JP2011500118A - Methods for preparing porous scaffolds for tissue engineering, cell culture, and cell delivery - Google Patents

Methods for preparing porous scaffolds for tissue engineering, cell culture, and cell delivery Download PDF

Info

Publication number
JP2011500118A
JP2011500118A JP2010528419A JP2010528419A JP2011500118A JP 2011500118 A JP2011500118 A JP 2011500118A JP 2010528419 A JP2010528419 A JP 2010528419A JP 2010528419 A JP2010528419 A JP 2010528419A JP 2011500118 A JP2011500118 A JP 2011500118A
Authority
JP
Japan
Prior art keywords
cells
scaffold
polysaccharide
porous scaffold
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010528419A
Other languages
Japanese (ja)
Other versions
JP5579609B2 (en
Inventor
ヴィサジェ、 カトリーヌ ル
ディディエ ラトゥールヌール、
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universite Paris Diderot Paris 7
Original Assignee
Universite Paris Diderot Paris 7
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Paris Diderot Paris 7 filed Critical Universite Paris Diderot Paris 7
Publication of JP2011500118A publication Critical patent/JP2011500118A/en
Application granted granted Critical
Publication of JP5579609B2 publication Critical patent/JP5579609B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3834Cells able to produce different cell types, e.g. hematopoietic stem cells, mesenchymal stem cells, marrow stromal cells, embryonic stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3839Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by the site of application in the body
    • A61L27/3843Connective tissue
    • A61L27/3847Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3839Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by the site of application in the body
    • A61L27/3843Connective tissue
    • A61L27/3852Cartilage, e.g. meniscus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/507Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials for artificial blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0018Pullulan, i.e. (alpha-1,4)(alpha-1,6)-D-glucan; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0021Dextran, i.e. (alpha-1,4)-D-glucan; Derivatives thereof, e.g. Sephadex, i.e. crosslinked dextran
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0036Galactans; Derivatives thereof
    • C08B37/0039Agar; Agarose, i.e. D-galactose, 3,6-anhydro-D-galactose, methylated, sulfated, e.g. from the red algae Gelidium and Gracilaria; Agaropectin; Derivatives thereof, e.g. Sepharose, i.e. crosslinked agarose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0051Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Fructofuranans, e.g. beta-2,6-D-fructofuranan, i.e. levan; Derivatives thereof
    • C08B37/0054Inulin, i.e. beta-2,1-D-fructofuranan; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0072Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0075Heparin; Heparan sulfate; Derivatives thereof, e.g. heparosan; Purification or extraction methods thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0084Guluromannuronans, e.g. alginic acid, i.e. D-mannuronic acid and D-guluronic acid units linked with alternating alpha- and beta-1,4-glycosidic bonds; Derivatives thereof, e.g. alginates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/08Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • C08J9/283Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum a discontinuous liquid phase emulsified in a continuous macromolecular phase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/026Crosslinking before of after foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/048Elimination of a frozen liquid phase
    • C08J2201/0484Elimination of a frozen liquid phase the liquid phase being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/05Elimination by evaporation or heat degradation of a liquid phase
    • C08J2201/0504Elimination by evaporation or heat degradation of a liquid phase the liquid phase being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/02Foams characterised by their properties the finished foam itself being a gel or a gel being temporarily formed when processing the foamable composition
    • C08J2205/022Hydrogel, i.e. a gel containing an aqueous composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2207/00Foams characterised by their intended use
    • C08J2207/10Medical applications, e.g. biocompatible scaffolds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/02Dextran; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/10Heparin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/12Agar-agar; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • C12N2533/72Chitin, chitosan
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • C12N2533/74Alginate

Abstract

本発明は、組織工学用多孔質足場の調製方法に関する。本発明の他の目的は、上記の方法によって得られる多孔質足場、ならびにその多孔質足場の、組織工学、細胞培養および細胞送達への使用を提供することである。本発明の方法は、a)ある量の少なくとも1種の多糖、ある量の架橋剤、およびある量の孔形成剤を含むアルカリ性水溶液を調製するステップと、b)前記溶液を、約4℃〜約80℃で、前記ある量の多糖が架橋結合するのに十分な時間置くことにより、前記溶液をヒドロゲルに変換するステップと、およびc)前記ヒドロゲルを水溶液に浸すステップと、d)ステップc)で得られた多孔質足場を洗浄するステップとからなるステップを含む。  The present invention relates to a method for preparing a porous scaffold for tissue engineering. Another object of the present invention is to provide a porous scaffold obtained by the above method, and the use of the porous scaffold for tissue engineering, cell culture and cell delivery. The method of the present invention comprises the steps of: a) preparing an alkaline aqueous solution containing an amount of at least one polysaccharide, an amount of a cross-linking agent, and an amount of a pore-forming agent; and b) the solution is about 4 ° C to Converting the solution to a hydrogel by allowing the amount of polysaccharide to crosslink at about 80 ° C. for a sufficient amount of time; and c) immersing the hydrogel in an aqueous solution; and d) step c). And washing the porous scaffold obtained in (1).

Description

本発明は、組織工学用多孔質足場の調製方法に関する。本発明の他の目的は、前記の方法によって得られる多孔質足場、ならびにその多孔質足場の、組織工学、細胞培養および細胞送達への使用を提供することである。   The present invention relates to a method for preparing a porous scaffold for tissue engineering. Another object of the present invention is to provide a porous scaffold obtained by the above-described method and use of the porous scaffold for tissue engineering, cell culture and cell delivery.

組織工学は一般的に、移植に適した足場の上またはその内部への細胞の播種によって、組織または器官の相当物を作出することであると定義される。足場上に組織または器官の相当物を形成するためには、足場は生体適合性でなければならず、細胞がその足場上に付着して増殖できなければならない。したがってこれらの足場は、in vitroまたはin vivoでの細胞の増殖のための基材とみなすことができる。   Tissue engineering is generally defined as creating tissue or organ equivalents by seeding cells on or within a scaffold suitable for transplantation. In order to form a tissue or organ equivalent on a scaffold, the scaffold must be biocompatible and cells must be able to attach and grow on the scaffold. These scaffolds can therefore be considered as substrates for the growth of cells in vitro or in vivo.

理想的な生体適合性足場の特質としては、in vitroまたはin vivoでの細胞増殖を補助する能力、さまざまな細胞型または細胞系列の増殖を補助する能力、必要とされるさまざまな程度の柔軟性または強剛性を有する能力、さまざまな程度の生分解性を有する能力、in vivoの目的部位に、二次傷害を誘導することなく導入される能力、ならびに所望の作用部位に薬物または生理活性物質を送達するためのビヒクルまたはリザーバとなる能力が挙げられるであろう。   The characteristics of an ideal biocompatible scaffold include the ability to support cell growth in vitro or in vivo, the ability to support the growth of various cell types or cell lines, and the varying degrees of flexibility required. Or the ability to have high rigidity, the ability to have various degrees of biodegradability, the ability to be introduced into the target site in vivo without inducing secondary injury, and the drug or bioactive substance to the desired site of action. The ability to be a vehicle or reservoir for delivery will be mentioned.

多くの異なる足場材料が、組織再生誘導法に用いるために、および/または生体適合性表面として利用されてきた。足場が徐々に分解され、最終的には細胞−足場構造は完全に細胞に置き換わるので、生物分解性のポリマー材料が好ましい場合が多い。組織の増殖または再生を補助すると言われている、有用な足場となる可能性がある多くの候補物質としては、ゲル、泡沫、シート、ならびに形態および形状が異なる多数の多孔質粒子状構造物が挙げられる。   Many different scaffold materials have been utilized for use in tissue regeneration guidance methods and / or as biocompatible surfaces. Biodegradable polymeric materials are often preferred because the scaffold is gradually degraded and eventually the cell-scaffold structure is completely replaced by cells. Many candidate materials that are said to aid in tissue growth or regeneration, which can be useful scaffolds, include gels, foams, sheets, and numerous porous particulate structures that differ in shape and shape. Can be mentioned.

組織工学または組織培養に有用であることが開示されている多種多様の天然ポリマーとしては、フィブロネクチン、各型コラーゲン、およびラミニン、ならびにケラチン、フィブリンおよびフィブリノーゲン、ヒアルロン酸、ヘパリン硫酸、コンドロイチン硫酸などの細胞外マトリックスの種々の成分が挙げられる。   A wide variety of natural polymers disclosed to be useful for tissue engineering or tissue culture include fibronectin, each type of collagen, and laminin, and cells such as keratin, fibrin and fibrinogen, hyaluronic acid, heparin sulfate, chondroitin sulfate Various components of the outer matrix can be mentioned.

他の使用されていた一般的なポリマーとしては、ポリ(ラクチド−co−グリコリド)(PLG)が挙げられる。PLGは、体内への使用についてFDAから承認された、力学的に強い、加水分解可能なポリマーである(Thomson RC,Yaszemski MJ,Powers JM,Mikos AG.Fabrication of biodegradable polymer scaffolds to engineer trabecular bone.J Biomater Sci Polym Ed.1995;7(1):23−38;Wong WH.Mooney DJ.Synthesis and properties of biodegradable polymers used as synthetic matrices for tissue engineering.In:Atala A,Mooney DJ,editors;Langer R,Vacanti JP,associate editors.Synthetic biodegradable polymer scaffolds.Boston:Birkhauser:1997.p.51−82.)。しかし、PLGは疎水性であり、一般に比較的厳密な条件下で加工され、したがって、因子の組み込みおよび生存細胞の封入が潜在的に難題になる。   Other commonly used polymers include poly (lactide-co-glycolide) (PLG). PLG is a mechanically strong, hydrolyzable polymer approved by the FDA for use in the body (Thomson RC, Yaszemski MJ, Powers JM, Mikos AG. Fabrication of biodegradable polymers ef entJ Biometer Sci Polyd Ed. 1995; 7 (1): 23-38; Wong WH.Mooney DJ.Synthesis and properties of biodegradable polymers used assynthetic mattress. J, editors; Langer R, Vacanti JP, associate editors. Synthetic biogradable polymer scaffolds. Boston: Birkhauser: 1997. p. 51-82.). However, PLG is hydrophobic and is generally processed under relatively stringent conditions, thus making factor incorporation and viable cell encapsulation potentially a challenge.

代替として、水分を多く含むポリマー材料(含水率が30重量%よりも高い)である種々のヒドロゲルが足場材料として使用されている。これらは、合成由来かまたは天然由来の親水性ポリマー鎖で構成されている。ヒドロゲルの構造的な完全性は、種々の化学結合および物理的相互作用を介してポリマー鎖間で形成される架橋結合に左右される。   As an alternative, various hydrogels, which are polymeric materials with a high moisture content (water content higher than 30% by weight), are used as scaffold materials. These are composed of synthetic or naturally derived hydrophilic polymer chains. The structural integrity of the hydrogel depends on the crosslinks formed between the polymer chains through various chemical bonds and physical interactions.

例えば、米国特許第6,586,246B1号の文献は、組織工学または培養基質用の支持体として用いることができる多孔質ヒドロゲル足場の調製方法を開示している。この文献の方法は、a)生分解性合成ポリマーを有機溶媒に溶解させて粘性が高いポリマー溶液を調製するステップと、b)この溶液に孔形成剤を加えるステップと、c)ポリマーを型に流し込むステップと、d)有機溶媒を除去するステップと、e)有機溶媒を除去したポリマー/塩ゲルスラリーを熱い水溶液または酸性溶液に浸して室温で塩の発泡を引き起こし、多孔質足場を形成させるステップとからなるステップを含む。しかし、この多孔質ヒドロゲルの調製方法は、合成ポリマーと共に有機溶媒を使用することを伴い、それにより本発明による方法は、生物学的目的および治療目的に対して適合性が弱くなる。   For example, US Pat. No. 6,586,246 B1 discloses a method for preparing a porous hydrogel scaffold that can be used as a support for tissue engineering or culture substrates. The method of this document consists of: a) dissolving a biodegradable synthetic polymer in an organic solvent to prepare a highly viscous polymer solution; b) adding a pore-forming agent to the solution; and c) converting the polymer into a mold. Pouring; d) removing the organic solvent; e) immersing the polymer / salt gel slurry from which the organic solvent has been removed in a hot aqueous or acidic solution to cause salt foaming at room temperature to form a porous scaffold; Comprising the steps of: However, this method of preparing a porous hydrogel involves the use of an organic solvent with a synthetic polymer, which makes the method according to the invention less compatible for biological and therapeutic purposes.

したがって、本技術分野には、生物学的目的および治療目的に使用可能な多孔質足場マトリックスを調製する方法を開発する必要性が今なお存在している。   Accordingly, there is still a need in the art to develop a method for preparing porous scaffold matrices that can be used for biological and therapeutic purposes.

したがって、本発明の目的は、
a)ある量の少なくとも1種の多糖、ある量の架橋剤、およびある量の孔形成剤を含むアルカリ性水溶液を調製するステップと、
b)前記溶液を、約4℃〜80℃の温度で、前記ある量の多糖が架橋結合するのに十分な時間置くことにより、前記溶液をヒドロゲルに変換するステップと、
c)前記ヒドロゲルを水溶液に浸すステップと、
d)ステップc)で得られた多孔質足場を洗浄するステップと
からなるステップを含む、多孔質足場の調製方法を提供することである。
Therefore, the object of the present invention is to
a) preparing an alkaline aqueous solution comprising an amount of at least one polysaccharide, an amount of a cross-linking agent, and an amount of a pore-forming agent;
b) converting the solution to a hydrogel by placing the solution at a temperature of about 4 ° C. to 80 ° C. for a time sufficient for the amount of polysaccharide to cross-link;
c) immersing the hydrogel in an aqueous solution;
d) providing a method for preparing a porous scaffold, comprising the step of washing the porous scaffold obtained in step c).

本発明の他の目的は、前記の方法によって得られる多孔質足場を提供することである。   Another object of the present invention is to provide a porous scaffold obtainable by the above method.

本発明のさらに他の目的は、本発明の多孔質足場の組織工学、細胞培養、および細胞送達への使用を提供することである。   Yet another object of the present invention is to provide use of the porous scaffolds of the present invention for tissue engineering, cell culture, and cell delivery.

定義
本明細書で使用する「多糖」という用語は、2つ以上の単糖ユニットを含む分子を指す。
Definitions As used herein, the term “polysaccharide” refers to a molecule comprising two or more monosaccharide units.

本明細書で使用する「アルカリ性溶液」という用語は、pHが7より上である溶液を指す。   As used herein, the term “alkaline solution” refers to a solution having a pH above 7.

本明細書で使用する「酸性溶液」という用語は、pHが7より下である溶液を指す。   As used herein, the term “acidic solution” refers to a solution having a pH below 7.

本明細書で使用する「水溶液」という用語は、溶媒が水である溶液を指す。   As used herein, the term “aqueous solution” refers to a solution in which the solvent is water.

「架橋結合」という用語は、あるポリマー鎖と他のポリマー鎖との間の共有結合による連結を指す。   The term “cross-linked” refers to a covalent linkage between one polymer chain and another polymer chain.

「孔形成剤」という用語は、固体構造内に孔を形成する能力を有する任意の固体作用剤を意味する。   The term “pore forming agent” means any solid agent that has the ability to form pores in a solid structure.

本明細書で使用する「足場」は、1種または複数種の多糖鎖の三次元網目構造を含む半固体系であると定義される。そのような構造は、使用する多糖(または複数の多糖)の特性、ならびに網目構造の性質および密度によって、平衡状態において種々の量の水を含むことができる。   As used herein, a “scaffold” is defined as a semi-solid system that includes a three-dimensional network of one or more polysaccharide chains. Such structures can contain varying amounts of water in equilibrium, depending on the characteristics of the polysaccharide (or polysaccharides) used and the nature and density of the network structure.

「架橋剤」という用語は、本発明の多糖の鎖間に架橋結合を導入できるような任意の作用剤を含む。   The term “crosslinker” includes any agent that can introduce a crosslink between the chains of the polysaccharide of the invention.

本明細書で使用する「生分解性の」という用語は、排出可能な、またはさらに代謝可能な非毒性の化合物にin vivoで分解される材料を指す。   As used herein, the term “biodegradable” refers to a material that is degraded in vivo to a non-toxic compound that can be excreted or further metabolized.

多孔質足場とその調製方法
本発明の第1の目的は、
a)ある量の少なくとも1種の多糖、ある量の共有結合性架橋剤、およびある量の孔形成剤を含むアルカリ性水溶液を調製するステップと、
b)前記溶液を、約4℃〜約80℃で、前記ある量の多糖が架橋結合するのに十分な時間置くことにより、溶液をヒドロゲルに変換するステップと、および
c)前記ヒドロゲルを水溶液に浸すステップと、
d)ステップc)で得られた多孔質足場を洗浄するステップと
からなるステップを含む多孔質足場の調製方法に関する。
Porous scaffold and its preparation method The first object of the present invention is to
a) preparing an alkaline aqueous solution comprising an amount of at least one polysaccharide, an amount of a covalent crosslinker, and an amount of a pore-forming agent;
b) converting the solution to a hydrogel by placing the solution at about 4 ° C. to about 80 ° C. for a time sufficient for the amount of polysaccharide to crosslink; and c) converting the hydrogel to an aqueous solution. Soaking step,
d) A method for preparing a porous scaffold comprising the steps of: washing the porous scaffold obtained in step c).

本発明においては、任意の種類の多糖が使用可能である。合成多糖または天然多糖は、本発明の目的のために二者択一的に使用してよい。例えば、適切な天然多糖としては、デキストラン、寒天、アルギン酸、ヒアルロン酸、イヌリン、プルラン、ヘパリン、フコイダン、キトサン、スクレログルカン、カードラン、デンプン、セルロース、およびそれらの混合物が挙げられるが、それらに限定されない。所望の多糖を生成させるために用いることができる単糖類としては、リボース、グルコース、マンノース、ガラクトース、フルクトース、ソルボース、ソルビトール、マンニトール、イジトール、ズルシトール、およびそれらの混合物が挙げられるが、それらに限定されない。例えば、酸性基(カルボキシル基、硫酸基、リン酸基)、アミノ基(エチレンアミン、ジエチルアミン、ジエチルアミノエチルアミン、プロピルアミン)、疎水基(アルキル基、ベンジル基)を有する化学修飾された多糖も含んでよい。これらの化合物の多くは、Sigma−Aldrich(St.Louis,Michigan,US)などの会社が市販している。   Any kind of polysaccharide can be used in the present invention. Synthetic or natural polysaccharides may alternatively be used for the purposes of the present invention. For example, suitable natural polysaccharides include dextran, agar, alginic acid, hyaluronic acid, inulin, pullulan, heparin, fucoidan, chitosan, scleroglucan, curdlan, starch, cellulose, and mixtures thereof. It is not limited. Monosaccharides that can be used to produce the desired polysaccharide include, but are not limited to, ribose, glucose, mannose, galactose, fructose, sorbose, sorbitol, mannitol, iditol, dulcitol, and mixtures thereof. . For example, including chemically modified polysaccharides having acidic groups (carboxyl groups, sulfuric acid groups, phosphoric acid groups), amino groups (ethyleneamine, diethylamine, diethylaminoethylamine, propylamine), and hydrophobic groups (alkyl groups, benzyl groups) Good. Many of these compounds are commercially available from companies such as Sigma-Aldrich (St. Louis, Michigan, US).

多糖の好ましい重量平均分子量は、約10,000ダルトン〜約2,000,000ダルトンであり、より好ましくは約10,000ダルトン〜約500,000ダルトンであり、最も好ましくは約10,000ダルトン〜約200,000ダルトンである。   The preferred weight average molecular weight of the polysaccharide is from about 10,000 daltons to about 2,000,000 daltons, more preferably from about 10,000 daltons to about 500,000 daltons, and most preferably from about 10,000 daltons to About 200,000 daltons.

本発明の一実施形態において、本発明の足場を調製するために使用される多糖(複数可)は、デキストラン、寒天、プルラン、イヌリン、スクレログリカン、カードラン、デンプン、セルロース、またはそれらの混合物などの中性多糖である。好ましい実施形態において、本発明の足場を調製するためにプルランとデキストランとの混合物が使用される。例えば、前記混合物は25%のデキストランと、75%のプルランとで構成される。   In one embodiment of the invention, the polysaccharide (s) used to prepare the scaffolds of the invention are dextran, agar, pullulan, inulin, scleroglican, curdlan, starch, cellulose, or mixtures thereof. Such as neutral polysaccharides. In a preferred embodiment, a mixture of pullulan and dextran is used to prepare the scaffolds of the invention. For example, the mixture is composed of 25% dextran and 75% pullulan.

本発明の他の実施形態において、本発明の足場を調製するために使用される多糖(複数可)は、キトサン、DEAE−デキストラン、およびそれらの混合物などの正電荷を持つ多糖である。   In other embodiments of the invention, the polysaccharide (s) used to prepare the scaffolds of the invention are positively charged polysaccharides such as chitosan, DEAE-dextran, and mixtures thereof.

本発明の他の実施形態において、本発明の足場を調製するために使用される多糖(複数可)は、アルギン酸、ヒアルロン酸、ヘパリン、フコイダン、およびそれらの混合物などの負電荷を持つ多糖である。   In other embodiments of the invention, the polysaccharide (s) used to prepare the scaffolds of the invention are negatively charged polysaccharides such as alginic acid, hyaluronic acid, heparin, fucoidan, and mixtures thereof. .

本発明の他の実施形態において、本発明の足場を調製するために使用される多糖(複数可)は、中性多糖と負電荷を持つ多糖との混合物であり、ここで負電荷を持つ多糖はその混合物の1〜20%、好ましくは5〜10%を示す。   In another embodiment of the invention, the polysaccharide (s) used to prepare the scaffolds of the invention is a mixture of neutral polysaccharides and negatively charged polysaccharides, where the negatively charged polysaccharides Represents 1 to 20% of the mixture, preferably 5 to 10%.

ある特定の実施形態において、共有結合性架橋剤は、トリメタリン酸三ナトリウム(STMP)、オキシ塩化リン(POCl)、エピクロロヒドリン、ホルムアルデヒド、水溶性カルボジイミド、グルタルアルデヒド、または多糖を架橋結合させるのに適切なその他の任意の化合物からなる群から選択される。好ましい実施形態において、架橋剤はSTMPである。水溶液中の共有結合性架橋剤の濃度(w/v)は、約1%〜約6%であり、より好ましくは約2%〜約6%であり、最も好ましくは約2%〜約3%である。架橋剤の使用推奨量は、多糖と架橋剤の重量比が20:1〜1:1、好ましくは15:1〜1:1、より好ましくは10:1〜1:1の範囲になる量である。 In certain embodiments, the covalent crosslinker crosslinks trisodium trimetaphosphate (STMP), phosphorus oxychloride (POCl 3 ), epichlorohydrin, formaldehyde, water soluble carbodiimide, glutaraldehyde, or polysaccharide. Selected from the group consisting of any other suitable compounds. In a preferred embodiment, the cross-linking agent is STMP. The concentration (w / v) of the covalent crosslinker in the aqueous solution is about 1% to about 6%, more preferably about 2% to about 6%, and most preferably about 2% to about 3%. It is. The recommended amount of crosslinking agent used is such that the weight ratio of polysaccharide to crosslinking agent is in the range of 20: 1 to 1: 1, preferably 15: 1 to 1: 1, more preferably 10: 1 to 1: 1. is there.

これらの化合物の多くは、Sigma−Aldrich(St.Louis,Michigan,US)などの会社が市販している。   Many of these compounds are commercially available from companies such as Sigma-Aldrich (St. Louis, Michigan, US).

多糖を含む水溶液は、企図する用途によって、種々の添加剤をさらに含んでよい。添加剤は多糖と適合性があり、多糖(複数可)の有効な架橋結合を妨害しないことが好ましい。使用する添加剤の量は、個々の用途によって決まり、当業者は実験の常法を用いてそれを容易に決定することができる。   The aqueous solution containing the polysaccharide may further contain various additives depending on the intended use. Preferably, the additive is compatible with the polysaccharide and does not interfere with the effective cross-linking of the polysaccharide (s). The amount of additive used will depend on the particular application and can be readily determined by one skilled in the art using routine experimentation.

多糖を含む水溶液は、場合によって、少なくとも1種の抗菌剤を含んでよい。適切な抗菌性保存剤は当技術分野において周知である。適切な抗菌剤の例としては、メチルパラベン、エチルパラベン、プロピルパラベン、およびブチルパラベンなどのアルキルパラベン、クレゾール、クロロクレゾール、ヒドロキノン、安息香酸ナトリウム、安息香酸カリウム、トリクロサン、およびクロルヘキシジンが挙げられるが、それらに限定されない。使用することができる抗細菌剤および抗感染剤の他の例としては、リファンピシン、ミノサイクリン、クロルヘキシジン、銀イオン剤、および銀ベースの組成物が挙げられるが、それらに限定されない。   The aqueous solution containing the polysaccharide may optionally contain at least one antimicrobial agent. Suitable antimicrobial preservatives are well known in the art. Examples of suitable antibacterial agents include alkylparabens such as methylparaben, ethylparaben, propylparaben, and butylparaben, cresol, chlorocresol, hydroquinone, sodium benzoate, potassium benzoate, triclosan, and chlorhexidine. It is not limited to. Other examples of antibacterial and anti-infective agents that can be used include, but are not limited to, rifampicin, minocycline, chlorhexidine, silver ion agents, and silver-based compositions.

多糖を含む水溶液は、場合によって、溶液の可視性を増大させるために少なくとも1種の着色剤も含んでよい。適切な着色剤には、染料、顔料、および天然着色料が含まれる。適切な着色剤の例としては、アルシアンブルー、フルオレセインイソチオシアネート(FITC)、およびFITC−デキストランが挙げられるが、それらに限定されない。   The aqueous solution containing the polysaccharide may also optionally include at least one colorant to increase the visibility of the solution. Suitable colorants include dyes, pigments, and natural colorants. Examples of suitable colorants include, but are not limited to, alcian blue, fluorescein isothiocyanate (FITC), and FITC-dextran.

多糖を含む水溶液は、場合によって、少なくとも1種の界面活性剤も含んでよい。本明細書で使用する界面活性剤とは、水の表面張力を弱める化合物を指す。界面活性剤は、ラウリル硫酸ナトリウムなどのイオン性界面活性剤、またはポリオキシエチレンエーテル、ポリオキシエチレンエステル、およびポリオキシエチレンソルビタンなどの中性界面活性剤であってよい。   The aqueous solution containing the polysaccharide may optionally also include at least one surfactant. As used herein, a surfactant refers to a compound that reduces the surface tension of water. The surfactant may be an ionic surfactant such as sodium lauryl sulfate or a neutral surfactant such as polyoxyethylene ether, polyoxyethylene ester, and polyoxyethylene sorbitan.

ある特定の実施形態において、孔形成剤は、酸性条件で気体に変換されうる作用剤であってよく、ポリマーから浸出される二酸化炭素分子によって孔が形成される。そのような孔形成剤の例としては、炭酸アンモニウム、重炭酸アンモニウム、炭酸ナトリウム、重炭酸ナトリウム、炭酸カルシウム、およびそれらの混合物が挙げられるが、それらに限定されない。孔形成剤は、多糖と孔形成剤の重量比が、6:1〜1:1、好ましくは4:1〜1:1、より好ましくは2:1〜1:1の範囲になる量を使用することが好ましい。これらの化合物の多くは、Sigma−Aldrich(St.Louis,Michigan,US)などの会社が市販している。ある実施形態において、多糖と孔形成剤の重量比は、6:1〜0.5:1、好ましくは4:1〜0.5:1、より好ましくは2:1〜0.5:1の範囲であってよい。他の実施形態において、多糖が正電荷を持つ多糖である場合、多糖と孔形成剤の重量比は、50:1〜1:1、好ましくは20:1〜1:1、より好ましくは10:1〜1:1の範囲であってよい。   In certain embodiments, the pore-forming agent may be an agent that can be converted to a gas under acidic conditions, and the pores are formed by carbon dioxide molecules that are leached from the polymer. Examples of such pore formers include, but are not limited to, ammonium carbonate, ammonium bicarbonate, sodium carbonate, sodium bicarbonate, calcium carbonate, and mixtures thereof. The pore-forming agent is used in such an amount that the weight ratio of polysaccharide to pore-forming agent is in the range of 6: 1 to 1: 1, preferably 4: 1 to 1: 1, more preferably 2: 1 to 1: 1. It is preferable to do. Many of these compounds are commercially available from companies such as Sigma-Aldrich (St. Louis, Michigan, US). In some embodiments, the weight ratio of polysaccharide to pore former is 6: 1 to 0.5: 1, preferably 4: 1 to 0.5: 1, more preferably 2: 1 to 0.5: 1. It may be a range. In other embodiments, when the polysaccharide is a positively charged polysaccharide, the weight ratio of polysaccharide to pore former is 50: 1 to 1: 1, preferably 20: 1 to 1: 1, more preferably 10: It may be in the range of 1-1: 1.

この特定の実施形態において、ステップc)の水溶液は酸性溶液である。酸は、クエン酸、塩酸、酢酸、ギ酸、酒石酸、サリチル酸、安息香酸、およびグルタミン酸からなる群から選択してよい。   In this particular embodiment, the aqueous solution of step c) is an acidic solution. The acid may be selected from the group consisting of citric acid, hydrochloric acid, acetic acid, formic acid, tartaric acid, salicylic acid, benzoic acid, and glutamic acid.

あるいは、孔形成剤は、架橋結合した多糖足場が水に浸漬されると溶解することができる無機塩であってよい。そのような孔形成剤の例としては、次第に溶解するであろう飽和塩溶液が挙げられる。この特定の実施形態において、ステップc)の水溶液は、水溶液、好ましくは水、より好ましくは蒸留水である。   Alternatively, the pore former may be an inorganic salt that can dissolve when the cross-linked polysaccharide scaffold is immersed in water. An example of such a pore-forming agent is a saturated salt solution that will gradually dissolve. In this particular embodiment, the aqueous solution of step c) is an aqueous solution, preferably water, more preferably distilled water.

孔形成剤の濃度は、足場内に形成される孔のサイズに影響するので、孔のサイズは前記孔形成剤の濃度の調節下におくことができる。   Since the concentration of the pore forming agent affects the size of the pores formed in the scaffold, the size of the pores can be controlled by adjusting the concentration of the pore forming agent.

足場の孔の平均サイズは、約1μm〜約500μm、好ましくは約150μm〜約350μm、より好ましくは約175μm〜約300μmである。孔の密度または多孔度は約4%〜約75%、好ましくは約4%〜約50%である。   The average pore size of the scaffold is about 1 μm to about 500 μm, preferably about 150 μm to about 350 μm, more preferably about 175 μm to about 300 μm. The density or porosity of the pores is about 4% to about 75%, preferably about 4% to about 50%.

他の実施形態において、本発明の方法は、ステップd)で得られた足場の凍結乾燥からなるステップをさらに含むことができる。凍結乾燥は、当技術分野で公知の任意の装置を用いて行うことができる。凍結乾燥機には基本的に、ロータリーエバポレーター、多岐管式凍結乾燥機、および棚式凍結乾燥機の3種類がある。そのような装置は、当技術分野において周知であり、freeze−dryer Lyovac(GT2,STERIS Rotary vane pump,BOC EDWARDS)など市販されている。基本的に、チャンバーの真空は0.1mBar〜約6.5mBarである。凍結乾燥は、少なくとも水分の98.5%、好ましくは、少なくとも水分の99%、より好ましくは、少なくとも水分の99.5%を除去するのに十分な時間行う。   In another embodiment, the method of the invention can further comprise a step consisting of lyophilization of the scaffold obtained in step d). Freeze-drying can be performed using any apparatus known in the art. There are basically three types of freeze dryers: rotary evaporators, manifold freeze dryers, and shelf freeze dryers. Such devices are well known in the art and are commercially available such as freeze-dryer Lyovac (GT2, STERIS Rotary vane pump, BOC EDWARDS). Basically, the chamber vacuum is between 0.1 mBar and about 6.5 mBar. Freeze-drying is performed for a time sufficient to remove at least 98.5% of the moisture, preferably at least 99% of the moisture, more preferably at least 99.5% of the moisture.

他の実施形態において、本発明の方法は、本発明に従って調製した足場に含水させることからなるステップをさらに含んでよい。前記含水は、足場を水溶液(例えば、脱イオン水、逆浸透膜でろ過した水、生理食塩水、または適切な有効成分を含む水溶液)中に、所望の含水率を有する足場が生成するのに十分な時間、浸すことにより行う。例えば、含水率が最大である足場を所望の場合、足場が、そのサイズ、または体積が最大になるまで膨張するのに十分な時間、足場を水溶液に浸す。一般には、少なくとも約1時間、好ましくは少なくとも約2時間、より好ましくは約4時間〜約24時間、足場を水溶液に浸す。当然のことながら、足場を所望のレベルまで含水させるために必要な時間は、使用する多糖の組成、足場のサイズ(例えば、厚さ)、および水溶液の温度、ならびに他の因子などいくつかの因子に左右される。   In other embodiments, the method of the present invention may further comprise a step consisting of hydrating a scaffold prepared according to the present invention. The water content is used to produce a scaffold having a desired moisture content in an aqueous solution (eg, deionized water, water filtered through a reverse osmosis membrane, physiological saline, or an aqueous solution containing an appropriate active ingredient). Perform by soaking for a sufficient time. For example, if a scaffold with a maximum moisture content is desired, the scaffold is immersed in an aqueous solution for a time sufficient for the scaffold to expand until its size or volume is maximized. Generally, the scaffold is immersed in the aqueous solution for at least about 1 hour, preferably at least about 2 hours, more preferably from about 4 hours to about 24 hours. Of course, the time required to hydrate the scaffold to the desired level depends on several factors such as the composition of the polysaccharide used, the size of the scaffold (eg, thickness), and the temperature of the aqueous solution, as well as other factors. Depends on.

ある特定の実施形態において、含水した足場の含水率は80%、好ましく90%、より好ましくは95%である。   In certain embodiments, the moisture content of the hydrous scaffold is 80%, preferably 90%, more preferably 95%.

他の特定の実施形態において、本発明の方法を用いて得られる多孔質足場を所望の形態にできるように、ステップb)の前に、ステップa)の水溶液を型に注ぎ込むことができる。任意の幾何学的な型を本発明に従って使用してよい。サイズの異なるものも想定してよい。例えば、一般に、中心軸を有する管状の型に水溶液を注ぎ込んで、多孔質足場が所望の外径と内径を有する管状になるようにすることができる。型は、任意の材料から調製してよいが、好ましい材料は、テフロン(登録商標)などの粘着しない表面を有するものである。   In another specific embodiment, prior to step b), the aqueous solution of step a) can be poured into a mold so that the porous scaffold obtained using the method of the invention can be in the desired form. Any geometric mold may be used in accordance with the present invention. Different sizes may be assumed. For example, in general, an aqueous solution can be poured into a tubular mold having a central axis so that the porous scaffold has a tubular shape having a desired outer diameter and inner diameter. The mold may be prepared from any material, but preferred materials are those that have a non-stick surface, such as Teflon.

あるいは、本発明の足場は、所望のサイズおよび形になるよう切断し、造形してよい。   Alternatively, the scaffold of the present invention may be cut and shaped to the desired size and shape.

本発明の方法は、任意の適切なプロセスを用いて足場を滅菌するステップをさらに含んでよい。足場は、任意の適切な時点で滅菌することができるが、足場に含水させる前に滅菌するのが好ましい。適切な放射線滅菌の技法としては例えば、セシウム137による、35グレイで10分間の照射がある。適切な非放射線滅菌の技法としては、UV照射、ガスプラズマ、または酸化エチレンなどの当技術分野において公知の方法が挙げられるが、それらに限定されない。例えば、Abtox,lnc、Mundelein、IIIinoisから入手可能な滅菌システム、商品名PlazLyteを用いて、または米国特許第5413760号および米国特許第5603895号に開示されているガスプラズマ滅菌プロセスに従って、足場を滅菌することができる。   The method of the present invention may further comprise the step of sterilizing the scaffold using any suitable process. The scaffold can be sterilized at any suitable time, but is preferably sterilized before it is hydrated. Suitable radiation sterilization techniques include, for example, irradiation with cesium 137 at 35 gray for 10 minutes. Suitable non-radiation sterilization techniques include, but are not limited to, methods known in the art such as UV irradiation, gas plasma, or ethylene oxide. For example, the scaffold is sterilized using the sterilization system available from Abtox, Inc, Mundelein, IIIinois, under the trade name PlazLyte, or according to the gas plasma sterilization process disclosed in US Pat. Nos. 5,413,760 and 5,603,895. be able to.

本発明の方法によって生成する足場は、任意の適切な包装材で包装することができる。包装材を破るまで足場の無菌性が保たれるような包装材が望ましい。   The scaffold produced by the method of the present invention can be packaged with any suitable packaging material. A packaging material that maintains the sterility of the scaffold until the packaging material is broken is desirable.

他の実施形態において、多孔質足場に1つまたは複数の生体分子を組み込むことができる。他の実施形態において、生体分子は、薬物、ホルモン、抗生物質、抗菌物質、染料、放射性物質、蛍光物質、抗細菌物質、化学薬品、または作用物質、それらの任意の組合せを含んでよい。この物質は、治療効果の増大、可視性の増大、適正な配向指示、感染への抵抗、治癒の促進、柔軟性の増加、または他の任意の望ましい効果を目的として使用してよい。前記実施形態において、上記に記載の1つまたは複数の生体分子を含む本発明の足場は、活性剤の放出制御系として用いることができる。   In other embodiments, one or more biomolecules can be incorporated into the porous scaffold. In other embodiments, the biomolecules may include drugs, hormones, antibiotics, antimicrobials, dyes, radioactive substances, fluorescent substances, antibacterial substances, chemicals, or agents, any combination thereof. This material may be used for the purpose of increasing therapeutic effect, increasing visibility, proper orientation indication, resistance to infection, promoting healing, increasing flexibility, or any other desired effect. In said embodiment, the scaffold of the invention comprising one or more biomolecules as described above can be used as an active agent release control system.

本発明の方法によって生成した足場は、増殖因子および他の増殖刺激物質を含まない。一実施形態において、生体分子は、走化性物質、抗生物質、ステロイド性もしくは非ステロイド性の鎮痛剤、抗炎症薬、免疫抑制剤、抗がん剤、種々のタンパク質(短鎖ペプチド、骨形態形成タンパク質、糖タンパク質、およびリポタンパク質など);細胞付着の介在物質;生理活性リガンド;インテグリン結合配列;リガンド;種々の増殖作用物質および/または分化誘導剤(上皮細胞増殖因子、IGF−I、IGF−II、TGF−β、増殖因子および分化因子、ストロマ細胞由来因子SDF−1;血管内皮細胞増殖因子、線維芽細胞増殖因子、血小板由来増殖因子、インスリン由来増殖因子、および形質転換増殖因子、副甲状腺ホルモン、副甲状腺ホルモン関連ペプチド、bFGF;TGFβスーパーファミリー因子;BMP−2;BMP−4;BMP−6;BMP−12;ソニックヘッジホッグ;GDF5;GDF6;GDF8;PDGFなど);特異的な増殖因子の上方制御に影響を及ぼす小分子;テネイシン−C;ヒアルロン酸;コンドロイチン硫酸;フィブロネクチン;デコリン;トロンボエラスチン;トロンビン由来ペプチド;ヘパリン結合ドメイン;ヘパリン;ヘパラン硫酸;DNA断片、DNAプラスミド、Si−RNA、トランスフェクション試薬、またはそれらの任意の組合せを含んでよい。   The scaffold produced by the method of the present invention is free of growth factors and other growth stimulators. In one embodiment, the biomolecule comprises chemotactic substances, antibiotics, steroidal or nonsteroidal analgesics, anti-inflammatory drugs, immunosuppressive drugs, anticancer drugs, various proteins (short peptides, bone forms). Cell-forming mediators; bioactive ligands; integrin binding sequences; ligands; various proliferative agents and / or differentiation inducers (epidermal growth factor, IGF-I, IGF) -II, TGF-β, growth and differentiation factors, stromal cell derived factor SDF-1; vascular endothelial growth factor, fibroblast growth factor, platelet derived growth factor, insulin derived growth factor, and transforming growth factor, vice Thyroid hormone, parathyroid hormone related peptide, bFGF; TGFβ superfamily factor; BMP-2; BM P-4; BMP-6; BMP-12; Sonic hedgehog; GDF5; GDF6; GDF8; PDGF, etc.); small molecules that affect the upregulation of specific growth factors; tenascin-C; hyaluronic acid; chondroitin sulfate Fibronectin; decorin; thromboelastin; thrombin derived peptide; heparin binding domain; heparin; heparan sulfate; DNA fragment, DNA plasmid, Si-RNA, transfection reagent, or any combination thereof.

一実施形態において、増殖因子として、ヘパリン結合増殖因子(HBGF)、形質転換増殖因子αまたは形質転換増殖因子β(TGFベータ)、α線維芽細胞増殖因子(FGF)、上皮細胞増殖因子(EGF)、血管内皮細胞増殖因子(VEGF)、およびSDF−1、同様の血管形成因子の一部が挙げられる。他の実施形態において、因子として、インスリン、グルカゴン、およびエストロゲンなどのホルモンが挙げられる。ある実施形態では、神経成長因子(NGF)または筋肉形態形成因子(MMF)などの因子を組み込むことが望ましい場合がある。ある実施形態において、TNFα/β、またはマトリックスメタロプロテイナーゼ(MMP)を組み込む。   In one embodiment, the growth factor is heparin binding growth factor (HBGF), transforming growth factor alpha or transforming growth factor beta (TGF beta), alpha fibroblast growth factor (FGF), epidermal growth factor (EGF). , Vascular endothelial growth factor (VEGF), and SDF-1, some of the same angiogenic factors. In other embodiments, factors include hormones such as insulin, glucagon, and estrogen. In certain embodiments, it may be desirable to incorporate factors such as nerve growth factor (NGF) or muscle morphogenic factor (MMF). In certain embodiments, TNFα / β, or matrix metalloproteinase (MMP) is incorporated.

さらに、本発明の足場は、場合によって、インドメタシン、アセチルサルチル酸、イブプロフェン、スリンダク、ピロキシカム、およびナプロキセンなどの抗炎症剤;トロンビン、フィブリノーゲン、ホモシステイン、およびエストラムスチンなどの血栓形成剤;ならびに硫酸バリウム、金粒子、および酸化鉄ナノ粒子(USPIO)などの放射線を通さない化合物を含んでよい。   Furthermore, the scaffolds of the present invention optionally comprise anti-inflammatory agents such as indomethacin, acetylsalicylic acid, ibuprofen, sulindac, piroxicam, and naproxen; thrombogenic agents such as thrombin, fibrinogen, homocysteine, and estramustine; and sulfuric acid Radiation opaque compounds such as barium, gold particles, and iron oxide nanoparticles (USPIO) may be included.

さらに、本発明の足場は、場合によって、抗ビタミンKもしくはアスピリンなどの抗血栓剤、アスピリン、チエノピリジン、ジピリダモール、もしくはクロピドグレルなどの抗血小板剤(アデノシン二リン酸(ADP)誘導性の血小板凝集を選択的かつ可逆的に阻害する)、またはヘパリンあるいはフコイダンなどの抗凝固剤を含んでよい。ヘパリン(抗凝固剤)とチロフィバン(抗血小板剤)の組合せが、血栓および血栓塞栓の両方を減少させるのに有効であることが示されており、これを本発明の足場に組み込むことができる。用量依存的な抗血小板特性および抗増殖特性を有する可能なイソフラボンであり、原発性血栓症の原因であるコラーゲン誘導性の血小板凝集を阻害するゲニステインも、本発明の足場に組み込むことができる。   Furthermore, the scaffold of the present invention optionally selects an antithrombotic agent such as anti-vitamin K or aspirin, an antiplatelet agent such as aspirin, thienopyridine, dipyridamole, or clopidogrel (adenosine diphosphate (ADP) induced platelet aggregation) Or an anticoagulant such as heparin or fucoidan. A combination of heparin (anticoagulant) and tirofiban (antiplatelet agent) has been shown to be effective in reducing both thrombus and thromboembolism and can be incorporated into the scaffolds of the invention. Genistein that is a possible isoflavone with dose-dependent antiplatelet and antiproliferative properties and inhibits collagen-induced platelet aggregation responsible for primary thrombosis can also be incorporated into the scaffolds of the present invention.

本発明の足場の使用方法
本発明の足場は、特に組織工学、組織修復、または組織再生に適している。多孔度の違いにより、足場の適当な領域への異なる細胞型の移入が促進されうる。他の実施形態において、多孔度の違いにより、組織の発生/修復/再生の適当な構造化に必要な、足場を構成する細胞型間における適当な細胞間連結の発生が促進されうる。例えば、細胞突起の伸長は、足場材料の多様な多孔度を介してより適当になるよう適応されうる。したがって、足場は任意の組織の細胞を含んでよい。
Method of using the scaffold of the present invention The scaffold of the present invention is particularly suitable for tissue engineering, tissue repair, or tissue regeneration. Differences in porosity can facilitate the transfer of different cell types to the appropriate area of the scaffold. In other embodiments, the difference in porosity may facilitate the generation of appropriate intercellular linkages between the cell types that make up the scaffold, which are necessary for proper structuring of tissue development / repair / regeneration. For example, cell process extension can be adapted to be more appropriate through the various porosity of the scaffold material. Thus, the scaffold may comprise cells of any tissue.

ある特定の実施形態において、前記足場に細胞を播種する。他の実施形態において、本発明の足場を、所望の細胞を含む培養溶液中に、その細胞が足場全体に浸透できるのに十分な時間浸す。   In certain embodiments, the scaffold is seeded with cells. In other embodiments, the scaffolds of the invention are immersed in a culture solution containing the desired cells for a time sufficient to allow the cells to penetrate the entire scaffold.

他の実施形態において、本発明の足場は、培養物中の播種細胞の生存率および増殖を、長時間にわたって、分化を誘導せずに補助することが可能である。   In other embodiments, the scaffolds of the invention are capable of supporting the viability and proliferation of seeded cells in culture for an extended period of time without inducing differentiation.

他の実施形態において、本発明の足場は、非刺激性の細胞増殖環境(増殖促進剤による活性化がない)を提供する。   In other embodiments, the scaffolds of the invention provide a non-stimulatory cell growth environment (no activation by growth promoters).

他の実施形態において、本発明の足場は、組織増殖、骨の再建、創傷治癒、腫瘍形成(移動と浸潤を含む)、分化および血管新生などの生理学的、病理学的なプロセスの研究に用いることができる。足場により、内因性因子を含まない制御された形で、特定のプロセスを調節および研究できるような、規定され、かつ制御された環境の作出が可能になる。   In other embodiments, the scaffolds of the invention are used to study physiological and pathological processes such as tissue growth, bone reconstruction, wound healing, tumor formation (including migration and invasion), differentiation and angiogenesis. be able to. Scaffolds allow the creation of a defined and controlled environment that can regulate and study specific processes in a controlled manner that does not include endogenous factors.

具体的には、本発明の足場は、診断用量または毒性用量に関する三次元培養に使用可能である。この実施形態において、本発明の足場は、製品の毒性について、三次元環境に存在する細胞に対して直接評価することを可能にする。前記実施形態において、本発明の足場を、肝細胞、胚性幹細胞、上皮細胞、ケラチノサイト、または人工多能性幹細胞(iPS細胞)などの、製品の毒性および/または薬理作用を評価するために有用な細胞の培養に使用する。   Specifically, the scaffolds of the invention can be used for three-dimensional culture for diagnostic or toxic doses. In this embodiment, the scaffold of the present invention allows the product toxicity to be assessed directly against cells present in a three-dimensional environment. In said embodiment, the scaffold of the present invention is useful for evaluating the toxicity and / or pharmacological action of products such as hepatocytes, embryonic stem cells, epithelial cells, keratinocytes, or induced pluripotent stem cells (iPS cells). Used to culture fresh cells.

他の実施形態において、本発明の足場は、in vitroまたはin vivoでの複数の細胞型の増殖および分化を補助することが可能である。   In other embodiments, the scaffolds of the invention are capable of supporting the growth and differentiation of multiple cell types in vitro or in vivo.

他の実施形態において、細胞は幹細胞または前駆細胞である。他の実施形態において、細胞は、軟骨細胞;線維軟骨細胞;骨細胞;骨芽細胞;破骨細胞;滑膜細胞;骨髄細胞;間葉細胞;上皮細胞、肝細胞、筋細胞;間質細胞;幹細胞;胚性幹細胞;脂肪組織由来の前駆体細胞;末梢血前駆細胞;成体組織から単離された幹細胞;人工多能性幹細胞(iPS細胞);遺伝子形質転換細胞;軟骨細胞と他の細胞の組合せ;骨細胞と他の細胞の組合せ;滑膜細胞と他の細胞の組合せ;骨髄細胞と他の細胞の組合せ;間葉細胞と他の細胞の組合せ;間質細胞と他の細胞の組合せ;幹細胞と他の細胞の組合せ;胚性幹細胞と他の細胞の組合せ;成体組織から単離された前駆細胞と他の細胞の組合せ;末梢血前駆細胞と他の細胞の組合せ;成体細胞から単離された幹細胞と他の細胞の組合せ;および遺伝子形質転換細胞と他の細胞の組合せが挙げられるが、それらに限定されない。   In other embodiments, the cells are stem cells or progenitor cells. In other embodiments, the cells are chondrocytes; fibrochondrocytes; bone cells; osteoblasts; osteoclasts; synovial cells; bone marrow cells; mesenchymal cells; epithelial cells, hepatocytes, muscle cells; Stem cells; embryonic stem cells; adipose tissue-derived progenitor cells; peripheral blood progenitor cells; stem cells isolated from adult tissues; induced pluripotent stem cells (iPS cells); gene transformed cells; chondrocytes and other cells A combination of bone cells and other cells; a combination of synovial cells and other cells; a combination of bone marrow cells and other cells; a combination of mesenchymal cells and other cells; a combination of stromal cells and other cells A combination of stem cells and other cells; a combination of embryonic stem cells and other cells; a combination of progenitor cells and other cells isolated from adult tissue; a combination of peripheral blood progenitor cells and other cells; a single cell from adult cells; Combination of detached stem cells and other cells; and gene transformation And a combination of cells and other cells, but is not limited thereto.

他の実施形態において、本発明の足場および方法に使用するためのこれらの細胞はどれも、例えば、それらの一部が血管形成因子でもある、緑色蛍光タンパク質(GFP)、レポーター遺伝子(ルシフェラーゼ、アルカリフォスファターゼ)、ヘパリン結合性増殖因子(HBGF)、形質転換増殖因子αまたは形質転換増殖因子β(TGFβ)、α線維芽細胞増殖因子(FGF)、上皮細胞増殖因子(EGF)、血管内皮細胞増殖因子(VEGF)、およびSDF−1などの所望の分子を発現するように遺伝子改変してよい。他の実施形態において、発現される因子として、インスリン、グルカゴン、およびエストロゲンなどのホルモンが挙げられる。他の実施形態において、神経成長因子(NGF)もしくは筋肉形態形成因子(MMF)などの因子が発現され、または他の実施形態において、TNFα/βが発現される。   In other embodiments, any of these cells for use in the scaffolds and methods of the invention can be, for example, a green fluorescent protein (GFP), a reporter gene (luciferase, alkaline, some of which are also angiogenic factors Phosphatase), heparin binding growth factor (HBGF), transforming growth factor α or transforming growth factor β (TGFβ), α fibroblast growth factor (FGF), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF) and genetically modified to express desired molecules such as SDF-1. In other embodiments, expressed factors include hormones such as insulin, glucagon, and estrogen. In other embodiments, factors such as nerve growth factor (NGF) or muscle morphogenic factor (MMF) are expressed, or in other embodiments, TNFα / β is expressed.

ある特定の実施形態において、本発明の足場は、例えばChaouatら(Chaouat M,Le Visage C,Autissier A,Chaubet F,Letourneur D.The evaluation of a small−diameter polysaccharide−based arterial graft in rats.Biomaterials.2006 Nov;27(32):5546−53.Epub 2006 Jul 20.)の記載のような、損傷した動脈を交換するための代用血管を調製するのに適している。そのような代用物は、本発明の方法に従って、上記の型を用いて調製することができる。次いでそのような代用物に細胞集団を含めてin vitroまたはin vivoで血管を再構築することができる。他の実施形態において、細胞として、間葉幹細胞(MSC)、内皮前駆細胞(EPC)、内皮細胞、線維芽細胞、および平滑筋細胞が挙げられるが、それらに限定されない。   In certain embodiments, the scaffolds of the present invention can be prepared, for example, as described in Chaouat et al. (Chaouat M, Le Visage C, Authentier A, Chaubet F, Leturneur D. The evaluation of biosmatter-diameter. 2006 Nov; 27 (32): 5546-53.Epub 2006 Jul 20.) is suitable for preparing blood vessels for replacement of damaged arteries. Such surrogates can be prepared using the molds described above according to the method of the present invention. Such surrogates can then include cell populations to reconstruct blood vessels in vitro or in vivo. In other embodiments, the cells include, but are not limited to, mesenchymal stem cells (MSC), endothelial progenitor cells (EPC), endothelial cells, fibroblasts, and smooth muscle cells.

他の特定の実施形態において、本発明の足場は、軟骨または骨のインプラントを調製するのに適している。そのような場合に、本発明の足場に、軟骨細胞;骨細胞;骨芽細胞;破骨細胞;血管細胞、またはそれらの混合物を担持させることができ、分化誘導剤の存在下で培養することができる。   In other specific embodiments, the scaffolds of the invention are suitable for preparing cartilage or bone implants. In such a case, the scaffold of the present invention can be loaded with chondrocytes, bone cells, osteoblasts, osteoclasts, vascular cells, or a mixture thereof, and cultured in the presence of a differentiation-inducing agent. Can do.

移植部位は、治療が必要な罹患/損傷組織によって決まる。例えば、関節軟骨、関節半月、および骨の構造欠陥を治療するために、細胞を播種した足場複合体を欠陥部位に設置して損傷組織の修復を促進する。   The site of implantation depends on the affected / damaged tissue that needs treatment. For example, to treat articular cartilage, joint meniscus, and bone structural defects, a cell-seeded scaffold complex is placed at the defect site to facilitate repair of damaged tissue.

中枢神経系(CNS)の損傷の場合、足場複合体には、成体神経幹細胞、胚性幹細胞、グリア細胞、およびセルトリ細胞の組合せを播種してよい。好ましい実施形態において、足場複合体には、異種源または同種源の形質転換細胞系由来のセルトリ細胞を神経幹細胞と組み合わせて播種してよい。セルトリ細胞は、幹細胞を加えてその後損傷部位に移植するまでの間、足場複合体と一緒に培養してよい。この手法により、細胞治療のCNSへの適用の主要な障害の1つ、すなわち、移植術後の幹細胞の生存についての障害を回避できる。多数のセルトリ細胞を封入した足場複合体により、幹細胞の生存により適した環境が提供されうる。   In the case of central nervous system (CNS) damage, the scaffold complex may be seeded with a combination of adult neural stem cells, embryonic stem cells, glial cells, and Sertoli cells. In a preferred embodiment, the scaffold complex may be seeded with Sertoli cells from a heterologous or allogeneic source transformed cell line in combination with neural stem cells. Sertoli cells may be cultured with the scaffold complex until stem cells are added and then transplanted to the site of injury. This approach avoids one of the main obstacles to the application of cell therapy to the CNS, ie, the obstacle to stem cell survival after transplantation. A scaffold complex encapsulating a large number of Sertoli cells can provide a better environment for stem cell survival.

したがって、本発明に従って調製される多孔質の多糖足場は、人工血管、人工膀胱、人工食道、人工神経、人工心臓、人工心臓弁、人工皮膚、整形外科用インプラント、人工筋肉、人工靱帯、人工呼吸器などの人工組織または人工器官を製造するための原料として有効に使用できる。さらに、本発明の多孔質の多糖足場は、他種の生体材料上またはその内部に、また組織もしくは器官由来の機能性細胞と一緒に配合することまたは組み込むことによって、ハイブリッド組織の形で調製できる。ハイブリッド組織には、例えば、細胞の機能性、組織の再生などの維持など、種々の生物医学的な用途がありうる。   Accordingly, porous polysaccharide scaffolds prepared according to the present invention include artificial blood vessels, artificial bladders, artificial esophagus, artificial nerves, artificial hearts, artificial heart valves, artificial skin, orthopedic implants, artificial muscles, artificial ligaments, artificial respiration. It can be effectively used as a raw material for producing an artificial tissue such as a vessel or an artificial organ. Furthermore, the porous polysaccharide scaffold of the present invention can be prepared in the form of a hybrid tissue by formulating or incorporating on or within other types of biomaterials and with functional cells from tissues or organs. . Hybrid tissues can have a variety of biomedical applications, for example, maintenance of cell functionality, tissue regeneration, and the like.

あるいは、本発明の足場は、細胞送達のために使用できる。実際、本発明の足場は、治療目的または診断目的で患者に投与可能な細胞送達系を調製するための原料として用いることができる。ある特定の実施形態において、本発明の足場は、細胞に担持させることが可能なパッチ、生体膜、または包帯材の調製に使用できる。例えば、本発明の足場は、皮膚を再構築または治癒するために皮膚に塗布可能な、包帯材の調製に用いることができる。あるいは、前記包帯材は、虚血(心筋梗塞)を治療するために患者の心臓への投与に用いることができる。したがって、これらの実施形態において、足場中に封入された細胞は、標的とする組織または器官内に移動できる。   Alternatively, the scaffolds of the invention can be used for cell delivery. Indeed, the scaffolds of the invention can be used as a raw material for preparing a cell delivery system that can be administered to a patient for therapeutic or diagnostic purposes. In certain embodiments, the scaffolds of the invention can be used to prepare patches, biological membranes, or dressings that can be carried by cells. For example, the scaffolds of the invention can be used to prepare dressings that can be applied to the skin to reconstruct or heal the skin. Alternatively, the dressing can be used for administration to a patient's heart to treat ischemia (myocardial infarction). Thus, in these embodiments, cells encapsulated in the scaffold can migrate into the targeted tissue or organ.

他の実施形態において、本発明の足場は、細胞培養に用いることができる。次いで適当な増殖因子を加えることにより細胞を刺激して、分化または他の生理学的プロセスに発展させる。細胞を未分化状態で維持するために、または細胞を特定の経路に分化させるために、1種または複数種のサイトカイン、増殖因子、ホルモン、またはそれらの組合せを含む培養培地を用いてよい。   In other embodiments, the scaffolds of the invention can be used for cell culture. The cells are then stimulated by adding appropriate growth factors to develop into differentiation or other physiological processes. A culture medium containing one or more cytokines, growth factors, hormones, or combinations thereof may be used to maintain the cells in an undifferentiated state or to differentiate the cells into a particular pathway.

より具体的には、本発明の足場は、対象分子の生成に用いることができる。実際に、本発明の足場は、細胞が所望の分子を生成できるように、細胞をバイオリアクター中に固定するための生物環境を提供するために用いることができる。本発明の足場は、培養細胞を力学的、生化学的に保護する。   More specifically, the scaffold of the present invention can be used for generation of a target molecule. Indeed, the scaffolds of the invention can be used to provide a biological environment for fixing cells in a bioreactor so that the cells can produce the desired molecules. The scaffold of the present invention protects cultured cells mechanically and biochemically.

したがって、足場は、タンパク質、有機分子、およびヌクレオチドなどの所望の分子を生成させるための細胞リザーバとして役立つ。例えば、対象のタンパク質としては、増殖因子、ホルモン、シグナル分子、細胞増殖の阻害剤、および抗体などが挙げられるが、それらに限定されない。本発明の足場は、モノクローナル抗体の生成に関して特に興味深い。本発明の足場は、香料、治療用分子などの有機分子の生成にも適切でありうる。   Thus, the scaffold serves as a cell reservoir for generating desired molecules such as proteins, organic molecules, and nucleotides. For example, the protein of interest includes, but is not limited to, growth factors, hormones, signal molecules, cell growth inhibitors, and antibodies. The scaffolds of the invention are of particular interest for the production of monoclonal antibodies. The scaffolds of the present invention may also be suitable for the production of organic molecules such as fragrances, therapeutic molecules.

この目的で、本発明の足場には、原核細胞および真核細胞を含む任意の細胞型を担持させてよい。例えば、本発明の足場は、細菌、酵母細胞、哺乳動物細胞、昆虫細胞、植物細胞などを担持させてよい。具体例として、E.coli、クリベロマイセス(Kluyveromyces)酵母もしくはサッカロマイセス(Saccharomyces)酵母、哺乳動物細胞系(例えば、ベロ細胞、CHO細胞、3T3細胞、COS細胞など)、ならびに初代もしくは樹立された哺乳動物細胞培養物(例えば、リンパ芽球、線維芽細胞、胚細胞、上皮細胞、神経細胞、脂肪細胞などから生成)が挙げられる。より具体的には、本発明は、雑種細胞などの樹立細胞系の使用を企図している。あるいは、上記の所望の分子を発現するように細胞を遺伝子改変してよい。   For this purpose, the scaffold of the present invention may carry any cell type including prokaryotic and eukaryotic cells. For example, the scaffold of the present invention may carry bacteria, yeast cells, mammalian cells, insect cells, plant cells and the like. As a specific example, E.I. E. coli, Kluyveromyces or Saccharomyces yeast, mammalian cell lines (eg, Vero cells, CHO cells, 3T3 cells, COS cells, etc.), and primary or established mammalian cell cultures (eg, lymphatic cells) Blasts, fibroblasts, embryonic cells, epithelial cells, nerve cells, adipocytes, etc.). More specifically, the present invention contemplates the use of established cell lines such as hybrid cells. Alternatively, the cells may be genetically modified to express the desired molecule.

本発明の足場に細胞を担持させ、一定時間培養することができ、次いで細胞を足場から回収/抽出/分離して、治療用途もしくは診断用途、または細胞分析などにさらに使用できる。足場からの細胞の分離は、プルラナーゼなどの足場を分解できる酵素の使用、および/またはコラゲナーゼ、エラスターゼもしくはトリプシンなどの細胞を剥離できる酵素、もしくはEDTAなどの細胞剥離溶液の使用を伴ってよい。   The scaffold of the present invention can be loaded with cells and cultured for a period of time, and then the cells can be recovered / extracted / separated from the scaffold and further used for therapeutic or diagnostic applications, or for cell analysis. Separation of cells from the scaffold may involve the use of an enzyme capable of degrading the scaffold such as pullulanase and / or the use of an enzyme capable of detaching cells such as collagenase, elastase or trypsin, or a cell detachment solution such as EDTA.

本発明についてさらに、以下の図および実施例に照らして例示する。   The invention is further illustrated in the light of the following figures and examples.

実施例1で得られた多孔質足場の写真である(スケール:6mm)。It is a photograph of the porous scaffold obtained in Example 1 (scale: 6 mm). 実施例1で得られた多孔質足場:足場を走査電子顕微鏡により分析した写真である(画像の右側、スケール:200マイクロ)。Porous scaffold obtained in Example 1 is a photograph of the scaffold analyzed by a scanning electron microscope (right side of image, scale: 200 micron). 多孔質足場に播種した最初の細胞数に応じた、1日目におけるホルマザンの吸光度(570nm)を示すグラフである。It is a graph which shows the light absorbency (570 nm) of formazan in the 1st day according to the initial cell number seed | inoculated on the porous scaffold.

<実施例1>
多糖ベースの足場の調製
プルラン/デキストラン75:25の混合物(プルラン、MW200,000、Hayashibara Inc.Okayama,Japan;デキストラン、MW500,000、Pharmacia)を用いて多糖ベースの足場を調製した。プルラン9gとデキストラン3gを蒸留水40mL中に溶解させることにより多糖溶液を調製した。次いでその多糖溶液に炭酸ナトリウム(8g)を加え、均質な混合物が得られるまで撹拌を続けた。架橋剤のトリメタリン酸三ナトリウムSTMP(Sigma,St Louis)をアルカリ性条件下で用いて多糖を化学的に架橋結合させた。簡単に言えば、10Mの水酸化ナトリウム1mlを多糖溶液10gに加え、続いてSTMP300mgを含む水1mlを加えた。次いでその混合物をペトリ皿(Nunclon(登録商標)、#150288)に注ぎ込み、50℃で15分間インキュベートした。得られたヒドロゲルをすぐに、20%酢酸溶液を含む大きいビーカーに浸漬し、少なくとも30分置いた。得られた足場をpH7.4のリン酸緩衝食塩水、次いで蒸留水を用いて、少なくとも2日間、広範囲に洗浄した。凍結乾燥ステップの後、多孔質足場を使用するまで室温で保管した。走査電子顕微鏡分析により、足場の多孔質を確認した(図1および2)。
<Example 1>
Preparation of polysaccharide-based scaffolds A polysaccharide-based scaffold was prepared using a mixture of pullulan / dextran 75:25 (pullulan, MW 200,000, Hayashibara Inc. Okayama, Japan; Dextran, MW 500,000, Pharmacia). A polysaccharide solution was prepared by dissolving 9 g of pullulan and 3 g of dextran in 40 mL of distilled water. Sodium carbonate (8 g) was then added to the polysaccharide solution and stirring was continued until a homogeneous mixture was obtained. The polysaccharide was chemically cross-linked using the cross-linking agent trisodium trimetaphosphate STMP (Sigma, St Louis) under alkaline conditions. Briefly, 1 ml of 10M sodium hydroxide was added to 10 g of the polysaccharide solution, followed by 1 ml of water containing 300 mg of STMP. The mixture was then poured into a Petri dish (Nunclon®, # 150288) and incubated at 50 ° C. for 15 minutes. The resulting hydrogel was immediately immersed in a large beaker containing 20% acetic acid solution and left for at least 30 minutes. The resulting scaffold was extensively washed with pH 7.4 phosphate buffered saline followed by distilled water for at least 2 days. After the lyophilization step, the porous scaffold was stored at room temperature until use. Scanning electron microscope analysis confirmed the porosity of the scaffold (FIGS. 1 and 2).

<実施例2>
多糖の種類
異なる種類の多糖を異なる比率で用い、多糖の総量は一定の値に保って、実施例1に記載の通りに多孔質足場を調製した。多糖はプルラン、デキストラン500、フコイダンLMW(低分子量)およびフコイダンHMW(高分子量)のいずれかであった。
<Example 2>
Types of polysaccharides Porous scaffolds were prepared as described in Example 1 using different types of polysaccharides at different ratios and keeping the total amount of polysaccharides at a constant value. The polysaccharide was either pullulan, dextran 500, fucoidan LMW (low molecular weight) and fucoidan HMW (high molecular weight).

Figure 2011500118
Figure 2011500118

可溶化(+++は、多糖が完全に可溶化されたことを示す)および得られた多糖溶液の粘性(+++は、溶液の粘性が非常に高いことを示す)を、視覚的に評価した。全ての場合において、プロトコールの最後に多孔質足場が得られた。   Solubilization (+++ indicates that the polysaccharide was completely solubilized) and the viscosity of the resulting polysaccharide solution (++ indicates that the solution is very viscous) were assessed visually. In all cases, porous scaffolds were obtained at the end of the protocol.

<実施例3>
孔形成剤の量
孔形成剤の量を変化させて、実施例1に記載の通りに多孔質足場を調製した。簡単に言えば、プルラン/デキストラン溶液に炭酸ナトリウムを2g、4g、または8g加えた。
<Example 3>
Amount of Pore Forming Agent A porous scaffold was prepared as described in Example 1 with varying amounts of pore forming agent. Briefly, 2 g, 4 g, or 8 g of sodium carbonate was added to the pullulan / dextran solution.

Figure 2011500118
Figure 2011500118

可溶化(++は、多糖が完全に可溶化されたことを示す)および得られた多糖溶液の粘性(+++は、溶液の粘性が非常に高いことを示す)、および多孔性を視覚的に評価した。最も少量の孔形成剤(2g)を用いて調製した足場に関しては、4gおよび8gの孔形成剤を用いて得られた発泡に比べて、発泡プロセスが穏やかであった。全ての場合において、プロトコールの最後に多孔質足場が得られた。   Visual assessment of solubilization (++ indicates that the polysaccharide is completely solubilized) and viscosity of the resulting polysaccharide solution (++ indicates that the solution is very viscous) and porosity did. For scaffolds prepared with the least amount of pore former (2 g), the foaming process was mild compared to the foam obtained with 4 g and 8 g pore former. In all cases, porous scaffolds were obtained at the end of the protocol.

<実施例4>
架橋剤の濃度
架橋剤の量を200mg〜500mgに変化させて、実施例1に記載の通りに多孔質足場を調製した。
<Example 4>
Crosslinker concentration Porous scaffolds were prepared as described in Example 1 with the amount of crosslinker varied from 200 mg to 500 mg.

Figure 2011500118
Figure 2011500118

可溶化(+++は、多糖が完全に可溶化されたことを示す)および得られた多糖溶液の粘性(+++は、溶液の粘性が非常に高いことを示す)、および多孔性を視覚的に評価した。全ての場合において、プロトコールの最後に多孔質足場が得られた。   Visual assessment of solubilization (++ indicates that the polysaccharide has been completely solubilized) and viscosity of the resulting polysaccharide solution (++ indicates that the solution is very viscous) and porosity did. In all cases, porous scaffolds were obtained at the end of the protocol.

<実施例5>
多孔質足場の細胞担持
ヒト骨髄間葉幹細胞(hMSC)を、実施例1の通りに調製した足場で培養した。円形の穿孔器を用いて、直径6mm、厚さ1mmの円形の多孔質足場を切り出した。培地は、10%のウシ胎児血清と1%のペニシリン/ストレプトマイシン(Sigma)を含む低グルコースDMEM(Gibco,Life Technology,New York)からなるものを使用した。細胞をトリプシン処理した後、細胞懸濁液20μLを用いて乾燥足場に再含水させた(足場あたり細胞10個)。次いで試料を培地1ml中で最大1週間維持した。細胞播種していない多孔質足場を培地中でインキュベートし、対照として用いた。
<Example 5>
Cell support of porous scaffold Human bone marrow mesenchymal stem cells (hMSC) were cultured on the scaffold prepared as in Example 1. A circular porous scaffold having a diameter of 6 mm and a thickness of 1 mm was cut out using a circular punch. The medium used was low glucose DMEM (Gibco, Life Technology, New York) containing 10% fetal bovine serum and 1% penicillin / streptomycin (Sigma). Cells were trypsinized and then rehydrated into a dry scaffold using 20 μL of cell suspension (10 6 cells per scaffold). Samples were then maintained in 1 ml of medium for up to 1 week. Non-cell seeded porous scaffolds were incubated in medium and used as controls.

代謝アッセイ(MTT、3−(4,5−ジメチルチアゾール−2−イル)−2,5−ジフェニルテトラゾリウムブロミド、Sigma)を行って、細胞の生存率を評価した。簡単に言えば、MTT(Sigma)の貯蔵液5mg/mLをDMEMと1:10で混合した。足場を、試薬溶液1mLで37℃、3時間インキュベートした。足場をPBSで洗浄した後、ホルマザン結晶をイソプロパノール/0.04MのHCl0.3mLに可溶化した。マイクロプレートリーダー(Multiskan,Thermo Electron Corporation,Waltham,MA)で590nmにおける吸光度を記録した。1日目の吸光度は、足場に播種した最初の細胞数に直接比例した(図3)。   Metabolic assays (MTT, 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide, Sigma) were performed to assess cell viability. Briefly, a stock solution of MTT (Sigma) 5 mg / mL was mixed 1:10 with DMEM. The scaffold was incubated with 1 mL of reagent solution at 37 ° C. for 3 hours. After washing the scaffold with PBS, the formazan crystals were solubilized in 0.3 mL of isopropanol / 0.04M HCl. Absorbance at 590 nm was recorded with a microplate reader (Multiskan, Thermo Electron Corporation, Waltham, Mass.). The absorbance at day 1 was directly proportional to the initial number of cells seeded on the scaffold (FIG. 3).

動物由来およびヒト由来の一次血管平滑筋細胞および内皮細胞などの他の細胞型を用いて同様の実験を首尾よく行った。   Similar experiments were successfully performed using other cell types such as primary vascular smooth muscle cells and endothelial cells of animal and human origin.

<実施例6>
多孔質足場内における細胞の挙動の共焦点分析
多糖溶液に少量の(5mg)FITC−デキストランを加えることにより、実施例1の通りに蛍光足場を調製した。蛍光マーカー(PKH26、SIGMA P9691)を用いて、製造者の取扱説明書に従って標識したhMSCを、実施例5の通りに蛍光足場に播種した。共焦点イメージングにより、足場の多孔質構造を確認した。
<Example 6>
Confocal analysis of cell behavior in porous scaffolds Fluorescent scaffolds were prepared as in Example 1 by adding a small amount (5 mg) of FITC-dextran to the polysaccharide solution. HMSCs labeled according to the manufacturer's instructions using fluorescent markers (PKH26, SIGMA P9691) were seeded on fluorescent scaffolds as in Example 5. The porous structure of the scaffold was confirmed by confocal imaging.

<実施例7>
生死アッセイによる細胞生存率
共焦点イメージングを使用して、細胞膜の透過性を測定する2つの蛍光プローブ、生細胞を染色する細胞透過性の緑色蛍光染料(カルセインAM)および死細胞を染色する細胞非透過性の赤色蛍光染料(ヨウ化プロピジウム)の使用に基づいて、生/死(live/dead)アッセイ(Calbiochem,San Diego,CA)による細胞生存率の評価を行った。7日目において、足場内にはほんの数個の死細胞が見られ、ほとんどの細胞は生細胞であった。
<Example 7>
Cell viability by life-and-death assay Using confocal imaging, two fluorescent probes to measure cell membrane permeability, a cell-permeable green fluorescent dye (calcein AM) to stain live cells, and a non-cell to stain dead cells Based on the use of a permeable red fluorescent dye (propidium iodide), cell viability was assessed by a live / dead assay (Calbiochem, San Diego, Calif.). On day 7, only a few dead cells were found in the scaffold, with most cells being live cells.

<実施例8>
足場の多孔質に対する孔形成剤の影響
孔形成剤の量と性質を変化させて、実施例1に記載の通りに、多孔質足場を調製した。蛍光多孔質足場の共焦点分析のために、FITC−デキストラン5mgを多糖溶液に加えた。光学切片を、10×Plan−NeoFluar対物レンズ(開口数0.3)(Carl Zeiss)を備えたZeiss LSM 510共焦点顕微鏡(Carl Zeiss,Oberkochen,Germany)を用いて得た。FITC−デキストランを、アルゴンレーザーを用いて488nmで励起させ、その蛍光放射を505〜530nm帯域フィルターによって選択した。孔のサイズをImageJ(登録商標)ソフトウェアで評価した。空隙容量を、Amira(登録商標)ソフトウェアの統計学/容量測定モジュールを用いて計算し、結果を足場の容量%として表した。
<Example 8>
Effect of pore former on the porosity of the scaffold Porous scaffolds were prepared as described in Example 1 with varying amounts and properties of the pore former. For confocal analysis of the fluorescent porous scaffold, 5 mg of FITC-dextran was added to the polysaccharide solution. Optical sections were obtained using a Zeiss LSM 510 confocal microscope (Carl Zeiss, Oberkochen, Germany) equipped with a 10 × Plan-NeoFluor objective (0.3 numerical aperture) (Carl Zeiss). FITC-dextran was excited at 488 nm using an argon laser and the fluorescence emission was selected by a 505-530 nm bandpass filter. The pore size was evaluated with ImageJ® software. The void volume was calculated using the Amira® software statistics / capacitance module, and the results were expressed as% volume of the scaffold.

Figure 2011500118
Figure 2011500118

<実施例9>
正電荷を持つ多糖
DEAE−デキストランを唯一の多糖として用い、正電荷を持つ多孔質足場を調製した。簡単に言えば、DEAE−デキストラン溶液を、DEAE−デキストラン(Fluka参照#30461)1gを蒸留水1.5mL中に溶解させることにより調製した。次いでその多糖溶液に炭酸ナトリウム(100mg)を加え、均質な混合物が得られるまで撹拌を続けた。架橋剤のトリメタリン酸三ナトリウムSTMP(Sigma,St Louis)をアルカリ性条件下で用いて多糖を化学的に架橋結合させた。簡単に言えば、多糖溶液に10Mの水酸化ナトリウム150μLを加えた後、STMP45mgを含む水150μLを加えた。次いでその混合物をペトリ皿(Nunclon(登録商標),#150288)に注ぎ込み、50℃で15分間インキュベートした。得られたヒドロゲルをすぐに、20%酢酸溶液を含む大きいビーカーに浸漬し、少なくとも30分置いた。得られた足場をpH7.4のリン酸緩衝食塩水、次いで蒸留水を用いて、少なくとも2日間、広範囲に洗浄した。凍結乾燥ステップの後、多孔質足場を得、使用するまで室温で保管した。
<Example 9>
Positively charged polysaccharide DEAE-dextran was used as the only polysaccharide to prepare a porous scaffold with positive charge. Briefly, a DEAE-dextran solution was prepared by dissolving 1 g DEAE-dextran (Fluka reference # 30461) in 1.5 mL distilled water. Sodium carbonate (100 mg) was then added to the polysaccharide solution and stirring was continued until a homogeneous mixture was obtained. The polysaccharide was chemically cross-linked using the cross-linking agent trisodium trimetaphosphate STMP (Sigma, St Louis) under alkaline conditions. Briefly, 150 μL of 10M sodium hydroxide was added to the polysaccharide solution, followed by 150 μL of water containing 45 mg of STMP. The mixture was then poured into Petri dishes (Nunclon®, # 150288) and incubated at 50 ° C. for 15 minutes. The resulting hydrogel was immediately immersed in a large beaker containing 20% acetic acid solution and left for at least 30 minutes. The resulting scaffold was extensively washed with pH 7.4 phosphate buffered saline followed by distilled water for at least 2 days. After the lyophilization step, a porous scaffold was obtained and stored at room temperature until use.

<実施例10>
負電荷を持つ多糖
フコイダン(Sigma 参照#F5631)をプルラン/デキストラン混合物に加えることにより、負電荷を持つ多孔質足場を調製した。簡単に言えば、プルラン9gおよびデキストラン3gを蒸留水40mLに溶解させることにより多糖溶液を調製し、次いでその多糖溶液にフコイダン1.2gを加えた。次いでその多糖溶液に炭酸ナトリウム(8g)を加え、実施例1の通りに架橋結合プロセスを行って負電荷を持つ多糖を含む三次元足場を得た。
<Example 10>
A negatively charged porous scaffold was prepared by adding a negatively charged polysaccharide fucoidan (Sigma reference # F5631) to the pullulan / dextran mixture. Briefly, a polysaccharide solution was prepared by dissolving 9 g pullulan and 3 g dextran in 40 mL distilled water, and then 1.2 g fucoidan was added to the polysaccharide solution. Next, sodium carbonate (8 g) was added to the polysaccharide solution, and a cross-linking process was performed as in Example 1 to obtain a three-dimensional scaffold containing a negatively charged polysaccharide.

<実施例11>
三次元足場内におけるヒト間葉幹細胞の軟骨細胞様細胞への分化
ヒト骨髄間葉幹細胞(hMSC)を、血清を含まない軟骨細胞形成用培地中、実施例1の通りに調製した足場で培養した。軟骨細胞形成用培地は、10ng/mlのTGF−β3(Oncogene,Cambridge,MA)、100nMのデキサメタゾン(Sigma,St Louis,MO)、170μMのアスコルビン酸−2−リン酸(Sigma,St Louis,MO)、および5mLのITS−プラス(Collaborative Biomedical Products,Bedford,MA)を補充したDMEMからなっていた。3週間の培養後、細胞を播種した足場を10%のホルムアルデヒドで固定し、次いで凍結切片化した。凍結切片を、0.05%(w/v)のトルイジンブルーまたは0.1%のサフラニンO溶液のどちらかで染色した。細胞外マトリックス合成に対する強度に陽性の染色が観察され、それはMSCの軟骨細胞への分化を示す。
<Example 11>
Differentiation of human mesenchymal stem cells into chondrocyte-like cells in a three-dimensional scaffold Human bone marrow mesenchymal stem cells (hMSCs) were cultured in scaffolds prepared as in Example 1 in a serum-free medium for chondrocyte formation. . The medium for chondrocyte formation was 10 ng / ml TGF-β3 (Oncogene, Cambridge, MA), 100 nM dexamethasone (Sigma, St Louis, MO), 170 μM ascorbic acid-2-phosphate (Sigma, St Louis, MO). ), And DMEM supplemented with 5 mL of ITS-Plus (Collaborative Biomedical Products, Bedford, Mass.). After 3 weeks of culture, the cell-seeded scaffold was fixed with 10% formaldehyde and then cryosectioned. Cryosections were stained with either 0.05% (w / v) toluidine blue or 0.1% safranin O solution. A strong positive staining for extracellular matrix synthesis is observed, indicating differentiation of MSCs into chondrocytes.

<実施例12>
肝細胞の三次元培養
HepG2細胞、ヒト肝細胞癌細胞を、10%のウシ胎児血清と1%のペニシリン/ストレプトマイシン(Sigma)を含む低グルコースDMEM(Gibco,Life Technology,New York,USA)中、実施例1の通りに調製した足場で培養した。円形の穿孔器を用いて、直径6mm、厚さ1mmの円形の多孔性足場を切り出した。
<Example 12>
Three-dimensional culture of hepatocytes HepG2 cells, human hepatocellular carcinoma cells in low glucose DMEM (Gibco, Life Technology, New York, USA) containing 10% fetal bovine serum and 1% penicillin / streptomycin (Sigma), Cultivated on a scaffold prepared as in Example 1. A circular porous scaffold having a diameter of 6 mm and a thickness of 1 mm was cut out using a circular punch.

細胞をトリプシン処理した後、細胞懸濁液20μL(足場につき細胞85,000個)を用いて乾燥足場に再含水させた。次いで試料を培地1mL中で最大1週間維持した。細胞播種していない多孔質足場を培地中でインキュベートし、対照として用いた。培養4日後に肝細胞球状体の形成が観察された。生存細胞によって加水分解され、それによって強度な均一の緑色蛍光(波長485〜535nm)を生成するポリアニオン系染料であるカルセインAM(Calbiochem,San Diago CA,USA)を製造者の取扱説明書に従って用いて、球状体内の細胞生存率をアッセイした。細胞播種した足場は、薬毒物学アッセイに適切な生存肝細胞を含んでいた。   Cells were trypsinized and rehydrated into dry scaffolds using 20 μL of cell suspension (85,000 cells per scaffold). Samples were then maintained in 1 mL of medium for up to 1 week. Non-cell seeded porous scaffolds were incubated in medium and used as controls. Formation of hepatocyte spheroids was observed after 4 days of culture. Using calcein AM (Calbiochem, San Diego CA, USA), a polyanionic dye that is hydrolyzed by viable cells and thereby produces intense uniform green fluorescence (wavelength 485-535 nm) according to the manufacturer's instructions. The cell viability within the spheroids was assayed. Cell seeded scaffolds contained viable hepatocytes suitable for toxicology assays.

Claims (19)

a)ある量の少なくとも1種の多糖、ある量の共有結合性架橋剤、およびある量の孔形成剤を含むアルカリ性水溶液を調製するステップと、
b)前記溶液を、約4℃〜約80℃で、前記ある量の多糖が架橋結合するのに十分な時間置くことにより、溶液をヒドロゲルに変換するステップと、
c)前記ヒドロゲルを水溶液に浸すステップと、
d)ステップc)で得られた多孔質足場を洗浄するステップと
からなるステップを含む、多孔質足場の調製方法。
a) preparing an alkaline aqueous solution comprising an amount of at least one polysaccharide, an amount of a covalent crosslinker, and an amount of a pore-forming agent;
b) converting the solution to a hydrogel by placing the solution at about 4 ° C. to about 80 ° C. for a time sufficient for the amount of polysaccharide to cross-link;
c) immersing the hydrogel in an aqueous solution;
d) A method for preparing a porous scaffold, comprising the step of washing the porous scaffold obtained in step c).
前記多糖が、デキストラン、寒天、アルギン酸、ヒアルロン酸、プルラン、イヌリン、ヘパリン、フコイダン、キトサン、およびそれらの混合物からなる群から選択される、請求項1に記載の方法。   The method of claim 1, wherein the polysaccharide is selected from the group consisting of dextran, agar, alginic acid, hyaluronic acid, pullulan, inulin, heparin, fucoidan, chitosan, and mixtures thereof. 前記共有結合性架橋剤が、トリメタリン酸三ナトリウム(STMP)、オキシ塩化リン(POCl)、エピクロロヒドリン、ホルムアルデヒド、水溶性カルボジイミド、およびグルタルアルデヒドからなる群から選択される、請求項1または2に記載の方法。 The covalent cross-linking agent, trisodium trimetaphosphate (STMP), phosphorus oxychloride (POCl 3), epichlorohydrin, formaldehyde, is selected from the group consisting of water-soluble carbodiimide and glutaraldehyde, according to claim 1, or 2. The method according to 2. 孔形成剤が、炭酸アンモニウム、重炭酸アンモニウム、炭酸カルシウム、炭酸ナトリウム、および重炭酸ナトリウムならびにそれらの混合物からなる群から選択され、ステップb)の液体が酸性溶液である、請求項1から3のいずれかに記載の方法。   The pore-forming agent is selected from the group consisting of ammonium carbonate, ammonium bicarbonate, calcium carbonate, sodium carbonate, and sodium bicarbonate and mixtures thereof, and the liquid of step b) is an acidic solution. The method according to any one. 多糖と孔形成剤の重量比が6:1〜1:1の範囲である、請求項1から4のいずれかに記載の方法。   The method according to any of claims 1 to 4, wherein the weight ratio of polysaccharide to pore former is in the range of 6: 1 to 1: 1. 多糖と架橋剤の重量比が15:1〜1:1の範囲である、請求項1から5のいずれかに記載の方法。   The method according to any one of claims 1 to 5, wherein the weight ratio of polysaccharide to crosslinking agent is in the range of 15: 1 to 1: 1. ステップa)の溶液を、ステップb)の前に型に注ぎ込む、請求項1から6のいずれか一項に記載の方法。   7. A method according to any one of the preceding claims, wherein the solution of step a) is poured into a mold before step b). 前記足場を造形する、請求項1から7のいずれか一項に記載の方法。   The method according to claim 1, wherein the scaffold is shaped. 請求項1から8のいずれか一項に記載の方法によって得られる多孔質足場。   The porous scaffold obtained by the method as described in any one of Claim 1 to 8. 孔のサイズが1μm〜500μmで構成されている、請求項9に記載の多孔質足場。   The porous scaffold according to claim 9, wherein the pore size is 1 μm to 500 μm. 多孔度が4%〜50%の範囲である、請求項9または10に記載の多孔質足場。   The porous scaffold according to claim 9 or 10, wherein the porosity ranges from 4% to 50%. ある量の細胞を担持している、請求項9から11のいずれか一項に記載の多孔質足場。   12. The porous scaffold according to any one of claims 9 to 11, which carries a certain amount of cells. 細胞が、酵母細胞、哺乳動物細胞、昆虫細胞、および植物細胞からなる群から選択される、請求項12に記載の多孔質足場。   The porous scaffold of claim 12, wherein the cells are selected from the group consisting of yeast cells, mammalian cells, insect cells, and plant cells. 哺乳動物細胞が、軟骨細胞;線維軟骨細胞;骨細胞;骨芽細胞;破骨細胞;滑膜細胞;骨髄細胞;上皮細胞、肝細胞、間葉細胞;間質細胞;筋細胞、幹細胞;胚性幹細胞;脂肪組織由来の前駆体細胞;末梢血前駆細胞;成体組織から単離された幹細胞;および遺伝子形質転換細胞からなる群から選択される、請求項13に記載の多孔質足場。   Mammalian cells are chondrocytes; fibrochondrocytes; bone cells; osteoblasts; osteoclasts; synovial cells; bone marrow cells; epithelial cells, hepatocytes, mesenchymal cells; stromal cells; muscle cells, stem cells; embryos 14. The porous scaffold of claim 13, selected from the group consisting of sex stem cells; adipose tissue-derived precursor cells; peripheral blood progenitor cells; stem cells isolated from adult tissue; and gene transformed cells. 組織工学、細胞培養、および細胞送達用の、請求項9から14のいずれか一項に記載の多孔質足場。   15. A porous scaffold according to any one of claims 9 to 14 for tissue engineering, cell culture and cell delivery. 請求項9から12のいずれか一項に記載の足場を用いて作製された代用血管。   A substitute blood vessel produced using the scaffold according to any one of claims 9 to 12. 請求項9から12のいずれか一項に記載の足場を用いて作製された、軟骨または骨のインプラント。   A cartilage or bone implant made using the scaffold according to any one of claims 9-12. 製品の毒性評価および/または薬理学評価のための、請求項9から12のいずれか一項に記載の足場の使用。   Use of the scaffold according to any one of claims 9 to 12 for product toxicity evaluation and / or pharmacological evaluation. 請求項9から12のいずれか一項に記載の足場を用いて作製された、活性薬剤の放出制御系。   A controlled release system of an active agent, produced using the scaffold according to any one of claims 9 to 12.
JP2010528419A 2007-10-11 2008-10-10 Methods for preparing porous scaffolds for tissue engineering, cell culture, and cell delivery Active JP5579609B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07301452.4 2007-10-11
EP07301452 2007-10-11
PCT/EP2008/063671 WO2009047346A1 (en) 2007-10-11 2008-10-10 Method for preparing porous scaffold for tissue engineering, cell culture and cell delivery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014080564A Division JP6005685B2 (en) 2007-10-11 2014-04-09 Methods for preparing porous scaffolds for tissue engineering, cell culture, and cell delivery

Publications (2)

Publication Number Publication Date
JP2011500118A true JP2011500118A (en) 2011-01-06
JP5579609B2 JP5579609B2 (en) 2014-08-27

Family

ID=38925478

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010528419A Active JP5579609B2 (en) 2007-10-11 2008-10-10 Methods for preparing porous scaffolds for tissue engineering, cell culture, and cell delivery
JP2014080564A Active JP6005685B2 (en) 2007-10-11 2014-04-09 Methods for preparing porous scaffolds for tissue engineering, cell culture, and cell delivery

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2014080564A Active JP6005685B2 (en) 2007-10-11 2014-04-09 Methods for preparing porous scaffolds for tissue engineering, cell culture, and cell delivery

Country Status (10)

Country Link
US (3) US9522218B2 (en)
EP (1) EP2203194B1 (en)
JP (2) JP5579609B2 (en)
KR (1) KR101474852B1 (en)
CN (2) CN101848738A (en)
CA (1) CA2701858C (en)
ES (1) ES2408554T3 (en)
HK (1) HK1144182A1 (en)
SG (1) SG185279A1 (en)
WO (1) WO2009047346A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013252062A (en) * 2012-06-05 2013-12-19 Nippon Menaade Keshohin Kk Differentiation inducer from stem cell to ectodermal cell
JP2016517906A (en) * 2013-04-24 2016-06-20 エヤワヌ Co-crosslinked phosphorylated unmodified and / or modified polysaccharide hydrogel
JP2017500892A (en) * 2013-12-20 2017-01-12 カリストム Methods and associated devices for performing in vitro spermatogenesis

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1997457B1 (en) 2007-06-01 2010-11-10 Allergan, Inc. Biological tissue growth support through induced tensile stress
CA2704738C (en) * 2007-10-11 2016-09-06 Inserm (Institut National De La Sante Et De La Recherche Medicale) Method for preparing porous scaffold for tissue engineering
CN101848738A (en) * 2007-10-11 2010-09-29 国家健康与医学研究院 Method for preparing porous scaffold for tissue engineering, cell culture and cell delivery
WO2010048418A1 (en) * 2008-10-22 2010-04-29 The Trustees Of Columbia University In The City Of New York Cartilage regeneration without cell transplantation
US20110071079A1 (en) * 2009-09-21 2011-03-24 Guillermo Ameer Self-assembling poly(diol citrates)-protein hydrogels
US20110285047A1 (en) * 2009-10-20 2011-11-24 Keng-Hui Lin Method and device of fabricating three dimensional scaffolds
EP2611470B1 (en) * 2010-08-31 2017-08-23 INSERM (Institut National de la Santé et de la Recherche Médicale) Porous polysaccharide scaffold comprising nano-hydroxyapatite and use for bone formation
CN202036367U (en) * 2011-01-17 2011-11-16 王江宁 Artificial muscle prosthesis implanted into human body and capable of elastically fixing joint
CN102266588B (en) * 2011-07-28 2013-07-10 西安交通大学 Preparation method of cell-loaded microchannel hydrogel based on sucrose fiber template
US9089523B2 (en) 2011-07-28 2015-07-28 Lifecell Corporation Natural tissue scaffolds as tissue fillers
CN102921046A (en) * 2012-10-31 2013-02-13 川北医学院第二临床医学院 Preparation method of chitosan hydrogel stent for tissue engineering
US9345817B2 (en) * 2013-02-28 2016-05-24 Arthrex, Inc. Modified porous materials and methods of creating interconnected porosity in materials
US9867939B2 (en) 2013-03-12 2018-01-16 Allergan, Inc. Adipose tissue combinations, devices, and uses thereof
US20140350516A1 (en) 2013-05-23 2014-11-27 Allergan, Inc. Mechanical syringe accessory
US9248384B2 (en) 2013-10-02 2016-02-02 Allergan, Inc. Fat processing system
WO2015086640A1 (en) 2013-12-10 2015-06-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for adhering tissue surfaces and materials and biomedical uses thereof
CN103705975B (en) * 2013-12-27 2015-04-15 江苏创基新材料有限公司 Preparation method of silane coupling agent cross-linked hyaluronic acid porous scaffold
US10029048B2 (en) 2014-05-13 2018-07-24 Allergan, Inc. High force injection devices
CN104147641B (en) * 2014-07-11 2016-08-31 深圳职业技术学院 A kind of for personalized bone renovating material and its preparation method
EP3224341B1 (en) 2014-11-25 2021-05-19 Corning Incorporated Cell culture media extending materials and methods
FR3029928B1 (en) 2014-12-15 2018-03-09 Teoxane RETICULATED GEL
BR112017019272A2 (en) 2015-03-10 2018-05-02 Allergan Pharmaceuticals Holdings Ireland Unlimited Company multiple needle injector
WO2016179588A1 (en) * 2015-05-07 2016-11-10 President And Fellows Of Harvard College Dynamic immiscible liquid interfaces for cell sheet detachment
WO2016196313A1 (en) * 2015-05-29 2016-12-08 Lifenet Health Placenta-derived matrix and methods of preparing and use thereof
CN105616005A (en) * 2015-12-31 2016-06-01 北京理工大学 Device and method for assembling artificial microtissues based on machine-human cooperated operation
WO2017132233A1 (en) * 2016-01-25 2017-08-03 The Research Foundation For The State University Of New York Use of vascular cells to create the conventional outflow tract
AU2017246114B2 (en) 2016-04-08 2022-03-17 Allergan, Inc. Aspiration and injection device
WO2018017549A1 (en) * 2016-07-18 2018-01-25 Duke University Bioabsorbable dermal regeneration matrix and methods of making and using same
CN106512088B (en) * 2016-12-09 2019-02-26 中国医学科学院生物医学工程研究所 Phosphatide-glycosaminoglycan bionic extracellular matrix nanometer film and the preparation method and application thereof
EP3600441A1 (en) 2017-03-22 2020-02-05 Genentech, Inc. Hydrogel cross-linked hyaluronic acid prodrug compositions and methods
CN106986956B (en) * 2017-04-14 2020-12-01 西南大学 Preparation method of cross-linked inulin
CN107335093A (en) * 2017-08-18 2017-11-10 四川大学 Porous support with surface orientation functionalized modification coating and preparation method thereof
CN109402047A (en) * 2017-09-18 2019-03-01 武汉原生原代生物医药科技有限公司 Promote tissue adhension and growth bioadhesive and its preparation method and application
CN107875452A (en) * 2017-10-12 2018-04-06 广州贝奥吉因生物科技有限公司 Porous compound support frame for bone tissue engineer and preparation method thereof
CN107955188B (en) * 2017-12-15 2020-10-16 武汉理工大学 Modified hydroxyethyl cellulose super-absorbent gel and preparation method and application thereof
CN109316623B (en) * 2018-09-19 2021-08-27 华熙生物科技股份有限公司 Double-layer porous biodegradable material coated with active molecules and preparation method and application thereof
US11927393B2 (en) * 2020-04-30 2024-03-12 Dci Donor Services, Inc. Fiber slurry tray and process
CN111748120A (en) * 2020-06-01 2020-10-09 温州医科大学 Polydopamine-doped glucan hydrogel porous scaffold, and preparation method and application thereof
WO2021249974A1 (en) * 2020-06-09 2021-12-16 INSERM (Institut National de la Santé et de la Recherche Médicale) Fucoidan-functionalized polysaccharide particles with t-pa for targeted thrombolytic therapy
CN111658825B (en) * 2020-06-15 2021-03-30 四川大学 Valve material with long-acting antithrombotic performance and preparation method thereof
KR20210157023A (en) * 2020-06-19 2021-12-28 대구가톨릭대학교산학협력단 Artificial vessel having fibrinolytic activity and preparation method thereof
CN112245662A (en) * 2020-10-10 2021-01-22 中山大学附属第五医院 Preparation method of Hep-HA composite porous material and application of Hep-HA composite porous material in construction of root canal built-in support
CN112778543B (en) * 2020-12-30 2021-12-03 江南大学 Preparation method and application of crosslinked hydrogel for muscle stem cell culture
KR102468362B1 (en) * 2021-10-28 2022-11-21 한스바이오메드 주식회사 Artificial blood vessel and preparation method thereof
KR102409432B1 (en) * 2021-10-28 2022-06-17 한스바이오메드 주식회사 Artificial blood vessel and preparation method thereof
CN115671367A (en) * 2022-11-04 2023-02-03 河北本源生物科技有限公司 Active factor dressing containing mesenchymal stem cells and preparation method thereof
KR102566375B1 (en) * 2022-11-16 2023-08-14 주식회사 씨앤에프에이 Apparatus for manufacturing cultured meat support including heating conveyor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08337674A (en) * 1995-06-07 1996-12-24 Albany Internatl Res Co Production of polysaccharide foam
JP2002105233A (en) * 2000-09-29 2002-04-10 Kuraray Co Ltd Method of manufacturing polysaccharide sponge and polysaccharide sponge
JP2006524742A (en) * 2003-04-25 2006-11-02 ケイオウエス ライフ サイエンスイズ,インコーポレイテッド Technology for forming durable superporous hydrogels

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69226203T2 (en) * 1991-12-20 1998-12-10 Allied Signal Inc MATERIALS WITH LOW DENSITY AND HIGH SPECIFIC SURFACE AND ARTICLES MOLDED THEREOF FOR USE IN METAL RECOVERY
US5840777A (en) * 1992-06-19 1998-11-24 Albany International Corp. Method of producing polysaccharide foams
JPH1052268A (en) * 1996-05-01 1998-02-24 Kanebo Ltd Carrier for microorganism and its production
JP2002542326A (en) * 1999-04-09 2002-12-10 ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・ミシガン Manufacture of porous hydrogel products
US6702848B1 (en) * 1999-07-20 2004-03-09 Peter Paul Zilla Foam-type vascular prosthesis with well-defined anclio-permissive open porosity
FR2807326B1 (en) * 2000-04-10 2002-08-23 Therapeutiques Substitutives VASCULAR PROSTHESIS IMPREGNATED WITH CROSSLINKED DEXTRAN AND / OR A FUNCTIONALIZED DERIVATIVE OF CROSSLINKED DEXTANE AND PROCESS FOR PREPARING THE SAME
US6423252B1 (en) * 2000-06-23 2002-07-23 Ethicon, Inc. Methods of making micropatterned foams
US6800753B2 (en) * 2001-09-04 2004-10-05 University Of Iowa Research Foundation Regenerated cellulose and oxidized cellulose membranes as potential biodegradable platforms for drug delivery and tissue engineering
WO2003089506A1 (en) * 2002-04-22 2003-10-30 Purdue Research Foundation Hydrogels having enhanced elasticity and mechanical strength properties
EP1374812A1 (en) * 2002-06-28 2004-01-02 Biopol Co., Ltd. Multilayered microporous foam dressing and method for manufacturing the same
GB0318182D0 (en) * 2003-08-04 2003-09-03 Univ Liverpool Porous material and method of production thereof
CN101084025A (en) * 2004-09-14 2007-12-05 新加坡科技研究局 Porous biomaterial-filler composite and a method for making the same
US7700355B2 (en) * 2005-01-07 2010-04-20 Industrial Technology Research Institute Methods of producing a porous matrix for culturing and recovering cells
US8263405B2 (en) * 2005-11-24 2012-09-11 Mitsuru Akashi Controllably degradable hydrogel for culturing cells to produce three-dimensionally organized cells
WO2009002456A2 (en) * 2007-06-21 2008-12-31 Massachusetts Institute Of Technology Methods and compositions relating to progenitor cells
CA2704738C (en) * 2007-10-11 2016-09-06 Inserm (Institut National De La Sante Et De La Recherche Medicale) Method for preparing porous scaffold for tissue engineering
CN101848738A (en) * 2007-10-11 2010-09-29 国家健康与医学研究院 Method for preparing porous scaffold for tissue engineering, cell culture and cell delivery
EP2611470B1 (en) * 2010-08-31 2017-08-23 INSERM (Institut National de la Santé et de la Recherche Médicale) Porous polysaccharide scaffold comprising nano-hydroxyapatite and use for bone formation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08337674A (en) * 1995-06-07 1996-12-24 Albany Internatl Res Co Production of polysaccharide foam
JP2002105233A (en) * 2000-09-29 2002-04-10 Kuraray Co Ltd Method of manufacturing polysaccharide sponge and polysaccharide sponge
JP2006524742A (en) * 2003-04-25 2006-11-02 ケイオウエス ライフ サイエンスイズ,インコーポレイテッド Technology for forming durable superporous hydrogels

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013252062A (en) * 2012-06-05 2013-12-19 Nippon Menaade Keshohin Kk Differentiation inducer from stem cell to ectodermal cell
JP2016517906A (en) * 2013-04-24 2016-06-20 エヤワヌ Co-crosslinked phosphorylated unmodified and / or modified polysaccharide hydrogel
JP2017500892A (en) * 2013-12-20 2017-01-12 カリストム Methods and associated devices for performing in vitro spermatogenesis

Also Published As

Publication number Publication date
SG185279A1 (en) 2012-11-29
ES2408554T3 (en) 2013-06-21
US9522218B2 (en) 2016-12-20
WO2009047346A1 (en) 2009-04-16
CA2701858C (en) 2016-05-24
JP5579609B2 (en) 2014-08-27
CN101848738A (en) 2010-09-29
HK1144182A1 (en) 2011-02-02
KR101474852B1 (en) 2014-12-23
US20100221303A1 (en) 2010-09-02
EP2203194B1 (en) 2013-04-10
KR20100080924A (en) 2010-07-13
CA2701858A1 (en) 2009-04-16
US20200016294A1 (en) 2020-01-16
JP6005685B2 (en) 2016-10-12
CN104725660A (en) 2015-06-24
JP2014140381A (en) 2014-08-07
US11511016B2 (en) 2022-11-29
US20170080123A1 (en) 2017-03-23
EP2203194A1 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
JP6005685B2 (en) Methods for preparing porous scaffolds for tissue engineering, cell culture, and cell delivery
US9555164B2 (en) Method for preparing porous scaffold for tissue engineering
Taghipour et al. The application of hydrogels based on natural polymers for tissue engineering
US9192655B2 (en) System and method for a hydrogel and hydrogel composite for cartilage repair applications
WO2014133027A1 (en) Hydrogel
Chen et al. Novel chitosan hydrogel formed by ethylene glycol chitosan, 1, 6-diisocyanatohexan and polyethylene glycol-400 for tissue engineering scaffold: in vitro and in vivo evaluation
US20050214341A1 (en) Biomimetic composition reinforced by a polyelectrolytic complex of hyaluronic acid and chitosan
CN112980001B (en) Collagen composite hyaluronic acid gel, extracellular matrix bionic material and preparation method
Venkatesan et al. Chitosan and its application as tissue engineering scaffolds
JP6055466B2 (en) Gel material crosslinked with oxidized oligosaccharide
Farihatun et al. Biocompatible Hydrogel for Various Tissue Engineering.
JP2017507669A (en) Cell culture material, production method and use thereof
Alizadeh et al. Sulfated polysaccharide as biomimetic biopolymers for tissue engineering scaffolds fabrication: Challenges and opportunities
de Carvalho Development of Hyaluronic Acid, Dextrin and Extracellular Matrix Hydrogels for Cell Expansion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110524

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130910

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130918

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20131010

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140409

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140709

R150 Certificate of patent or registration of utility model

Ref document number: 5579609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250