WO2009043209A1 - Procédé permettant d'établir une porteuse vers un terminal utilisateur en mode repos - Google Patents

Procédé permettant d'établir une porteuse vers un terminal utilisateur en mode repos Download PDF

Info

Publication number
WO2009043209A1
WO2009043209A1 PCT/CN2007/003870 CN2007003870W WO2009043209A1 WO 2009043209 A1 WO2009043209 A1 WO 2009043209A1 CN 2007003870 W CN2007003870 W CN 2007003870W WO 2009043209 A1 WO2009043209 A1 WO 2009043209A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearer
sgw
pgw
interface
mme
Prior art date
Application number
PCT/CN2007/003870
Other languages
English (en)
French (fr)
Inventor
Jinguo Zhu
Minya Ye
Fei Lu
Xiliang Liu
Min Fang
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Publication of WO2009043209A1 publication Critical patent/WO2009043209A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0219Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave where the power saving management affects multiple terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a packet domain evolution in a mobile communication system or a bearer establishment method for a user terminal in an idle mode.
  • SAE System Architecture Evolution
  • E-RAN Evolved RAN
  • the network element included in the E-RAN is an eNodeB (Evolved NodeB) that provides radio resources for access by the terminal.
  • eNodeB Evolved NodeB
  • HSS Home Subscriber Server: Home subscriber server, permanently storing user subscription data.
  • PDN Packet Data Network
  • E-Packet Core An evolved packet network that provides lower latency and allows access to more wireless access systems, including the following network elements:
  • MME Mobility Management Entity: A control plane function entity that temporarily stores user data. It is responsible for managing and storing the UE (user terminal) context (such as user ID, mobility management status, user security parameters, etc.). The user allocates a temporary identifier, and is responsible for authenticating the user when the UE is camped on the 3 trace area or the network; processing all non-access stratum messages between the MME and the UE; triggering paging at the SAE.
  • SGW Serving Gateway
  • PDN GW Packet data network gateway, responsible for the UE accessing the PDN gateway, assigning the user IP address, and being the mobility anchor of 3GPP and non-3GPP access systems. Users can access multiple PDN GWs at the same time.
  • PCRF Policy and Charging Rule Functionality
  • the function entity generates a Qos (Quality of Service) rule that controls user data transmission based on service information, user subscription information, and operator configuration information. And billing rules.
  • the functional entity can also control the establishment and release of bearers in the access network.
  • the SGW and PDN GW may be one.
  • the terminal has three states in the SAE: the split state, the idle state, and the connected state.
  • the network does not know the current location information of the terminal, and all user plane resources are dried.
  • the idle state the network knows the current location information of the terminal, and the user interface resources of the air interface and the S1 interface are released, and the S5/S8 interface is released.
  • the user plane resources are reserved.
  • the connected state there is a connection between the terminal and the network.
  • the user interface resources are allocated on the air interface, the S1 interface, and the S5/S8 interface.
  • the terminal can send and receive data from the existing connection.
  • the SAE bearer refers to a channel from the terminal to the PGW.
  • the UE and the PDN can use the channel to transmit the uplink and downlink data of a specific Qos (Quality of Service).
  • the bearer in the SAE is divided into a default bearer and a dedicated bearer.
  • the default bearer is the first bearer from the terminal to the PDN
  • the dedicated bearer is the other bearer from the terminal to the PDN.
  • the default bearer is established when the user starts the computer, that is, when the user is registered, and the subsequent dedicated bearer can be initiated by the terminal and the PGW as needed.
  • the S5 interface tunnel between all the carried SGWs and the PGW is reserved. If the downlink data arrives at the PGW, the PGW sends the data to the SGW through the tunnel. The SGW triggers the MME to page the user. The user initiates the service request process and re-establishes all bearers. The specific process is shown in Figure 2.
  • Step 201 When the downlink data of the user reaches the PGW, the PGW routes the data to the SGW by using the existing bearer.
  • Step 202 The SGW checks the user status.
  • Step 203 The SGW finds that the user is in an idle state, and then initiates downlink data to the MME.
  • the notification message stores the IP address information of the MME in the SGW.
  • Step 204 After receiving the downlink data notification message, the MME initiates a paging request to all eNodeBs of the tracking area according to the saved user tracking area.
  • Step 205 After receiving the paging request, the eNodeB will page the user on the air interface.
  • Step 206 After receiving the paging of the eNodeB, the UE initiates a service request to the current eNodeB.
  • Step 207 The eNodeB sends a service request message to the MME.
  • Step 208 After receiving the service request message, the MME initiates a bearer setup request to the eNodeB, with all the S1 interface SGW side uplink tunnel IDs (identities) and related QoS information, where the tunnel ID and QoS information are at the user It is saved in the MME when it is idle.
  • Step 209 The eNodeB saves the SGW interface uplink tunnel ID of all the S1 interfaces, and allocates the air interface resources, and then initiates a radio bearer setup request to the UE.
  • Step 210 After the radio bearer is established, the UE returns a radio bearer setup response to the eNodeB.
  • Step 211 After the eNodeB receives the radio bearer setup response of the UE, all the bearer air ports have been successfully established. The eNodeB allocates the downlink tunnel ID of all the carried S1 interfaces, and then returns a bearer setup response to the MME, carrying the S1 downlink tunnel ID of all the allocated bearers.
  • Step 212 After receiving the bearer setup response of the eNodeB, the MME initiates an update bearer request to the SGW for each bearer, and carries the eNodeB as the downlink tunnel ID of the S1 interface allocated by the bearer.
  • Step 213 After receiving the update bearer request of the MME, the SGW saves the downlink tunnel ID of the S1 interface of the bearer, turns the user into a connection state, and returns an update bearer response to the MME.
  • Step 214 The SGW sends the buffered user data from the S1 interface and the air interface to the UE.
  • FIG. 3 is a process of establishing a dedicated bearer when the user is in a connected state. Since the user is already in the connected state, the MME does not need to page the user.
  • Step 300 The PGW receives a new bearer request from the PCRF, and triggers the PGW to establish a new bearer. Alternatively, the PGW receives the downlink data packet and determines to create a new dedicated bearer according to the local policy.
  • Step 301 The PGW allocates an uplink tunnel ID of the new S5 interface, and initiates a bearer setup request to the SGW, where the request carries the QoS information of the bearer to be established and the uplink tunnel ID of the allocated S5 interface. Since the user is in the connected state, the PGW knows which SGW to send the message to.
  • Step 302 After receiving the 7-connection establishment request, the SGW saves the uplink tunnel ID of the S5 interface of the PGW, and allocates an uplink tunnel ID of the SI.
  • the user is determined to be in the connected state, and then initiates a bearer setup request to the MME, where the assigned S1 uplink tunnel ID is carried, and the carried Qos information is forwarded.
  • Step 303 After receiving the MME, the MME determines that the user is in the connection state, and does not need to page the user, and then initiates a bearer setup request to the eNodeB, where the message carries the built-in bearer Qos information and the S1 uplink tunnel ID allocated by the SGW.
  • Step 304 After receiving, the eNodeB saves the S1 uplink tunnel ID allocated by the SGW, allocates radio resources according to the requested Qos information, and initiates a radio bearer setup request to the UE.
  • Step 305 After the radio bearer is established, the UE returns an eNodeB radio bearer setup response.
  • Step 306 After the eNodeB receives the radio bearer setup response of the UE, the air interface part of the bearer has been successfully established. The eNodeB allocates the downlink tunnel ID of the S1 interface, and then returns an MME bearer setup response, which carries the assigned downlink tunnel ID of the S1 interface.
  • Step 307 After receiving the MME, the MME returns a bearer setup response to the SGW, and the downlink tunnel ID of the S1 interface allocated by the eNodeB.
  • Step 308 After receiving the SGW, the S1 interface downlink tunnel ID allocated by the eNodeB is saved, and the S1 interface part of the bearer has been successfully established.
  • the SGW allocates a downlink tunnel ID of the S5 interface, and returns a bearer setup response to the PGW, which carries the assigned downlink tunnel ID of the S5 interface.
  • step 309 after receiving the PGW, the S5 interface downlink tunnel ID allocated by the SGW is saved, and the S5 interface part of the bearer has been successfully established. The PGW then returns a PCRF bearer setup response.
  • a dedicated bearer including an air interface, an S1 interface, and an S5 interface is successfully established, and the user and the PDN can use the dedicated bearer to transmit uplink and downlink data.
  • This process is a bearer establishment process in which the user is in a connected state.
  • the above process only considers the establishment process of the dedicated bearer in the connected state. If the user is in the idle state, the network must page the user.
  • One solution is to trigger the SGW to notify the MME to perform paging of the user, first to transfer the user to the connection state through the process of the service request, and then use the dedicated bearer process in the connected state to establish the bearer.
  • the problem with this method is that the bearer setup time is longer, and the user data that arrives at the PGW during this time, because the PGW does not currently have a data buffer function, causes data loss.
  • the technical problem to be solved by the present invention is to provide a dedicated bearer establishment method in which the user is in an idle state, which shortens the bearer setup time and reduces data loss.
  • the present invention provides a seven-carrier establishment method for a user terminal in an idle mode, which includes the following contents:
  • the packet data network gateway PGW establishes a bearer between the PGW and the serving gateway SGW of the user terminal, in the process of establishing a new bearer, if the corresponding user terminal is in the idle mode;
  • the downlink data is sent from the PGW to the SGW and buffered on the SGW by using a bearer established between the PGW and the SGW, the SGW notifying the mobility management entity MME to page the user terminal, and establishing Dedicated ⁇ load.
  • the foregoing method may further have the following feature: after the step (b), the method further includes the step (c), after the dedicated bearer is established, the downlink data is sent from the SGW to the user terminal by using the dedicated bearer.
  • the foregoing method may further have the following feature: in the step (a), when the PGW receives the new bearer request of the policy and charging rule function entity PRCF, or receives the downlink A data packet is triggered to establish a new bearer when a new bearer needs to be established according to the local policy.
  • the foregoing method may further have the following features:
  • the establishment of the bearer between the PGW and the SGW includes the following steps:
  • the PGW first allocates an S5 interface uplink tunnel identifier of the newly-created bearer, sends a bearer setup request to the SGW, and sends the S5 uplink tunnel identifier and the quality of service Qos information of the bearer to the SGW;
  • the SGW After receiving the bearer setup request, the SGW saves the uplink tunnel identifier of the S5 interface and the QoS information of the bearer, and finds that the user terminal is in the idle mode, and allocates the downlink tunnel identifier of the S5 interface. Returning the PGW to the bearer setup response, and returning the S5 interface downlink tunnel identifier allocated by the SGW to the PGW;
  • the PGW After receiving the bearer setup response, the PGW saves the downlink tunnel identifier of the S5 interface allocated by the SGW, and the bearer between the PGW and the SGW is successfully established.
  • the foregoing method may further have the following feature: in the step 4 (b), after the downlink data reaches the SGW, the SGW finds that the user is in an idle state, allocates an uplink tunnel identifier of the S1 interface, and sends a downlink data notification.
  • the message is sent to the MME, where the message carries the uplink tunnel identifier of the S1 interface and the QoS information of the newly created bearer.
  • the MME After receiving the downlink data notification message, the MME allocates related resources for the bearer, saves the uplink tunnel identifier of the S1 interface, and then starts a subsequent paging and bearer establishment process.
  • the foregoing method may further have the following features:
  • the establishment of the bearer between the PGW and the SGW includes the following steps:
  • the PGW first allocates an S5 interface uplink tunnel identifier of the newly-created bearer, sends a bearer setup request to the SGW, and sends the S5 interface uplink tunnel identifier and the Qos information of the bearer to the SGW;
  • the SGW After receiving the bearer setup request of the PGW, the SGW saves the uplink tunnel identifier of the S5 interface and the QoS information of the bearer, allocates an uplink tunnel identifier of the S1 interface, and sends a bearer setup request to the MME, indicating that the bearer is to be newly created. And forwarding the uplink tunnel identifier of the S1 interface and the QoS information of the bearer to the MME;
  • the MME After receiving the bearer setup request of the SGW, the MME allocates related resources for the bearer. Source, and storing the QoS information of the bearer and the S1 interface uplink tunnel identifier allocated by the SGW, the MME discovering that the user terminal is in an idle state, returning a bearer setup response to the SGW, and returning the bearer related resource to the SGW. ;
  • the SGW After receiving the bearer setup response of the MME, the SGW allocates a downlink tunnel identifier of the S5 interface, returns a bearer setup response to the PGW, and returns the bearer-related resource and the S5 interface downlink tunnel identifier allocated by the SGW to The PGW;
  • the PGW After receiving the bearer setup response returned by the SGW, the PGW saves the bearer-related resource and the S5 interface downlink tunnel identifier allocated by the SGW, and the bearer between the PGW and the SGW is successfully established.
  • the foregoing method may further have the following feature: the bearer related resource includes a bearer identifier.
  • the above method may also have the following features:
  • the method is applied to system architecture evolution
  • the foregoing method may further have the following feature: After establishing a bearer between the PGW and the SGW, establishing a dedicated bearer between the user terminal and the PGW according to a process of establishing a dedicated bearer in an idle state.
  • the bearer establishment between the SGW and the PGW can be advanced, so that the downlink data can reach the SGW through the bearer and cached, thereby avoiding the problem that the downlink data is lost by the PGW.
  • FIG. 1 is a schematic diagram of a SAE architecture in the prior art
  • FIG. 2 is a schematic diagram of the downlink data triggering the SGW to notify the MME to perform paging and establish a bearer when the user is in an idle state;
  • FIG. 3 is a schematic diagram of a PGW initiating establishment of a dedicated bearer when a user is in a connected state in the prior art
  • FIG. 4 is a schematic diagram of a method for establishing a bearer of a user terminal in an idle mode according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a PGW initiating establishment of a dedicated bearer when the user is in an idle state according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a PGW initiating establishment of a dedicated bearer when the user is in an idle state according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of bearer establishment between a PGW and an SGW according to another embodiment of the present invention. Preferred embodiment of the invention
  • Step 401 The PGW establishes a bearer between the PGW and the serving gateway SGW of the user terminal, in the process of establishing a new bearer, for example, the corresponding user terminal is in an idle mode; Go to the new dedicated bearer indication of PCRJF, or
  • the PGW receives the downlink data packet and decides to create a new dedicated bearer according to the local policy.
  • Step 402 The downlink data is sent to the SGW for buffering by using the bearer between the PGW and the SGW; the bearer between the PGW and the SGW is successfully established, and the downlink data that subsequently arrives at the PGW can be sent to the SGW through the bearer, and Cache on the SGW.
  • Step 403 After receiving the downlink data, the SGW informs the MME to page the user and establish all the bearers, including the S1 interface bearer and the air interface bearer, if the user is in the idle state.
  • FIG. 5 is a detailed illustration of the actual application of the present invention.
  • the PGW initiates the establishment of the user-specific bearer.
  • Step 500 The PGW receives a new bearer request of the PCRF, and triggers the PGW to establish a new bearer. Alternatively, the PGW receives the downlink data packet and decides to create a new dedicated bearer according to the local policy.
  • Step 501 The PGW first allocates an uplink tunnel ID of the newly-created S5 interface, sends a bearer setup request to the SGW, and sends the S5 uplink tunnel ID and the QoS of the bearer to the SGW. Since the user to be newly created (the user terminal, that is, the UE, also referred to as the user in the text) is in an idle state, the PGW is the address of the SGW that knows the user terminal.
  • Step 502 After receiving the bearer setup request of the PGW, the SGW saves the uplink tunnel ID of the S5 interface allocated by the PGW and the QoS information of the bearer. The SGW finds that the user is in an idle state, and then assigns the downlink tunnel I of the S5 interface to D, returns a bearer setup response to the PGW, and returns the S5 interface downlink tunnel ID assigned by the SGW to the PGW.
  • Step 503 After receiving the PGW, save the S5 interface downlink tunnel ID allocated by the SGW. PGW returns bearer setup response to PCRF
  • Step 504 After the bearer between the PGW and the SGW is successfully established, the downlink data that subsequently arrives at the PGW can be sent to the SGW through the bearer, and cached in the SGW.
  • Step 505 After the subsequent downlink data arrives at the SGW, the SGW checks the user status.
  • Step 506 The SGW finds that the user is in an idle state, and sends a downlink data notification message to the MME, triggering the MME to page the user and re-establish all bearers.
  • the SGW needs to allocate the uplink tunnel ID of the S1 interface and send it to the MME in the notification message. It also needs to inform the MME that this is a newly created bearer and carries the QoS information of the newly created bearer.
  • Step 507 After receiving the downlink data notification message, the MME finds that a new bearer needs to be created, and then allocates related resources of the bearer, such as a bearer identifier (which is used to identify each bearer, and exists in each bearer setup request and bearer setup). In response, and save the S1 uplink tunnel ID assigned by the SGW. The MME initiates a paging request to all eNodeBs of the tracking area according to the saved user tracking area.
  • a bearer identifier which is used to identify each bearer, and exists in each bearer setup request and bearer setup.
  • Step 508 After receiving the paging request, the eNodeB will page the user on the air interface.
  • Step 509 After receiving the paging of the eNodeB, the UE initiates a service request at the current eNodeB.
  • Step 510 The eNodeB sends a service request message to the MME.
  • Step 511 After receiving the service request message, the MME initiates a bearer setup request to the eNodeB, with the S1 interface SGW side uplink tunnel ID and related QoS information of all the bearers, and the tunnel ID and the QoS information are when the user is in the idle state. Both are stored in the MME, and the bearer information also includes related information of the bearer that needs to be newly created.
  • Step 512 The eNodeB saves the uplink tunnel IDs of all the S1 interfaces on the S1 interface, allocates the air interface resources of the bearers, and then initiates a radio bearer setup request to the UE.
  • Step 513 After the radio bearer is established, the UE returns an eNodeB radio bearer setup response.
  • Step 514 After the eNodeB receives the radio bearer setup response of the UE, all the bearer air ports have been successfully established. The eNodeB allocates the downlink tunnel ID of all the carried S1 interfaces, and then returns the MME bearer setup response, carrying the assigned S1 downlink tunnel IDs of all bearers.
  • Step 515 After receiving the MME, the MME initiates an update bearer request to the SGW for each bearer, and the eNodeB is the downlink tunnel ID of the S1 interface allocated by the bearer.
  • Step 516 After receiving the SGW, the SGW saves the downlink tunnel ID of the S1 interface, converts the user to the connection state, and returns the MME to update the bearer response.
  • Step 517 The SGW sends the buffered user data from the corresponding S1 bearer and the air interface to the UE.
  • a new bearer between the UE and the PGW is successfully established.
  • the PGW can establish the bearer between the SGW and the PGW in advance, so that the downlink data can reach the SGW through the bearer and cache, so that the downlink data is avoided from being lost by the PGW.
  • Figure 6 is another embodiment of the bearer setup between the PGW and the SGW in the present invention.
  • Step 600 The PGW receives a new bearer request of the PCRF, and triggers the PGW to establish a new bearer. Alternatively, the PGW receives the downlink data packet and decides to create a new dedicated bearer according to the local policy.
  • Step 601 The PGW first allocates the uplink tunnel ID of the S5 interface that is newly created, sends a bearer setup request to the SGW, and sends the uplink tunnel ID of the S5 interface and the QoS information of the bearer to the SGW. Since the user to be newly created is in an idle state, the PGW knows the address of the user SGW.
  • Step 602 After receiving the bearer setup request of the PGW, the SGW saves the uplink tunnel ID of the S5 interface allocated by the PGW and the QoS information of the bearer.
  • the SGW allocates the uplink tunnel ID of the S1 interface, and sends a bearer setup request to the MME, and forwards the uplink tunnel ID of the S1 interface and the Qos information of the bearer to the MME.
  • the message also needs to tell the MME that this is a new bearer.
  • Step 603 After receiving the bearer setup request, the MME finds that a new bearer needs to be created, and then allocates related resources of the bearer, such as a bearer identifier, a memory of the data zone, an association between the bearer data zone and a user data zone, and saves The QoS information of the bearer and the uplink tunnel ID of the S1 interface of the SGW.
  • the MME finds that the user is in an idle state, and then returns to the SGW—a bearer setup response.
  • the payload identifier is returned to the SGW.
  • Step 604 After receiving the bearer setup response, the SGW allocates the downlink tunnel ID of the S5 interface, and returns a bearer setup response to the PGW, and returns the bearer identifier and the S5 interface downlink tunnel ID allocated by the SGW to the PGW.
  • Step 605 After receiving the PGW, save the bearer identifier and the S5 interface downlink tunnel ID allocated by the SGW.
  • the PGW returns a bearer setup response to the PCRF.
  • Step 606 After the bearer between the PGW and the SGW is successfully established, the downlink data that subsequently arrives at the PGW can be sent to the SGW through the bearer, and cached in the SGW.
  • Step 607 The downlink data triggers the SGW to notify the MME to page the user, and subsequently, all the bearers can be reconstructed by using the steps in FIG. 2 .
  • the invention advances the bearer between the SGW and the PGW, so that the downlink data can reach the SGW through the bearer and is cached, thereby avoiding the downlink data being lost by the PGW.
  • the present invention solves the dedicated bearer setup process in which the user is in an idle state and minimizes user data loss.

Description

一种处于空闲模式下的用户终端的承载建立方法
技术领域
本发明涉及移动通讯系统中分组域演进 i或中 ,一种处于空闲模式下的用 户终端的承载建立方法。
背景技术
3GPP ( 3rd Generation Partnership Project, 第三代合作伙伴计划)对下 一代移动无线网给的项目叫系统架构演进 ( System Architecture Evolution, 筒称 SAE ) 。 SAE的架构如图 1所示, 其中包含了如下网元:
E-RAN ( Evolved RAN ): 演进的无线接入网, 可以提供更高的上下行 速率、 更低的传输延迟和更加可靠的无线传输。 E-RAN 中包含的网元是 eNodeB ( Evolved NodeB , 演进的基站) , 其为终端的接入提供无线资源。
HSS ( Home Subscriber Server): 归属用户服务器, 永久存储用户签约数 据。
PDN ( Packet Data Network ) : 分组数据网, 为用户提供业务的网络。
E-Packet Core: 演进的分组网, 提供了更低的延迟, 并允许更多的无线 接入系统接入, 包含了如下网元:
MME ( Mobility Management Entity,移动管理实体):控制面功能实体, 临时存储用户数据的服务器, 负责管理和存储 UE (用户终端)上下文(比 如用户标识、 移动性管理状态、 用户安全参数等) , 为用户分配临时标识, 当 UE驻扎在该 3艮踪区域或者该网络时负责对该用户进行鉴权; 处理 MME 和 UE之间的所有非接入层消息; 触发在 SAE的寻呼。
Serving Gateway ( SGW ) : 服务网关, 该网关是一个用户面实体, 负 责用户面数据路由处理, 终结处于空闲状态的 UE的下行数据。 管理和存储 UE的 SAE承载( bearer )上下文, 比如 IP承载业务参数和网絡内部路由信 息等。 是 3GPP 系统内部用户面的锚点, 一个用户在一个时刻只能有一个 SGW。 PDN GW ( PGW ) : 分组数据网网关, 负责 UE接入 PDN的网关, 分 配用户 IP地址, 同时是 3GPP和非 3GPP接入系统的移动性锚点。 用户在同 一时刻能够接入多个 PDN GW。
PCRF ( Policy and Charging Rule Functionality ) : 策略和计费规则功能 实体,该功能实体主要根据业务信息和用户签约信息以及运营商的配置信息 产生控制用户数据传递的 Qos ( Quality of Service, 服务质量)规则以及计费 规则。 该功能实体也可以控制接入网中承载的建立和释放。
在物理上, SGW和 PDN GW可能合一。
在 SAE中终端有三种状态: 分离状态、 空闲状态和连接状态。 分离状 态下, 网络不知道终端当前的位置信息, 所有用户面资源都被幹放; 在空闲 状态下, 网络知道终端当前的位置信息, 空口和 S1接口的用户面资源被释 放, S5/S8接口上的用户面资源保留; 在连接状态下, 终端和网络之间存在 连接, 空口和 S1接口以及 S5/S8接口上都分配有用户面资源, 终端可以从 存在的连接上收发数据。
SAE承载指的是终端到 PGW的一条通道, UE和 PDN可以利用该通道 传送特定 Qos ( Quality of Service, 服务质量) 的上行和下行数据。 SAE中 承载被分为缺省承载和专用承载, 缺省承载是终端到 PDN的第一个承载, 而专用承载是终端到该 PDN的其他承载。 一般来说缺省承载是在用户一开 机的时候, 即在注册的时候就建立的, 后续的专用承载可以根据需要, 由终 端和 PGW来发起建立。
当用户处于空闲状态下的时候, 所有承载的 SGW和 PGW之间的 S5 接口隧道是保留的。 如果有下行数据到达 PGW, PGW将数据通过该隧道, 路由至 SGW, 由 SGW触发 MME进行寻呼用户, 用户发起业务请求流程并 重建所有的承载, 具体过程如图 2所示。
步骤 201 , 当该用户的下行数据到达 PGW, PGW利用已经存在的承载 将数据路由到 SGW。
步骤 202, SGW检查用户状态。
步驟 203, SGW发现用户处于空闲状态, 于是向 MME发起下行数据 通知消息, SGW中保存有 MME的 IP地址信息。
步驟 204, MME收到下行数据通知消息之后,根据保存的用户跟踪区, 向该跟踪区的所有 eNodeB发起寻呼请求。
步骤 205, eNodeB收到寻呼请求之后, 将在空口寻呼用户。
步骤 206, UE收到 eNodeB的寻呼之后, 将向当前 eNodeB发起业务请 求。
步骤 207 , eNodeB将业务请求消息发给 MME。
步骤 208, MME收到业务请求消息之后, 向 eNodeB发起承载建立请 求, 带有所有 7|载的 S1接口 SGW侧上行隧道 ID (标识)和相关的 Qos信 息, 这些隧道 ID和 Qos信息在用户处于空闲状态下的时候都保存在 MME 中。
步骤 209, eNodeB保存所有承载的 S1接口 SGW侧上行隧道 ID, 并分 配这些 ? 载的空口资源, 之后向 UE发起无线承载建立请求。
步驟 210, UE在无线承载建立完成之后, 向 eNodeB返回无线承载建 立响应。
步骤 211 , eNodeB收到 UE的无线承载建立响应之后, 所有承载的空 口部分已经建立成功。 eNodeB分配所有承载的 S1接口的下行隧道 ID, 然 后向 MME返回承载建立响应, 携带所分配的所有承载的 S1下行隧道 ID。
步骤 212, MME收到 eNodeB的承载建立响应之后, 对于每个承载都 向 SGW发起更新承载请求,携带 eNodeB为该承载所分配的 S1接口的下行 隧道 ID。
步骤 213, SGW收到 MME的更新承载请求之后, 保存该承载的 S1接 口下行隧道 ID, 将用户转为连接状态, 并向 MME返回更新承载响应。
步驟 214 , SGW将緩存的用户数据从 S 1接口和空口发往 UE。
通过上述过程, 用户的所有承载都被激活了, 用户转为连接状态, 并且 用户和 PGW能够通过所有承载发送上下行数据。 图 3是用户处于连接状态下,专用承载的建立过程。 由于用户已经处于 连接状态下, 因此 MME无需寻呼用户。
步骤 300, PGW收到 PCRF的新建承载请求,触发 PGW建立新的承载; 或者, PGW收到下行数据报文, 根据本地策略决定新建专用承载。
步骤 301 , PGW分配一个新的 S5接口的上行隧道 ID, 并向 SGW发起 一个承载建立请求, 该请求中带有需要建立承载的 Qos信息和分配的 S5接 口的上行隧道 ID。 因为用户处于连接状态, PGW知道该向哪个 SGW发送 该消息。
步骤 302, SGW收到 7 载建立请求之后, 保存 PGW的 S5接口上行隧 道 ID, 自己分配一个 SI的上行隧道 ID。 判断用户处于连接状态, 于是向 MME发起承载建立请求, 其中携带所分配的 S1 上行隧道 ID, 并转发该承 载的 Qos信息。
步骤 303 , MME收到之后, 判断用户处于连接状态, 无需寻呼用户, 于是向 eNodeB发起承载建立请求,该消息中携带所建承载 Qos信息和 SGW 分配的 S1上行隧道 ID。
步驟 304, eNodeB收到之后, 保存 SGW分配的 S1上行隧道 ID, 根据 请求的 Qos信息分配无线资源, 并向 UE发起无线承载建立请求。
步骤 305, UE在无线 载建立完成之后, 返回 eNodeB无线承载建立 响应。
步驟 306, eNodeB收到 UE的无线承载建立响应之后, 该承载的空口 部分已经建立成功。 eNodeB分配 S1接口的下行隧道 ID, 然后返回 MME 承载建立响应, 其中携带所分配的 S1接口下行隧道 ID。
步骤 307, MME收到之后, 向 SGW返回承载建立响应, 带 eNodeB分 配的 S1接口下行隧道 ID。
步骤 308, SGW收到之后, 保存 eNodeB分配的 S1接口下行隧道 ID, 于是该承载的 S1接口部分已经建立成功。 SGW分配一个 S5接口的下行隧 道 ID, 并向 PGW返回承载建立响应, 其中携带所分配的 S5接口下行隧道 ID。 步骤 309, PGW收到之后, 保存 SGW分配的 S5接口下行隧道 ID, 于 是该承载的 S5接口部分已经建立成功。 PGW于是返回 PCRF承载建立响应。
通过上述过程, 一个包含了空口、 S1接口、 S5接口的专用承载就建立 成功了, 用户和 PDN可以利用该专用承载传送上下行数据。 该过程是用户 处于连接状态下的承载建立过程。
上述过程只考虑了连接状态下专用承载的建立过程,如果用户处于空闲 状态下, 则网络必须寻呼用户。 一种解决办法是步骤 301 触发 SGW通知 MME去进行寻呼用户, 先通过业务请求的流程, 将用户转到连接状态, 然 后再利用在连接状态下创建专用承载过程来建立该承载。这种方法存在的问 题是, 承载建立时间较长, 在这段时间中到达 PGW的用户数据, 由于 PGW 目前没有数据緩冲功能, 导致数据丟失。
发明内容
本发明要解决的技术问题是提供一种用户处于空闲状态下的专用承载 建立方法, 缩短承载建立时间, 减少数据丟失。
为了解决上述技术问题,本发明提供了一种处于空闲模式下的用户终端 的 7 载建立方法, 包含如下内容:
( a )分组数据网网关 PGW在建立新的承载的过程中,如相应的用户终 端处于空闲模式, 则首先在所述 PGW和用户终端的服务网关 SGW之间建 立承载;
( b ) 下行数据通过所述 PGW和 SGW之间建立的承载从所述 PGW发 送到所述 SGW并緩存在所述 SGW上, 所述 SGW通知移动管理实体 MME 寻呼所述用户终端, 并建立专用^载。
进一步地,上述方法还可具有以下特征:步骤(b )之后还包含步骤(c ), 建立所述专用承载后, 所述下行数据通过所述专用承载从所述 SGW发送到 所述用户终端。
进一步地, 上述方法还可具有以下特征: 所述步骤(a ) 中, 所述 PGW 在收到策略和计费规则功能实体 PRCF的新建承载请求时,或者在收到下行 数据报文, 根据本地策略需要建立新的承载时, 触发建立新的承载。
进一步地, 上述方法还可具有以下特征: 所述步骤(a ) 中, 所述 PGW 和所述 SGW之间的承载的建立包含如下步骤:
所述 PGW首先分配新建承载的 S5接口上行隧道标识,向所述 SGW发 送承载建立请求, 并将 S5上行隧道标识和该承载的服务质量 Qos信息发送 给所述 SGW;
所述 SGW收到所述承载建立请求后,保存所述 PGW分配的 S5接口上 行隧道标识和该承载的 Qos信息,发现所述用户终端处于空闲模式, 则分配 S5接口的下行隧道标识, 向所述 PGW返回承载建立响应, 将所述 SGW分 配的 S5接口下行隧道标识返回给所述 PGW;
所述 PGW收到所述承载建立响应后,保存所述 SGW分配的 S5接口下 行隧道标识, PGW和 SGW之间的承载建立成功。
进一步地, 上述方法还可具有以下特征: 所述步 4 ( b ) 中, 所述下行 数据到达所述 SGW后, 所述 SGW发现用户处于空闲状态, 分配 S1接口上 行隧道标识, 发送下行数据通知消息给 MME, 消息中携带所述 S1接口上 行隧道标识及新建承载的 QoS信息;
所述 MME收到所述下行数据通知消息之后, 为该承载分配相关资源, 并保存所述 S1接口上行隧道标识, 然后开始后续寻呼和承载建立流程。
进一步地, 上述方法还可具有以下特征: 所述步骤(a ) 中, 所述 PGW 和所述 SGW之间的承载的建立包含如下步骤:
所述 PGW首先分配新建承载的 S5接口上行隧道标识,向所述 SGW发 送承载建立请求, 并将 S5接口上行隧道标识和该承载的 Qos信息发送给所 述 SGW;
所述 SGW收到所述 PGW的承载建立请求之后,保存所述 PGW分配的 S5接口上行隧道标识和该承载的 Qos信息, 分配 S1接口上行隧道标识, 向 MME发送承载建立请求, 指示要新建承载, 并将所述 S1接口上行隧道标 识和该承载的 Qos信息转发给所述 MME;
所述 MME收到所述 SGW的承载建立请求之后, 为该承载分配相关资 源, 并保存该承载的 Qos信息和所述 SGW分配的 S1接口上行隧道标识, 所述 MME发现用户终端处于空闲状态, 向所述 SGW返回承载建立响应, 将所述承载相关资源返回所述 SGW;
所述 SGW收到所述 MME的承载建立响应之后,分配 S5接口的下行隧 道标识, 向所述 PGW返回承载建立响应,将所述承载相关资源和所述 SGW 分配的 S5接口下行隧道标识返回给所述 PGW;
所迷 PGW收到所述 SGW返回的承载建立响应之后, 保存所述承载相 关资源和所述 SGW分配的 S5接口下行隧道标识, 所述 PGW和 SGW之间 的承载建立成功。
进一步地, 上述方法还可具有以下特征: 所述承载相关资源包括承载标 识符。
进一步地, 上述方法还可具有以下特征: 该方法应用于系统架构演进
SAE网络中。
进一步地, 上述方法还可具有以下特征: 所述 PGW和所述 SGW之间 建立承载后,按处于空闲状态下的专用承载的建立过程建立所述用户终端和 所述 PGW之间的专用承载。
采用本发明, 可以通过将 SGW和 PGW之间的承载建立提前, 使得下 行数据能够通过该承载到达 SGW并进行緩存, 避免了下行数据被 PGW丟 失的问题。 附图概迷
图 1是现有技术中 SAE架构图;
图 2是现有技术中, 当用户处于空闲状态下, 下行数据触发 SGW通知 MME进行寻呼并建立承载的示意图;
图 3是现有技术中, 当用户处于连接状态下, PGW发起建立专用承载 的示意图;
图 4是本发明实施例中处于空闲模式下的用户终端的承载建立方法示 意图; 0 图 5是本发明实施例中, 当用户处于空闲状态下, PGW发起建立专用 承载的示意图;
图 6是本发明另一实施例 PGW和 SGW之间承载建立的示意图。 本发明的较佳实施方式
下面将结合附图及实施例对本发明的技术方案进行更详细的说明。
如图 4所示, 是本发明方法的示意图。
步骤 401 , PGW在建立新的承载的过程中, 如相应的用户终端处于空闲 模式, 则首先在所述 PGW和所述用户终端的服务网关 SGW之间建立承载; 该步骤的触发条件比如 PGW收到了 PCRJF的新建专用承载指示, 或者
PGW收到下行数据报文, 根据本地策略决定新建专用承载等。
步骤 402, 下行数据通过 PGW和 SGW之间的承载发送到 SGW进行緩存; 通过步綵 401 , PGW和 SGW之间的承载即建立成功, 后续到达 PGW 的下行数据可以通过该承载发送到 SGW, 并在 SGW进行緩存。
步骤 403, SGW收到下行数据之后,如用户处于空闲状态下,则通知 MME 寻呼用户并建立所有承载, 包括 S1接口承载和空口承载。
于是 PGW到 UE之间的新承载建立成功, UE和 PGW可以在该承载上传送 上下行数据。 图 5 是对利用本发明实际应用的一个详细说明, 当用户处于空闲状态 下, PGW发起建立该用户专用承载的示意图。
步骤 500, PGW收到 PCRF的新建承载请求,触发 PGW建立新的承载。 或者, PGW收到下行数据报文, 根据本地策略决定新建专用承载。
步驟 501 , PGW首先分配新建承载的 S5接口上行隧道 ID, 向 SGW发送一 个承载建立请求, 并将 S5上行隧道 ID和该承载的 Qos发送给 SGW。 由于要新 建承载的用户 (用户终端即 UE, 文中也简称用户)处于空闲状态, PGW是 知道该用户终端的 SGW的地址的。 步骤 502, SGW收到 PGW的承载建立请求之后,保存 PGW分配的 S5接口 上行隧道 ID和该承载的 Qos信息。 SGW发现用户处于空闲状态, 于是分配 S5 接口的下行隧道 I指 D, 向 PGW返回承载建立响应, 将 SGW分配的 S5接口下 行隧道 ID返回给 PGW。
步骤 503 , PGW收到之后, 保存 SGW分配的 S5接口下行隧道 ID。 PGW 向 PCRF返回承载建立响应
步骤 504, PGW和 SGW之间的承载建立成功之后,后续到达 PGW的下行 数据可以通过该承载发送到 SGW, 并在 SGW进行緩存。
步驟 505, 当后续下行数据到达 SGW之后, SGW检查用户状态。
步骤 506, SGW发现用户处于空闲状态, 将向 MME发送下行数据通 知消息, 触发 MME寻呼用户并重建所有承载。 由于是新建专用承载, SGW 需要分配 S1接口上行隧道 ID, 并在该通知消息中带给 MME, 同时需要告 诉 MME这是一个新建的承载, 并携带新建承载的 QoS信息。
步骤 507, MME收到下行数据通知消息之后,发现需要新建一个承载, 于是分配该承载的相关资源, 如承载标识符(其用于标识每一个承载, 且存 在于每一个承载建立请求和承载建立响应中) , 并保存 SGW分配的 S1上 行隧道 ID。 MME根据保存的用户跟踪区, 向该跟踪区的所有 eNodeB发起 寻呼请求。
步骤 508, eNodeB收到寻呼请求之后, 将在空口寻呼用户。
步骤 509, UE收到 eNodeB的寻呼之后, 将在当前 eNodeB发起业务请 求。
步驟 510, eNodeB将业务请求消息发给 MME。
步骤 511 , MME收到业务请求消息之后, 向 eNodeB发起承载建立请 求, 带有所有承载的 S1接口 SGW侧上行隧道 ID和相关的 Qos信息, 这些 隧道 ID和 Qos信息在用户处于空闲状态下的时候都保存在 MME中, 这些 承载信息也包括需要新建的承载的相关信息。
步骤 512, eNodeB保存所有承载的 S1接口 SGW侧上行隧道 ID, 并分 配这些承载的空口资源, 之后向 UE发起无线承载建立请求 步驟 513, UE在无线承载建立完成之后, 返回 eNodeB无线承载建立 响应。
步骤 514, eNodeB收到 UE的无线承载建立响应之后, 所有承载的空 口部分已经建立成功。 eNodeB分配所有承载的 S1接口的下行隧道 ID, 然 后返回 MME承载建立响应, 携带所分配的所有承载的 S1下行隧道 ID。
步驟 515, MME收到之后, 对于每个承载都向 SGW发起更新承载请 求, 带 eNodeB为该承载所分配的 S1接口的下行隧道 ID。
步骤 516, SGW收到之后, 保存该承载的 S1接口下行隧道 ID,将用户 转为连接状态, 并返回 MME更新承载响应。
步骤 517, SGW将緩存的用户数据从对应 S1承载和空口发往 UE。 通过如上步骤, UE和 PGW之间新的承载被建立成功。 PGW由于提前 建立了 SGW和 PGW之间的承载,使得下行数据能够通过该承载到达 SGW 并进行緩存, 避免了下行数据被 PGW丟失。
图 6是本发明中, PGW和 SGW之间承载建立的另外一个实施例。
步骤 600, PGW收到 PCRF的新建承载请求,触发 PGW建立新的 载。 或者, PGW收到下行数据报文, 根据本地策略决定新建专用承载。
步骤 601, PGW首先分配新建承载的 S5接口上行隧道 ID, 向 SGW发送一 个承载建立请求, 并将 S5接口上行隧道 ID和该承载的 Qos信息发送给 SGW。 由于要新建承载的用户处于空闲状态, PGW是知道用户 SGW的地址的。
步骤 602, SGW收到 PGW的承载建立请求之后,保存 PGW分配的 S5接口 上行隧道 ID和该承载的 Qos信息。 SGW分配 S1接口上行隧道 ID, 向 MME发 送承载建立请求,并将 SGW分配的 S1接口上行隧道 ID和该承载的 Qos信息转 发给 MME。 该消息同时需要告诉 MME这是一个新建的承载。
步骤 603, MME收到承载建立请求之后, 发现需要新建一个承载, 于是 分配该承载的相关资源, 比如承载标识符、 该数据区的内存、 该承载数据区 和用户数据区的关联等,并保存该承载的 Qos信息和 SGW的 S1接口上行隧道 ID。 MME发现用户处于空闲状态, 于是返回 SGW—个承载建立响应, 将承 载标识符返回 SGW。
步驟 604, SGW收到承载建立响应之后, 分配 S5接口的下行隧道 ID, 向 PGW返回承载建立响应, 将承载标识符和 SGW分配的 S5接口下行隧道 ID返 回给 PGW。
步骤 605, PGW收到之后, 保存承载标识符和 SGW分配的 S5接口下行隧 道 ID。 PGW向 PCRF返回承载建立响应。
步骤 606, PGW和 SGW之间的承载建立成功之后,后续到达 PGW的下行 数据可以通过该承载发送到 SGW, 并在 SGW进行緩存。
步驟 607, 下行数据触发 SGW通知 MME寻呼用户,后续即可利用图 2 所述步驟重建所有承载。
工业实用性
本发明通过将 SGW和 PGW之间的承载建立提前 , 使得下行数据能够 通过该承载到达 SGW并进行緩存, 避免了下行数据被 PGW丟失。 本发明 解决了用户处于空闲状态下的专用承载建立过程,并且使得用户数据丟失最 少。

Claims

权 利 要 求 书
1、 一种处于空闲模式下的用户终端的承载建立方法, 包含如下内容:
( a )分组数据网网关 PGW在建立新的承载的过程中,如相应的用户终 端处于空闲模式, 则首先在所迷 PGW和用户终端的服务网关 SGW之间建 立承载;
( b ) 下行数据通过所述 PGW和 SGW之间建立的承载从所述 PGW发 送到所述 SGW并緩存在所述 SGW上, 所述 SGW通知移动管理实体 MME 寻呼所述用户终端, 并建立专用承载。
2、 如权利要求 1所述的方法, 其特征在于,
步骤(b )之后还包含步骤(c ) , 建立所述专用承载后, 所述下行数据 通过所述专用承载从所述 SGW发送到所述用户终端。
3、 如权利要求 1所述的方法, 其特征在于,
所述步骤(a )中, 所述 PGW在收到策略和计费规则功能实体 PRCF的 新建承载请求时,或者在收到下行数据报文,根据本地策略需要建立新的承 载时, 触发建立新的承载。
4、 如权利要求 1所述的方法, 其特征在于,
所述步驟( a ) 中, 所述 PGW和所述 SGW之间的承载的建立包含如下 步骤:
所述 PGW首先分配新建承载的 S5接口上行隧道标识, 向所述 SGW发送 承载建立请求, 并将 S5上行隧道标识和该承载的服务质量 Qos信息发送给所 述 SGW;
所述 SGW收到所述承载建立请求后, 保存所述 PGW分配的 S5接口上行 隧道标识和该承载的 Qos信息, 发现所述用户终端处于空闲模式, 则分配 S5 接口的下行隧道标识, 向所述 PGW返回承载建立响应, 将所述 SGW分配的 S5接口下行隧道标识返回给所述 PGW;
所述 PGW收到所述承载建立响应后, 保存所述 SGW分配的 S5接口下行 隧道标识, PGW和 SGW之间的承载建立成功。
5、 如权利要求 4所述的方法, 其特征在于,
所述步骤(b ) 中, 所述下行数据到达所述 SGW后, 所述 SGW发现用 户处于空闲状态, 分配 S1 接口上行隧道标识, 发送下行数据通知消息给 MME, 消息中携带所述 S1接口上行隧道标识及新建承载的 QoS信息;
所述 MME收到所述下行数据通知消息之后, 为该承载分配相关资源, 并保存所述 S1接口上行隧道标识, 然后开始后续寻呼和承载建立流程。
6、 如权利要求 1所述的方法, 其特征在于,
所述步骤(a ) 中, 所述 PGW和所述 SGW之间的承载的建立包含如下 步驟:
所述 PGW首先分配新建承载的 S5接口上行隧道标识, 向所述 SGW发送 承载建立请求, 并将 S5接口上行隧道标识和该承载的 Qos信息发送给所述 SGW;
所述 SGW收到所述 PGW的承载建立请求之后 , 保存所述 PGW分配的 S5 接口上行隧道标识和该承载的 Qos信息, 分配 S1接口上行隧道标识, 向 MME 发送承载建立请求,指示要新建承载, 并将所述 S1接口上行隧道标识和该承 载的 Qos信息转发给所述 MME;
所述 MME收到所述 SGW的承载建立请求之后,为该承载分配相关资源, 并保存该承载的 Qos信息和所述 SGW分配的 S1接口上行隧道标识, 所述 MME发现用户终端处于空闲状态, 向所述 SGW返回承载建立响应, 将所述 载相关资源返回所述 SGW;
所述 SGW收到所述 MME的承载建立响应之后, 分配 S5接口的下行隧道 标识, 向所述 PGW返回承载建立响应, 将所述承载相关资源和所述 SGW分 配的 S5接口下行隧道标识返回给所述 PGW;
所述 PGW收到所述 SGW返回的承载建立响应之后, 保存所述承载相关 资源和所述 SGW分配的 S5接口下行隧道标识, 所述 PGW和 SGW之间的承载 建立成功。
7、 如权利要求 6所述的方法, 其特征在于,
所述承载相关资源包括承载标识符。
8、 如权利要求 1所述的方法, 其特征在于,
该方法应用于系统架构演进 SAE网络中。
9、 如权利要求 6所述的方法, 其特征在于,
所述 PGW和所述 SGW之间建立承载后, 按处于空闲状态下的专用承 载的建立过程建立所述用户终端和所述 PGW之间的专用承载。
PCT/CN2007/003870 2007-09-30 2007-12-28 Procédé permettant d'établir une porteuse vers un terminal utilisateur en mode repos WO2009043209A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710164207.2 2007-09-30
CN2007101642072A CN101136835B (zh) 2007-09-30 2007-09-30 一种空闲模式下承载建立方法

Publications (1)

Publication Number Publication Date
WO2009043209A1 true WO2009043209A1 (fr) 2009-04-09

Family

ID=39160681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/003870 WO2009043209A1 (fr) 2007-09-30 2007-12-28 Procédé permettant d'établir une porteuse vers un terminal utilisateur en mode repos

Country Status (2)

Country Link
CN (1) CN101136835B (zh)
WO (1) WO2009043209A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3468254A1 (en) * 2009-04-30 2019-04-10 Samsung Electronics Co., Ltd. Method and apparatus for supporting local ip access in a femto cell of a wireless communication system

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101136835B (zh) * 2007-09-30 2011-09-21 中兴通讯股份有限公司 一种空闲模式下承载建立方法
CN101553011B (zh) * 2008-03-31 2011-03-16 华为技术有限公司 确认缺省承载的方法和移动性管理实体
CN101557610B (zh) * 2008-04-11 2012-09-05 华为技术有限公司 承载处理方法、系统和装置
CN101299882B (zh) * 2008-05-04 2012-02-08 中兴通讯股份有限公司 承载类型识别和指示方法
CN101621459B (zh) * 2008-07-02 2011-06-15 华为技术有限公司 消息传递方法、互通代理节点、数据网关及网络系统
CN101583192B (zh) * 2008-10-14 2012-02-29 中兴通讯股份有限公司 一种承载重建失败的处理方法
CN101931898B (zh) 2009-06-26 2014-03-05 华为技术有限公司 用户面数据的传输方法、装置及系统
CN101998670A (zh) * 2009-08-25 2011-03-30 华为技术有限公司 家庭基站接入场景下寻呼的处理方法和装置
KR101215191B1 (ko) 2009-09-18 2012-12-24 엔이씨 유럽 리미티드 통신 시스템과 통신 제어 방법
CN102045867B (zh) * 2009-10-19 2014-04-30 中兴通讯股份有限公司 网络连接建立方法及装置、pcc策略制定方法及系统
WO2011053039A2 (en) 2009-11-02 2011-05-05 Lg Electronics Inc. Correlation id for local ip access
CN102056142B (zh) * 2009-11-09 2014-07-02 中兴通讯股份有限公司 一种建立本地ip访问下行数据通道的方法及系统
CN102804902B (zh) * 2009-11-10 2015-01-21 华为技术有限公司 一种建立选择ip数据流疏导的方法、系统和设备
CN102196404B (zh) * 2010-03-11 2013-09-11 电信科学技术研究院 一种发送数据的方法、系统和装置
CN102088771B (zh) * 2010-03-12 2013-10-16 电信科学技术研究院 根据ue状态进行数据面通路选择的方法、系统及装置
CN108449794B (zh) * 2012-06-28 2024-01-16 华为技术有限公司 Lte网络中下行数据传输方法、基站和服务网关
CN103945560B (zh) * 2013-01-17 2018-04-20 中兴通讯股份有限公司 小数据传输路径的建立方法及系统、基站、服务网关
CN104904308B (zh) * 2013-08-08 2019-07-12 华为技术有限公司 一种隧道建立的方法及装置
WO2015018038A1 (zh) 2013-08-08 2015-02-12 华为技术有限公司 一种隧道建立的方法及装置
CN108200140B (zh) * 2017-12-26 2019-06-25 广东欧珀移动通信有限公司 专用承载的建立方法及相关设备
CN109151901B (zh) * 2018-09-30 2022-02-18 中国联合网络通信集团有限公司 一种业务质量保障方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1499850A (zh) * 2002-11-06 2004-05-26 华为技术有限公司 一种通用移动通信系统中建立传输承载的方法
CN101001449A (zh) * 2006-01-10 2007-07-18 中兴通讯股份有限公司 不同接入系统间的寻呼方法
WO2007089560A1 (en) * 2006-01-31 2007-08-09 Interdigital Technology Corporation Method and system for performing cell update and routing area update procedures while a wireless transmit/receive unit is in an idle state
CN101043720A (zh) * 2006-03-22 2007-09-26 华为技术有限公司 长期演进网络中用户设备切换方法及其系统
CN101136835A (zh) * 2007-09-30 2008-03-05 中兴通讯股份有限公司 一种空闲模式下承载建立方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1499850A (zh) * 2002-11-06 2004-05-26 华为技术有限公司 一种通用移动通信系统中建立传输承载的方法
CN101001449A (zh) * 2006-01-10 2007-07-18 中兴通讯股份有限公司 不同接入系统间的寻呼方法
WO2007089560A1 (en) * 2006-01-31 2007-08-09 Interdigital Technology Corporation Method and system for performing cell update and routing area update procedures while a wireless transmit/receive unit is in an idle state
CN101043720A (zh) * 2006-03-22 2007-09-26 华为技术有限公司 长期演进网络中用户设备切换方法及其系统
CN101136835A (zh) * 2007-09-30 2008-03-05 中兴通讯股份有限公司 一种空闲模式下承载建立方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3468254A1 (en) * 2009-04-30 2019-04-10 Samsung Electronics Co., Ltd. Method and apparatus for supporting local ip access in a femto cell of a wireless communication system
US10893556B2 (en) 2009-04-30 2021-01-12 Samsung Electronics Co., Ltd Method and apparatus for supporting local IP access in a femto cell of a wireless communication system

Also Published As

Publication number Publication date
CN101136835B (zh) 2011-09-21
CN101136835A (zh) 2008-03-05

Similar Documents

Publication Publication Date Title
WO2009043209A1 (fr) Procédé permettant d'établir une porteuse vers un terminal utilisateur en mode repos
JP7416368B2 (ja) 時間依存ネットワーキングのための制御プレーンに基づく設定
US20220256440A1 (en) Service gap control for a wireless device
JP5947394B2 (ja) モバイル・ネットワークを通じたユーザ・プレーン・トランザクションのサポート
CN111629450B (zh) 一种数据传输方法、相关设备以及存储介质
WO2013064104A1 (zh) 一种数据传输方法、移动性管理实体和移动终端
KR20100060800A (ko) HeNB에서 단말에게 선택적으로 자원을 할당하기 위한 시스템 및 장치
WO2013010415A1 (zh) 一种实现ip地址属性通知的方法、系统和sgw
US9131485B2 (en) Method for revocable deletion of PDN connection
WO2011134329A1 (zh) 一种小数据包传输的方法和系统
WO2008019631A1 (fr) Procédé et système de transfert de matériel d'utilisateur dans un système de communication mobile
WO2009049529A1 (fr) Procédé d'établissement de support de charge et dispositif associé
WO2011095100A1 (zh) 一种对本地ip连接的建立进行控制的方法和系统
WO2016150140A1 (zh) 一种基于sdn的网关中控制报文的处理方法及系统
WO2009117879A1 (zh) 一种指示服务网关承载管理的方法
WO2010063175A1 (zh) 实现数据网关切换的方法、装置和系统
WO2011026392A1 (zh) 一种路由策略的获取方法及系统
WO2008113235A1 (fr) Procédé pour éviter la libération erronée de ressources pendant une mise à jour de zone de suivi ou un transfert intercellulaire
KR102017167B1 (ko) 무선 통신 시스템에서 데이터 트래픽 분산을 위한 방법 및 장치
WO2013047200A1 (ja) 通信システム、通信方法及び通信プログラム
KR20180121585A (ko) 데이터 서비스 제어 방법 및 관련 장치
WO2011054264A1 (zh) 一种建立本地ip访问下行数据通道的方法及系统
WO2012024989A1 (zh) 承载释放方法及系统
WO2010051696A1 (zh) 一种无线资源释放的方法和系统
WO2011017979A1 (zh) 支持ip分流的通信系统中资源管理方法与装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07855871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07855871

Country of ref document: EP

Kind code of ref document: A1