JP6055466B2 - Gel material crosslinked with oxidized oligosaccharide - Google Patents

Gel material crosslinked with oxidized oligosaccharide Download PDF

Info

Publication number
JP6055466B2
JP6055466B2 JP2014516859A JP2014516859A JP6055466B2 JP 6055466 B2 JP6055466 B2 JP 6055466B2 JP 2014516859 A JP2014516859 A JP 2014516859A JP 2014516859 A JP2014516859 A JP 2014516859A JP 6055466 B2 JP6055466 B2 JP 6055466B2
Authority
JP
Japan
Prior art keywords
oligosaccharide
oxide
chitosan
crosslinkable composition
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014516859A
Other languages
Japanese (ja)
Other versions
JPWO2013176239A1 (en
Inventor
渉 上村
渉 上村
博之 小山
博之 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2014516859A priority Critical patent/JP6055466B2/en
Publication of JPWO2013176239A1 publication Critical patent/JPWO2013176239A1/en
Application granted granted Critical
Publication of JP6055466B2 publication Critical patent/JP6055466B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/005Crosslinking of cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B31/00Preparation of derivatives of starch
    • C08B31/003Crosslinking of starch
    • C08B31/006Crosslinking of derivatives of starch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0018Pullulan, i.e. (alpha-1,4)(alpha-1,6)-D-glucan; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0021Dextran, i.e. (alpha-1,4)-D-glucan; Derivatives thereof, e.g. Sephadex, i.e. crosslinked dextran
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0069Chondroitin-4-sulfate, i.e. chondroitin sulfate A; Dermatan sulfate, i.e. chondroitin sulfate B or beta-heparin; Chondroitin-6-sulfate, i.e. chondroitin sulfate C; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0072Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H1/00Macromolecular products derived from proteins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H1/00Macromolecular products derived from proteins
    • C08H1/06Macromolecular products derived from proteins derived from horn, hoofs, hair, skin or leather
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/04Starch derivatives, e.g. crosslinked derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/02Dextran; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L89/00Compositions of proteins; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L89/00Compositions of proteins; Compositions of derivatives thereof
    • C08L89/04Products derived from waste materials, e.g. horn, hoof or hair
    • C08L89/06Products derived from waste materials, e.g. horn, hoof or hair derived from leather or skin, e.g. gelatin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • C12N2533/78Cellulose

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Dermatology (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Botany (AREA)
  • Dispersion Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、オリゴ糖酸化物で架橋したゲル材料、当該ゲル材料の調製に用いられるオリゴ糖酸化物からなる架橋剤、当該ゲル材料を用いた細胞培養システム及び移植システムに関る。   The present invention relates to a gel material cross-linked with an oligosaccharide oxide, a cross-linking agent comprising an oligosaccharide oxide used for the preparation of the gel material, a cell culture system and a transplant system using the gel material.

近年、細胞を三次元培養して、大型の再生組織を構築する研究が活発に行なわれており、細胞シート上に細胞を培養して積層化する技術などが提案されている(非特許文献1〜3)。ここで、大型再生組織の構築にあたっては、血管系をいかにして導入するかを検討することが必要である。即ち、受動拡散による酸素や物質のやりとりは数百ミクロンが限界であるとされているため、仮に大型の再生組織を作成することができても、血管系が導入されていないと、当該再生組織をホストに移植しても中心が壊死してしまう。   In recent years, research on three-dimensional culture of cells to construct a large regenerative tissue has been actively conducted, and a technique for culturing and stacking cells on a cell sheet has been proposed (Non-patent Document 1). ~ 3). Here, when constructing a large regenerative tissue, it is necessary to examine how to introduce the vascular system. That is, since the exchange of oxygen and substances by passive diffusion is limited to several hundred microns, even if a large regenerated tissue can be created, if the vascular system is not introduced, the regenerated tissue Even if transplanted to the host, the center is necrotic.

大型再生組織に血管系を導入する手法として、血管系を含んだ再生組織を組織工学的に作ることが理想的ではあるが、そのためには血管系構築技術を確立することが必要であり、この技術は現時点では確立していない。また、別の方法として、ホストの移植母床での血管新生機構を制御することが考えられる。これは、ホストに再生組織を移植し、ホスト母床からの血管新生を誘導し、再生組織に栄養血管を引き込む手法である。   Although it is ideal to create a regenerative tissue containing the vascular system in terms of tissue engineering as a method for introducing the vascular system into a large regenerative tissue, it is necessary to establish a vascular system construction technology for this purpose. The technology is not established at this time. As another method, it is conceivable to control the angiogenesis mechanism in the host transplantation bed. This is a technique in which regenerative tissue is transplanted into a host, angiogenesis is induced from the host mother bed, and nutrient blood vessels are drawn into the regenerated tissue.

近年、微小再生組織単位としてスフェロイドが注目されている。スフェロイドとは、細胞が多数凝集して球状塊になったものであり、スフェロイド培養は、従来の単層培養に比べ、細胞の機能を長期間維持でき、より生体に近い培養法といえる。そこで、スフェロイドをホストに移植し、スフェロイドへ血管を誘導(器質化)し、器質化されたスフェロイドを三次元構築する技術が検討されている(特許文献1、非特許文献4〜5)。
しかしながら、スフェロイドのみをホスト母床に移植してもすぐに分散してしまい適所に留めることは困難である。さらに、スフェロイド周辺において血管の伸張や構造を維持する支持体がないため血管新生をうまく誘導することができない。そこで、血管新生を誘導するような足場材料が必要となる。
In recent years, spheroids have attracted attention as microregenerative tissue units. Spheroids are those in which a large number of cells aggregate to form a spherical mass, and spheroid culture can maintain the function of cells for a long period of time compared to conventional monolayer culture, and can be said to be a culture method closer to a living body. Therefore, a technique for transplanting a spheroid to a host, inducing (organizing) a blood vessel to the spheroid, and constructing the organized spheroid three-dimensionally (Patent Document 1, Non-Patent Documents 4 to 5) has been studied.
However, even if only the spheroids are transplanted into the host mother bed, they are quickly dispersed and are difficult to keep in place. Furthermore, angiogenesis cannot be successfully induced because there is no support for maintaining the stretch and structure of blood vessels around the spheroids. Therefore, a scaffold material that induces angiogenesis is required.

このような足場材料として、細胞接着性や生体内分解性に優れることから、コラーゲンがこれまで検討されてきた(特許文献2)。また、近年、コラーゲンを基盤としたゲル内細胞培養システムが市販されている。しかしながら、コラーゲンのゲル化機構はコラーゲン分子同士の凝集によるため、得られたゲルの強度や透明性は、コラーゲンの濃度、イオン強度、pHに大きく依存する。従って、このような凝集体によって形成されたゲルは、生体内において安定とは言い難い。   As such a scaffold material, collagen has been studied so far because it is excellent in cell adhesion and biodegradability (Patent Document 2). In recent years, in-gel cell culture systems based on collagen are commercially available. However, since the gelation mechanism of collagen is due to the aggregation of collagen molecules, the strength and transparency of the gel obtained depend greatly on the collagen concentration, ionic strength, and pH. Therefore, it is difficult to say that a gel formed of such aggregates is stable in vivo.

特開2010−065082号公報JP 2010-065082 A 特開2011−160817号公報JP 2011-160817 A

Haraguchi Y.,Shimizu T.,Yamato M.,Okano T.,J.Tissue Eng Regen.Med.,4(4),291−299(2010).Haraguchi Y. Shimizu T. Yamato M .; , Okano T .; , J .; Tissue Eng Regen. Med. , 4 (4), 291-299 (2010). Sekiya S.,Shimizu T.,Yamato M.,Okano T.,J. Artif. Organs,14(1),43−51(2011).Sekiya S. et al. Shimizu T. Yamato M .; , Okano T .; , J .; Artif. Organs, 14 (1), 43-51 (2011). Ohashi K.,Yokoyama T.,Yamato M.,Kuge H.,Kanehiro H.,Tsutsumi M.,Amanuma T.,Iwata,H. Yang J.,Okano T.,Nakajima Y.,Nat.Med.13,880−885(2007).Ohashi K.K. , Yokoyama T .; Yamato M .; , Kuge H., et al. Kanehiro H .; Tsutsumi M., et al. , Amanuma T .; Iwata, H .; Yang J. et al. , Okano T .; Nakajima Y .; Nat. Med. 13, 880-885 (2007). Lazar A.,Mann H−J.,Remmel R−P.,Shatford R−A.,Cerra F−B.,Hu W−S.,In Vitro Cell Dev. Biol. Anim.,31(5):340−6(1995).Lazar A.I. Mann HJ. , Remmel RP. , Chatter R-A. , Cerra FB. , Hu W-S. In Vitro Cell Dev. Biol. Anim. , 31 (5): 340-6 (1995). 高山利夫、田口哲志、小山博之、小林尚俊、宮田哲郎、名川弘一、脈管学 48巻、S100号(2008)Toshio Takayama, Satoshi Taguchi, Hiroyuki Koyama, Naotoshi Kobayashi, Tetsuro Miyata, Koichi Nakawa, Angiology 48, S100 (2008)

本発明は、大型の再生組織を構築するためのスキャホールド(足場)として、(1)高い細胞親和性をもち、(2)生理環境下でも構造が安定で、(3)移植後に速やかに生体内分解し、(4)血管誘導因子を漏洩することなく内部に安定に担持でき、(5)ゲル内部で培養している細胞の状態を経時的に観察できる程度の透明性を有し、(6)得られるゲルの強度を容易に調整できる特徴を兼備した材料を提供することを目的とする。   The present invention is a scaffold for constructing a large regenerative tissue. (1) It has a high cell affinity, (2) it has a stable structure even in a physiological environment, and (3) it is rapidly produced after transplantation. (4) can be stably carried inside without leaking the blood vessel inducing factor, and (5) has transparency enough to observe the state of cells cultured in the gel over time, ( 6) It aims at providing the material which has the characteristics which can adjust the intensity | strength of the gel obtained easily.

本発明者らは、コラーゲンゲルを細胞培養に適した条件で安定に維持するため、化学架橋を形成させることにより、コラーゲンが凝集体を形成することを抑制することを着想した。ここで、化学架橋を形成する水溶性の架橋剤としては、水溶性カルボジイミドやグルタルアルデヒドなどが知られているが、細胞に対する刺激性や毒性の問題からこれらを使用することは適切ではない。そこで、鋭意検討した結果、オリゴ糖の酸化物を架橋剤として使用すると無色透明なゲルが得られることを見出した。
酸化反応としては、オリゴ糖の有機溶媒に対する溶解性が低いため水系における酸化反応が好ましく、また四酢酸鉛を用いた酸化反応では残留鉛の毒性が懸念された。従って、過ヨウ素酸による酸化反応を選択し、酸化反応後にアルコールを添加することで容易にヨウ素化合物を除去できる技術を確立し、本発明に到達した。
The present inventors have conceived that collagen is prevented from forming an aggregate by forming a chemical crosslink in order to stably maintain a collagen gel under conditions suitable for cell culture. Here, water-soluble carbodiimide, glutaraldehyde, and the like are known as water-soluble cross-linking agents that form chemical cross-links. However, it is not appropriate to use these because of problems of irritation to cells and toxicity. As a result of extensive studies, it was found that a colorless and transparent gel can be obtained when an oligosaccharide oxide is used as a crosslinking agent.
As the oxidation reaction, an oxidation reaction in an aqueous system is preferable because the solubility of oligosaccharides in an organic solvent is low, and in the oxidation reaction using lead tetraacetate, the toxicity of residual lead has been a concern. Accordingly, the present inventors have established a technique that allows an iodine compound to be easily removed by selecting an oxidation reaction with periodic acid and adding an alcohol after the oxidation reaction.

すなわち、本発明は、
(1)アルデヒド基を有するオリゴ糖酸化物、及び側鎖にアミノ基を有するポリペプチド又は多糖類を含む架橋性組成物、
(2)オリゴ糖酸化物がオリゴ糖の過ヨウ素酸酸化から生成された、(1)に記載の架橋性組成物、
(3)前記ポリペプチドが、コラーゲン、アテロコラーゲン、ゼラチン、それらの誘導体又はこれらの混合物から選択される、(1)又は(2)に記載の架橋性組成物、
(4)前記多糖類が、脱アセチル化キチン又はキトサン、スクシニル化キトサン、グリセリル化キトサン、カルボキシメチル化キトサン、ヒドロキシブチル―ヒドロキシプロピル化キトサン、アミノ化デキストラン、アミノ化デンプン、アミノアルキル化プルラン、アミノ化ヒアルロン酸、アミノ化コンドロイチン硫酸、アミノ化セルロース、それらの誘導体又はこれらの混合物から選択される、(1)又は(2)に記載の架橋性組成物、
(5)前記オリゴ糖が、スクロース、マルトース、ラフィノース、これらの誘導体及びこれらの2以上の混合物からなる群から選択される、(1)〜(4)のいずれか1に記載の架橋性組成物、
(6)(1)〜(5)のいずれか1に記載の架橋性組成物から得られる架橋体、
(7)前記オリゴ糖酸化物のアルデヒド基と前記ポリペプチド又は多糖類のアミノ基が共有結合している、(6)に記載の架橋体、
(8)ゲル化した状態にある、(6)又は(7)に記載の架橋体、
(9)血管新生因子を含有する、(6)〜(8)のいずれか1に記載の架橋体、
(10)細胞又は細胞組織を含有する、(6)〜(9)のいずれか1に記載の架橋体、
(11)細胞培養液を含有する、(10)に記載の架橋体、
(12)(6)〜(11)のいずれか1に記載の架橋体を用いた、細胞培養システム、
(13)(6)〜(11)のいずれか1に記載の架橋体を被験者の体内に移植するシステム、
(14)(12)に記載の細胞培養システムで得られる培養細胞を、被験者の体内に移植するシステム、
(15)(a)(1)〜(5)のいずれか1に記載の架橋性組成物を調製する工程、
(b)前記架橋性組成物のpHを7.0以上に調整する工程
を含む、前記架橋性組成物のゲルを調製する方法、
(16)(a)(1)〜(5)のいずれか1に記載の架橋性組成物を調製する工程、
(b)前記架橋性組成物のpHを7.0以上に調整する工程、
(c)前記架橋性組成物をゲル化させる工程
を含み、(c)の工程前、工程中または工程後の時点で、前記架橋性組成物に細胞又は細胞組織を添加する、細胞を培養する方法、
(17)前記(c)の工程前、工程中または工程後の時点で前記架橋性組成物に培養液を添加する、(16)に記載の細胞を培養する方法、
(18)(15)に記載の方法で得られるゲルを被験者の体内に移植する方法、
(19)(16)又は(17)に記載の方法で得られる培養細胞を被験者の体内に移植する方法、
(20)アルデヒド基を有するオリゴ糖酸化物及び側鎖にアミノ基を有するポリペプチド又は多糖類を含む架橋性組成物から形成されたゲル中に細胞又は細胞組織が包埋されており、被験者の体内に移植されるように用いられる、再生組織を構築するための移植材料、
(21)アルデヒド基を有するオリゴ糖酸化物からなり、側鎖にアミノ基を有するポリペプチド又は多糖類との架橋反応に用いられる架橋剤、
(22)オリゴ糖酸化物がオリゴ糖の過ヨウ素酸酸化から生成される、(21)に記載の架橋剤、
(23)前記オリゴ糖が、スクロース、マルトース、ラフィノース、これらの誘導体及びこれらの2以上の混合物からなる群から選択される、(21)又は(22)に記載の架橋剤、
(24)側鎖にアミノ基を有するポリペプチドが、コラーゲン、アテロコラーゲン、ゼラチン、それらの誘導体又はこれらの混合物から選択される、(21)〜(23)のいずれか1に記載の架橋剤、及び
(25)側鎖にアミノ基を有する多糖類が、脱アセチル化キチン又はキトサン、スクシニル化キトサン、グリセリル化キトサン、カルボキシメチル化キトサン、ヒドロキシブチル―ヒドロキシプロピル化キトサン、アミノ化デキストラン、アミノ化デンプン、アミノアルキル化プルラン、アミノ化ヒアルロン酸、アミノ化コンドロイチン硫酸、アミノ化セルロース、それらの誘導体又はこれらの混合物から選択される、(21)〜(23)のいずれか1に記載の架橋剤
を、提供するものである。
That is, the present invention
(1) a crosslinkable composition comprising an oligosaccharide oxide having an aldehyde group and a polypeptide or polysaccharide having an amino group in the side chain;
(2) The crosslinkable composition according to (1), wherein the oligosaccharide oxide is generated from periodate oxidation of an oligosaccharide,
(3) The crosslinkable composition according to (1) or (2), wherein the polypeptide is selected from collagen, atelocollagen, gelatin, derivatives thereof or mixtures thereof,
(4) The polysaccharide is deacetylated chitin or chitosan, succinylated chitosan, glycerylated chitosan, carboxymethylated chitosan, hydroxybutyl-hydroxypropylated chitosan, aminated dextran, aminated starch, aminoalkylated pullulan, amino The crosslinkable composition according to (1) or (2), which is selected from hydrogenated hyaluronic acid, aminated chondroitin sulfate, aminated cellulose, derivatives thereof or mixtures thereof,
(5) The crosslinkable composition according to any one of (1) to (4), wherein the oligosaccharide is selected from the group consisting of sucrose, maltose, raffinose, derivatives thereof and a mixture of two or more thereof. ,
(6) A crosslinked product obtained from the crosslinkable composition according to any one of (1) to (5),
(7) The crosslinked product according to (6), wherein an aldehyde group of the oligosaccharide oxide and an amino group of the polypeptide or polysaccharide are covalently bonded,
(8) The crosslinked product according to (6) or (7), which is in a gelled state,
(9) The crosslinked product according to any one of (6) to (8), which contains an angiogenic factor,
(10) The crosslinked body according to any one of (6) to (9), which contains cells or cell tissues,
(11) The crosslinked product according to (10), which contains a cell culture medium,
(12) A cell culture system using the crosslinked product according to any one of (6) to (11),
(13) A system for transplanting the crosslinked body according to any one of (6) to (11) into the body of a subject,
(14) A system for transplanting cultured cells obtained by the cell culture system according to (12) into the body of a subject,
(15) (a) a step of preparing the crosslinkable composition according to any one of (1) to (5),
(B) a method of preparing a gel of the crosslinkable composition, comprising a step of adjusting the pH of the crosslinkable composition to 7.0 or more,
(16) (a) a step of preparing the crosslinkable composition according to any one of (1) to (5),
(B) adjusting the pH of the crosslinkable composition to 7.0 or higher;
(C) including a step of gelling the crosslinkable composition, and adding cells or cell tissues to the crosslinkable composition at a time before, during or after the step of (c), culturing cells Method,
(17) The method for culturing cells according to (16), wherein a culture solution is added to the crosslinkable composition before, during or after the step of (c),
(18) A method of transplanting a gel obtained by the method according to (15) into the body of a subject,
(19) A method for transplanting cultured cells obtained by the method according to (16) or (17) into the body of a subject,
(20) Cells or cell tissues are embedded in a gel formed from a crosslinkable composition containing an oligosaccharide oxide having an aldehyde group and a polypeptide or polysaccharide having an amino group in the side chain, Transplant material for constructing regenerative tissue, used to be implanted in the body,
(21) A crosslinking agent comprising an oligosaccharide oxide having an aldehyde group and used for a crosslinking reaction with a polypeptide or polysaccharide having an amino group in the side chain,
(22) The crosslinking agent according to (21), wherein the oligosaccharide oxide is generated from periodate oxidation of an oligosaccharide,
(23) The cross-linking agent according to (21) or (22), wherein the oligosaccharide is selected from the group consisting of sucrose, maltose, raffinose, derivatives thereof and a mixture of two or more thereof.
(24) The cross-linking agent according to any one of (21) to (23), wherein the polypeptide having an amino group in the side chain is selected from collagen, atelocollagen, gelatin, derivatives thereof, or a mixture thereof, and (25) A polysaccharide having an amino group in the side chain is deacetylated chitin or chitosan, succinylated chitosan, glycerylated chitosan, carboxymethylated chitosan, hydroxybutyl-hydroxypropylated chitosan, aminated dextran, aminated starch, The crosslinking agent according to any one of (21) to (23), which is selected from aminoalkylated pullulan, aminated hyaluronic acid, aminated chondroitin sulfate, aminated cellulose, a derivative thereof, or a mixture thereof. To do.

コラーゲン等の側鎖にアミノ基を有するポリペプチド又はキトサン誘導体等のアミノ基を有する多糖類をオリゴ糖酸化物で化学架橋することにより、凝集体の形成を抑制し、透明で均一なゲルを調製することが可能となった。透明で均一なゲルは、細胞の観察が容易であり、生体内での分解もむらなく速やかに進行する。また、化学架橋は、生理環境下におけるゲルの収縮・膨潤・溶解などの構造変化を制限・抑制し、細胞用足場材料として十分な強度と分解速度が得られるような適切な架橋密度を維持することができる。
また、オリゴ糖酸化物は低級アルデヒドと比較して刺激・毒性が低く、細胞に対しても、また移植用材料としても安全な架橋剤となる。
更に、オリゴ糖酸化物のアルデヒド基は血管新生因子などを共有結合により担持することができる。また、アルデヒドの酸化によって生じたカルボン酸もbFGFなどの塩基性因子を静電相互作用によって担持することができる。従って、本発明のゲル材料は生体内で血管新生因子などを外部に放出しにくいため、効率的に血管新生を誘導することが可能となる。
Polysaccharides with amino groups in the side chains such as collagen or polysaccharides with amino groups such as chitosan derivatives are chemically cross-linked with oligosaccharide oxides to suppress the formation of aggregates and prepare transparent and uniform gels It became possible to do. A transparent and uniform gel allows easy observation of cells and progresses promptly with no degradation in vivo. In addition, chemical cross-linking limits and suppresses structural changes such as gel shrinkage, swelling, and dissolution under physiological conditions, and maintains an appropriate cross-link density that provides sufficient strength and decomposition rate as a cell scaffolding material. be able to.
In addition, oligosaccharide oxides are less irritating and toxic than lower aldehydes, and are safe crosslinking agents for cells and as a transplant material.
Furthermore, the aldehyde group of the oligosaccharide oxide can carry angiogenic factors and the like by covalent bonds. In addition, a carboxylic acid generated by oxidation of an aldehyde can also carry a basic factor such as bFGF by electrostatic interaction. Therefore, since the gel material of the present invention hardly releases angiogenic factors or the like outside in a living body, it becomes possible to induce angiogenesis efficiently.

本発明のゲルを用いて培養した正常ヒト臍帯静脈内皮細胞(HUVEC)の顕微鏡観察結果(培養5日目)Microscopic observation results of normal human umbilical vein endothelial cells (HUVEC) cultured using the gel of the present invention (5th day of culture) 本発明のゲルを用いて培養し肝細胞のスフェロイドの顕微鏡観察結果(培養3日目)Results of microscopic observation of spheroids of hepatocytes cultured using the gel of the present invention (3rd day of culture) 本発明のゲルを用いて培養した心筋細胞のスフェロイドの顕微鏡観察結果(培養3日目)Results of microscopic observation of spheroids of cardiomyocytes cultured using the gel of the present invention (3rd culture day) ラットへの移植実験の概略フロー図Schematic flow diagram of rat transplantation experiment 移植から5日後に摘出したゲル断面の光学顕微鏡観察結果Results of optical microscope observation of the gel cross section taken 5 days after transplantation

架橋剤
本発明の一つの形態は、アルデヒド基を有するオリゴ糖酸化物からなる架橋剤である。
Crosslinking agent One form of this invention is a crosslinking agent which consists of an oligosaccharide oxide which has an aldehyde group.

オリゴ糖とは、単糖類同士がグリコシド結合によって結合した化合物の中で、分子量としては300〜3000程度のものを指す。本発明において使用できるオリゴ糖は、二糖であるスクロース、ラクトース、マルトース、トレハロース、ツラノース、セロビオースなど;三糖であるラフィノース、パノース、マルトトリオース、メレジトース、ゲンチアノースなど;四糖であるアカルボース、スタキオースなど;環状オリゴ糖であるシクロデキストリン、シクロアワオドリンなど;単糖の重合体であるフラクトオリゴ糖、ガラクトオリゴ糖など;多糖の分解産物としてのマンナンオリゴ糖、キシロオリゴ糖など;天然物からの分解・抽出物;これらの誘導体及びこれらの2以上の混合物からなる群から選択される。
本発明においては、これらの中でも、スクロース、マルトース、ラフィノース、シクロデキストリンが好ましく、スクロース、マルトース、ラフィノースが特に好ましい。
An oligosaccharide refers to a compound having a molecular weight of about 300 to 3000 among compounds in which monosaccharides are bonded by a glycosidic bond. Oligosaccharides that can be used in the present invention include disaccharides such as sucrose, lactose, maltose, trehalose, turanose, and cellobiose; trisaccharides such as raffinose, panose, maltotriose, melezitose, and gentianose; Cyclic dextrins such as cyclodextrin and cycloawaodoline, etc .; fructooligosaccharides and galactooligosaccharides that are monosaccharide polymers; mannan oligosaccharides and xylooligosaccharides as degradation products of polysaccharides; Extract; selected from the group consisting of these derivatives and mixtures of two or more thereof.
In the present invention, among these, sucrose, maltose, raffinose and cyclodextrin are preferable, and sucrose, maltose and raffinose are particularly preferable.

本発明におけるアルデヒド基を有するオリゴ糖酸化物とは、オリゴ糖のビシナルジオール基が一部解離してアルデヒド基に酸化されているものを言う。ここで、オリゴ糖のビシナルジオール基がアルデヒド基に酸化されたものは種々の方法により得ることができるが、本発明においては、アルデヒド基を有するオリゴ糖酸化物として、オリゴ糖の過ヨウ素酸酸化から生成された酸化物であることが特に好ましい。   The oligosaccharide oxide having an aldehyde group in the present invention refers to one in which the vicinal diol group of the oligosaccharide is partially dissociated and oxidized to an aldehyde group. Here, an oligosaccharide having a vicinal diol group oxidized to an aldehyde group can be obtained by various methods. In the present invention, as an oligosaccharide oxide having an aldehyde group, an oligosaccharide periodate is used. Particularly preferred is an oxide generated from oxidation.

本発明の架橋剤の製造方法に関して、オリゴ糖の過ヨウ素酸酸化により製造する方法について説明する。
オリゴ糖を水又は水酸化ナトリウム溶液などの塩基性水溶液に溶解し、氷冷下で過ヨウ素酸ナトリウムを添加して、オリゴ糖の過ヨウ素酸酸化反応を行なう。反応溶液のpHは、7以下であることが好ましく、5〜6付近であることが特に好ましい。
また、過剰な酸化は糖を分解し、副生成物であるギ酸やホルムアルデヒドなどが発生することが危惧されるため、オリゴ糖の糖ユニットに対する過ヨウ素酸ナトリウムの比率は1:2以下が望ましい。また、反応溶媒としては、例えば、水、水/エタノール混合溶媒、水/DMF混合溶媒など各種の溶媒を使用することができるが、水を用いるのが好ましい。
Regarding the method for producing a crosslinking agent of the present invention, a method for producing oligosaccharide by periodate oxidation will be described.
Oligosaccharide is dissolved in a basic aqueous solution such as water or sodium hydroxide solution, and periodate oxidation reaction of oligosaccharide is performed by adding sodium periodate under ice cooling. The pH of the reaction solution is preferably 7 or less, particularly preferably around 5-6.
In addition, excessive oxidation degrades the sugar, and there are concerns that by-products such as formic acid and formaldehyde are generated. Therefore, the ratio of sodium periodate to oligosaccharide sugar units is preferably 1: 2 or less. As the reaction solvent, for example, various solvents such as water, water / ethanol mixed solvent, water / DMF mixed solvent and the like can be used, but water is preferably used.

反応時間は、糖の種類により適宜決定されるが、通常5分〜96時間で行なうことができ、特に1〜60時間で行なうのが好ましい。反応終了後、過ヨウ素酸酸化により残留しているヨウ素化合物を除去するため、極性溶媒を添加してヨウ素化合物を析出させて除去する。極性溶媒としては、オリゴ糖酸化物の調製過程で減圧除去する必要があることから低沸点溶媒であることが望ましい。また、生体に対する安全性が高い溶媒であることが好ましい。これらの点から、極性溶媒として、エタノール、イソプロパノールなどのアルコール、アセトン、テトラヒドロフランなどを使用することが好ましく、特にエタノールが好ましい。   While the reaction time is appropriately determined depending on the type of sugar, it can usually be carried out in 5 minutes to 96 hours, particularly preferably 1 to 60 hours. After completion of the reaction, in order to remove the remaining iodine compound by periodate oxidation, a polar solvent is added to precipitate and remove the iodine compound. The polar solvent is preferably a low boiling point solvent because it must be removed under reduced pressure during the preparation of the oligosaccharide oxide. Moreover, it is preferable that it is a solvent with high safety | security with respect to a biological body. From these points, it is preferable to use alcohols such as ethanol and isopropanol, acetone, tetrahydrofuran and the like as the polar solvent, and ethanol is particularly preferable.

本発明のアルデヒド基を有するオリゴ糖酸化物からなる架橋剤は、後述する通り、側鎖にアミノ基を有するポリペプチド又は多糖類との架橋反応に好適に用いることができる。   The cross-linking agent comprising an oligosaccharide oxide having an aldehyde group of the present invention can be suitably used for a cross-linking reaction with a polypeptide or polysaccharide having an amino group in the side chain, as will be described later.

架橋性組成物
本発明のもう一つの形態は、アルデヒド基を有するオリゴ糖酸化物からなる架橋剤及び側鎖にアミノ基を有するポリペプチド又は多糖類を含む架橋性組成物である。
Crosslinkable composition Another form of the present invention is a crosslinkable composition comprising a crosslinking agent comprising an oligosaccharide oxide having an aldehyde group and a polypeptide or polysaccharide having an amino group in the side chain.

側鎖にアミノ基を有するポリペプチドには、限定されない例として、天然由来のポリペプチドおよびその機能を模倣や改良した人工合成ポリペプチドや遺伝子組み換えタンパク質などがあげられる。   Non-limiting examples of the polypeptide having an amino group in the side chain include naturally occurring polypeptides, artificially synthesized polypeptides that mimic or improve their functions, genetically modified proteins, and the like.

天然由来のポリペプチドには、カイコ由来のフィブロインやセリシン等、及び天然由来の細胞外マトリクス構成要素、例えば、コラーゲン、アテロコラーゲン、ゼラチン、プロテオグリカン、フィブロネクチン、ラミニン、エラスチン、エンタクチン等およびそれらの誘導体があげられる。   Naturally-derived polypeptides include silkworm-derived fibroin, sericin, and the like, and naturally-derived extracellular matrix components such as collagen, atelocollagen, gelatin, proteoglycan, fibronectin, laminin, elastin, entactin and their derivatives. It is done.

人工合成ポリペプチドや遺伝子組み換えタンパク質には、限定されない例として、Poly(PHG)などのオリゴペプチドの脱水縮合体、Poly(PHG/QGIA)やPoly(PHG/RGD)、Poly(PHG/YIGSR/IKVAV)等の機能性ペプチド配列との共重合体等(特開2003−321500)、三洋化成工業製の「プロネクチンF」、「プロネクチンL」、宝酒造製の「レトロネクチン」などがあげられる。   Artificially synthesized polypeptides and genetically engineered proteins include, but are not limited to, dehydrated condensates of oligopeptides such as Poly (PHG), Poly (PHG / QGIA), Poly (PHG / RGD), Poly (PHG / YIGSR / IKVAV) ) And the like (Japanese Unexamined Patent Publication No. 2003-321500), “Pronectin F” and “Pronectin L” manufactured by Sanyo Chemical Industries, “RetroNectin” manufactured by Takara Shuzo, and the like.

本発明においては、側鎖にアミノ基を有するポリペプチドは、好ましくは、コラーゲン、アテロコラーゲン、ゼラチン、フィブロネクチン、Poly(PHG/RGD)、それらの誘導体及びこれらの混合物であり、より好ましくはコラーゲン、アテロコラーゲン、ゼラチン、フィブロネクチン、それらの誘導体及びこれらの混合物である。特に好ましくは、哺乳動物または魚由来のコラーゲン、アテロコラーゲン、ゼラチン、それらの誘導体及びこれらの混合物である。   In the present invention, the polypeptide having an amino group in the side chain is preferably collagen, atelocollagen, gelatin, fibronectin, Poly (PHG / RGD), derivatives thereof, or a mixture thereof, more preferably collagen, atelocollagen. Gelatin, fibronectin, derivatives thereof and mixtures thereof. Particularly preferred are mammalian or fish-derived collagen, atelocollagen, gelatin, derivatives thereof and mixtures thereof.

コラーゲンとは、真皮、靭帯、腱、骨、軟骨などを構成するたんぱく質のひとつであり、細胞外マトリックスを構成する要素である。コラーゲンタンパク質のペプチド鎖は、“−(グリシン)−(アミノ酸X)−(アミノ酸Y)−”と、グリシンが3残基ごとに繰り返す一次構造を有する。多くの型のコラーゲンでは、このペプチド鎖が3本集まり、らせん構造を形成し、トロポコラーゲンと呼ばれる。例えば、I型コラーゲンの1本のペプチド鎖は1014アミノ酸残基繰返す配列を持っており、分子量は10万程度である。ヒトのコラーゲンには、30種類以上あることが知られており、例えば、真皮、靱帯、腱、骨などではI型コラーゲンが、関節軟骨ではII型コラーゲンが主成分である。また、すべての上皮組織の裏打ち構造である基底膜にはIV型コラーゲンが主に含まれている。体内で最も豊富に存在しているのはI型コラーゲンである。   Collagen is one of the proteins that constitute the dermis, ligaments, tendons, bones, cartilage, and the like, and is an element that constitutes the extracellular matrix. The peptide chain of the collagen protein has a primary structure in which “-(glycine)-(amino acid X)-(amino acid Y)-” and glycine repeat every 3 residues. In many types of collagen, three of these peptide chains gather to form a helical structure and are called tropocollagen. For example, one peptide chain of type I collagen has a sequence that repeats 1014 amino acid residues and has a molecular weight of about 100,000. It is known that there are more than 30 types of human collagen. For example, type I collagen is the main component in dermis, ligaments, tendons, bones, etc., and type II collagen is the main component in articular cartilage. In addition, type IV collagen is mainly contained in the basement membrane which is the lining structure of all epithelial tissues. The most abundant in the body is type I collagen.

コラーゲンであれば限定されないが、好ましくは可溶性コラーゲンである。より好ましくは水に可溶なコラーゲンである。可溶性コラーゲンには、中性塩(例えば、0.15〜0.5M NaCl in 0.05M Tris=HCl,pH7.5)溶液に可溶化した中性塩可溶性コラーゲン、酸(例えば、0.5M酢酸または0.1〜0.3Mクエン酸緩衝液、pH3.5〜3.7)溶液に可溶化した酸可溶性コラーゲン、酵素(例えば、ペプシン)で可溶化した酵素可溶性コラーゲンなどがある。コラーゲンは、ペプチド化されたコラーゲン(コラーゲンフラグメント)であってもよい。   Although it will not be limited if it is collagen, Preferably it is soluble collagen. More preferred is collagen that is soluble in water. For soluble collagen, neutral salt soluble collagen, acid (eg, 0.5M acetic acid) solubilized in a neutral salt (eg, 0.15-0.5M NaCl in 0.05M Tris = HCl, pH 7.5) solution. Or 0.1-0.3 M citrate buffer, pH 3.5-3.7) acid-soluble collagen solubilized in solution, enzyme-soluble collagen solubilized with enzyme (for example, pepsin), and the like. The collagen may be peptided collagen (collagen fragment).

アテロコラーゲンとは、コラーゲン分子の両端に存在するテロペプチドを酵素処理で取り外したコラーゲンであり、水に可溶となったコラーゲンである。アテロコラーゲンは、ペプチド化されていてもよい。   Atelocollagen is collagen obtained by removing telopeptides present at both ends of a collagen molecule by enzymatic treatment, and is soluble in water. Atelocollagen may be peptideized.

ゼラチンとは、コラーゲンのうち水で長時間加熱することで、水に抽出されたものを意味する。ゼラチンは、ペプチド化されていてもよい。ゼラチンのペプチドは、コラーゲンの場合と同じである。   Gelatin means the collagen extracted into water by heating with water for a long time. The gelatin may be peptideized. The peptide of gelatin is the same as that of collagen.

ゼラチンは、コラーゲンの熱変性物質であるため、アミノ酸組成はコラーゲンとほぼ同じである。由来にもよるが、酸性基が12%程度存在し、その約3分の1がアミド化されている。ゼラチンは、水抽出の前処理工程によって、酸処理ゼラチンとアルカリ処理ゼラチンなどが存在する。酸処理ゼラチンは、塩酸や硫酸などの無機酸によって数十時間から数日処理され、脱アミド率が低いのに対し、アルカリ処理ゼラチンは、2〜3ヶ月の石灰漬工程で100%近く脱アミドされている。   Since gelatin is a heat-denaturing substance of collagen, the amino acid composition is almost the same as that of collagen. Although it depends on the origin, there are about 12% acidic groups, and about one third of them are amidated. Gelatin includes acid-treated gelatin, alkali-treated gelatin, and the like depending on the pretreatment step of water extraction. Acid-treated gelatin is treated with an inorganic acid such as hydrochloric acid or sulfuric acid for several tens of hours to several days, and the deamidation rate is low, whereas alkali-treated gelatin is almost 100% deamidated in the liming process of 2 to 3 months. Has been.

本発明においては、側鎖にアミノ基を有するポリペプチドとして、前記の中でも、コラーゲン、アテロコラーゲン、ゼラチン、それらの誘導体又はこれらの混合物から選択されるものが好ましい。   In the present invention, the polypeptide having an amino group in the side chain is preferably selected from collagen, atelocollagen, gelatin, derivatives thereof, or a mixture thereof.

本発明において、多糖とは、単糖分子がグリコシド結合によって多数重合した糖のことである。本発明における側鎖にアミノ基を有する多糖類としては、脱アセチル化キチンやキトサン(例えば大日精化製のダイキトサンVL)、スクシニル化キトサン、グリセリル化キトサン、カルボキシメチル化キトサン、ヒドロキシブチル―ヒドロキシプロピル化キトサンなどのキトサン誘導体、アミノ化デキストラン、アミノ化デンプン、アミノアルキル化プルラン、アミノ化ヒアルロン酸、アミノ化コンドロイチン硫酸、アミノ化セルロースなどの天然及び半人工多糖類の誘導体が挙げられる。   In the present invention, a polysaccharide is a sugar in which a number of monosaccharide molecules are polymerized by glycosidic bonds. Examples of the polysaccharide having an amino group in the side chain in the present invention include deacetylated chitin and chitosan (eg, Daichitosan VL manufactured by Dainichi Seika), succinylated chitosan, glycerylated chitosan, carboxymethylated chitosan, hydroxybutyl-hydroxy Examples include chitosan derivatives such as propylated chitosan, derivatives of natural and semi-artificial polysaccharides such as aminated dextran, aminated starch, aminoalkylated pullulan, aminated hyaluronic acid, aminated chondroitin sulfate, and aminated cellulose.

本発明の架橋性組成物において、側鎖にアミノ基を有するポリペプチド又は多糖類、オリゴ糖酸化物の濃度は、それらの種類に応じて、組成物溶液の反応性や粘度などを考慮して適宜設定することができる。例えば、側鎖にアミノ基を有するポリペプチドがコラーゲンの場合、その濃度は好ましくは0.3%以上であり、ゼラチンの場合、その濃度は好ましくは5%以上である。また、例えば、側鎖にアミノ基を有する多糖類がキトサンの場合、その濃度は1%以上が好ましい。また、オリゴ糖酸化物の濃度としては、例えば、ラフィノース酸化物の場合、通常0.01%以上であり、好ましくは0.05%以上である。   In the crosslinkable composition of the present invention, the concentration of the polypeptide or polysaccharide or oligosaccharide oxide having an amino group in the side chain depends on the type thereof, taking into account the reactivity or viscosity of the composition solution. It can be set appropriately. For example, when the polypeptide having an amino group in the side chain is collagen, the concentration is preferably 0.3% or more, and in the case of gelatin, the concentration is preferably 5% or more. For example, when the polysaccharide having an amino group in the side chain is chitosan, the concentration is preferably 1% or more. The concentration of the oligosaccharide oxide is usually 0.01% or more, preferably 0.05% or more in the case of raffinose oxide, for example.

本発明の架橋性組成物は、その他の添加剤、例えば架橋剤の助剤、反応促進剤、遅延剤、分散剤(凝集防止剤)、補強材(繊維、フィラメント、ウィスカー、粒子、微小ゲル)、液滴などを含有することができる。   The crosslinkable composition of the present invention includes other additives such as a crosslinking agent, a reaction accelerator, a retarder, a dispersant (anti-aggregation agent), and a reinforcing material (fiber, filament, whisker, particle, microgel). , Droplets and the like can be contained.

架橋体
本発明の更なる形態は、前記架橋性組成物から得られる架橋体である。
本発明の架橋体とは、オリゴ糖酸化物のアルデヒド基とポリペプチド又は多糖類のアミノ基が共有結合しているオリゴ糖酸化物−ポリペプチド複合体(−ポリペプチド−オリゴ糖酸化物−ポリペプチド−)及びオリゴ糖酸化物−多糖類複合体(多糖−オリゴ糖酸化物−多糖)を意味する。ここで、オリゴ糖酸化物−ポリペプチド間の共有結合は、通常、オリゴ糖酸化物のアルデヒド基とポリペプチドの側鎖のアミノ基の共有結合およびオリゴ糖酸化物のアルデヒド基とポリペプチドのアミノ末端のアミノ基の共有結合の混合からなるが、オリゴ糖酸化物のアルデヒド基とポリペプチドの側鎖のアミノ基の共有結合だけからなっていてもよいし、オリゴ糖酸化物のアルデヒド基とポリペプチドのアミノ末端のアミノ基の共有結合だけからなっていてもよい。
Crosslinked body The further form of this invention is a crosslinked body obtained from the said crosslinkable composition.
The cross-linked product of the present invention refers to an oligosaccharide oxide-polypeptide complex in which an aldehyde group of an oligosaccharide oxide and an amino group of a polypeptide or polysaccharide are covalently bonded (-polypeptide-oligosaccharide oxide-poly Peptide-) and oligosaccharide oxide-polysaccharide complex (polysaccharide-oligosaccharide oxide-polysaccharide). Here, the covalent bond between the oligosaccharide oxide and the polypeptide is usually a covalent bond between the aldehyde group of the oligosaccharide oxide and the amino group of the side chain of the polypeptide, and the amino group of the oligosaccharide oxide and the polypeptide. It consists of a mixture of covalent bonds of the terminal amino group, but it may consist only of a covalent bond between the aldehyde group of the oligosaccharide oxide and the amino group of the side chain of the polypeptide, or it may consist of the aldehyde group and the polysaccharide of the oligosaccharide oxide. It may consist only of a covalent bond of the amino group at the amino terminus of the peptide.

オリゴ糖酸化物のアルデヒド基とポリペプチド又は多糖類のアミノ基が共有結合しているとは、架橋体中に、オリゴ糖酸化物のアルデヒド基とポリペプチド又は多糖類のアミノ基の共有結合が少なくとも1つ存在することを意味する。   The covalent bond between the aldehyde group of the oligosaccharide oxide and the amino group of the polypeptide or polysaccharide means that the covalent bond between the aldehyde group of the oligosaccharide oxide and the amino group of the polypeptide or polysaccharide is present in the crosslinked product. It means that there is at least one.

架橋体には、共有結合に参加していないオリゴ糖酸化物のアルデヒド基とポリペプチド又は多糖類のアミノ基が存在していることが好ましい。血管伸張を誘導するための血管新生因子などを担持するためには、これらの生理活性物質と相互作用するための官能基を必要とする場合がある。例えば電荷が正に偏っているbFGFは、オリゴ糖酸化物のアルデヒド基と静電相互作用をする。また、良好な細胞接着性や酵素分解性を維持するためには、オリゴ糖酸化物のアルデヒド基とポリペプチド又は多糖類のアミノ基間の共有結合形成によるポリペプチド側鎖構造の破壊や、立体構造変化を最小限にすることが望ましい。   The cross-linked product preferably contains an aldehyde group of an oligosaccharide oxide that does not participate in a covalent bond and an amino group of a polypeptide or polysaccharide. In order to carry an angiogenic factor for inducing vascular elongation, a functional group for interacting with these physiologically active substances may be required. For example, bFGF whose charge is positively biased has an electrostatic interaction with the aldehyde group of the oligosaccharide oxide. In addition, in order to maintain good cell adhesion and enzymatic degradability, the side chain structure of the polypeptide is destroyed by the formation of a covalent bond between the aldehyde group of the oligosaccharide oxide and the amino group of the polypeptide or polysaccharide. It is desirable to minimize structural changes.

本発明の好ましい実施態様は、架橋体がゲル化した状態(以下単に「ゲル」とも言う。)である。ここで、ゲルとは架橋体(架橋性組成物)において流動性が失われた状態にあることをいう。本発明における架橋体とは、上記の通り、オリゴ糖酸化物のアルデヒド基とポリペプチドのアミノ基が共有結合してオリゴ糖酸化物−ポリペプチド複合体、又はオリゴ糖酸化物のアルデヒド基と多糖類のアミノ基が共有結合してオリゴ糖酸化物−多糖類複合体を形成しているものをいい、本発明の架橋体にはゲル化していない場合も含まれるが、本発明においては、前記架橋性組成物をゲル化させることにより、安定した構造を有する大型の再生組織の足場材料を得ることが可能となり特に好ましい。   A preferred embodiment of the present invention is a state in which the crosslinked product is gelled (hereinafter also simply referred to as “gel”). Here, the gel means that the fluidity is lost in the crosslinked body (crosslinkable composition). As described above, the cross-linked product in the present invention refers to an oligosaccharide oxide-polypeptide complex, or an aldehyde group of an oligosaccharide oxide and an aldehyde group of an oligosaccharide oxide. It refers to those in which the amino group of the saccharide is covalently bonded to form an oligosaccharide oxide-polysaccharide complex, and the crosslinked product of the present invention includes cases where it is not gelled. By making the crosslinkable composition into a gel, it is possible to obtain a large regenerative tissue scaffolding material having a stable structure, which is particularly preferable.

本発明の架橋体は、生理活性物質を含有することができる。
生理活性物質には、限定されない例として、増殖因子およびサイトカイン、抗体などが挙げられる。増殖因子およびサイトカインには、限定されない例として、血管内皮細胞増殖因子(vascular endothelial growth factor,VEGF)、酸性線維芽細胞増殖因子(acidic fibroblast growth factor,a−FGF)、塩基性線維芽細胞増殖因子(basic fibroblast growth factor,b−FGF)、血小板由来内皮細胞増殖因子(platelet-derived endothelial cell growth factor,PD−ECGF)、トランスフォーミング増殖因子(transforming growth factor,TGF−α、TGF−β)、腫瘍壊死因子(angiogenin tumor necrosis factor-α,TNF−α)、肝細胞増殖因子(hepatocyte growth factor,HGF)、顆粒球マクロファージ−コロニー刺激因子(Granulocyte/Macrophage-Colony Stimulating Factor,GM−CSF)、インシュリン、インシュリン様成長因子(Insulin-like growth factor,IGF−I、IGF−II)、エリスロポエチン(EPO)、トロンボポエチン(TPO)、上皮細胞増殖因子(epidermal growth factor:EGF)、ヘパリン結合性増殖因子(heparin binding growth factor:hbgf)、神経成長因子(nerve growth factor:NGF)、筋肉形成因子(muscle morphogenic factor:MMF)、骨形成タンパク質(bone morphogenetic protein,BMP)等があげられる。抗体には、限定されない例として、抗CD3抗体や抗CD28抗体などの細胞を刺激できる抗体などが挙げられる。好ましくは、塩基性線維芽細胞増殖因子(basic fibroblast growth factor,b−FGF)、血管内皮細胞増殖因子(vascular endothelial growth factor,VEGF)、血小板由来内皮細胞増殖因子(platelet-derived endothelial cell growth factor,PD−ECGF)、肝細胞増殖因子(hepatocyte growth factor,HGF)、顆粒球マクロファージ−コロニー刺激因子(granulocyte/macrophage-colony stimulating factor,GM−CSF)であり、より好ましくは塩基性線維芽細胞増殖因子(basic fibroblast growth factor,b−FGF)、血管内皮細胞増殖因子(vascular endothelial growth factor,VEGF)である。生理活性物質は、生理活性物質を分泌する細胞であってもよい。
The crosslinked body of the present invention can contain a physiologically active substance.
Non-limiting examples of physiologically active substances include growth factors and cytokines, antibodies and the like. Examples of growth factors and cytokines include, but are not limited to, vascular endothelial growth factor (VEGF), acidic fibroblast growth factor (a-FGF), basic fibroblast growth factor. (Basic fibroblast growth factor, b-FGF), platelet-derived endothelial cell growth factor (PD-ECGF), transforming growth factor (transforming growth factor, TGF-α, TGF-β), tumor Necrosis factor (angiogenin tumor necrosis factor-α, TNF-α), hepatocyte growth factor (HGF), granulocyte / macrophage-colony stimulating factor (GM-CSF), insulin, Insulin-like growth factor (IGF-I, IGF-II), Ellis Lopoietin (EPO), thrombopoietin (TPO), epidermal growth factor (EGF), heparin binding growth factor (hbgf), nerve growth factor (NGF), muscle formation factor (Muscle morphogenic factor: MMF), bone morphogenetic protein (BMP) and the like. Non-limiting examples of antibodies include antibodies that can stimulate cells such as anti-CD3 antibodies and anti-CD28 antibodies. Preferably, basic fibroblast growth factor (b-FGF), vascular endothelial growth factor (VEGF), platelet-derived endothelial cell growth factor, PD-ECGF), hepatocyte growth factor (HGF), granulocyte / macrophage-colony stimulating factor (GM-CSF), more preferably basic fibroblast growth factor (Basic fibroblast growth factor, b-FGF), vascular endothelial growth factor (VEGF). The physiologically active substance may be a cell that secretes a physiologically active substance.

また、本発明の架橋体は、細胞を含有することができる。
細胞の種類は、限定されないが、好ましくは、軟骨細胞;繊維軟骨細胞;骨細胞;骨芽細胞;破骨細胞;滑膜細胞;骨髄細胞;間葉細胞;間質細胞;脂肪組織由来の前駆細胞;末梢血液前駆細胞;インシュリン産生細胞;B細胞あるいはハイブリドーマ等の抗体産生細胞;ホルモン産生細胞;肥満細胞;化学伝達物質産生細胞(免疫系細胞);遺伝子組み替え細胞;幹細胞(ES細胞、EG細胞、iPS細胞、および成体(組織)幹細胞など);肝、神経、甲状腺、胸腺、副腎髄質、副腎皮質、腎臓あるいは消化管の生理活性因子を産生する細胞;及びこれらの細胞と他の細胞の組み合わせが挙げられる。細胞は、凝集形態(スフェロイド等)や組織の一部であってもよい。細胞の由来は、限定されないが、好ましくは、哺乳動物、より好ましくは、イヌ、ネコ等の愛玩動物;ヒト;ウシ、ブタ、ウマ、ヒツジ、ヤギ等の家畜動物;サル、ウサギ、マウス、ラット等の実験動物、特に好ましくはヒトである。また、細胞は、免疫による拒絶を避けるために、移植対象由来であることが好ましい。
Moreover, the crosslinked body of this invention can contain a cell.
The cell type is not limited, but preferably chondrocytes; fibrochondrocytes; bone cells; osteoblasts; osteoclasts; synovial cells; bone marrow cells; mesenchymal cells; Peripheral blood progenitor cells; insulin-producing cells; antibody-producing cells such as B cells or hybridomas; hormone-producing cells; mast cells; chemotransmitter-producing cells (immune cells); genetically modified cells; stem cells (ES cells, EG cells) , IPS cells, and adult (tissue) stem cells); cells that produce bioactive factors of the liver, nerves, thyroid, thymus, adrenal medulla, adrenal cortex, kidney or gastrointestinal tract; and combinations of these cells with other cells Is mentioned. The cells may be in aggregated form (spheroids etc.) or part of tissue. The origin of the cells is not limited, but preferably mammals, more preferably pets such as dogs and cats; humans; livestock animals such as cows, pigs, horses, sheep, goats; monkeys, rabbits, mice, rats And the like, particularly preferably humans. Moreover, in order to avoid rejection by immunity, the cells are preferably derived from a transplant subject.

また、本発明の架橋体は、更に培養液を含有することができる。
培養液の種類は、細胞の種類や状態、目的によってさまざまに調製され、例えば、純水、生理食塩水、ホストの体液などがあるが、これらに限定されるものではない。
Moreover, the crosslinked body of this invention can contain a culture solution further.
The type of the culture solution is variously prepared depending on the type, state, and purpose of the cell. Examples include, but are not limited to, pure water, physiological saline, and body fluid of the host.

本発明の架橋体は、アルデヒド基を有するオリゴ糖酸化物と側鎖にアミノ基を有するポリペプチド又は多糖類を含有する架橋性組成物を調製し、架橋反応を進行させることにより製造することができる。具体的には、側鎖にアミノ基を有するポリペプチド又は多糖類のリン酸緩衝溶液を調製してpHを調整し、これにアルデヒド基を有するオリゴ糖酸化物を添加して架橋性組成物とし、所定時間攪拌して反応を進行させる。攪拌を続けると、溶液が増粘し、更に攪拌すると流動性が失われてゲルを形成することができる。
本発明においては、オリゴ糖酸化物のアルデヒド基とポリペプチド又は多糖類のアミノ基との化学結合反応はアルカリ条件下で顕著に促進されると考えられるため、架橋性組成物のpHを好ましくは7.0以上、より好ましくは7.6以上に調整する。
The crosslinked product of the present invention can be produced by preparing a crosslinkable composition containing an oligosaccharide oxide having an aldehyde group and a polypeptide or polysaccharide having an amino group in the side chain, and allowing the crosslinking reaction to proceed. it can. Specifically, a phosphate buffer solution of a polypeptide or polysaccharide having an amino group in the side chain is prepared, pH is adjusted, and an oligosaccharide oxide having an aldehyde group is added thereto to obtain a crosslinkable composition. The reaction is allowed to proceed with stirring for a predetermined time. If the stirring is continued, the solution thickens, and if the stirring is further performed, the fluidity is lost and a gel can be formed.
In the present invention, since the chemical bonding reaction between the aldehyde group of the oligosaccharide oxide and the amino group of the polypeptide or polysaccharide is considered to be significantly accelerated under alkaline conditions, the pH of the crosslinkable composition is preferably It is adjusted to 7.0 or more, more preferably 7.6 or more.

本発明の架橋体の製造方法において、反応温度は使用するポリペプチドの種類に応じて設定することができるが、反応温度が高いほどゲル化時間を短くすることができる。また、オリゴ糖酸化物の濃度は使用するポリペプチドの種類などに応じて設定することができるが、オリゴ糖酸化物の濃度が高いほどゲル化時間を短くすることができる。   In the method for producing a crosslinked product of the present invention, the reaction temperature can be set according to the type of polypeptide to be used, but the higher the reaction temperature, the shorter the gelation time. In addition, the concentration of the oligosaccharide oxide can be set according to the type of polypeptide used, etc., but the gelation time can be shortened as the concentration of the oligosaccharide oxide increases.

細胞培養システム
本発明の更なる形態は、本発明の架橋体を用いた細胞培養システム及び細胞を培養する方法に関る。
本発明の細胞の培養方法においては、アルデヒド基を有するオリゴ糖酸化物と側鎖にアミノ基を有するポリペプチド又は多糖類を混合して架橋性組成物を調製し、そのpHを調整し、ゲル化を進行させる。そして、ゲル化を進行させる前、進行中、完了後の任意の時点において、細胞、培養液を添加して細胞を培養する。
本発明の一つの態様として、架橋性組成物が増粘したところで、これに細胞を添加し混合して、シャーレ等に細胞混合液を注入して、所定の温度・時間静置してゲル化させて所定の厚み・径を有するディスク状ゲルを培養液で被覆して細胞を培養することができる。
また、別の態様として、架橋性組成物が増粘したところで、これに別工程で細胞を播種して所定期間培養して得たスフェロイドを添加し混合して、所定の温度・時間静置してゲル化させて所定の厚み・径を有するディスク状ゲルを培養液で被覆して細胞を培養することができる。
Cell culture system The further form of this invention is related with the cell culture system using the bridge | crosslinking body of this invention, and the method of culture | cultivating a cell.
In the cell culture method of the present invention, an oligosaccharide oxide having an aldehyde group and a polypeptide or polysaccharide having an amino group in the side chain are mixed to prepare a crosslinkable composition, its pH is adjusted, and a gel is prepared. Progress. Then, before the gelation progresses, during the progress, and at any time after the completion, the cells and the culture solution are added to culture the cells.
As one aspect of the present invention, when the crosslinkable composition is thickened, the cells are added to and mixed with this, and the cell mixture is injected into a petri dish or the like, and left to stand for a predetermined temperature and time for gelation. The cells can be cultured by coating a disc-shaped gel having a predetermined thickness and diameter with a culture solution.
As another aspect, when the crosslinkable composition has thickened, spheroids obtained by seeding cells in a separate step and culturing for a predetermined period are added and mixed, and allowed to stand at a predetermined temperature and time. The cells can be cultured by coating a disc-shaped gel having a predetermined thickness and diameter with a culture solution.

培養液としては、例えば、純水、生理食塩水、リン酸緩衝液、イーグル基礎培地(Basal Medium Eagle:BME)、ダルベッコ改変イーグル培地(Dulbecco’s Modi ed Eagle’s Medium:DMEM)、DMEM:F12培地、グラスゴー最少必須培地(Glasgow Minimum Essential Medium:GMEM)、グレース昆虫培地(Grace’s Insect Medium)、ハム培地(Ham’s Medium)、イスコフ改変ダルベッコ培地(Iscove’s Modi ed Dulbecco’s Medium:IMDM)、L−15(リーボビッツ)培地(L−15(Leibovitz)Medium)、マッコイ5A培地(McCoy’s 5A Medium)、最小必須培地−イーグル(MEM Eagle/E−MEM)、199培地(Medium 199)、NCTC−109培地(NCTC−109 Medium)、リヒター CM(Richter’s CM)、RPMI1640培地(RPMI 1640 Medium)、昆虫培地、ウェイマス培地(Waymouth’s Medium)、ウィリアム培地(William’s Medium)、体液などが挙げられるが、これらに限定されない。   Examples of the culture solution include pure water, physiological saline, phosphate buffer, Eagle basal medium (BME), Dulbecco's Modified eagle's Medium (DMEM), DMEM: F12 medium, Glasgow Minimum Essential Medium (GMEM), Grace's Insect Medium, Ham's Medium, Iscove's Dumbecco Medium : IMDM), L-15 (Leibovitz) medium (L-15 (Leibovitz) Medium), McCoy's 5A medium (McCoy's 5 A Medium), Minimum Essential Medium-Eagle (MEM Eagle / E-MEM), 199 Medium (Medium 199), NCTC-109 Medium (NCTC-109 Medium), Richter CM (Richter's CM), RPMI 1640 Medium (RPMI 1640) Medium), insect medium, Weymouth's Medium, William's Medium, body fluid, and the like, but are not limited thereto.

本発明の細胞培養システム及び細胞の培養方法においては、前記した細胞及びスフェロイド、細胞培養液を使用することができる。また、本発明の細胞培養システムでは、前記した生理活性物質をゲル中に適宜添加することができる。また、ゲルの機械的強度を上げるため、ゲル中に補強材を含有させることができる。
更に、下記の移植システムに記載するような、培養液をゲルに注入するフローシステムを組み込むことができる。
In the cell culture system and the cell culture method of the present invention, the cells, spheroids, and cell culture solution described above can be used. In the cell culture system of the present invention, the aforementioned physiologically active substance can be appropriately added to the gel. Moreover, in order to raise the mechanical strength of a gel, a reinforcing material can be contained in a gel.
In addition, a flow system can be incorporated that injects the culture medium into the gel as described in the implantation system below.

また、本発明の細胞培養システムは、透明性が高く細胞観察にも適したシステムである。従って、移植を想定した細胞増殖に必要な成分・因子以外にも、細胞の挙動に影響(好影響・悪影響)を与える他の薬剤をゲル中に添加することも可能である。この場合は、本発明のゲルは、薬物担体としての機能を発揮し得る。   In addition, the cell culture system of the present invention is highly transparent and suitable for cell observation. Therefore, in addition to the components and factors necessary for cell growth assuming transplantation, it is also possible to add other drugs that affect the behavior of cells (good or bad influence) into the gel. In this case, the gel of the present invention can exhibit a function as a drug carrier.

移植システム
本発明の更なる形態は、本発明の架橋体又は本発明の細胞培養システムで得られる培養細胞を、体内に移植するシステム及び方法である。また、本発明の別の態様は、アルデヒド基を有するオリゴ糖酸化物及び側鎖にアミノ基を有するポリペプチド又は多糖類を含む架橋性組成物から形成されたゲル中に細胞又は細胞組織が包埋されており、被験者の体内に移植されるように用いられる、再生組織を構築するための移植材料である。
Transplantation system A further aspect of the present invention is a system and method for transplanting the crosslinked body of the present invention or the cultured cells obtained by the cell culture system of the present invention into the body. In another aspect of the present invention, cells or tissue are encapsulated in a gel formed from a crosslinkable composition containing an oligosaccharide oxide having an aldehyde group and a polypeptide or polysaccharide having an amino group in the side chain. It is a transplant material for constructing a regenerative tissue that is buried and used to be transplanted into the body of a subject.

本発明の移植システムにおいては、細胞を内包した架橋体、スフェロイド等の細胞組織を内包した架橋体(例えば、スフェロイドの周囲を足場材料である架橋体で被覆されたもの)、複数の細胞組織を内包した架橋体(例えば、周囲を架橋体で被覆された複数の細胞組織が二次元又は三次元に配置されたもの)、細胞を含まない架橋体を、宿主母床に移植することができる。
本発明の移植システムで用いられる架橋体は、適度な隙間のあるマトリックス構造を有し、血管壁構成細胞との接着性が良好であるため生体内で安定した構造を保つことができ、一方、血管新生プロテアーゼには分解されるため血管が成長していくためのスペースを確保することができ血管新生を効率的に誘導することが可能である。
In the transplant system of the present invention, a cross-linked body containing cells, a cross-linked body containing cell tissues such as spheroids (for example, a spheroid surrounded by a cross-linked body that is a scaffold material), a plurality of cell tissues A cross-linked body encapsulated (for example, a plurality of cellular tissues covered with a cross-linked body in a two-dimensional or three-dimensional manner) or a cross-linked body not containing cells can be transplanted into a host mother bed.
The cross-linked body used in the transplantation system of the present invention has a matrix structure with appropriate gaps, and can maintain a stable structure in vivo because of its good adhesion to vascular wall constituent cells, Since it is decomposed by angiogenic protease, a space for blood vessel growth can be secured, and angiogenesis can be efficiently induced.

本発明の移植システムにおいては、前記架橋体が血管新生因子を含有していることが好ましく、架橋体中のポリペプチドに結合していることが特に好ましい。これにより、血管新生因子を架橋体外部に放出せずに、架橋体内部に血管を誘導させることができる。   In the transplantation system of the present invention, the cross-linked body preferably contains an angiogenic factor, and particularly preferably bound to a polypeptide in the cross-linked body. Thereby, the blood vessel can be induced inside the crosslinked body without releasing the angiogenic factor outside the crosslinked body.

また、本発明の移植システムは、移植後の架橋体又は培養細胞に、外部から培養液を供給する手段を備えることもできる。ホスト血管床から血管新生を誘導し架橋体内部に引き込み移植細胞内に血管豊富な肉芽組織を誘導するには数日間かかり、その間中心壊死により細胞数が徐々に低減する傾向にある。培養液を外部から供給することによって、肉芽組織が誘導されるまでの間中心壊死を抑制して細胞を数日間にわたって生存させることが可能となる。
外部から培養液を供給するには、培養液をポンプ等によってゲルの中心(場合によっては複数点)に加圧的に注入することができる。
Moreover, the transplant system of this invention can also be equipped with the means to supply a culture solution from the exterior to the bridge | crosslinking body or culture cell after transplant. It takes several days to induce angiogenesis from the host vascular bed and draw it into the cross-linked body to induce vascular-rich granulation tissue in the transplanted cells, while the number of cells tends to gradually decrease due to central necrosis. By supplying the culture solution from the outside, it is possible to suppress the central necrosis and allow the cells to survive for several days until the granulation tissue is induced.
In order to supply the culture solution from the outside, the culture solution can be injected under pressure into the center (in some cases, a plurality of points) of the gel by a pump or the like.

本発明の移植システムをヒトに対し利用すれば、移植された培養細胞はヒトの生体内で機能を長期間発現することとなり、そのまま人工臓器となる。培養細胞の大きさや形状、もしくは両者で機能の発現量を制御できる。培養細胞として肝実質細胞を用いれば人工肝臓としての役割を示し、例えば肝酵素欠損症、血友病、凝固異常症、肝不全症、劇症肝炎、慢性肝炎、肝硬変、肝切除患者の治療、感染症等で挙げられる各疾患の本質的な治療、もしくは肝機能の補佐を目的に使用される。また、移植される組織(臓器)としては、肝臓、心臓、血管組織、腎臓、肺、膵臓(膵島)、胃腸組織、眼(角膜)、脳、神経組織、骨髄、骨、歯、軟骨、皮膚(毛髪)、筋肉などがある。   If the transplantation system of the present invention is used for humans, the transplanted cultured cells will express their functions in the human body for a long period of time, and become artificial organs as they are. The expression level of the function can be controlled by the size and shape of the cultured cells, or both. If hepatocytes are used as cultured cells, it shows a role as an artificial liver, such as liver enzyme deficiency, hemophilia, coagulopathy, liver failure, fulminant hepatitis, chronic hepatitis, cirrhosis, treatment of patients with hepatectomy, It is used for the essential treatment of each disease mentioned in infectious diseases and the like or for the purpose of assisting liver function. The transplanted tissues (organs) include liver, heart, vascular tissue, kidney, lung, pancreas (islet), gastrointestinal tissue, eye (cornea), brain, nerve tissue, bone marrow, bone, tooth, cartilage, and skin. (Hair) and muscles.

本発明の移植システムを動物に対し利用すれば、培養細胞移植動物となる。培養細胞の大きさや形状で機能の発現量を制御できる。ここで使用される動物はラット、マウス、モルモット、マーモセット、ウサギ、イヌ、ブタ、チンパンジーあるいはそれらの免疫不全動物等が挙げられるが特に限定されるものではない。このような膵島移植動物は、例えば、被検物質をこの膵島移植動物に投与し、当該被検物質の膵機能への影響を判定する膵機能評価システム等を目的に使用されるが、特に限定されるものではない。   When the transplant system of the present invention is used for animals, it becomes a cultured cell transplant animal. The expression level of the function can be controlled by the size and shape of the cultured cells. Examples of animals used herein include rats, mice, guinea pigs, marmosets, rabbits, dogs, pigs, chimpanzees, and immunodeficient animals thereof, but are not particularly limited. Such an islet transplanted animal is used for the purpose of, for example, a pancreatic function evaluation system in which a test substance is administered to the pancreatic islet transplanted animal and the influence of the test substance on pancreatic function is determined. Is not to be done.

以下に本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

アルデヒド基を有するオリゴ糖酸化物の調製
[合成例1]
ラフィノース五水和物(和光純薬、Mw:594.5)800mg(1.4mmol、糖ユニットでは4mmol)を(1)0.1N水酸化ナトリウム水溶液(10mL)または(2)蒸留水(10mL)に溶解し、さらに氷冷下で過ヨウ素酸ナトリウム640mg(3mmol)を添加した。この混合溶液を遮光下24℃で60時間撹拌し、酸化反応をおこなった。反応溶液にエタノール(40mL)を添加し、12時間静置した後、析出したヨウ素酸化物の沈殿物を濾過にて除去した。濾液を減圧下にて濃縮乾固し、ラフィノース酸化物を得た(収量:580mg)。
Preparation of oligosaccharide oxide having aldehyde group [Synthesis Example 1]
Raffinose pentahydrate (Wako Pure Chemicals, Mw: 594.5) 800 mg (1.4 mmol, 4 mmol for sugar units) (1) 0.1N aqueous sodium hydroxide (10 mL) or (2) distilled water (10 mL) Then, 640 mg (3 mmol) of sodium periodate was added under ice cooling. This mixed solution was stirred at 24 ° C. for 60 hours under light shielding to carry out an oxidation reaction. Ethanol (40 mL) was added to the reaction solution and allowed to stand for 12 hours, and then the deposited iodine oxide precipitate was removed by filtration. The filtrate was concentrated to dryness under reduced pressure to obtain raffinose oxide (yield: 580 mg).

[合成例2]
スクロース(和光純薬、Mw:342.3)690mg(2mmol、糖ユニットでは4mmol)を(1)0.1N水酸化ナトリウム水溶液(10mL)または(2)蒸留水(10mL)に溶解し、さらに氷冷下で過ヨウ素酸ナトリウム640mg(3mmol)を添加した。この混合溶液を遮光下24℃で60時間撹拌し、酸化反応をおこなった。反応溶液にエタノール(40mL)を添加し、12時間静置した後、析出したヨウ素酸化物の白色沈殿物を濾過にて除去した。濾液の含水エタノールを減圧下、共沸によって蒸発させることで、スクロース酸化物を濃縮乾固物として得た(収量:640mg)。
[Synthesis Example 2]
690 mg (2 mmol, 4 mmol for sugar units) of sucrose (Wako Pure Chemical, Mw: 342.3) was dissolved in (1) 0.1N aqueous sodium hydroxide (10 mL) or (2) distilled water (10 mL), and iced 640 mg (3 mmol) of sodium periodate was added under cooling. This mixed solution was stirred at 24 ° C. for 60 hours under light shielding to carry out an oxidation reaction. Ethanol (40 mL) was added to the reaction solution and allowed to stand for 12 hours, and then a white precipitate of precipitated iodine oxide was removed by filtration. The hydrated ethanol in the filtrate was evaporated azeotropically under reduced pressure to obtain sucrose oxide as a concentrated dry solid (yield: 640 mg).

[合成例3]
グルコース(和光純薬、Mw:180.2)730mg(4mmol)を(1)0.1N水酸化ナトリウム水溶液(10mL)または(2)蒸留水(10mL)に溶解し、さらに氷冷下で過ヨウ素酸ナトリウム640mg(3mmol)を添加した。この混合溶液を遮光下24℃で60時間撹拌し、酸化反応をおこなった。反応溶液にエタノール(40mL)を添加し、12時間静置した後、析出したヨウ素酸化物の白色沈殿物を濾過にて除去した。濾液の含水エタノールを減圧下、共沸によって蒸発させることで、グルコース酸化物を濃縮乾固物として得た(収量:730mg)。
[Synthesis Example 3]
Glucose (Wako Pure Chemicals, Mw: 180.2) 730 mg (4 mmol) was dissolved in (1) 0.1N aqueous sodium hydroxide (10 mL) or (2) distilled water (10 mL), and periodate was added under ice cooling. 640 mg (3 mmol) of sodium acid was added. This mixed solution was stirred at 24 ° C. for 60 hours under light shielding to carry out an oxidation reaction. Ethanol (40 mL) was added to the reaction solution and allowed to stand for 12 hours, and then a white precipitate of precipitated iodine oxide was removed by filtration. The hydrous ethanol in the filtrate was evaporated by azeotropic distillation under reduced pressure to obtain glucose oxide as a concentrated dry solid (yield: 730 mg).

[合成例4]
マルトース一水和物(和光純薬、Mw:360.3)730mg(2mmol、糖ユニットでは4mmol)を(1)0.1N水酸化ナトリウム水溶液(10mL)または(2)蒸留水(10mL)に溶解し、さらに氷冷下で過ヨウ素酸ナトリウム640mg(3mmol)を添加した。この混合溶液を遮光下24℃で60時間撹拌し、酸化反応をおこなった。反応溶液にエタノール(40mL)を添加し、12時間静置した後、析出したヨウ素酸化物の白色沈殿物を濾過にて除去した。濾液の含水エタノールを減圧下、共沸によって蒸発させることで、マルトース酸化物を濃縮乾固物として得た(収量:610mg)。
[Synthesis Example 4]
Maltose monohydrate (Wako Pure Chemicals, Mw: 360.3) 730 mg (2 mmol, 4 mmol for sugar units) is dissolved in (1) 0.1N aqueous sodium hydroxide solution (10 mL) or (2) distilled water (10 mL) Further, 640 mg (3 mmol) of sodium periodate was added under ice cooling. This mixed solution was stirred at 24 ° C. for 60 hours under light shielding to carry out an oxidation reaction. Ethanol (40 mL) was added to the reaction solution and allowed to stand for 12 hours, and then a white precipitate of precipitated iodine oxide was removed by filtration. The hydrous ethanol in the filtrate was evaporated azeotropically under reduced pressure to obtain maltose oxide as a concentrated dry solid (yield: 610 mg).

[合成例5]
フルクトース(和光純薬、Mw:180.2)730mg(4mmol)を(1)0.1N水酸化ナトリウム水溶液(10mL)または(2)蒸留水(10mL)に溶解し、さらに氷冷下で過ヨウ素酸ナトリウム640mg(3mmol)を添加した。この混合溶液を遮光下24℃で60時間撹拌し、酸化反応をおこなった。反応溶液にエタノール(40mL)を添加し、12時間静置した後、析出したヨウ素酸化物の白色沈殿物を濾過にて除去した。濾液の含水エタノールを減圧下、共沸によって蒸発させることで、フルクトース酸化物を濃縮乾固物として得た(収量:580mg)。
[Synthesis Example 5]
730 mg (4 mmol) of fructose (Wako Pure Chemical, Mw: 180.2) is dissolved in (1) 0.1N aqueous sodium hydroxide solution (10 mL) or (2) distilled water (10 mL), and periodate is added under ice cooling. 640 mg (3 mmol) of sodium acid was added. This mixed solution was stirred at 24 ° C. for 60 hours under light shielding to carry out an oxidation reaction. Ethanol (40 mL) was added to the reaction solution and allowed to stand for 12 hours, and then a white precipitate of precipitated iodine oxide was removed by filtration. The hydrous ethanol in the filtrate was evaporated by azeotropic distillation under reduced pressure to obtain fructose oxide as a concentrated dry solid (yield: 580 mg).

[実施例1]
(1)コラーゲン溶液のゲル化
氷上(4℃)にて0.8%アテロコラーゲン(新田ゼラチン、コラーゲンBM、ブタ由来、Type−I)リン酸緩衝溶液(pH7.6)を調製した。この溶液をエッペンチューブに0.3mLずつ分注し、合成例1〜5の条件(1)、(2)で調製した糖酸化物水溶液(3%)を0.08mL添加して撹拌し、18℃で静置した。定期的に溶液をガラス棒で接触し、酸化糖を添加してから流動性が失われるまでに要した時間をゲル化時間とした。また、比較のため過ヨウ素酸酸化処理をしていない糖についても実験を行なった。
[Example 1]
(1) Gelatin of collagen solution A 0.8% atelocollagen (Nitta gelatin, collagen BM, derived from pig, Type-I) phosphate buffer solution (pH 7.6) was prepared on gelled ice (4 ° C.). This solution was dispensed into an Eppendorf tube in an amount of 0.3 mL, 0.08 mL of an aqueous solution of sugar oxide (3%) prepared in conditions (1) and (2) of Synthesis Examples 1 to 5 was added, and the mixture was stirred. Allowed to stand at ° C. Periodically, the solution was contacted with a glass rod, and the time required from the addition of oxidized sugar to the loss of fluidity was defined as the gel time. For comparison, an experiment was also performed on sugars that had not been subjected to periodate oxidation treatment.

Figure 0006055466
Figure 0006055466

糖水溶液に過ヨウ素酸を添加(調製条件(2))するとpH2〜3程度になる。この状態で酸化反応を行うと、反応初期に発熱し、次第に溶液が黄褐色となり、さらに黒紫色のヨウ素の微結晶が析出した。得られた糖酸化物は褐色となった。同様の反応を0.1N水酸化ナトリウム水溶液(調製条件(1))で行うと、pH5〜6程度となり、溶液の褐色化やヨウ素の析出は生起しなかった。
コラーゲン溶液に糖の過ヨウ素酸酸化物を添加したところ、ゲル化は単糖であるグルコース酸化物、フルクトース酸化物と比較してオリゴ糖由来であるスクロース酸化物、ラフィノース酸化物、マルトース酸化物のほうが早いことが分かった。
また、糖酸化物の調製条件によってゲル化に違いが見られ、pH5〜6程度で酸化した(調製条件(1))糖酸化物をコラーゲン溶液に添加した場合はゲル化し易い傾向がみられた。
When periodic acid is added to the aqueous sugar solution (preparation condition (2)), the pH is about 2-3. When the oxidation reaction was performed in this state, heat was generated at the initial stage of the reaction, the solution gradually became yellowish brown, and black purple iodine microcrystals were deposited. The resulting sugar oxide turned brown. When the same reaction was carried out with a 0.1N aqueous sodium hydroxide solution (preparation conditions (1)), the pH became about 5 to 6, and no browning of the solution or precipitation of iodine occurred.
When periodate oxide of sugar is added to collagen solution, gelation of sucrose oxide, raffinose oxide, maltose oxide derived from oligosaccharide compared to glucose oxide and fructose oxide which are monosaccharides I found it faster.
In addition, there was a difference in gelation depending on the preparation conditions of the sugar oxides, and there was a tendency for gelation when the sugar oxides oxidized at pH 5-6 (preparation condition (1)) were added to the collagen solution. .

(2)ゲル調製時の温度によるゲル化時間への影響
氷上(4℃)にて0.3mLの0.8%アテロコラーゲン(新田ゼラチン、コラーゲンBM)リン酸緩衝溶液(pH7.6)を調製した。この溶液に0.08mLの3%(50mM)ラフィノース酸化物またはラフィノースの水溶液を添加して撹拌し、4℃、18℃、24℃、37℃で静置した。
(2) Effect of gel preparation temperature on gelation time 0.3 mL of 0.8% atelocollagen (Nitta gelatin, collagen BM) phosphate buffer solution (pH 7.6) is prepared on ice (4 ° C.). did. To this solution, 0.08 mL of an aqueous solution of 3% (50 mM) raffinose oxide or raffinose was added and stirred, and allowed to stand at 4 ° C., 18 ° C., 24 ° C., and 37 ° C.

Figure 0006055466
Figure 0006055466

pHを中性付近に調製したコラーゲン溶液は、温度上昇に伴って疎水性相互作用等の影響によって線維化し、ゲル化する。ラフィノースを添加したコラーゲン溶液は、37℃において20分程度で線維化し白濁したゲル状態となった。一方、コラーゲン溶液にラフィノース酸化物を添加した場合、37℃でも線維化は認められず、無色透明のまま1時間程度でゲル化した。これはラフィノース酸化物によるコラーゲン分子の架橋化が、コラーゲン同士の会合・凝集を制限したため、線維化が抑制され、無色透明なゲルが得られたと考えられる。調製温度が4℃の場合にはゲル化時間が7時間と遅く、温度が高くなるにつれてゲル化時間が短縮する傾向がみられた。   The collagen solution prepared at a neutral pH is fibrillated and gelled due to the influence of hydrophobic interaction and the like as the temperature rises. The collagen solution to which raffinose was added turned into a fibrillated and white turbid gel at about 20 minutes at 37 ° C. On the other hand, when raffinose oxide was added to the collagen solution, fibrosis was not observed even at 37 ° C., and gelled in about 1 hour while being colorless and transparent. This is probably because the cross-linking of collagen molecules with raffinose oxide limited the association / aggregation of collagens, so that fibrosis was suppressed and a colorless and transparent gel was obtained. When the preparation temperature was 4 ° C., the gelation time was as slow as 7 hours, and as the temperature increased, the gelation time tended to be shortened.

(3)コラーゲン溶液のpHによるゲル化への影響
氷上(4℃)にて0.3mLの0.8%アテロコラーゲン(新田ゼラチン、コラーゲンBM)リン酸緩衝溶液(pH7.2、pH7.6、pH8.0)を調製した。この溶液に0.08mLの3%(50mM)酸化ラフィノース水溶液を添加して撹拌し、18℃で静置した。
(3) Effect of gelation of collagen solution on gelation On ice (4 ° C.), 0.3 mL of 0.8% atelocollagen (Nitta gelatin, collagen BM) phosphate buffer solution (pH 7.2, pH 7.6, pH 8.0) was prepared. To this solution, 0.08 mL of 3% (50 mM) aqueous raffinose aqueous solution was added and stirred, and allowed to stand at 18 ° C.

Figure 0006055466
Figure 0006055466

中性よりも低いpHでは反応が十分進行せず、pHが7.6以上の場合に、ゲル化は早く進行した。また、pHが5以下で過塩素酸酸化をしたラフィノース酸化物(合成例1(2))を使用した場合であっても、ゲル調製時におけるコラーゲン溶液のpHが高い場合には、ゲル化することが確認された。   The reaction did not proceed sufficiently at a pH lower than neutral, and gelation proceeded quickly when the pH was 7.6 or higher. Further, even when raffinose oxide (Synthesis Example 1 (2)) oxidized with perchloric acid at a pH of 5 or less is used, gelation occurs when the pH of the collagen solution during gel preparation is high. It was confirmed.

[実施例2]
ゼラチン溶液のゲル化
(1)ブタ由来ゼラチンの糖酸化物によるゲル化
40℃にてゼラチン(和光純薬社製077−03155、ブタ由来)の水溶液を作製し、リン酸緩衝溶液を添加し、最終的に15%ゼラチン溶液(pH7.6)を調製した。この溶液0.3mLに3%糖酸化物の水溶液0.06mLを添加して撹拌し、40℃で静置した。
[Example 2]
Gelation of gelatin solution
(1) Gelation of porcine-derived gelatin with sugar oxide An aqueous solution of gelatin (077-03155 manufactured by Wako Pure Chemical Industries, Ltd., derived from swine) is prepared at 40 ° C., and a phosphate buffer solution is added, and finally 15% A gelatin solution (pH 7.6) was prepared. To 0.3 mL of this solution, 0.06 mL of a 3% sugar oxide aqueous solution was added and stirred, and allowed to stand at 40 ° C.

Figure 0006055466
Figure 0006055466

ブタ由来ゼラチンは室温で可逆性の物理ゲルを形成することから、上記ゲルの作製試験は、ゼラチン溶液が融解する40℃で行った。ラフィノース酸化物とスクロース酸化物を添加した場合にはゲル化したが、グルコース酸化物、マルトース酸化物、フルコトース酸化物ではゲル化は認められなかった。40℃においては、コラーゲンの熱劣化と糖酸化物による架橋反応が同時に進行すると予想されるため、ゲルを調製するには速やかな架橋反応が必要と考えられる。上記の糖酸化物はいずれも架橋構造は形成すると考えられるが、ラフィノース酸化物とスクロース酸化物は、効率良くゲル化する能力が認められた。   Since pig-derived gelatin forms a reversible physical gel at room temperature, the gel preparation test was performed at 40 ° C. at which the gelatin solution melts. Gelation was observed when raffinose oxide and sucrose oxide were added, but no gelation was observed with glucose oxide, maltose oxide, or flucotose oxide. At 40 ° C., it is expected that the thermal degradation of collagen and the cross-linking reaction by sugar oxide proceed at the same time. Therefore, it is considered that a quick cross-linking reaction is necessary to prepare the gel. Although all of the above sugar oxides are considered to form a crosslinked structure, raffinose oxide and sucrose oxide were recognized to have an ability to gel efficiently.

(2)ゼラチン溶液のpHによるゲル化への影響
40℃にてゼラチン(和光純薬社製077−03155、ブタ由来)の水溶液を作成し、リン酸緩衝溶液を添加し、最終的に15%ゼラチン溶液(pH8、pH9)を調製した。この溶液0.3mLに3%ラフィノース酸化物または3%スクロース酸化物の水溶液0.06mLを添加して撹拌し、40℃で静置した。
(2) Effect of gelatin solution on gelation by pH An aqueous solution of gelatin (077-03155 manufactured by Wako Pure Chemical Industries, Ltd., derived from swine) is prepared at 40 ° C., a phosphate buffer solution is added, and finally 15% A gelatin solution (pH 8, pH 9) was prepared. To 0.3 mL of this solution, 0.06 mL of an aqueous solution of 3% raffinose oxide or 3% sucrose oxide was added and stirred, and allowed to stand at 40 ° C.

Figure 0006055466
Figure 0006055466

pHが中性付近ではゲル化が十分進行しないことが確認された。また、ゼラチン溶液のpHが高い場合には、ゲル化時間が短縮する傾向が認められた。   It was confirmed that the gelation did not proceed sufficiently in the vicinity of neutral pH. Moreover, when the pH of the gelatin solution was high, the tendency for gelation time to shorten was recognized.

(3)糖酸化物の添加濃度によるゼラチン溶液のゲル化への影響
40℃にてゼラチン(和光純薬社製、077−03155、ブタ由来)の水溶液を作成し、リン酸緩衝溶液を添加し、最終的に15%ゼラチン溶液(pH9)を調製した。この溶液0.3mLに3%、6%、9%ラフィノース酸化物または3%、6%、9%スクロース酸化物の水溶液0.06mLを添加して撹拌し、40℃で静置した。
(3) Effect of added concentration of sugar oxide on gelatinization of gelatin solution Prepare an aqueous solution of gelatin (manufactured by Wako Pure Chemicals, 077-03155, porcine) at 40 ° C, and add phosphate buffer solution. Finally, a 15% gelatin solution (pH 9) was prepared. To 0.3 mL of this solution, 0.06 mL of an aqueous solution of 3%, 6%, 9% raffinose oxide or 3%, 6%, 9% sucrose oxide was added, stirred, and allowed to stand at 40 ° C.

Figure 0006055466
Figure 0006055466

糖酸化物の添加濃度が高くなるにつれて、ゼラチン溶液のゲル化時間が短縮する傾向が認められた。   There was a tendency that the gelation time of the gelatin solution was shortened as the concentration of added sugar oxide was increased.

(4)魚由来ゼラチンの糖酸化物によるゲル化
18℃にてゼラチン(SIGMA社製、G7041−100G、魚由来)の水溶液を作製し、リン酸緩衝溶液を添加し、最終的に15%ゼラチン溶液(pH7.6)を調製した。この溶液0.3mLに3%糖酸化物の水溶液0.06mLを添加して撹拌し、18℃で静置した。
(4) Gelation of fish-derived gelatin with sugar oxide An aqueous solution of gelatin (manufactured by SIGMA, G7041-100G, fish-derived) is prepared at 18 ° C., a phosphate buffer solution is added, and finally 15% gelatin A solution (pH 7.6) was prepared. 0.03 mL of 3% sugar oxide aqueous solution was added to 0.3 mL of this solution and stirred, and allowed to stand at 18 ° C.

Figure 0006055466
Figure 0006055466

魚由来ゼラチンはおよそ4℃以下で可逆性の物理ゲルを形成することから、上記のゲルの作製試験は室温付近(18℃)で行った。ラフィノース酸化物とスクロース酸化物を添加した場合にはゲル化したが、グルコース酸化物、マルトース酸化物、フルコトース酸化物ではゲル化は認められなかった。   Since fish-derived gelatin forms a reversible physical gel at about 4 ° C. or lower, the gel preparation test was performed near room temperature (18 ° C.). Gelation was observed when raffinose oxide and sucrose oxide were added, but no gelation was observed with glucose oxide, maltose oxide, or flucotose oxide.

(5)キトサン誘導体のラフィノース酸化物によるゲル化
24℃にてカルボキシメチルキトサン(大日精化製、CMキトサン)の2%水溶液(pH8)を調製した。この溶液0.3mLに9%ラフィノース酸化物の水溶液0.06mLを添加して撹拌し、24℃にて静置した。

Figure 0006055466

カルボキシメチルキトサンは分子中に反応性のアミノ基を有する水溶性の多糖類である。調製した水溶液は弱アルカリ性を示した。この水溶液にラフィノース酸化物を添加したところ、次第に増粘しゲル化した。 (5) Gelation of chitosan derivative with raffinose oxide A 2% aqueous solution (pH 8) of carboxymethyl chitosan (manufactured by Dainichi Seika, CM chitosan) was prepared at 24 ° C. 0.06 mL of an aqueous solution of 9% raffinose oxide was added to 0.3 mL of this solution, stirred, and allowed to stand at 24 ° C.
Figure 0006055466

Carboxymethyl chitosan is a water-soluble polysaccharide having a reactive amino group in the molecule. The prepared aqueous solution showed weak alkalinity. When raffinose oxide was added to this aqueous solution, it gradually thickened and gelled.

[実施例3]
細胞培養試験
4℃で0.8%アテロコラーゲン(新田ゼラチン、コラーゲンBM)リン酸緩衝溶液(pH7.6、1mL)に3%酸化ラフィノース水溶液(合成例1(1)の酸化条件)(0.2mL)を添加して撹拌した。この混合溶液を18℃で4時間静置し、増粘したところで120μLを分取し、各細胞を添加して混合した。シャーレに密着した厚さ2mmのビニールシートに穴(φ8mm)をあけ、その中に細胞混合液を注入し、湿潤下18℃で1時間静置してゲル化させた。ディスク状ゲル(厚さ2mm,φ8mm)を培養液で被覆して培養した。
[Example 3]
Cell culture test At 4 ° C., 0.8% atelocollagen (Nitta gelatin, collagen BM) phosphate buffer solution (pH 7.6, 1 mL) and 3% oxidized raffinose aqueous solution (oxidation conditions of Synthesis Example 1 (1)) (0. 2 mL) was added and stirred. This mixed solution was allowed to stand at 18 ° C. for 4 hours. When the viscosity was increased, 120 μL was collected, and each cell was added and mixed. A hole (φ8 mm) was made in a vinyl sheet having a thickness of 2 mm that was in close contact with the petri dish, and the cell mixture was poured into it, and left to stand at 18 ° C. for 1 hour to cause gelation. Disc-shaped gel (thickness 2 mm, φ8 mm) was coated with a culture solution and cultured.

(1)正常ヒト臍帯静脈内皮細胞(HUVEC)
上記のディスク状ゲル(120μL)1つ分にGFP−expressing HUVEC(Angio−Proteomie社)が6×10細胞混入するように調製した。培養液はEGM−2(Lonza社)を用いた。
培養を開始して5日目の顕微鏡での観察結果を図1に示す。
(1) Normal human umbilical vein endothelial cells (HUVEC)
GFP-expressing HUVEC (Angio-Proteomie) was prepared to be mixed with 6 × 10 6 cells in one disc-shaped gel (120 μL). As the culture solution, EGM-2 (Lonza) was used.
The observation results with a microscope on the fifth day after the start of culture are shown in FIG.

(2)肝細胞
肝細胞はウイスターラット(300g)の肝よりコラーゲナーゼ灌流法にて採取した。Prime−Sarfae24穴プレート(住友ベークライト)に肝細胞(8×10細胞/穴)を播種し、4日間培養した後にスフェロイドになったところで24穴分をディスク状ゲル(120μL)に添加した。培養液は吉里らの方法に従って調製して用いた。
スフェロイドをゲルに添加してから3日目の顕微鏡での観察結果を図2に示す。
(2) Hepatocytes Hepatocytes were collected from the liver of Wistar rats (300 g) by the collagenase perfusion method. A Prime-Surfae 24-well plate (Sumitomo Bakelite) was seeded with hepatocytes (8 × 10 4 cells / well), and after culturing for 4 days, the spheroids were added to 24 wells in a disc-shaped gel (120 μL). The culture solution was prepared according to the method of Yoshizato et al.
FIG. 2 shows the results of observation with a microscope on the third day after the spheroids were added to the gel.

(3)心筋細胞
心筋細胞は生後1日のウイスターラットの子供から採取した。Prime−Sarfae24穴プレート(住友ベークライト)に心筋細胞(8×10細胞/穴)を播種し、4〜6日間培養した後にスフェロイドになったところで6穴分をディスク状ゲル(120μL)に添加した。培養液はRCBM(Rat Cardiac Myocyte Basal Medium,Lonza社)を用いた。
スフェロイドをゲルに添加してから3日目の顕微鏡での観察結果を図2に示す。
(3) Cardiomyocytes Cardiomyocytes were collected from 1-day-old Wistar rat children. Prime-Surfae 24-well plates (Sumitomo Bakelite) were seeded with cardiomyocytes (8 × 10 4 cells / well), and after culturing for 4 to 6 days, the spheroids were added to the 6-well portion to a disc-shaped gel (120 μL) . As a culture solution, RCBM (Rat Cardiac Myocyte Basal Medium, Lonza) was used.
FIG. 2 shows the results of observation with a microscope on the third day after the spheroids were added to the gel.

上記(1)〜(3)の実験において、得られたゲルは透明性が高く、ゲル内部における細胞の三次元的な増殖過程を経時的に観察することが可能であった。ゲルの細胞毒性は問題なく、肝細胞スフェロイドの場合、図2の矢印で示すように、球状の細胞塊から新たな細胞が萌芽する過程が観察された。HIUVECや心筋細胞ではゲル内培養翌日には細胞の分岐構造が観察され、数日後には三次元的な網目構造が構築された。心筋細胞では細胞個々の拍動から次第に連動した拍動に移行し、最終的にはゲル全体が拍動した(図3中矢印で示した部分)。   In the experiments (1) to (3), the obtained gel was highly transparent, and it was possible to observe the three-dimensional growth process of cells in the gel over time. There was no problem with the cytotoxicity of the gel, and in the case of hepatocyte spheroids, a process in which new cells sprout from the spherical cell mass was observed as indicated by the arrows in FIG. In HIUVEC and cardiomyocytes, a cell branching structure was observed the day after in-gel culture, and a three-dimensional network structure was constructed after several days. In cardiomyocytes, the pulsation gradually shifted from the individual pulsation to the pulsation linked to the individual cells, and finally the entire gel pulsated (the part indicated by the arrow in FIG. 3).

[実施例4]
ラットへの移植実験
氷上(4℃)にて0.3mLの0.8%アテロコラーゲン(新田ゼラチン、コラーゲンBM)リン酸緩衝溶液(pH7.6)を調製した。この溶液に0.06mLの3%(50mM)ラフィノース酸化物水溶液を添加して撹拌した。輪切りにしたePTFE人工血管(高さ1mm、内径φ3mm)に14μLずつ分注し、18℃で4時間30分静置してゲル化させた。ゲルにHANKS緩衝液を被覆してゲル化の進行を抑制し、37℃、湿潤下で一晩静置した。
得られたゲルをWister系オスラット(8週齢、体重300−600g)腹部に皮下埋植し、5日後に摘出した。Hematoxylin−eosin(H−E)染色を施し、光学顕微鏡下で組織学的に観察した。図4に移植実験の概略フロー図を示す。
[Example 4]
Implantation experiment to rat 0.3 mL of 0.8% atelocollagen (Nitta gelatin, collagen BM) phosphate buffer solution (pH 7.6) was prepared on ice (4 ° C.). To this solution, 0.06 mL of 3% (50 mM) raffinose oxide aqueous solution was added and stirred. 14 μL each was dispensed into an ePTFE artificial blood vessel (height 1 mm, inner diameter φ3 mm) cut into a ring and allowed to stand at 18 ° C. for 4 hours 30 minutes to gel. The gel was coated with a HANKS buffer to suppress the progress of gelation and allowed to stand overnight at 37 ° C. under humidity.
The obtained gel was implanted subcutaneously in the abdomen of Wister male rats (8 weeks old, weight 300-600 g), and extracted 5 days later. Hematoxylin-eosin (HE) staining was performed and observed histologically under an optical microscope. FIG. 4 shows a schematic flow diagram of the transplantation experiment.

図5に光学顕微鏡での観察結果を示す。移植したゲル(写真中央部の黄色破線で囲まれた部分)は、5日間で血管豊富な肉芽組織に置き換わったことが分かる。また、ゲルを足場として血管のみが侵入している場合も見られ、血管を誘導する効果も期待される。   FIG. 5 shows the results of observation with an optical microscope. It can be seen that the transplanted gel (portion surrounded by a yellow broken line in the center of the photograph) was replaced with a granule tissue rich in blood vessels in 5 days. Moreover, the case where only the blood vessel has invaded using the gel as a scaffold is also seen, and the effect of inducing the blood vessel is also expected.

Claims (21)

アルデヒド基を有するオリゴ糖酸化物、及び側鎖に複数のアミノ基を有するポリペプチド又は多糖類を含む架橋性組成物であって、
前記オリゴ糖酸化物は、オリゴ糖を塩基性水溶液に溶解して、過ヨウ素酸酸化を行うことにより生成されたものであり、
前記ポリペプチドは、コラーゲン、アテロコラーゲン、ゼラチン、それらの誘導体又はこれらの混合物から選択され、
前記多糖類は、キトサン誘導体である、
当該架橋性組成物
A crosslinkable composition comprising an oligosaccharide oxide having an aldehyde group and a polypeptide or polysaccharide having a plurality of amino groups in the side chain ,
The oligosaccharide oxide is produced by dissolving an oligosaccharide in a basic aqueous solution and performing periodate oxidation,
The polypeptide is selected from collagen, atelocollagen, gelatin, derivatives thereof or mixtures thereof;
The polysaccharide is a chitosan derivative.
The crosslinkable composition .
前記キトサン誘導体が、脱アセチル化キチン又はキトサン、スクシニル化キトサン、グリセリル化キトサン、カルボキシメチル化キトサン、ヒドロキシブチル―ヒドロキシプロピル化キトサン又はこれらの混合物から選択される、請求項に記載の架橋性組成物。 Crosslinked hydroxypropylated chitosan down or mixtures thereof, according to claim 1 - wherein the chitosan derivative is deacetylated chitin, or chitosan, succinyl chitosan, glyceryl chitosan, carboxymethyl chitosan, hydroxybutyl Sex composition. 前記オリゴ糖が、スクロース、マルトース、ラフィノース、これらの誘導体及びこれらの2以上の混合物からなる群から選択される、請求項1又は2に記載の架橋性組成物。 The crosslinkable composition according to claim 1 or 2 , wherein the oligosaccharide is selected from the group consisting of sucrose, maltose, raffinose, derivatives thereof and a mixture of two or more thereof. 請求項1〜のいずれか1項に記載の架橋性組成物から得られる架橋体。 The crosslinked body obtained from the crosslinkable composition of any one of Claims 1-3 . 前記オリゴ糖酸化物のアルデヒド基と前記ポリペプチド又は多糖類のアミノ基が共有結合している、請求項に記載の架橋体。 The cross-linked product according to claim 4 , wherein an aldehyde group of the oligosaccharide oxide and an amino group of the polypeptide or polysaccharide are covalently bonded. ゲル化した状態にある、請求項又はに記載の架橋体。 The cross-linked product according to claim 4 or 5 , which is in a gelled state. 血管新生因子を含有する、請求項のいずれか1項に記載の架橋体。 The cross-linked product according to any one of claims 4 to 6 , comprising an angiogenic factor. 細胞又は細胞組織を含有する、請求項のいずれか1項に記載の架橋体。 The crosslinked body according to any one of claims 4 to 7 , comprising a cell or a cell tissue. 細胞培養液を含有する、請求項に記載の架橋体。 The crosslinked body of Claim 8 containing a cell culture solution. 請求項のいずれか1項に記載の架橋体を用いた、細胞培養システム。 Cell culture system using a crosslinked body according to any one of claims 4-9. 請求項のいずれか1項に記載の架橋体を被験者の体内に移植するシステム。 A system for implanting the crosslinked body according to the body of a subject in any one of claims 4-9. 請求項10に記載の細胞培養システムで得られる培養細胞を、被験者の体内に移植するシステム。 The system which transplants the cultured cell obtained by the cell culture system of Claim 10 in a test subject's body. (a)請求項のいずれか1項に記載の架橋性組成物を調製する工程、
(b)前記架橋性組成物のpHを7.0以上に調整する工程
を含む、前記架橋性組成物のゲルを調製する方法。
(A) preparing the crosslinkable composition according to any one of claims 1 to 3 ,
(B) A method for preparing a gel of the crosslinkable composition, comprising a step of adjusting the pH of the crosslinkable composition to 7.0 or more.
(a)請求項のいずれか1項に記載の架橋性組成物を調製する工程、
(b)前記架橋性組成物のpHを7.0以上に調整する工程、
(c)前記架橋性組成物をゲル化させる工程
を含み、(c)の工程前、工程中または工程後の時点で、前記架橋性組成物に細胞又は細胞組織を添加する、細胞を培養する方法。
(A) preparing the crosslinkable composition according to any one of claims 1 to 3 ,
(B) adjusting the pH of the crosslinkable composition to 7.0 or higher;
(C) including a step of gelling the crosslinkable composition, and adding cells or cell tissues to the crosslinkable composition at a time before, during or after the step of (c), culturing cells Method.
前記(c)の工程前、工程中または工程後の時点で前記架橋性組成物に培養液を添加する、請求項14に記載の細胞を培養する方法。 The method for culturing cells according to claim 14 , wherein a culture solution is added to the crosslinkable composition before, during or after the step (c). 請求項13に記載の方法で得られるゲルを被験者の体内に移植する方法。 A method for transplanting a gel obtained by the method according to claim 13 into the body of a subject. 請求項14又は15に記載の方法で得られる培養細胞を被験者の体内に移植する方法。 A method for transplanting cultured cells obtained by the method according to claim 14 or 15 into the body of a subject. アルデヒド基を有するオリゴ糖酸化物及び側鎖に複数のアミノ基を有するポリペプチド又は多糖類を含む架橋性組成物から形成されたゲル中に細胞又は細胞組織が包埋されており、被験者の体内に移植されるように用いられる、再生組織を構築するための移植材料であって、
前記オリゴ糖酸化物は、オリゴ糖を塩基性水溶液に溶解して、過ヨウ素酸酸化を行うことにより生成されたものであり、
前記ポリペプチドは、コラーゲン、アテロコラーゲン、ゼラチン、それらの誘導体又はこれらの混合物から選択され、
前記多糖類は、キトサン誘導体である、
該移植材料。
Cells or cell tissues are embedded in a gel formed from a crosslinkable composition containing an oligosaccharide oxide having an aldehyde group and a polypeptide or polysaccharide having a plurality of amino groups in the side chain. used to be implanted in, a graft material for building regenerated tissue,
The oligosaccharide oxide is produced by dissolving an oligosaccharide in a basic aqueous solution and performing periodate oxidation,
The polypeptide is selected from collagen, atelocollagen, gelatin, derivatives thereof or mixtures thereof;
The polysaccharide is a chitosan derivative.
The transplant material.
アルデヒド基を有するオリゴ糖酸化物からなり、側鎖に複数のアミノ基を有するポリペプチド又は多糖類との架橋反応に用いられる架橋剤であって、
前記オリゴ糖酸化物は、オリゴ糖を塩基性水溶液に溶解して、過ヨウ素酸酸化を行うことにより生成されたものであり、
前記ポリペプチドは、コラーゲン、アテロコラーゲン、ゼラチン、それらの誘導体又はこれらの混合物から選択され、
前記多糖類は、キトサン誘導体である、
該架橋剤
A cross-linking agent comprising an oligosaccharide oxide having an aldehyde group and used for a cross-linking reaction with a polypeptide or polysaccharide having a plurality of amino groups in the side chain ,
The oligosaccharide oxide is produced by dissolving an oligosaccharide in a basic aqueous solution and performing periodate oxidation,
The polypeptide is selected from collagen, atelocollagen, gelatin, derivatives thereof or mixtures thereof;
The polysaccharide is a chitosan derivative.
The crosslinking agent .
前記オリゴ糖が、スクロース、マルトース、ラフィノース、これらの誘導体及びこれらの2以上の混合物からなる群から選択される、請求項19に記載の架橋剤。 20. The crosslinking agent according to claim 19 , wherein the oligosaccharide is selected from the group consisting of sucrose, maltose, raffinose, derivatives thereof and mixtures of two or more thereof. 前記キトサン誘導体が、脱アセチル化キチン又はキトサン、スクシニル化キトサン、グリセリル化キトサン、カルボキシメチル化キトサン、ヒドロキシブチル―ヒドロキシプロピル化キトサン又はこれらの混合物から選択される、請求項19に記載の架橋剤。 Crosslinked hydroxypropylated chitosan down or mixtures thereof, according to claim 19 - wherein the chitosan derivative is deacetylated chitin, or chitosan, succinyl chitosan, glyceryl chitosan, carboxymethyl chitosan, hydroxybutyl Agent.
JP2014516859A 2012-05-24 2013-05-24 Gel material crosslinked with oxidized oligosaccharide Active JP6055466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014516859A JP6055466B2 (en) 2012-05-24 2013-05-24 Gel material crosslinked with oxidized oligosaccharide

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012118380 2012-05-24
JP2012118380 2012-05-24
PCT/JP2013/064433 WO2013176239A1 (en) 2012-05-24 2013-05-24 Gel material crosslinked with oxidized oligosaccharide
JP2014516859A JP6055466B2 (en) 2012-05-24 2013-05-24 Gel material crosslinked with oxidized oligosaccharide

Publications (2)

Publication Number Publication Date
JPWO2013176239A1 JPWO2013176239A1 (en) 2016-01-14
JP6055466B2 true JP6055466B2 (en) 2016-12-27

Family

ID=49623920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014516859A Active JP6055466B2 (en) 2012-05-24 2013-05-24 Gel material crosslinked with oxidized oligosaccharide

Country Status (2)

Country Link
JP (1) JP6055466B2 (en)
WO (1) WO2013176239A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024155114A1 (en) * 2023-01-19 2024-07-25 주식회사 엘지화학 Polymer material
WO2024155113A1 (en) * 2023-01-19 2024-07-25 주식회사 엘지화학 Polymer material

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210238542A1 (en) * 2018-04-27 2021-08-05 Toppan Printing Co., Ltd. Extracellular-matrix-containing composition, method for producing same, three-dimensional tissue construct, and three-dimensional tissue construct formation agent
CN112089826A (en) * 2019-06-18 2020-12-18 杭州生物医药创新研究中心 Slow-release medicine containing active biological factor and preparation method thereof
CN112999418B (en) * 2021-03-02 2022-11-15 华东数字医学工程研究院 Medical hydrogel composition, medical hydrogel and preparation method thereof
CN113827779B (en) * 2021-08-14 2022-07-26 中国海洋大学 Biological polysaccharide hydrogel and preparation method and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2210917A1 (en) * 2007-11-01 2010-07-28 Osaka City University -1,3-glucan-derived polyaldehyde/polyamine hydrogel
CA2747230C (en) * 2008-12-16 2019-06-11 Genzyme Corporation Oligosaccharide-protein conjugates
JP2011160817A (en) * 2010-02-04 2011-08-25 Univ Of Tokyo Implantation support material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024155114A1 (en) * 2023-01-19 2024-07-25 주식회사 엘지화학 Polymer material
WO2024155113A1 (en) * 2023-01-19 2024-07-25 주식회사 엘지화학 Polymer material

Also Published As

Publication number Publication date
WO2013176239A1 (en) 2013-11-28
JPWO2013176239A1 (en) 2016-01-14

Similar Documents

Publication Publication Date Title
Islam et al. Chitosan based bioactive materials in tissue engineering applications-A review
Yi et al. Extracellular matrix scaffolds for tissue engineering and regenerative medicine
Chircov et al. Hyaluronic acid-based scaffolds for tissue engineering
Kim et al. Heparin functionalized injectable cryogel with rapid shape-recovery property for neovascularization
Ahadian et al. Bioconjugated hydrogels for tissue engineering and regenerative medicine
JP6055466B2 (en) Gel material crosslinked with oxidized oligosaccharide
Bidarra et al. Injectable alginate hydrogels for cell delivery in tissue engineering
Krishtul et al. Processed tissue–derived extracellular matrices: tailored platforms empowering diverse therapeutic applications
JP6005685B2 (en) Methods for preparing porous scaffolds for tissue engineering, cell culture, and cell delivery
Liberski et al. Alginate for cardiac regeneration: From seaweed to clinical trials
Mohanto et al. Advancements in gelatin-based hydrogel systems for biomedical applications: a state-of-the-art review
KR101756935B1 (en) Hydrogel scaffold having double crosslinking, uses thereof and method for producing the same using two-step crosslinking
Schagemann et al. Poly‐ϵ‐caprolactone/gel hybrid scaffolds for cartilage tissue engineering
Zhang et al. Application of hydrogels in heart valve tissue engineering
Narayanan et al. Biomimetic glycosaminoglycan-based scaffolds improve skeletal muscle regeneration in a Murine volumetric muscle loss model
Peng et al. Biomaterial scaffolds for reproductive tissue engineering
Nuge et al. Recent advances in scaffolding from natural-based polymers for volumetric muscle injury
Yang et al. The application of natural polymer–based hydrogels in tissue engineering
Dong et al. Polysaccharides, as biological macromolecule-based scaffolding biomaterials in cornea tissue engineering: A review
Tamay et al. Bioinks—materials used in printing cells in designed 3D forms
Pina et al. Natural polymeric biomaterials for tissue engineering
Chhibber et al. Hydrogels in tissue engineering
Asl et al. Progress in cardiac tissue engineering and regeneration: Implications of gelatin-based hybrid scaffolds
Kesharwani et al. Tissue regeneration properties of hydrogels derived from biological macromolecules: A review
KR102090958B1 (en) Sea Anemone-derived Silk Protein-Based Bioink for 3D Bioprinting and Uses Thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160519

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161202

R150 Certificate of patent or registration of utility model

Ref document number: 6055466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250