used for biological and therapeutic purposes.
  • a method for preparing a porous scaffold which comprises the steps consisting of: a) preparing an alkaline aqueous solution comprising an amount of at least one polysaccharide, an amount of a cross-linking agent and an amount of a porogen agent. b) transforming the solution into a hydrogel by placing said solution at a temperature from about 4°C to about 80 0 C for a sufficient time to allow the cross-linking of said amount of polysaccharide and c) submerging said hydrogel into an aqueous solution d) washing the porous scaffold obtained at step c).
  • polysaccharide refers to a molecule comprising two or more monosaccharide units.
  • alkaline solution denotes a solution having a pH superior to 7.
  • aqueous solution refers to a solution in which the solvent is water.
  • cross-linking refers to the linking of one polymer chain to another one with covalent bonds.
  • fluorogen agent denotes any solid agent which has the capability to form pores within a solid structure.
  • a "scaffold” is defined as a semi-solid, system comprising a three-dimensional network of one or more species of polysaccharide chains.
  • such structures in equilibrium can contain various amounts of water.
  • cross-linking agent includes any agent able to introduce crosslink between the chains of the polysaccharides of the invention.
  • Biodegradable refers to materials that degrade in vivo to non-toxic compounds, which can be excreted or further metabolized.
  • Porous scaffolds and method for preparing thereof are provided:
  • a first object of the invention relates to a method for preparing a porous scaffold which comprises the steps consisting of: a) preparing an alkaline aqueous solution comprising an amount of at least one polysaccharide, an amount of a covalent cross-linking agent and an amount of a porogen agent b) transforming the solution into a hydrogel by placing said solution at a temperature from about 4°C to about 80 0 C for a sufficient time to allow the cross-linking of said amount of polysaccharide and c) submerging said hydrogel into an aqueous solution d) washing the porous scaffold obtained at step c).
  • any type of polysaccharide can be used.
  • Synthetic or natural polysaccharides may be alternatively used for the purpose of the invention.
  • suitable natural polysaccharides include, but are not limited to, dextran, agar, alginic acid, hyaluronic acid, inulin, pullulan, heparin, fucoidan, chitosan, scleroglucan, curdlan, starch, cellulose and mixtures thereof.
  • Monosaccharides that may be used to produce the desired polysaccharide include but are not limited to ribose, glucose, mannose, galactose, fructose, sorbose, sorbitol, mannitol, iditol, dulcitol and mixtures thereof.
  • Chemically modified polysaccharides bearing for instance acidic groups (carboxylate, sulphate, phosphate), amino groups (ethylene amine, diethylamine, diethylaminoethylamine, propylamine), hydrophobic groups (alkyl, benzyl,) can be included. Many of these compounds are available commercially from companies such as Sigma-Aldrich (St. Louis, Michigan, US).
  • the preferred weight-average molecular weight for the polysaccharide is from about 10,000 Daltons to about 2,000,000 Daltons, more preferably from about 10,000 Daltons to about 500,000 Daltons, most preferably from about 10,000 Daltons to about 200,000 Daltons.
  • the poiysaecharide(s) used to prepare the scaffold of the invention is a neutral polysaccharide such as dextran, agar, pullulan, inulin, scleroglucan, curdlan, starch, cellulose or a mixture thereof.
  • a mixture of pullulan and dextran is used to prepare the scaffold of the invention.
  • said mixture comprises 25% of dextran and 75% of pullulan.
  • the polysaccharide(s) used to prepare the scaffold of the invention is a positively charged polysaccharide such as chitosan, DEAE-dextran and mixtures thereof.
  • the polysaccharide(s) used to prepare the scaffold of the invention is a negatively charged polysaccharide such as alginic acid, hyaluronic acid, heparin, fucoidan and mixtures thereof.
  • the polysaccharide(s) used to prepare the scaffold of the invention is a mixture of neutral and negatively charged polysaccharides, wherein the negatively charged polysaccharides represents 1 to 20%, preferably 5 to 10% of the mixture.
  • the covalent cross-linking agent is selected from the group consisting of trisodium trimetaphosphate (STMP), phosphorus oxychloride (POCI 3 ), epichlorohydrin, formaldehydes, hydrosoluble carbodiimides, glutaraldehydes or any other compound that is suitable for crosslinking a polysaccharide.
  • the cross-linking agent is STMP.
  • the concentration of the covalent cross-linking agent in the aqueous solution (w/v) is from about 1 % to about 6%, more preferably from about 2% to about 6%, most preferably from about 2% to about 3%.
  • the cross-linking agent at such an amount that the weight ratio of the polysaccharide to the cross-linking agent is in the range from 20:1 to 1 :1 , preferably from 15:1 to 1 :1 and more preferably from 10:1 to 1 :1.
  • the aqueous solution comprising the polysaccharide may further comprise various additives depending on the intended application.
  • the additive is compatible with the polysaccharide and does not interfere with the effective cross- linking of the polysaccharide(s).
  • the amount of the additive used depends on the particular application and may be readily determined by one skilled in the art using routine experimentation.
  • the aqueous solution comprising the polysaccharide may optionally include at least one antimicrobial agent.
  • Suitable antimicrobial preservatives are well known in the art. Examples of suitable antimicrobials include, but are not limited to, alkyl parabens, such as methylparaben, ethylparaben, propylparaben, and butylparaben; cresol; chlorocresol; hydroquinone; sodium benzoate; potassium benzoate; triclosan and chlorhexidine.
  • Other examples of antibacterial agents and of anti-infectious agents that may be used are, in a nonlimiting manner, rifampicin, minocycline, chlorhexidine, silver ion agents and silver-based compositions.
  • the aqueous solution comprising the polysaccharide may also optionally include at least one colorant to enhance the visibility of the solution.
  • Suitable colorants include dyes, pigments, and natural coloring agents. Examples of suitable colorants include, but are not limited to, alcian blue, fluorescein isothiocyanate (FITC) and FITCdextran.
  • the aqueous solution comprising the polysaccharide may also optionally include at least one surfactant.
  • Surfactant refers to a compound that lowers the surface tension of water.
  • the surfactant may be an ionic surfactant, such as sodium lauryl sulfate, or a neutral surfactant, such as polyoxyethylene ethers, polyoxyethylene esters, and polyoxyethylene sorbitan.
  • the porogen agent may be an agent that can be transformed into a gas in acidic conditions, with pores being formed by the carbon dioxide molecules that leach out from the polymer.
  • a porogen agent include but are not limited to ammonium carbonate, ammonium bicarbonate, sodium carbonate, and sodium bicarbonate, calcium carbonate and mixtures thereof. It is preferred to use the porogen agent at such an amount that the weight ratio of the polysaccharide to the porogen agent is in the range from 6:1 to 1 :1 , preferably from 4:1 to 1 :1 , more preferably to 2:1 to 1 :1. Many of these compounds are available commercially from companies such as Sigma-Aldrich (St. Louis,
  • the ratio of the polysaccharide to the porogen agent may be in the range from 6:1 to 0.5:1 , preferably from 4:1 to 0.5:1 , more preferably to 2:1 to 0.5:1.
  • the ratio of the polysaccharide to the porogen agent may be in the range from 50:1 to 1 :1 , preferably from 20:1 to 1 :1 and more preferably from 10:1 to 1 :1.
  • the aqueous solution of step c) is an acidic solution.
  • the acid may be selected from the group consisting of citric acid, hydrochloric acid, acetic acid, formic acid, tartaric acid, salicylic acid, benzoic acid, and glutamic acid.
  • the porogen agent may be an inorganic salt that can be dissolved once the cross-linked polysaccharide scaffold is immersed in water.
  • An example of such a porogen agent includes saturated salt solution, which would be dissolved progressively.
  • the aqueous solution of step c) is an aqueous solution, preferably water, and more preferably distilled water.
  • the concentration of the porogen agent affects the size of the pores formed in the scaffolds, so that the pore size can be under the control of the concentration of said porogen agent.
  • the average pore size of the scaffold is from about 1 ⁇ m to about 500 ⁇ m, preferably from about 150 ⁇ m to about 350 ⁇ m, more preferably from about 175 ⁇ m to about 300 ⁇ m.
  • the density of the pores or porosity is from about 4% to about 75%, preferably from about 4% to about 50%.
  • the method of the invention may comprise a further step consisting of freeze-drying the scaffold obtained at step d).
  • Freeze-drying may be performed with any apparatus known in the art. There are essentially three categories of freeze dryers: rotary evaporators, manifold freeze dryers, and tray freeze dryers. Such apparatus are well known in the art and are commercially available such as a freeze-dryer Lyovac (GT2, STERIS Rotary vane pump, BOC EDWARDS). Basically, the vacuum of the chamber is from 0.1 mBar to about
  • the freeze-drying is performed for a sufficient time sufficient to remove at least 98.5 % of the water, preferably at least 99% of the water, more preferably at least 99.5%.
  • the method of the invention may comprise a further step consisting of hydrating the scaffold as prepared according to the invention.
  • Said hydration may be performed by submerging the scaffold in an aqueous solution (e.g., de-ionized water, water filtered via reverse osmosis, a saline solution, or an aqueous solution containing a suitable active ingredient) for an amount of time sufficient to produce a scaffold having the desired water content.
  • an aqueous solution e.g., de-ionized water, water filtered via reverse osmosis, a saline solution, or an aqueous solution containing a suitable active ingredient
  • the scaffold is submerged in the aqueous solution for at least about 1 hour, preferably at least about 2 hours, and more preferably about 4 hours to about 24 hours. It is understood that the amount of time necessary to hydrate the scaffold to the desired level will depend upon several factors, such as the composition of the used polysaccharides, the size (e.g., thickness) of the scaffold, and the temperature of the aqueous solution, as well as other factors.
  • the hydrated scaffold comprises 80% of water, preferably 90% of water, most preferably 95 % of water.
  • the aqueous solution of step a) may be poured in a mould before step b), so that the porous scaffold obtained with the method of the invention can take a desired form.
  • Any geometrical moulds may be used according to the invention. Different sizes may be also envisaged.
  • the aqueous solution may be poured in a tubular mould with a central axis so that the porous scaffold may be tubular with a desired external and internal diameter.
  • the mould may be made of any material, but preferred material includes non sticky surfaces such as Teflon.
  • the scaffolds of the invention may be cut and shaped to take a desired size and form.
  • the methods of the invention can further include the step of sterilizing the scaffold using any suitable process.
  • the scaffold can be sterilized at any suitable point, but preferably is sterilized before the scaffold is hydrated.
  • a suitable irradiative sterilization technique is for example an irradiation with Cesium 137, 35 Gray for 10 minutes.
  • Suitable non-irradiative sterilization techniques include, but are not limited to, UV-exposure, gas plasma or ethylene oxide methods known in the art.
  • the scaffold can be sterilized using a sterilisation system which is available from Abtox, lnc of Mundelein, Illinois under the trade mark
  • the scaffold produced by the methods of the invention can be packaged in any suitable packaging material.
  • the packaging material maintains the sterility of the scaffold until the packaging material is breached.
  • one or more biomolecules may be incorporated in the porous scaffold.
  • the biomolecules may comprise, in other embodiments, drugs, hormones, antibiotics, antimicrobial substances, dyes, radioactive substances, fluorescent substances, anti-bacterial substances, chemicals or agents, including any combinations thereof.
  • the substances may be used to enhance treatment effects, enhance visualization, indicate proper orientation, resist infection, promote healing, increase softness or any other desirable effect.
  • the scaffold of the invention comprising one or more biomolecules as described here above, may be used as a controlled release system of an active agent.
  • the scaffold produced by the methods of the invention is free from growth factors and other growth stimulants.
  • the biomolecule may comprise chemotactic agents, antibiotics, steroidal or non-steroidal analgesics, antiinflammatories, immunosuppressants, anti-cancer drugs, various proteins (e.g., short chain peptides, bone morphogenic proteins, glycoprotein and lipoprotein); cell attachment mediators; biologically active ligands; integrin binding sequence; ligands; various growth and/or differentiation agents (e.g., epidermal growth factor, IGF-I, IGF-II, TGF-[beta], growth and differentiation factors, stromal derived factor SDF-1 ; vascular endothelial growth factors, fibroblast growth factors, platelet derived growth factors, insulin derived growth factor and transforming growth factors, parathyroid hormone, parathyroid hormone related peptide, bFGF; TGF[beta] superfamily factors; BMP-2; BMP-4; BMP-6; BMP-12; sonic hedgehog; GDF5; GDF6; GDF8;
  • HBGF transforming growth factor alpha or beta
  • FGF alpha fibroblastic growth factor
  • TGF epidermal growth factor
  • VEGF vascular endothelium growth factor
  • SDF-1 SDF-1 , some of which are also angiogenic factors.
  • factors include hormones such as insulin, glucagon, and estrogen.
  • NGF nerve growth factor
  • MMF muscle morphogenic factor
  • TNF alpha/beta, or Matrix metalloproteinases (MMPs) are incorporated.
  • scaffolds of the invention may optionally include antiinflammatory agents, such as indomethacin, salicylic acid acetate, ibuprofen, sulindac, piroxicam, and naproxen; thrombogenic agents, such as thrombin, fibrinogen, homocysteine, and estramustine; and radio-opaque compounds, such as barium sulfate, gold particles and iron oxide nanoparticles (USPIOs).
  • antiinflammatory agents such as indomethacin, salicylic acid acetate, ibuprofen, sulindac, piroxicam, and naproxen
  • thrombogenic agents such as thrombin, fibrinogen, homocysteine, and estramustine
  • radio-opaque compounds such as barium sulfate, gold particles and iron oxide nanoparticles (USPIOs).
  • scaffolds of the invention may optionally comprise antithrombotic agents such as antivitamin K or aspirin, antiplatelet agents such as aspirin, thienopyridine, dipyridamole or clopidogrel (that selectively and irreversibly inhibits adenosine diphosphate (ADP)-induced platelet aggregation) or anticoagulant agent such as heparin or fucoidan.
  • antithrombotic agents such as antivitamin K or aspirin
  • antiplatelet agents such as aspirin, thienopyridine, dipyridamole or clopidogrel (that selectively and irreversibly inhibits adenosine diphosphate (ADP)-induced platelet aggregation) or anticoagulant agent such as heparin or fucoidan.
  • antithrombotic agents such as antivitamin K or aspirin
  • antiplatelet agents such as aspirin, thienopyridine, dipyridamole or clopidogrel (that selective
  • Genistein a potential isoflavone which possesses dose-dependent antiplatelet and antiproliferative properties and inhibits collagen-induced platelet aggregation responsible for primary thrombosis, may also be incorporated.
  • Scaffolds of the invention are especially suited for tissue engineering, repair or regeneration.
  • a difference in porosity may facilitate migration of different cell types to the appropriate regions of the scaffold.
  • a difference in porosity may facilitate development of appropriate cell-to-cell connections among the cell types comprising the scaffold, required for appropriate structuring of the developing/repairing/regenerating tissue.
  • cell processes extension may be accommodated more appropriately via the varied porosity of the scaffolding material. Therefore, the scaffold may comprise cells of any tissue.
  • the cells are seeded on said scaffold.
  • the scaffolds of the invention are submerged in a culture solution comprising the desired cells for an amount of time sufficient to enable penetration of the cells throughout the scaffold,
  • scaffold of the invention is capable of supporting the viability and the growth of seeded cells in culture over long periods of time without inducing differentiation.
  • scaffold of the invention provides an environment for unstimulated cell growth (without activation by growth stimulants)
  • scaffold of the invention can be used to study physiological and pathological processes such as tissue growth, bone remodeling, wound healing, tumorigenesis (including migration and invasion), differentiation and angiogenesis. Scaffold allows the creation of defined and controlled environments where specific processes can be modulated and studied in a controlled manner free of endogenous factors.
  • scaffold of the invention can be used for 3D culture for diagnostic or toxicological dosages.
  • the scaffold of the invention would allow evaluation of the toxicity of a product directly on cells present in a 3D environment.
  • the scaffold of the invention is used for cultivating cells useful for the evaluation of the toxicity and/or pharmacology of a product, such as hepatocytes, embryonic stem cells, epithelial cells, keratinocytes, or induced pluripotent stem cells (iPS cells).
  • a product such as hepatocytes, embryonic stem cells, epithelial cells, keratinocytes, or induced pluripotent stem cells (iPS cells).
  • scaffold of the invention is capable of supporting growth and differentiation of cell types in vitro and in vivo.
  • the cells are stem or progenitor cells.
  • the cells may include but are not limited to chondrocytes; fibrochondrocytes; osteocytes; osteoblasts; osteoclasts; synoviocytes; bone marrow cells; mesenchymal cells; epithelial cells, hepatocytes, muscle cells; stromal cells; stem cells; embryonic stem cells; precursor cells derived from adipose tissue; peripheral blood progenitor cells; stem cells isolated from adult tissue; induced pluripotent stem cells (iPS cells); genetically transformed cells; a combination of chondrocytes and other cells; a combination of osteocytes and other cells; a combination of synoviocytes and other cells; a combination of bone marrow cells and other cells; a combination of mesenchymal cells and other cells; a combination of stromal cells and other cells; a combination of embryonic stem cells and other cells; a combination of progen
  • any of these cells for use in the scaffolds and methods of the invention may be genetically engineered to express a desired molecule, such as for example green fluorescent protein (GFP), reporter gene (luciferase, phosphatise alkaline), heparin binding growth factor (HBGF), transforming growth factor alpha or beta (TGF.beta.), alpha fibroblastic growth factor (FGF), epidermal growth factor (TGF), vascular endothelium growth factor (VEGF) and SDF-1 , some of which are also angiogenic factors.
  • GFP green fluorescent protein
  • reporter gene luciferase, phosphatise alkaline
  • HBGF heparin binding growth factor
  • TGF.beta. transforming growth factor alpha or beta
  • FGF alpha fibroblastic growth factor
  • TGF epidermal growth factor
  • VEGF vascular endothelium growth factor
  • SDF-1 some of which are also angiogenic factors.
  • expressed factors include hormones such as insulin, glu
  • scaffolds of the invention are suitable to prepare vascular substitutes to replace compromised arteries as described for example, in Chaouat et al. (Chaouat M, Le Visage C, Autissier A, Chaubet F, Letourneur D. The evaluation of a small-diameter polysaccharide-based arterial graft in rats. Biomaterials. 2006 Nov;27(32):5546-53. Epub 2006 JuI 20.).
  • Such substitutes may be prepared according to the methods of the invention by using a mould as above described.
  • Such substitutes may then comprise a population of cells to reconstruct in vitro or in vivo a vessel.
  • the cells may include but are not limited to Mesenchymal Stem Cells (MSC), Endothelial Progenitor cells (EPCs), endothelial cells, fibroblastic cells and smooth muscle cells.
  • scaffolds of the invention are suitable to prepare cartilage or bone implants.
  • the scaffolds of the invention may be loaded with chondrocytes, osteocytes; osteoblasts; osteoclasts; vascular cells or mixtures thereof, and may be cultured in presence of differentiating agents.
  • the site of implantation is dependent on the diseased/injured tissue that requires treatment.
  • the cell-seeded composite scaffold will be placed at the defect site to promote repair of the damaged tissue.
  • the composite scaffold can be seeded with a combination of adult neuronal stem cells, embryonic stem cells, glial cells and Sertoli cells.
  • the composite scaffold can be seeded with Sertoli cells derived from transformed cell lines, xenogeneic or allogeneic sources in combination with neuronal stem cells.
  • the Sertoli cells can be cultured with the composite scaffold for a period before addition of stem cells and subsequent implantation at the site of injury. This approach can circumvent one of the major hurdles of cell therapy for CNS applications, namely the survival of the stem cells following transplantation.
  • a composite scaffold that entraps a large number of Sertoli cells can provide an environment that is more amenable for the survival of stem cells.
  • the porous polysaccharide scaffold which is prepared according to the present invention, can be effectively used as a raw material for fabricating artificial tissues or organs such as artificial blood vessels, artificial bladder, artificial esophagus, artificial nerves, artificial hearts, prostatic heart valves, artificial skins, orthopedic implants, artificial muscles, artificial ligaments, artificial respiratory organs, etc.
  • the porous polysaccharide scaffold of the present invention can be prepared in the form of a hybrid tissue by blending or incorporating on or into other types of biomaterials and with functional cells derived from tissues or organs. It may have various biomedical applications, for example, to maintain cell functions, tissue regeneration, etc.
  • scaffolds of the invention may be used for cell delivery.
  • scaffolds of the invention may be used as a raw material for preparing cell delivery systems that can be administered to a subject for therapeutic or diagnostic purposes.
  • scaffolds of the invention may be used to prepare a patch, a biofilm or a dressing that can be loaded with cells.
  • scaffolds of the invention may be used to prepare a dressing that can be applied on the skin, for reconstructing or healing the skin.
  • said dressing may used to be applied on the heart of a subject for treating ischemia (myocardial infarction).
  • the cells that are entrapped in the scaffold can thus migrate into the targeted tissue or organ.
  • scaffolds of the invention may be used for culturing cells.
  • Cells may then be stimulated to undergo growth of differentiation or other physiological processes by the addition of appropriate growth factors.
  • Culture medium containing one or more cytokines, growth factors, hormones or a combination thereof, may be used for maintaining cells in an undifferentiated state, or for differentiating cells into a particular pathway.
  • the scaffold of the invention may be used for producing molecules of interest.
  • scaffolds of the invention may be used to provide a biological environment for the anchorage of cells in a bioreactor, so that the cells can produced the desired molecules.
  • the scaffolds of the invention provide mechanical and biochemical protection of the cultured cells.
  • the scaffolds may thus serve as a cell reservoir for producing desired molecules such as proteins, organic molecules, and nucleotides.
  • proteins of interest include but are not limited to growth factors, hormones, signal molecules, inhibitors of cell growth, and antibodies.
  • Scaffolds of the invention are particularly interesting for producing monoclonal antibodies. Scaffolds of the invention may be also suitable to produce organic molecules such as flavours, therapeutic molecules...
  • the scaffolds of the invention may be loaded with any type of cells, including prokaryotic and eukaryotic cells.
  • scaffolds of the invention may be load with bacteria, yeast cells, mammalian cells, insect cells, plant cells, etc.
  • specific examples include E.coli, Kluyveromyces or Saccharomyces yeasts, mammalian cell lines (e.g., Vero cells, CHO cells, 3T3 cells, COS cells, etc.) as well as primary or established mammalian cell cultures (e.g., produced from lymphoblasts, fibroblasts, embryonic cells, epithelial cells, nervous cells, adipocytes, etc.).
  • the invention contemplates the use of established cell lines such as hybridomas.
  • the cells may be genetically engineered to express a desired molecule as described above.
  • the scaffold of the invention may be loaded with cells, cultured for a certain period of time then the cells can be retrived/extracted/separated from the scaffold for further use, such as therapeutic or diagnostic applications or cell analysis. Separation of the cells from the scaffold may involve the use of enzymes that could degrade the scaffold, such as pullulanase and/or the use of enzymes that could detach the cells such as collagenase, elastase, trypsin or cell-detaching solutions such as EDTA.
  • enzymes that could degrade the scaffold, such as pullulanase and/or the use of enzymes that could detach the cells such as collagenase, elastase, trypsin or cell-detaching solutions such as EDTA.
  • FIGURES are a diagrammatic representation of FIGURES.
  • FIG. 1 A porous scaffold obtained as in Example 1 (Scale: 6 mm)
  • FIG. 2 A porous scaffold obtained as in Example 1 : scanning Electron Microscopy analysis of the scaffold (right image, scale: 200 microns).
  • Figure 3 Formazan absorbance (570 nm) at day 1 as a function of the initial number of cells seeded on porous scaffolds.
  • Example 1 Polysaccharides-based scaffolds preparation:
  • Polysaccharide-based scaffolds were prepared using using a mixture of pullulan/dextran 75:25 (pullulan, MW 200,000, Hayashibara Inc., Okayama, Japan; dextran MW 500,000, Pharmacia).
  • a polysaccharide solution was prepared by dissolving 9 gr of pullulan and 3 gr of dextran into 40 mL of distilled water.
  • Sodium carbonate (8 g) was then added to the polysaccharide solution and stirring was maintained until a homogeneous mixture was obtained.
  • Chemical cross-linking of polysaccharide was carried out using the cross-linking agent trisodium trimetaphosphate STMP (Sigma, St Louis) under alkaline condition.
  • Example 2 Types of polysaccharides: Porous scaffolds were prepared as described in example 1 , using different types and ratios of polysaccharides, while keeping the total amount of polysaccharide at a constant value. Polysaccharides were either pullulan, dextran 500, fucoidan LMW (Low Molecular Weight) and fucoidan HMW (High Molecular Weight).
  • Solubilization (+++ indicates a complete solubilization of the polysaccharides) and viscosity of the resulting polysaccharide solution (+++ indicates a very high viscosity of the solution) were visually assessed. In all cases, porous scaffolds were obtained at the end of the protocol.
  • Example 3 Porogen amount: Porous scaffolds were prepared as described in example 1 , while varying the amount of the porogen agent. Briefly, 2, 4 or 8 gr of sodium carbonate were added to the pullulan/dextran solution.
  • Example 4 Cross-linker concentration: Porous scaffolds were prepared as described in example 1 , while varying the amount of the cross-linking agent from 200 mg to 500 mg.
  • Example 5 Cell loading into the porous scaffolds: Human bone marrow
  • hMSC Mesenchymal Stem Cells
  • a circular punch was used to cut 6mm diameter and 1mm thickness round-shaped porous scaffolds.
  • Culture medium consisted of low glucose DMEM (Gibco, Life Technology, New York) with 10% fetal bovine serum and 1% penicillin/streptomycin (Sigma). After cell trypsinization, rehydration of the dried scaffold was performed with 20 ⁇ L of cell suspension (10 6 cells/scaffold). Samples were then maintained in 1 ml_ of culture medium for up to 1 week. Non-seeded porous scaffolds incubated in culture medium were used as controls.
  • a metabolic assay (MTT, 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyl tetrazolium bromide, Sigma) was performed to assess the cell viability. Briefly, a 5 mg/mL stock solution of MTT (Sigma) was mixed 1 :10 with DMEM. Scaffolds were incubated for 3 h at 37C with 1 mL of the reagent solution. After washing the scaffolds with PBS, the formazan crystals were solubilized in 0.3 mL of MTT (Sigma) was mixed 1 :10 with DMEM. Scaffolds were incubated for 3 h at 37C with 1 mL of the reagent solution. After washing the scaffolds with PBS, the formazan crystals were solubilized in 0.3 mL of MTT (Sigma) was mixed 1 :10 with DMEM. Scaffolds were incubated for 3 h at 37C with 1 mL of the reagent solution. After washing the scaffold
  • Example 6 confocal analysis of cell behavior within the porous scaffolds: Fluorescent scaffolds were prepared as in example 1 , by adding a small amount (5 mg) of FITC-dextran to the polysaccharide solution. Fluorescent scaffolds were seeded as in Example 5, with hMSC labeled with a fluorescent marker (PKH26, SIGMA P9691 ) according to the manufacturer's instructions). Confocal imaging confirmed the porous structure of the scaffold.
  • Example 7 Cell Viability by Live and Dead Assay: Confocal imaging was used to assess the cell viability with a live/dead assay (Calbiochem, San Diego, CA), based on the use of two fluorescent probes that measure the cell membrane permeability: a cell-permeable green fluorescent dye to stain live cells (calcein AM) and a cell nonpermeable red fluorescent dye (propidium iodide) to stain dead cells. At day 7, most of the cells were live cells, with only few dead cells found within the scaffolds.
  • Example 8 influence of the porogen agent on scaffold porosity Porous scaffolds were prepared as described in example 1 , while varying the amount and the nature of the porogen agent.
  • FITC-dextran For confocal analysis of fluorescent porous scaffolds, 5 mg of FITC-dextran were added to the polysaccharide solution. Optical sections were acquired using a Zeiss LSM 510 confocal microscope (Carl Zeiss, Oberkochen, Germany), equipped with a 10x Plan-NeoFluar objective lens (numerical aperture of 0.3) (Carl Zeiss). FITC-dextran was excited at 488 nm with an argon laser and its fluorescent emission was selected by a 505-530 nm bandpass filter. Pore size was assessed with ImageJ® software. Void volume was calculated with a statistics/volume measurement module from Amira® software and results are expressed as a percentage of the scaffold volume.
  • Positively charged porous scaffolds were prepared using using DEAE-Dextran as the only polysaccharide. Briefly, DEAE-dextran solution was prepared by dissolving 1 g of DEAE-dextran (Fluka reference #30461) into 1.5 ml_ of distilled water. Sodium carbonate (100mg) was then added to the polysaccharide solution and stirring was maintained until a homogeneous mixture was obtained. Chemical cross-linking of polysaccharide was carried out using the cross-linking agent trisodium trimetaphosphate STMP (Sigma, St Louis) under alkaline condition.
  • DEAE-dextran solution was prepared by dissolving 1 g of DEAE-dextran (Fluka reference #30461) into 1.5 ml_ of distilled water. Sodium carbonate (100mg) was then added to the polysaccharide solution and stirring was maintained until a homogeneous mixture was obtained. Chemical cross-linking of polysaccharide was carried out using the cross-link
  • Negatively charged porous scaffolds were prepared by adding fucoidan (Sigma reference #F5631) to a pullulan/dextran mixture. Briefly, a polysaccharide solution was prepared by dissolving 9 g of pullulan and 3 g of dextran into 40 ml_ of distilled water, then adding 1.2g of fucoidan into the polysaccharide solution. Sodium carbonate (8 g) was then added to the polysaccharide solution and the cross- linking process was carried out as described in Example 1 to obtain a 3D scaffold that contains a negatively charged polysaccharide.
  • fucoidan Sigma reference #F5631
  • Example 11 differentiation of human mesenchymal stem cells into chondrocyte-like cells in 3D scaffolds
  • hMSC Human bone marrow Mesenchymal Stem Cells
  • hMSC Human bone marrow Mesenchymal Stem Cells
  • Chondrogenic medium consisted of DMEM supplemented with 10 ng/ml TGF- ⁇ 3 (Oncogene, Cambridge, MA), 100 nM dexamethasone (Sigma, St Louis, MO), 170 ⁇ M ascorbic acid 2-phosphate (Sigma, St Louis, MO) and 5 mL of ITS-plus (Collaborative Biomedical Products, Bedford, MA). After 3 weeks of culture, seeded scaffolds were fixed in formaldehyde 10% then cryosectioned.
  • HepG2 cells human hepatocellular carcinoma cells, were cultured in low glucose DMEM (Gibco, Life Technology, New York, USA) with 10% fetal bovine serum and 1% penicillin/streptomycin (Sigma) on scaffolds prepared as in Example 1.
  • a circular punch was used to cut 6mm diameter and 1 mm thickness round-shaped porous scaffolds.
  • rehydration of the dried scaffold was performed with 20 ⁇ L of cell suspension (85,000 cells/scaffold). Samples were then maintained in 1 ml_ of culture medium for up to 1 week. Non-seeded porous scaffolds incubated in culture medium were used as controls. Hepatocyte spheroids formation was observed after 4 days of culture.
  • Calcein AM Calbiochem, San Diego CA, USA
  • the seeded scaffolds contained living hepatocytes suitable for pharmaco-toxicologicai assays.

Abstract

The present invention relates to a method for preparing a porous scaffold for tissue engineering. It is another object of the present invention to provide a porous scaffold obtainable by the method as above described, and its use for tissue engineering, cell culture and cell delivery. The method of the invention comprises the steps consisting of: a) preparing an alkaline aqueous solution comprising an amount of at least one polysaccharide, an amount of a cross-linking agent and an amount of a porogen agent b) transforming the solution into a hydrogel by placing said solution at a temperature from about 4°C to about 80°C for a sufficient time to allow the cross-linking of said amount of polysaccharide and c) submerging said hydrogel into an aqueous solution d) washing the porous scaffold obtained at step c).

Description

METHOD FOR PREPARING POROUS SCAFFOLD FOR TISSUE ENGINEERING. CELL CULTURE AND CELL DELIVERY
FIELD OF THE INVENTION
The present invention relates to a method for preparing a porous scaffold for tissue engineering. It is another object of the present invention to provide a porous scaffold obtainable by the method as above described, and its use for tissue engineering, cell culture and cell delivery
BACKGROUND OF THE INVENTION
Tissue engineering is generally defined as the creation of tissue or organ equivalents by seeding of cells onto or into a scaffold suitable for implantation. The scaffolds must be biocompatible and cells must be able to attach and proliferate on the scaffolds in order for them to form tissue or organ equivalents. These scaffolds may therefore be considered as substrates for cell growth either in vitro or in vivo. The attributes of an ideal biocompatible scaffold would include the ability to support cell growth either in vitro or in vivo, the ability to support the growth of a wide variety of cell types or lineages, the ability to be endowed with varying degrees of flexibility or rigidity required, the ability to have varying degrees of biodegradabiiity, the ability to be introduced into the intended site in vivo without provoking secondary damage, and the ability to serve as a vehicle or reservoir for delivery of drugs or bioactive substances to the desired site of action.
A number of different scaffold materials have been utilized, for guided tissue regeneration and/or as biocompatible surfaces. Biodegradable polymeric materials are preferred in many cases since the scaffold degrades over time and eventually the cell-scaffold structure is replaced entirely by the cells. Among the many candidates that may serve as useful scaffolds claimed to support tissue growth or regeneration, are included gels, foams, sheets, and numerous porous particulate structures of different forms and shapes.
Among the manifold natural polymers which have been disclosed to be useful for tissue engineering or culture, one can enumerate various constituents of the extracellular matrix including fibronectin, various types of collagen, and laminin, as well as keratin, fibrin and fibrinogen, hyaluronic acid, heparin sulfate, chondroitin sulfate and others.
Other common polymers that were used include poly(lactide-co-glycolide) (PLG). PLG are hydrolytically degradable polymers that are FDA approved for use in the body and mechanically strong (Thomson RC, Yaszemski MJ1 Powers JM, Mikos AG. Fabrication of biodegradable polymer scaffolds to engineer trabecular bone. J Biomater Sci Polym Ed. 1995;7(1):23-38; Wong WH. Mooney DJ. Synthesis and properties of biodegradable polymers used as synthetic matrices for tissue engineering. In: Atala A, Mooney DJ1 editors; Langer R, Vacant! JP, associate editors. Synthetic biodegradable polymer scaffolds. Boston: Birkhauser: 1997. p. 51-82). However, they are hydrophobic and typically processed under relatively severe conditions, which make factor incorporation and entrapment of viable cells potentially a challenge.
As an alternative, a variety of hydrogels, a class of highly hydrated polymer materials (water content higher than 30% by weight), have been used as scaffold materials. They are composed of hydrophilic polymer chains, which are either synthetic or natural in origin. The structural integrity of hydrogels depends on cross-links formed between polymer chains via various chemical bonds and physical interactions. For example, document US 6,586,246 B1 has disclosed a method for preparing a porous hydrogel scaffold which may be used as supports for tissue engineering or culture matrices. The method of the document comprises the steps consisting of a) dissolving a biodegradable synthetic polymer in an organic solvent to prepare a polymeric solution of high viscosity b) adding a porogen agent to this solution; c) casting the polymer into a mould d) removing the organic solvent e) submerging the organic solvent-free polymer/salt gel slurry in a hot aqueous solution or acidic solution to cause the salt to effervesce at room temperature to form the porous scaffold. However, this method of preparation of a porous hydrogel involves the use of an organic solvent with a synthetic polymer which renders the method according to this invention weakly compatible with biological and therapeutic purposes. Therefore there is still an existing need in the art to develop a method for preparing porous scaffold matrices that can be used for biological and therapeutic purposes.
SUMMARY OF THE INVENTION
Therefore, it is an object of the present invention to provide a method for preparing a porous scaffold which comprises the steps consisting of: a) preparing an alkaline aqueous solution comprising an amount of at least one polysaccharide, an amount of a cross-linking agent and an amount of a porogen agent. b) transforming the solution into a hydrogel by placing said solution at a temperature from about 4°C to about 800C for a sufficient time to allow the cross-linking of said amount of polysaccharide and c) submerging said hydrogel into an aqueous solution d) washing the porous scaffold obtained at step c).
It is another object of the present invention to provide a porous scaffold obtainable by the method as above described.
It is still further an object of the present invention to provide the use of porous scaffold of the invention for tissue engineering, cell culture and cell delivery. DETAILED DESCRIPTION OF THE INVENTION
Definitions:
The term "polysaccharide", as used herein, refers to a molecule comprising two or more monosaccharide units.
The term "alkaline solution", as used herein, denotes a solution having a pH superior to 7.
The term "acidic solution", as used herein, denotes a solution having a pH inferior to 7.
The term "aqueous solution", as used herein, refers to a solution in which the solvent is water.
The term "cross-linking" refers to the linking of one polymer chain to another one with covalent bonds. The term "porogen agent" denotes any solid agent which has the capability to form pores within a solid structure.
As used herein, a "scaffold" is defined as a semi-solid, system comprising a three-dimensional network of one or more species of polysaccharide chains.
Depending on the properties of the polysaccharide (or polysaccharides) used, as well as on the nature and density of the network, such structures in equilibrium can contain various amounts of water.
The term "cross-linking agent" includes any agent able to introduce crosslink between the chains of the polysaccharides of the invention.
"Biodegradable", as used herein, refers to materials that degrade in vivo to non-toxic compounds, which can be excreted or further metabolized.
Porous scaffolds and method for preparing thereof:
A first object of the invention relates to a method for preparing a porous scaffold which comprises the steps consisting of: a) preparing an alkaline aqueous solution comprising an amount of at least one polysaccharide, an amount of a covalent cross-linking agent and an amount of a porogen agent b) transforming the solution into a hydrogel by placing said solution at a temperature from about 4°C to about 800C for a sufficient time to allow the cross-linking of said amount of polysaccharide and c) submerging said hydrogel into an aqueous solution d) washing the porous scaffold obtained at step c).
In the present invention, any type of polysaccharide can be used. Synthetic or natural polysaccharides may be alternatively used for the purpose of the invention. For example, suitable natural polysaccharides include, but are not limited to, dextran, agar, alginic acid, hyaluronic acid, inulin, pullulan, heparin, fucoidan, chitosan, scleroglucan, curdlan, starch, cellulose and mixtures thereof. Monosaccharides that may be used to produce the desired polysaccharide include but are not limited to ribose, glucose, mannose, galactose, fructose, sorbose, sorbitol, mannitol, iditol, dulcitol and mixtures thereof. Chemically modified polysaccharides bearing for instance acidic groups (carboxylate, sulphate, phosphate), amino groups (ethylene amine, diethylamine, diethylaminoethylamine, propylamine), hydrophobic groups (alkyl, benzyl,) can be included. Many of these compounds are available commercially from companies such as Sigma-Aldrich (St. Louis, Michigan, US).
The preferred weight-average molecular weight for the polysaccharide is from about 10,000 Daltons to about 2,000,000 Daltons, more preferably from about 10,000 Daltons to about 500,000 Daltons, most preferably from about 10,000 Daltons to about 200,000 Daltons.
In one embodiment of the invention, the poiysaecharide(s) used to prepare the scaffold of the invention is a neutral polysaccharide such as dextran, agar, pullulan, inulin, scleroglucan, curdlan, starch, cellulose or a mixture thereof. In a preferred embodiment, a mixture of pullulan and dextran is used to prepare the scaffold of the invention. For example, said mixture comprises 25% of dextran and 75% of pullulan. In another embodiment of the invention, the polysaccharide(s) used to prepare the scaffold of the invention is a positively charged polysaccharide such as chitosan, DEAE-dextran and mixtures thereof.
In another embodiment of the invention, the polysaccharide(s) used to prepare the scaffold of the invention is a negatively charged polysaccharide such as alginic acid, hyaluronic acid, heparin, fucoidan and mixtures thereof.
In another embodiment of the invention, the polysaccharide(s) used to prepare the scaffold of the invention is a mixture of neutral and negatively charged polysaccharides, wherein the negatively charged polysaccharides represents 1 to 20%, preferably 5 to 10% of the mixture.
In a particular embodiment the covalent cross-linking agent is selected from the group consisting of trisodium trimetaphosphate (STMP), phosphorus oxychloride (POCI3), epichlorohydrin, formaldehydes, hydrosoluble carbodiimides, glutaraldehydes or any other compound that is suitable for crosslinking a polysaccharide. In a preferred embodiment, the cross-linking agent is STMP. The concentration of the covalent cross-linking agent in the aqueous solution (w/v) is from about 1 % to about 6%, more preferably from about 2% to about 6%, most preferably from about 2% to about 3%. It is preferred to use the cross-linking agent at such an amount that the weight ratio of the polysaccharide to the cross-linking agent is in the range from 20:1 to 1 :1 , preferably from 15:1 to 1 :1 and more preferably from 10:1 to 1 :1.
Many of these compounds are available commercially from companies such as Sigma-Aldrich (St. Louis, Michigan, US).
The aqueous solution comprising the polysaccharide may further comprise various additives depending on the intended application. Preferably, the additive is compatible with the polysaccharide and does not interfere with the effective cross- linking of the polysaccharide(s). The amount of the additive used depends on the particular application and may be readily determined by one skilled in the art using routine experimentation.
The aqueous solution comprising the polysaccharide may optionally include at least one antimicrobial agent. Suitable antimicrobial preservatives are well known in the art. Examples of suitable antimicrobials include, but are not limited to, alkyl parabens, such as methylparaben, ethylparaben, propylparaben, and butylparaben; cresol; chlorocresol; hydroquinone; sodium benzoate; potassium benzoate; triclosan and chlorhexidine. Other examples of antibacterial agents and of anti-infectious agents that may be used are, in a nonlimiting manner, rifampicin, minocycline, chlorhexidine, silver ion agents and silver-based compositions.
The aqueous solution comprising the polysaccharide may also optionally include at least one colorant to enhance the visibility of the solution. Suitable colorants include dyes, pigments, and natural coloring agents. Examples of suitable colorants include, but are not limited to, alcian blue, fluorescein isothiocyanate (FITC) and FITCdextran.
The aqueous solution comprising the polysaccharide may also optionally include at least one surfactant. Surfactant, as used herein, refers to a compound that lowers the surface tension of water. The surfactant may be an ionic surfactant, such as sodium lauryl sulfate, or a neutral surfactant, such as polyoxyethylene ethers, polyoxyethylene esters, and polyoxyethylene sorbitan.
In a particular embodiment, the porogen agent may be an agent that can be transformed into a gas in acidic conditions, with pores being formed by the carbon dioxide molecules that leach out from the polymer. Examples of such a porogen agent include but are not limited to ammonium carbonate, ammonium bicarbonate, sodium carbonate, and sodium bicarbonate, calcium carbonate and mixtures thereof. It is preferred to use the porogen agent at such an amount that the weight ratio of the polysaccharide to the porogen agent is in the range from 6:1 to 1 :1 , preferably from 4:1 to 1 :1 , more preferably to 2:1 to 1 :1. Many of these compounds are available commercially from companies such as Sigma-Aldrich (St. Louis,
Michigan, US). In one embodiment, the ratio of the polysaccharide to the porogen agent may be in the range from 6:1 to 0.5:1 , preferably from 4:1 to 0.5:1 , more preferably to 2:1 to 0.5:1. In another embodiment, while the polysaccharide is a positively charged polysaccharide, the ratio of the polysaccharide to the porogen agent may be in the range from 50:1 to 1 :1 , preferably from 20:1 to 1 :1 and more preferably from 10:1 to 1 :1.
In this particular embodiment, the aqueous solution of step c) is an acidic solution. The acid may be selected from the group consisting of citric acid, hydrochloric acid, acetic acid, formic acid, tartaric acid, salicylic acid, benzoic acid, and glutamic acid.
Alternatively, the porogen agent may be an inorganic salt that can be dissolved once the cross-linked polysaccharide scaffold is immersed in water. An example of such a porogen agent includes saturated salt solution, which would be dissolved progressively. In this particular embodiment, the aqueous solution of step c) is an aqueous solution, preferably water, and more preferably distilled water.
The concentration of the porogen agent affects the size of the pores formed in the scaffolds, so that the pore size can be under the control of the concentration of said porogen agent.
The average pore size of the scaffold is from about 1 μm to about 500 μm, preferably from about 150 μm to about 350 μm, more preferably from about 175 μm to about 300 μm. The density of the pores or porosity is from about 4% to about 75%, preferably from about 4% to about 50%.
In another embodiment, the method of the invention may comprise a further step consisting of freeze-drying the scaffold obtained at step d). Freeze-drying may be performed with any apparatus known in the art. There are essentially three categories of freeze dryers: rotary evaporators, manifold freeze dryers, and tray freeze dryers. Such apparatus are well known in the art and are commercially available such as a freeze-dryer Lyovac (GT2, STERIS Rotary vane pump, BOC EDWARDS). Basically, the vacuum of the chamber is from 0.1 mBar to about
6.5 mBar. The freeze-drying is performed for a sufficient time sufficient to remove at least 98.5 % of the water, preferably at least 99% of the water, more preferably at least 99.5%.
In another embodiment, the method of the invention may comprise a further step consisting of hydrating the scaffold as prepared according to the invention. Said hydration may be performed by submerging the scaffold in an aqueous solution (e.g., de-ionized water, water filtered via reverse osmosis, a saline solution, or an aqueous solution containing a suitable active ingredient) for an amount of time sufficient to produce a scaffold having the desired water content. For example, when a scaffold comprising the maximum water content is desired, the scaffold is submerged in the aqueous solution for an amount of time sufficient to allow the scaffold to swell to its maximum size or volume. Typically, the scaffold is submerged in the aqueous solution for at least about 1 hour, preferably at least about 2 hours, and more preferably about 4 hours to about 24 hours. It is understood that the amount of time necessary to hydrate the scaffold to the desired level will depend upon several factors, such as the composition of the used polysaccharides, the size (e.g., thickness) of the scaffold, and the temperature of the aqueous solution, as well as other factors.
In a particular embodiment, the hydrated scaffold comprises 80% of water, preferably 90% of water, most preferably 95 % of water.
In another particular embodiment, the aqueous solution of step a) may be poured in a mould before step b), so that the porous scaffold obtained with the method of the invention can take a desired form. Any geometrical moulds may be used according to the invention. Different sizes may be also envisaged. For example, typically, the aqueous solution may be poured in a tubular mould with a central axis so that the porous scaffold may be tubular with a desired external and internal diameter. The mould may be made of any material, but preferred material includes non sticky surfaces such as Teflon. Alternatively, the scaffolds of the invention may be cut and shaped to take a desired size and form. The methods of the invention can further include the step of sterilizing the scaffold using any suitable process. The scaffold can be sterilized at any suitable point, but preferably is sterilized before the scaffold is hydrated. A suitable irradiative sterilization technique is for example an irradiation with Cesium 137, 35 Gray for 10 minutes. Suitable non-irradiative sterilization techniques include, but are not limited to, UV-exposure, gas plasma or ethylene oxide methods known in the art. For example, the scaffold can be sterilized using a sterilisation system which is available from Abtox, lnc of Mundelein, Illinois under the trade mark
PlazLyte, or in accordance with the gas plasma sterilization processes disclosed in US-5413760 and US-5603895.
The scaffold produced by the methods of the invention can be packaged in any suitable packaging material. Desirably, the packaging material maintains the sterility of the scaffold until the packaging material is breached.
In another embodiment, one or more biomolecules may be incorporated in the porous scaffold. The biomolecules may comprise, in other embodiments, drugs, hormones, antibiotics, antimicrobial substances, dyes, radioactive substances, fluorescent substances, anti-bacterial substances, chemicals or agents, including any combinations thereof. The substances may be used to enhance treatment effects, enhance visualization, indicate proper orientation, resist infection, promote healing, increase softness or any other desirable effect. In said embodiment, the scaffold of the invention, comprising one or more biomolecules as described here above, may be used as a controlled release system of an active agent. The scaffold produced by the methods of the invention is free from growth factors and other growth stimulants. In one embodiment, the biomolecule may comprise chemotactic agents, antibiotics, steroidal or non-steroidal analgesics, antiinflammatories, immunosuppressants, anti-cancer drugs, various proteins (e.g., short chain peptides, bone morphogenic proteins, glycoprotein and lipoprotein); cell attachment mediators; biologically active ligands; integrin binding sequence; ligands; various growth and/or differentiation agents (e.g., epidermal growth factor, IGF-I, IGF-II, TGF-[beta], growth and differentiation factors, stromal derived factor SDF-1 ; vascular endothelial growth factors, fibroblast growth factors, platelet derived growth factors, insulin derived growth factor and transforming growth factors, parathyroid hormone, parathyroid hormone related peptide, bFGF; TGF[beta] superfamily factors; BMP-2; BMP-4; BMP-6; BMP-12; sonic hedgehog; GDF5; GDF6; GDF8; PDGF); small molecules that affect the upregulation of specific growth factors; tenascin-C; hyaluronic acid; chondroitin sulfate; fibronectin; decorin; thromboelastin; thrombin-derived peptides; heparin-binding domains; heparin; heparan sulfate; DNA fragments, DNA plasmids, Si-RNA, transfection agents or any combination thereof. In one embodiment growth factors include heparin binding growth factor
(HBGF), transforming growth factor alpha or beta (TGF.beta.), alpha fibroblastic growth factor (FGF)1 epidermal growth factor (TGF), vascular endothelium growth factor (VEGF), and SDF-1 , some of which are also angiogenic factors. In another embodiment factors include hormones such as insulin, glucagon, and estrogen. In some embodiments it may be desirable to incorporate factors such as nerve growth factor (NGF) or muscle morphogenic factor (MMF). In one embodiment, TNF alpha/beta, or Matrix metalloproteinases (MMPs) are incorporated.
Additionally, scaffolds of the invention may optionally include antiinflammatory agents, such as indomethacin, salicylic acid acetate, ibuprofen, sulindac, piroxicam, and naproxen; thrombogenic agents, such as thrombin, fibrinogen, homocysteine, and estramustine; and radio-opaque compounds, such as barium sulfate, gold particles and iron oxide nanoparticles (USPIOs).
Additionally, scaffolds of the invention may optionally comprise antithrombotic agents such as antivitamin K or aspirin, antiplatelet agents such as aspirin, thienopyridine, dipyridamole or clopidogrel (that selectively and irreversibly inhibits adenosine diphosphate (ADP)-induced platelet aggregation) or anticoagulant agent such as heparin or fucoidan. The combination of heparin (anticoagulant) and tirofiban (antiplatelet agent) has been shown to be effective in reducing both thrombus and thromboemboli and may be incorporated. Genistein, a potential isoflavone which possesses dose-dependent antiplatelet and antiproliferative properties and inhibits collagen-induced platelet aggregation responsible for primary thrombosis, may also be incorporated. Methods for using the scaffolds of the invention;
Scaffolds of the invention are especially suited for tissue engineering, repair or regeneration. A difference in porosity may facilitate migration of different cell types to the appropriate regions of the scaffold. In another embodiment, a difference in porosity may facilitate development of appropriate cell-to-cell connections among the cell types comprising the scaffold, required for appropriate structuring of the developing/repairing/regenerating tissue. For example, cell processes extension may be accommodated more appropriately via the varied porosity of the scaffolding material. Therefore, the scaffold may comprise cells of any tissue.
In particular embodiment, the cells are seeded on said scaffold. In another embodiment, the scaffolds of the invention are submerged in a culture solution comprising the desired cells for an amount of time sufficient to enable penetration of the cells throughout the scaffold,
In another embodiment, scaffold of the invention is capable of supporting the viability and the growth of seeded cells in culture over long periods of time without inducing differentiation.
In another embodiment, scaffold of the invention provides an environment for unstimulated cell growth (without activation by growth stimulants)
In another embodiment, scaffold of the invention can be used to study physiological and pathological processes such as tissue growth, bone remodeling, wound healing, tumorigenesis (including migration and invasion), differentiation and angiogenesis. Scaffold allows the creation of defined and controlled environments where specific processes can be modulated and studied in a controlled manner free of endogenous factors. In particular, scaffold of the invention can be used for 3D culture for diagnostic or toxicological dosages. In this embodiment, the scaffold of the invention would allow evaluation of the toxicity of a product directly on cells present in a 3D environment. In said embodiment, the scaffold of the invention is used for cultivating cells useful for the evaluation of the toxicity and/or pharmacology of a product, such as hepatocytes, embryonic stem cells, epithelial cells, keratinocytes, or induced pluripotent stem cells (iPS cells).
In another embodiment, scaffold of the invention is capable of supporting growth and differentiation of cell types in vitro and in vivo.
In another embodiment, the cells are stem or progenitor cells. In another embodiment the cells may include but are not limited to chondrocytes; fibrochondrocytes; osteocytes; osteoblasts; osteoclasts; synoviocytes; bone marrow cells; mesenchymal cells; epithelial cells, hepatocytes, muscle cells; stromal cells; stem cells; embryonic stem cells; precursor cells derived from adipose tissue; peripheral blood progenitor cells; stem cells isolated from adult tissue; induced pluripotent stem cells (iPS cells); genetically transformed cells; a combination of chondrocytes and other cells; a combination of osteocytes and other cells; a combination of synoviocytes and other cells; a combination of bone marrow cells and other cells; a combination of mesenchymal cells and other cells; a combination of stromal cells and other cells; a combination of stem cells and other cells; a combination of embryonic stem cells and other cells; a combination of progenitor cells isolated from adult tissue and other cells; a combination of peripheral blood progenitor cells and other cells; a combination of stem cells isolated from adult tissue and other cells; and a combination of genetically transformed cells and other cells.
In another embodiment, any of these cells for use in the scaffolds and methods of the invention, may be genetically engineered to express a desired molecule, such as for example green fluorescent protein (GFP), reporter gene (luciferase, phosphatise alkaline), heparin binding growth factor (HBGF), transforming growth factor alpha or beta (TGF.beta.), alpha fibroblastic growth factor (FGF), epidermal growth factor (TGF), vascular endothelium growth factor (VEGF) and SDF-1 , some of which are also angiogenic factors. In another embodiment expressed factors include hormones such as insulin, glucagon, and estrogen. In another embodiment factors such as nerve growth factor (NGF) or muscle morphogenic factor (MMF), or in another embodiment, TNF alpha/beta are expressed.
In a particular embodiment, scaffolds of the invention are suitable to prepare vascular substitutes to replace compromised arteries as described for example, in Chaouat et al. (Chaouat M, Le Visage C, Autissier A, Chaubet F, Letourneur D. The evaluation of a small-diameter polysaccharide-based arterial graft in rats. Biomaterials. 2006 Nov;27(32):5546-53. Epub 2006 JuI 20.). Such substitutes may be prepared according to the methods of the invention by using a mould as above described. Such substitutes may then comprise a population of cells to reconstruct in vitro or in vivo a vessel. In another embodiment the cells may include but are not limited to Mesenchymal Stem Cells (MSC), Endothelial Progenitor cells (EPCs), endothelial cells, fibroblastic cells and smooth muscle cells.
In another particular embodiment, scaffolds of the invention are suitable to prepare cartilage or bone implants. In such a way, the scaffolds of the invention may be loaded with chondrocytes, osteocytes; osteoblasts; osteoclasts; vascular cells or mixtures thereof, and may be cultured in presence of differentiating agents.
The site of implantation is dependent on the diseased/injured tissue that requires treatment. For example, to treat structural defects in articular cartilage, meniscus, and bone, the cell-seeded composite scaffold will be placed at the defect site to promote repair of the damaged tissue.
In case of central nervous system (CNS) injuries, the composite scaffold can be seeded with a combination of adult neuronal stem cells, embryonic stem cells, glial cells and Sertoli cells. In the preferred embodiment, the composite scaffold can be seeded with Sertoli cells derived from transformed cell lines, xenogeneic or allogeneic sources in combination with neuronal stem cells. The Sertoli cells can be cultured with the composite scaffold for a period before addition of stem cells and subsequent implantation at the site of injury. This approach can circumvent one of the major hurdles of cell therapy for CNS applications, namely the survival of the stem cells following transplantation. A composite scaffold that entraps a large number of Sertoli cells can provide an environment that is more amenable for the survival of stem cells.
Accordingly, the porous polysaccharide scaffold, which is prepared according to the present invention, can be effectively used as a raw material for fabricating artificial tissues or organs such as artificial blood vessels, artificial bladder, artificial esophagus, artificial nerves, artificial hearts, prostatic heart valves, artificial skins, orthopedic implants, artificial muscles, artificial ligaments, artificial respiratory organs, etc. Further, the porous polysaccharide scaffold of the present invention can be prepared in the form of a hybrid tissue by blending or incorporating on or into other types of biomaterials and with functional cells derived from tissues or organs. It may have various biomedical applications, for example, to maintain cell functions, tissue regeneration, etc.
Alternatively scaffolds of the invention may be used for cell delivery. Actually, scaffolds of the invention may be used as a raw material for preparing cell delivery systems that can be administered to a subject for therapeutic or diagnostic purposes. In a particular embodiment, scaffolds of the invention may be used to prepare a patch, a biofilm or a dressing that can be loaded with cells. For example, scaffolds of the invention may used to prepare a dressing that can be applied on the skin, for reconstructing or healing the skin. Alternatively, said dressing may used to be applied on the heart of a subject for treating ischemia (myocardial infarction). In those embodiments, the cells that are entrapped in the scaffold can thus migrate into the targeted tissue or organ.
In another embodiment, scaffolds of the invention may be used for culturing cells. Cells may then be stimulated to undergo growth of differentiation or other physiological processes by the addition of appropriate growth factors. Culture medium containing one or more cytokines, growth factors, hormones or a combination thereof, may be used for maintaining cells in an undifferentiated state, or for differentiating cells into a particular pathway.
More particularly, the scaffold of the invention may be used for producing molecules of interest. Actually, scaffolds of the invention may be used to provide a biological environment for the anchorage of cells in a bioreactor, so that the cells can produced the desired molecules. The scaffolds of the invention provide mechanical and biochemical protection of the cultured cells.
The scaffolds may thus serve as a cell reservoir for producing desired molecules such as proteins, organic molecules, and nucleotides. For example, proteins of interest include but are not limited to growth factors, hormones, signal molecules, inhibitors of cell growth, and antibodies. Scaffolds of the invention are particularly interesting for producing monoclonal antibodies. Scaffolds of the invention may be also suitable to produce organic molecules such as flavours, therapeutic molecules...
In this purpose, the scaffolds of the invention may be loaded with any type of cells, including prokaryotic and eukaryotic cells. For examples, scaffolds of the invention may be load with bacteria, yeast cells, mammalian cells, insect cells, plant cells, etc. Specific examples include E.coli, Kluyveromyces or Saccharomyces yeasts, mammalian cell lines (e.g., Vero cells, CHO cells, 3T3 cells, COS cells, etc.) as well as primary or established mammalian cell cultures (e.g., produced from lymphoblasts, fibroblasts, embryonic cells, epithelial cells, nervous cells, adipocytes, etc.). More particularly, the invention contemplates the use of established cell lines such as hybridomas. Alternatively, the cells may be genetically engineered to express a desired molecule as described above.
The scaffold of the invention may be loaded with cells, cultured for a certain period of time then the cells can be retrived/extracted/separated from the scaffold for further use, such as therapeutic or diagnostic applications or cell analysis. Separation of the cells from the scaffold may involve the use of enzymes that could degrade the scaffold, such as pullulanase and/or the use of enzymes that could detach the cells such as collagenase, elastase, trypsin or cell-detaching solutions such as EDTA. The invention will further be illustrated in view of the following figures and examples.
FIGURES:
Figure 1 : A porous scaffold obtained as in Example 1 (Scale: 6 mm)
Figure 2: A porous scaffold obtained as in Example 1 : scanning Electron Microscopy analysis of the scaffold (right image, scale: 200 microns).
Figure 3: Formazan absorbance (570 nm) at day 1 as a function of the initial number of cells seeded on porous scaffolds.
EXAMPLES:
Example 1 : Polysaccharides-based scaffolds preparation:
Polysaccharide-based scaffolds were prepared using using a mixture of pullulan/dextran 75:25 (pullulan, MW 200,000, Hayashibara Inc., Okayama, Japan; dextran MW 500,000, Pharmacia). A polysaccharide solution was prepared by dissolving 9 gr of pullulan and 3 gr of dextran into 40 mL of distilled water. Sodium carbonate (8 g) was then added to the polysaccharide solution and stirring was maintained until a homogeneous mixture was obtained. Chemical cross-linking of polysaccharide was carried out using the cross-linking agent trisodium trimetaphosphate STMP (Sigma, St Louis) under alkaline condition. Briefly, one millilitre of 10M sodium hydroxide was added to 10 g of the polysaccharide solution, followed by the addition of one millilitre of water containing 300 mg of STMP. The mixture was then poured into petri dishes (Nunclon®, #150288) and incubated at 500C for 15 min. Resulting hydrogels were immediately immersed into a large beaker containing a 20% acetic acid solution, for at least 30 minutes. Resulting scaffolds were washed extensively with phosphate buffer saline pH 7.4 then with distilled water for at least 2 days. After a freeze-drying step, porous scaffolds were stored at room temperature until use. Scanning Electron Microscopy analysis confirmed the porosity of the scaffolds (Figure 1 and 2).
Example 2: Types of polysaccharides: Porous scaffolds were prepared as described in example 1 , using different types and ratios of polysaccharides, while keeping the total amount of polysaccharide at a constant value. Polysaccharides were either pullulan, dextran 500, fucoidan LMW (Low Molecular Weight) and fucoidan HMW (High Molecular Weight).
Figure imgf000019_0001
Solubilization (+++ indicates a complete solubilization of the polysaccharides) and viscosity of the resulting polysaccharide solution (+++ indicates a very high viscosity of the solution) were visually assessed. In all cases, porous scaffolds were obtained at the end of the protocol.
Example 3: Porogen amount: Porous scaffolds were prepared as described in example 1 , while varying the amount of the porogen agent. Briefly, 2, 4 or 8 gr of sodium carbonate were added to the pullulan/dextran solution.
Figure imgf000019_0002
Solubilization (++ indicates a complete solubilization of the polysaccharides), viscosity of the resulting polysaccharide solution (+++ indicates that a very high viscosity of the solution) and porosity were visually assessed. For scaffolds prepared with the lowest amount of porogen (2 g), the effervescence process was moderate, as compared to the effervescence obtained with 4g and 8g of porogen agent. In all cases, porous scaffolds were obtained at the end of the protocol.
Example 4: Cross-linker concentration: Porous scaffolds were prepared as described in example 1 , while varying the amount of the cross-linking agent from 200 mg to 500 mg.
Figure imgf000020_0001
Solubilization (+++ indicates a complete solubilization of the polysaccharides), viscosity of the resulting polysaccharide solution (+++ indicates that a very high viscosity of the solution) and porosity were visually assessed. In all cases, porous scaffolds were obtained at the end of the protocol.
Example 5: Cell loading into the porous scaffolds: Human bone marrow
Mesenchymal Stem Cells (hMSC) were cultured on scaffolds prepared as in Example 1. A circular punch was used to cut 6mm diameter and 1mm thickness round-shaped porous scaffolds. Culture medium consisted of low glucose DMEM (Gibco, Life Technology, New York) with 10% fetal bovine serum and 1% penicillin/streptomycin (Sigma). After cell trypsinization, rehydration of the dried scaffold was performed with 20 μL of cell suspension (106 cells/scaffold). Samples were then maintained in 1 ml_ of culture medium for up to 1 week. Non-seeded porous scaffolds incubated in culture medium were used as controls.
A metabolic assay (MTT, 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyl tetrazolium bromide, Sigma) was performed to assess the cell viability. Briefly, a 5 mg/mL stock solution of MTT (Sigma) was mixed 1 :10 with DMEM. Scaffolds were incubated for 3 h at 37C with 1 mL of the reagent solution. After washing the scaffolds with PBS, the formazan crystals were solubilized in 0.3 mL of
Isopropranol/HCI 0,04M. Absorbance was recorded at 590 nm with a microplate reader (Multiskan, Thermo Electron Corporation, Waltham, MA). Absorbance at day 1 was directly proportional to the initial number of cells seeded in the scaffolds
(figure 3).
Similar experiments were successfully carried out with other cell types such as primary vascular smooth muscle cells and endothelial cells from animal and human origin.
Example 6: confocal analysis of cell behavior within the porous scaffolds: Fluorescent scaffolds were prepared as in example 1 , by adding a small amount (5 mg) of FITC-dextran to the polysaccharide solution. Fluorescent scaffolds were seeded as in Example 5, with hMSC labeled with a fluorescent marker (PKH26, SIGMA P9691 ) according to the manufacturer's instructions). Confocal imaging confirmed the porous structure of the scaffold.
Example 7: Cell Viability by Live and Dead Assay: Confocal imaging was used to assess the cell viability with a live/dead assay (Calbiochem, San Diego, CA), based on the use of two fluorescent probes that measure the cell membrane permeability: a cell-permeable green fluorescent dye to stain live cells (calcein AM) and a cell nonpermeable red fluorescent dye (propidium iodide) to stain dead cells. At day 7, most of the cells were live cells, with only few dead cells found within the scaffolds. Example 8 : influence of the porogen agent on scaffold porosity Porous scaffolds were prepared as described in example 1 , while varying the amount and the nature of the porogen agent. For confocal analysis of fluorescent porous scaffolds, 5 mg of FITC-dextran were added to the polysaccharide solution. Optical sections were acquired using a Zeiss LSM 510 confocal microscope (Carl Zeiss, Oberkochen, Germany), equipped with a 10x Plan-NeoFluar objective lens (numerical aperture of 0.3) (Carl Zeiss). FITC-dextran was excited at 488 nm with an argon laser and its fluorescent emission was selected by a 505-530 nm bandpass filter. Pore size was assessed with ImageJ® software. Void volume was calculated with a statistics/volume measurement module from Amira® software and results are expressed as a percentage of the scaffold volume.
Figure imgf000022_0001
Example 9 : positively charged polysaccharide
Positively charged porous scaffolds were prepared using using DEAE-Dextran as the only polysaccharide. Briefly, DEAE-dextran solution was prepared by dissolving 1 g of DEAE-dextran (Fluka reference #30461) into 1.5 ml_ of distilled water. Sodium carbonate (100mg) was then added to the polysaccharide solution and stirring was maintained until a homogeneous mixture was obtained. Chemical cross-linking of polysaccharide was carried out using the cross-linking agent trisodium trimetaphosphate STMP (Sigma, St Louis) under alkaline condition. Briefly, 150μL of 1OM sodium hydroxide was added to the polysaccharide solution, followed by the addition of 150μL of water containing 45 mg of STMP. The mixture was then poured into petri dishes (Nunclon®, #150288) and incubated at 500C for 15 min. Resulting hydrogels were immediately immersed into a large beaker containing a 20% acetic acid solution, for at least 30 minutes. Resulting scaffolds were washed extensively with phosphate buffer saline pH 7.4 then with distilled water for at least 2 days. After a freeze-drying step, porous scaffolds were obtained and stored at room temperature until use.
Example 10 : negatively charged polysaccharide
Negatively charged porous scaffolds were prepared by adding fucoidan (Sigma reference #F5631) to a pullulan/dextran mixture. Briefly, a polysaccharide solution was prepared by dissolving 9 g of pullulan and 3 g of dextran into 40 ml_ of distilled water, then adding 1.2g of fucoidan into the polysaccharide solution. Sodium carbonate (8 g) was then added to the polysaccharide solution and the cross- linking process was carried out as described in Example 1 to obtain a 3D scaffold that contains a negatively charged polysaccharide.
Example 11 : differentiation of human mesenchymal stem cells into chondrocyte-like cells in 3D scaffolds
Human bone marrow Mesenchymal Stem Cells (hMSC) were cultured on scaffolds prepared as in Example 1 in serum-free chondrogenic medium. Chondrogenic medium consisted of DMEM supplemented with 10 ng/ml TGF-β3 (Oncogene, Cambridge, MA), 100 nM dexamethasone (Sigma, St Louis, MO), 170 μM ascorbic acid 2-phosphate (Sigma, St Louis, MO) and 5 mL of ITS-plus (Collaborative Biomedical Products, Bedford, MA). After 3 weeks of culture, seeded scaffolds were fixed in formaldehyde 10% then cryosectioned. Frozen sections were stained with either 0.05% (w/v) toluidine blue or with 0.1% safranin O solution. A strong positive staining for extracellular matrix synthesis was observed, indicating MSC differentiation into cartilage cells. Example 12 : 3D culture of hepatocytes
HepG2 cells, human hepatocellular carcinoma cells, were cultured in low glucose DMEM (Gibco, Life Technology, New York, USA) with 10% fetal bovine serum and 1% penicillin/streptomycin (Sigma) on scaffolds prepared as in Example 1. A circular punch was used to cut 6mm diameter and 1 mm thickness round-shaped porous scaffolds. After cell trypsinization, rehydration of the dried scaffold was performed with 20 μL of cell suspension (85,000 cells/scaffold). Samples were then maintained in 1 ml_ of culture medium for up to 1 week. Non-seeded porous scaffolds incubated in culture medium were used as controls. Hepatocyte spheroids formation was observed after 4 days of culture. Cell viability in spheroids was assayed using Calcein AM (Calbiochem, San Diego CA, USA) which is a polyanionic dye hydrolyzed by live cells thus producing an intense uniform green fluorescence (wavelength 485-535 nm), according to the manufacturer's instructions. The seeded scaffolds contained living hepatocytes suitable for pharmaco-toxicologicai assays.

Claims

1. A method for preparing a porous scaffold which comprises the steps consisting of :
a) preparing an alkaline aqueous solution comprising an amount of at least one polysaccharide, an amount of a covalent cross- linking agent and an amount of a porogen agent
b) transforming the solution into a hydrogel by placing said solution at a temperature from about 4°C to about 800C for a sufficient time to allow the cross-linking of said amount of polysaccharide
c) submerging said hydrogel into an aqueous solution
d) washing the porous scaffold obtained at step c).
2. The method of claim 1 wherein said polysaccharide is selected from the group consisting of dextran, agar, alginic acid, hyaluronic acid, pullulan, inulin, heparin, fucoidan, chitosan and mixtures thereof .
3. The method according to any one of claims 1 to 2 wherein said covalent cross-linking agent is selected from the group consisting of trisodium trimetaphosphate (STMP), phosphorus oxychloride (POCI3), epichlorohydrin, formaldehydes, hydrosoluble carbodiimides, and glutaraldehydes..
4. The method according to any of claims 1 to 3 wherein the porogen agent is selected in the group consisting of ammonium carbonate, ammonium bicarbonate, calcium carbonate, sodium carbonate, and sodium bicarbonate and mixtures thereof and the liquid of step b) is an acidic solution.
5. The method according to any of claims 1 to 4 wherein the weight ratio of the polysaccharide to the porogen agent is in the range from 6:1 to 1 :1.
6. The method according to any of claims 1 to 5 wherein the weight ratio of the polysaccharide to the cross-linking agent is in the range from 15:1 to 1 :1.
7. The method according to any one of claims 1 to 6 wherein the solution of step a) is poured in a mould before step b).
8. The method according to any one of claims 1 to 7 wherein said scaffold is shaped.
9. A porous scaffold obtainable by the method according to any one of claims 1 to 8.
10. The porous scaffold of claim 9 wherein the size of the pores is comprised between 1 μm and 500μm.
1 1 . The porous scaffold according to claim 9 or 10 wherein the porosity is in the range from 4% to 50%.
12. The porous scaffold according to any one of claims 9 to 1 1 loaded with an amount of cells.
13. The porous scaffold according to claim 12 wherein the cells are selected in the group consisting of yeast cells, mammalian cells, insect cells, and plant cells.
14. The porous scaffold according to claim 13 wherein mammalian cells are selectioned from the group consisting of chondrocytes: fibrochondrocytes; osteocytes; osteoblasts; osteoclasts; synoviocytes; bone marrow cells; epithelial cells, hepatocytes, mesenchymal cells; stromal cells; muscle cells, stem cells; embryonic stem cells; precursor cells derived from adipose tissue; peripheral blood progenitor cells; stem cells isolated from adult tissue; and genetically transformed cells.
15. The porous scaffold according to any one of claims 9 to 14 for tissue engineering, cell culture and cell delivery.
16. A vascular substitute made with a scaffold as defined according to any one of claims 9 to 12.
17. Cartilage or bone implants made with a scaffold as defined according to any one of claims 9 to 12.
18. Use of a scaffold as defined according to any one of claims 9 to 12 for the evaluation of the toxicity and/or pharmacology of a product.
19. A controlled release system of an active agent made with a scaffold as defined according to any one of claims 9 to 12.
PCT/EP2008/063671 2007-10-11 2008-10-10 Method for preparing porous scaffold for tissue engineering, cell culture and cell delivery WO2009047346A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
ES08838297T ES2408554T3 (en) 2007-10-11 2008-10-10 Method for preparing porous framework for tissue engineering, cell culture and cell supply
CA2701858A CA2701858C (en) 2007-10-11 2008-10-10 Method for preparing porous scaffold for tissue engineering, cell culture and cell delivery
EP08838297.3A EP2203194B1 (en) 2007-10-11 2008-10-10 Method for preparing porous scaffold for tissue engineering, cell culture and cell delivery
US12/681,682 US9522218B2 (en) 2007-10-11 2008-10-10 Method for preparing porous scaffold for tissue engineering, cell culture and cell delivery
JP2010528419A JP5579609B2 (en) 2007-10-11 2008-10-10 Methods for preparing porous scaffolds for tissue engineering, cell culture, and cell delivery
CN200880111763A CN101848738A (en) 2007-10-11 2008-10-10 Method for preparing porous scaffold for tissue engineering, cell culture and cell delivery
HK10109188.1A HK1144182A1 (en) 2007-10-11 2010-09-27 Method for preparing porous scaffold for tissue engineering, cell culture and cell delivery
US15/347,595 US20170080123A1 (en) 2007-10-11 2016-11-09 Method for Preparing Porous Scaffold for Tissue Engineering, Cell Culture and Cell Delivery
US16/363,471 US11511016B2 (en) 2007-10-11 2019-03-25 Method for preparing porous scaffold for tissue engineering, cell culture and cell delivery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07301452.4 2007-10-11
EP07301452 2007-10-11

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/681,682 A-371-Of-International US9522218B2 (en) 2007-10-11 2008-10-10 Method for preparing porous scaffold for tissue engineering, cell culture and cell delivery
US15/347,595 Division US20170080123A1 (en) 2007-10-11 2016-11-09 Method for Preparing Porous Scaffold for Tissue Engineering, Cell Culture and Cell Delivery

Publications (1)

Publication Number Publication Date
WO2009047346A1 true WO2009047346A1 (en) 2009-04-16

Family

ID=38925478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/063671 WO2009047346A1 (en) 2007-10-11 2008-10-10 Method for preparing porous scaffold for tissue engineering, cell culture and cell delivery

Country Status (10)

Country Link
US (3) US9522218B2 (en)
EP (1) EP2203194B1 (en)
JP (2) JP5579609B2 (en)
KR (1) KR101474852B1 (en)
CN (2) CN101848738A (en)
CA (1) CA2701858C (en)
ES (1) ES2408554T3 (en)
HK (1) HK1144182A1 (en)
SG (1) SG185279A1 (en)
WO (1) WO2009047346A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012028620A1 (en) 2010-08-31 2012-03-08 INSERM (Institut National de la Santé et de la Recherche Médicale) Porous polysaccharide scaffold comprising nano-hydroxyapatite and use for bone formation
US20130028984A1 (en) * 2011-07-28 2013-01-31 Lifecell Corporation Natural tissue scaffolds as tissue fillers
CN102921046A (en) * 2012-10-31 2013-02-13 川北医学院第二临床医学院 Preparation method of chitosan hydrogel stent for tissue engineering
CN103705975A (en) * 2013-12-27 2014-04-09 江苏创基新材料有限公司 Preparation method of silane coupling agent cross-linked hyaluronic acid porous scaffold
US8858628B2 (en) 2007-06-01 2014-10-14 Allergan, Inc. Biological tissue growth through induced tensile stress
WO2014174213A1 (en) * 2013-04-24 2014-10-30 Ayawane Co-crosslinked phosphated native and/or functionalized polysaccharide-based hydrogel
WO2015086640A1 (en) 2013-12-10 2015-06-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for adhering tissue surfaces and materials and biomedical uses thereof
US9248384B2 (en) 2013-10-02 2016-02-02 Allergan, Inc. Fat processing system
US9867939B2 (en) 2013-03-12 2018-01-16 Allergan, Inc. Adipose tissue combinations, devices, and uses thereof
WO2019033646A1 (en) * 2017-08-18 2019-02-21 四川大学 Porous scaffold provided with surface orientation function modification coating and preparation method therefor
US10265477B2 (en) 2013-05-23 2019-04-23 Allergan, Inc. Mechanical syringe accessory
US10307512B2 (en) 2014-12-15 2019-06-04 Teoxane Process for preparing hydrogels
US10433928B2 (en) 2015-03-10 2019-10-08 Allergan Pharmaceuticals Holdings (Ireland) Unlimited Company Multiple needle injector
US10596321B2 (en) 2016-04-08 2020-03-24 Allergan, Inc. Aspiration and injection device
US10723999B2 (en) 2013-12-20 2020-07-28 Kallistem Process for implementing in vitro spermatogenesis and associated device
US10792427B2 (en) 2014-05-13 2020-10-06 Allergan, Inc. High force injection devices
WO2021249974A1 (en) * 2020-06-09 2021-12-16 INSERM (Institut National de la Santé et de la Recherche Médicale) Fucoidan-functionalized polysaccharide particles with t-pa for targeted thrombolytic therapy
US11642415B2 (en) 2017-03-22 2023-05-09 Ascendis Pharma A/S Hydrogel cross-linked hyaluronic acid prodrug compositions and methods

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9522218B2 (en) * 2007-10-11 2016-12-20 INSERM (Institut National de la Santé et de la Recherche Médicale) Method for preparing porous scaffold for tissue engineering, cell culture and cell delivery
WO2009047347A1 (en) * 2007-10-11 2009-04-16 Inserm (Institut National De Sante Et De La Recherche Medicale) Method for preparing porous scaffold for tissue engineering
US20110300203A1 (en) * 2008-10-22 2011-12-08 Trustees Of Columbia University In The City Of New York Cartilage regeneration without cell transplantation
US20110071079A1 (en) * 2009-09-21 2011-03-24 Guillermo Ameer Self-assembling poly(diol citrates)-protein hydrogels
US20110285047A1 (en) * 2009-10-20 2011-11-24 Keng-Hui Lin Method and device of fabricating three dimensional scaffolds
CN202036367U (en) * 2011-01-17 2011-11-16 王江宁 Artificial muscle prosthesis implanted into human body and capable of elastically fixing joint
CN102266588B (en) * 2011-07-28 2013-07-10 西安交通大学 Preparation method of cell-loaded microchannel hydrogel based on sucrose fiber template
JP6050033B2 (en) * 2012-06-05 2016-12-21 日本メナード化粧品株式会社 Differentiation inducer from stem cells to ectoderm cells
US9345817B2 (en) 2013-02-28 2016-05-24 Arthrex, Inc. Modified porous materials and methods of creating interconnected porosity in materials
CN104147641B (en) * 2014-07-11 2016-08-31 深圳职业技术学院 A kind of for personalized bone renovating material and its preparation method
EP3224341B1 (en) 2014-11-25 2021-05-19 Corning Incorporated Cell culture media extending materials and methods
WO2016179588A1 (en) * 2015-05-07 2016-11-10 President And Fellows Of Harvard College Dynamic immiscible liquid interfaces for cell sheet detachment
US11655448B2 (en) 2015-05-29 2023-05-23 Lifenet Health Placenta-derived matrix and methods of preparing and use thereof
CN105616005A (en) * 2015-12-31 2016-06-01 北京理工大学 Device and method for assembling artificial microtissues based on machine-human cooperated operation
WO2017132233A1 (en) * 2016-01-25 2017-08-03 The Research Foundation For The State University Of New York Use of vascular cells to create the conventional outflow tract
US20190160198A1 (en) * 2016-07-18 2019-05-30 Duke University Bioabsorbable dermal regeneration matrix and methods of making and using same
CN106512088B (en) * 2016-12-09 2019-02-26 中国医学科学院生物医学工程研究所 Phosphatide-glycosaminoglycan bionic extracellular matrix nanometer film and the preparation method and application thereof
CN106986956B (en) * 2017-04-14 2020-12-01 西南大学 Preparation method of cross-linked inulin
CN109402047A (en) * 2017-09-18 2019-03-01 武汉原生原代生物医药科技有限公司 Promote tissue adhension and growth bioadhesive and its preparation method and application
CN107875452A (en) * 2017-10-12 2018-04-06 广州贝奥吉因生物科技有限公司 Porous compound support frame for bone tissue engineer and preparation method thereof
CN107955188B (en) * 2017-12-15 2020-10-16 武汉理工大学 Modified hydroxyethyl cellulose super-absorbent gel and preparation method and application thereof
CN109316623B (en) * 2018-09-19 2021-08-27 华熙生物科技股份有限公司 Double-layer porous biodegradable material coated with active molecules and preparation method and application thereof
US11927393B2 (en) * 2020-04-30 2024-03-12 Dci Donor Services, Inc. Fiber slurry tray and process
CN111748120A (en) * 2020-06-01 2020-10-09 温州医科大学 Polydopamine-doped glucan hydrogel porous scaffold, and preparation method and application thereof
CN111658825B (en) * 2020-06-15 2021-03-30 四川大学 Valve material with long-acting antithrombotic performance and preparation method thereof
KR20210157023A (en) * 2020-06-19 2021-12-28 대구가톨릭대학교산학협력단 Artificial vessel having fibrinolytic activity and preparation method thereof
CN112245662A (en) * 2020-10-10 2021-01-22 中山大学附属第五医院 Preparation method of Hep-HA composite porous material and application of Hep-HA composite porous material in construction of root canal built-in support
CN112778543B (en) 2020-12-30 2021-12-03 江南大学 Preparation method and application of crosslinked hydrogel for muscle stem cell culture
KR102409432B1 (en) * 2021-10-28 2022-06-17 한스바이오메드 주식회사 Artificial blood vessel and preparation method thereof
KR102468362B1 (en) * 2021-10-28 2022-11-21 한스바이오메드 주식회사 Artificial blood vessel and preparation method thereof
CN115671367A (en) * 2022-11-04 2023-02-03 河北本源生物科技有限公司 Active factor dressing containing mesenchymal stem cells and preparation method thereof
KR102566375B1 (en) * 2022-11-16 2023-08-14 주식회사 씨앤에프에이 Apparatus for manufacturing cultured meat support including heating conveyor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840777A (en) * 1992-06-19 1998-11-24 Albany International Corp. Method of producing polysaccharide foams
WO2001005333A1 (en) * 1999-07-20 2001-01-25 Medtronic, Inc. Foam-type vascular prosthesis with well-defined angio-permissive open porosity
EP1166987A2 (en) * 2000-06-23 2002-01-02 Ethicon, Inc. Methods of making micropatterned foams
US20030064089A1 (en) * 2001-09-04 2003-04-03 Vijay Kumar Regenerated cellulose and oxidized cellulose membranes as potential biodegradable platforms for drug delivery and tissue engineering
US20060153814A1 (en) * 2005-01-07 2006-07-13 Industrial Technology Research Institute Porous, matrix, preparation thereof, and methods of using the same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69226203T2 (en) * 1991-12-20 1998-12-10 Allied Signal Inc MATERIALS WITH LOW DENSITY AND HIGH SPECIFIC SURFACE AND ARTICLES MOLDED THEREOF FOR USE IN METAL RECOVERY
NO953115L (en) * 1995-06-07 1996-12-09 Albany Int Research Process for the preparation of polysaccharide foam
JPH1052268A (en) * 1996-05-01 1998-02-24 Kanebo Ltd Carrier for microorganism and its production
US6511650B1 (en) * 1999-04-09 2003-01-28 The Regents Of The University Of Michigan Preparing porous hydrogel products
FR2807326B1 (en) * 2000-04-10 2002-08-23 Therapeutiques Substitutives VASCULAR PROSTHESIS IMPREGNATED WITH CROSSLINKED DEXTRAN AND / OR A FUNCTIONALIZED DERIVATIVE OF CROSSLINKED DEXTANE AND PROCESS FOR PREPARING THE SAME
JP4493826B2 (en) * 2000-09-29 2010-06-30 株式会社クラレ Method for producing polysaccharide sponge and polysaccharide sponge
AU2003234159A1 (en) * 2002-04-22 2003-11-03 Purdue Research Foundation Hydrogels having enhanced elasticity and mechanical strength properties
JP2004024724A (en) * 2002-06-28 2004-01-29 Biopol Co Ltd Micro-porous foam dressing material with multilayer structure, and production method therefor
CA2523246C (en) * 2003-04-25 2009-12-01 Kos Life Sciences, Inc. Formation of strong superporous hydrogels
GB0318182D0 (en) * 2003-08-04 2003-09-03 Univ Liverpool Porous material and method of production thereof
WO2006031196A1 (en) * 2004-09-14 2006-03-23 Agency For Science, Technology And Research Porous biomaterial-filler composite and a method for making the same
WO2007061058A1 (en) * 2005-11-24 2007-05-31 Osaka University Stimuli-responsive degradable gel
US20100291219A1 (en) * 2007-06-21 2010-11-18 Massachusetts Institute Of Technology Methods and compositions relating to progenitor cells
US9522218B2 (en) * 2007-10-11 2016-12-20 INSERM (Institut National de la Santé et de la Recherche Médicale) Method for preparing porous scaffold for tissue engineering, cell culture and cell delivery
WO2009047347A1 (en) * 2007-10-11 2009-04-16 Inserm (Institut National De Sante Et De La Recherche Medicale) Method for preparing porous scaffold for tissue engineering
US20130224277A1 (en) * 2010-08-31 2013-08-29 Institut National De La Sante Et De La Recherche Medicale (Inserm) Porous polysaccharide scaffold comprising nano-hydroxyapatite and use for bone formation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840777A (en) * 1992-06-19 1998-11-24 Albany International Corp. Method of producing polysaccharide foams
WO2001005333A1 (en) * 1999-07-20 2001-01-25 Medtronic, Inc. Foam-type vascular prosthesis with well-defined angio-permissive open porosity
EP1166987A2 (en) * 2000-06-23 2002-01-02 Ethicon, Inc. Methods of making micropatterned foams
US20030064089A1 (en) * 2001-09-04 2003-04-03 Vijay Kumar Regenerated cellulose and oxidized cellulose membranes as potential biodegradable platforms for drug delivery and tissue engineering
US20060153814A1 (en) * 2005-01-07 2006-07-13 Industrial Technology Research Institute Porous, matrix, preparation thereof, and methods of using the same

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8858628B2 (en) 2007-06-01 2014-10-14 Allergan, Inc. Biological tissue growth through induced tensile stress
JP2019069231A (en) * 2010-08-31 2019-05-09 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル Porous polysaccharide scaffold comprising nano-hydroxyapatite and use for bone formation
JP2016187585A (en) * 2010-08-31 2016-11-04 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル Porous polysaccharide scaffold containing nanohydroxyapatite and use for bone formation
JP2013540465A (en) * 2010-08-31 2013-11-07 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル Porous polysaccharide scaffolds containing nanohydroxyapatite and use for bone formation
JP2021137597A (en) * 2010-08-31 2021-09-16 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル Porous polysaccharide scaffold comprising nano-hydroxyapatite and use for bone formation
JP2017221738A (en) * 2010-08-31 2017-12-21 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル Porous polysaccharide scaffold comprising nano-hydroxyapatite, and use for bone formation
US9757494B2 (en) 2010-08-31 2017-09-12 Institut National De La Sante Et De La Recherche Medicale (Inserm) Porous polysaccharide scaffold comprising nano-hydroxyapatite and use for bone formation
US10143774B2 (en) 2010-08-31 2018-12-04 INSERM (Institut National de la Santé et de la Recherche Médicale) Porous polysaccharide scaffold comprising nano-hydroxyapatite and use for bone formation
WO2012028620A1 (en) 2010-08-31 2012-03-08 INSERM (Institut National de la Santé et de la Recherche Médicale) Porous polysaccharide scaffold comprising nano-hydroxyapatite and use for bone formation
US9089523B2 (en) * 2011-07-28 2015-07-28 Lifecell Corporation Natural tissue scaffolds as tissue fillers
US10610615B2 (en) 2011-07-28 2020-04-07 Lifecell Corporation Natural tissue scaffolds as tissue fillers
US9504770B2 (en) 2011-07-28 2016-11-29 Lifecell Corporation Natural tissue scaffolds as tissue fillers
US10092677B2 (en) 2011-07-28 2018-10-09 Lifecell Corporation Natural tissue scaffolds as tissue fillers
US20130028984A1 (en) * 2011-07-28 2013-01-31 Lifecell Corporation Natural tissue scaffolds as tissue fillers
CN102921046A (en) * 2012-10-31 2013-02-13 川北医学院第二临床医学院 Preparation method of chitosan hydrogel stent for tissue engineering
US9867939B2 (en) 2013-03-12 2018-01-16 Allergan, Inc. Adipose tissue combinations, devices, and uses thereof
FR3005056A1 (en) * 2013-04-24 2014-10-31 Ayawane HYDROGEL BASED ON NATIVE AND / OR FUNCTIONALIZED POLYSACCHARIDES, CO-RETICULATED PHOSPHATES
WO2014174213A1 (en) * 2013-04-24 2014-10-30 Ayawane Co-crosslinked phosphated native and/or functionalized polysaccharide-based hydrogel
US10265477B2 (en) 2013-05-23 2019-04-23 Allergan, Inc. Mechanical syringe accessory
US10369500B2 (en) 2013-10-02 2019-08-06 Allergan, Inc. Fat processing system
US9248384B2 (en) 2013-10-02 2016-02-02 Allergan, Inc. Fat processing system
WO2015086640A1 (en) 2013-12-10 2015-06-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for adhering tissue surfaces and materials and biomedical uses thereof
EP4159248A1 (en) 2013-12-10 2023-04-05 Institut National de la Santé et de la Recherche Médicale (INSERM) Methods for adhering tissue surfaces and materials and biomedical uses thereof
US10723999B2 (en) 2013-12-20 2020-07-28 Kallistem Process for implementing in vitro spermatogenesis and associated device
CN103705975A (en) * 2013-12-27 2014-04-09 江苏创基新材料有限公司 Preparation method of silane coupling agent cross-linked hyaluronic acid porous scaffold
US10792427B2 (en) 2014-05-13 2020-10-06 Allergan, Inc. High force injection devices
US10307512B2 (en) 2014-12-15 2019-06-04 Teoxane Process for preparing hydrogels
US10433928B2 (en) 2015-03-10 2019-10-08 Allergan Pharmaceuticals Holdings (Ireland) Unlimited Company Multiple needle injector
US10596321B2 (en) 2016-04-08 2020-03-24 Allergan, Inc. Aspiration and injection device
US11890457B2 (en) 2016-04-08 2024-02-06 Allergan, Inc. Aspiration and injection device
US11642415B2 (en) 2017-03-22 2023-05-09 Ascendis Pharma A/S Hydrogel cross-linked hyaluronic acid prodrug compositions and methods
WO2019033646A1 (en) * 2017-08-18 2019-02-21 四川大学 Porous scaffold provided with surface orientation function modification coating and preparation method therefor
WO2021249974A1 (en) * 2020-06-09 2021-12-16 INSERM (Institut National de la Santé et de la Recherche Médicale) Fucoidan-functionalized polysaccharide particles with t-pa for targeted thrombolytic therapy

Also Published As

Publication number Publication date
US11511016B2 (en) 2022-11-29
JP2014140381A (en) 2014-08-07
EP2203194A1 (en) 2010-07-07
US9522218B2 (en) 2016-12-20
JP6005685B2 (en) 2016-10-12
CA2701858C (en) 2016-05-24
US20100221303A1 (en) 2010-09-02
JP2011500118A (en) 2011-01-06
JP5579609B2 (en) 2014-08-27
US20170080123A1 (en) 2017-03-23
CA2701858A1 (en) 2009-04-16
CN101848738A (en) 2010-09-29
HK1144182A1 (en) 2011-02-02
CN104725660A (en) 2015-06-24
ES2408554T3 (en) 2013-06-21
US20200016294A1 (en) 2020-01-16
KR20100080924A (en) 2010-07-13
EP2203194B1 (en) 2013-04-10
KR101474852B1 (en) 2014-12-23
SG185279A1 (en) 2012-11-29

Similar Documents

Publication Publication Date Title
US11511016B2 (en) Method for preparing porous scaffold for tissue engineering, cell culture and cell delivery
US9555164B2 (en) Method for preparing porous scaffold for tissue engineering
Wang et al. Bioactive silk fibroin scaffold with nanoarchitecture for wound healing
Lin et al. Synthesis and characterization of collagen/hyaluronan/chitosan composite sponges for potential biomedical applications
Jose et al. Natural polymers based hydrogels for cell culture applications
Prabaharan et al. Preparation and characterization of poly (L‐lactic acid)‐chitosan hybrid scaffolds with drug release capability
Tsai et al. Fabrication of UV-crosslinked chitosan scaffolds with conjugation of RGD peptides for bone tissue engineering
Lee et al. Advanced gellan gum-based glycol chitosan hydrogel for cartilage tissue engineering biomaterial
NZ548177A (en) A biomimetic composition reinforced by a polyelectrolytic complex of hyaluronic acid and chitosan
Kang et al. Fabrication and Characterization of an Electro‐Compacted Collagen/Elastin/Hyaluronic Acid Sheet as a Potential Skin Scaffold
Demitri et al. Microwave‐induced porosity and bioactivation of chitosan‐PEGDA scaffolds: morphology, mechanical properties and osteogenic differentiation
JP2017507669A (en) Cell culture material, production method and use thereof
Alizadeh et al. Sulfated polysaccharide as biomimetic biopolymers for tissue engineering scaffolds fabrication: Challenges and opportunities
Soranzo et al. Synthesis and characterization of hyaluronan-based polymers for tissue engineering
de Carvalho Development of Hyaluronic Acid, Dextrin and Extracellular Matrix Hydrogels for Cell Expansion

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880111763.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08838297

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12681682

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2701858

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010528419

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008838297

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107009937

Country of ref document: KR

Kind code of ref document: A