WO2009042454A1 - Automated sleep phenotyping - Google Patents

Automated sleep phenotyping Download PDF

Info

Publication number
WO2009042454A1
WO2009042454A1 PCT/US2008/076560 US2008076560W WO2009042454A1 WO 2009042454 A1 WO2009042454 A1 WO 2009042454A1 US 2008076560 W US2008076560 W US 2008076560W WO 2009042454 A1 WO2009042454 A1 WO 2009042454A1
Authority
WO
WIPO (PCT)
Prior art keywords
subject
sleep
stimulus
output signals
information related
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2008/076560
Other languages
English (en)
French (fr)
Inventor
Stephen D. Pittman
Stefanida K. Blake
Jacobo Reif
Erik K. Witt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Respironics Inc
Original Assignee
RIC Investments LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIC Investments LLC filed Critical RIC Investments LLC
Priority to EP08834448.6A priority Critical patent/EP2194850B1/en
Priority to CN2008801087575A priority patent/CN101868176B/zh
Priority to AU2008305313A priority patent/AU2008305313B2/en
Priority to JP2010527025A priority patent/JP5714903B2/ja
Publication of WO2009042454A1 publication Critical patent/WO2009042454A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Measuring devices for evaluating the respiratory organs
    • A61B5/087Measuring breath flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4812Detecting sleep stages or cycles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4818Sleep apnoea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4884Other medical applications inducing physiological or psychological stress, e.g. applications for stress testing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • A61M16/024Control means therefor including calculation means, e.g. using a processor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Measuring devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Measuring devices for evaluating the respiratory organs
    • A61B5/085Measuring impedance of respiratory organs or lung elasticity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/398Electrooculography [EOG], e.g. detecting nystagmus; Electroretinography [ERG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
    • A61M16/0045Means for re-breathing exhaled gases, e.g. for hyperventilation treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0027Accessories therefor, e.g. sensors, vibrators, negative pressure pressure meter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/1005Preparation of respiratory gases or vapours with O2 features or with parameter measurement
    • A61M2016/102Measuring a parameter of the content of the delivered gas
    • A61M2016/103Measuring a parameter of the content of the delivered gas the CO2 concentration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M21/00Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
    • A61M2021/0005Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus
    • A61M2021/0083Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus especially for waking up
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/502User interfaces, e.g. screens or keyboards
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/52General characteristics of the apparatus with microprocessors or computers with memories providing a history of measured variating parameters of apparatus or patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/08Other bio-electrical signals
    • A61M2230/10Electroencephalographic signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/08Other bio-electrical signals
    • A61M2230/14Electro-oculogram [EOG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/20Blood composition characteristics
    • A61M2230/205Blood composition characteristics partial oxygen pressure (P-O2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/30Blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/40Respiratory characteristics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/60Muscle strain, i.e. measured on the user
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/63Motion, e.g. physical activity

Definitions

  • the invention relates to a system and method for determining information related to one or more sleep phenotyping parameters in an enhanced and automated manner.
  • One aspect of the invention relates to a system configured to enable determination of one or more sleep phenotyping parameters of a subject.
  • the system comprises a sleep sensor, a stimulus generator, and a processor.
  • the sleep sensor is configured to generate one or more output signals that convey information related to the one or more physiological functions that indicate the sleep stage of the subject.
  • the stimulus generator is configured to selectively provide a stimulus to the subject, wherein a response of the subject to the stimulus enables information related to the one or more sleep phenotyping parameters to be determined.
  • the processor receives the one or more output signals generated by the sleep sensor and is in operative communication with the stimulus generator.
  • the processor is also configured (i) to determine, based on the one or more output signals received from the sleep sensor, whether a trigger condition related to the current sleep stage of the subject is satisfied, and (ii) to control the stimulus generator to provide the stimulus to the subject if the trigger condition is satisfied.
  • Another aspect of the invention relates to a method of enabling determination of one or more sleep phenotyping parameters of a subject.
  • the method comprises generating one or more output signals that convey information about one or more physiological functions of the subject, the one or more physiological functions indicating a sleep stage of the subject; determining, based on the generated one or more output signals, whether a trigger condition related to the current sleep stage of the subject has been met; and providing a stimulus to the subject if it is determined that the trigger condition has been met, wherein a response of the subject to the stimulus enables information related to the one or more sleep phenotyping parameters to be determined.
  • the system comprises means for generating one or more output signals that convey information about one or more physiological functions of the subject, the one or more physiological functions indicating a sleep stage of the subject; means for determining, based on the generated one or more output signals, whether a trigger condition related to the current sleep stage of the subject has been met; and means for providing a stimulus to the subject if it is determined that the trigger condition has been met, wherein a response of the subject to the stimulus enables information related to the one or more sleep phenotyping parameters to be determined.
  • the system comprises a sleep sensor, a parameter sensor, and a processor.
  • the sleep sensor is configured to generate one or more output signals that convey information related to one or more physiological functions that indicate a sleep stage of the subject.
  • the parameter sensor is configured to generate one or more output signals that convey information related to one or more physiological functions related to one or more sleep pheno typing parameters of the subject.
  • the processor is in operative communication with each of the sleep sensor and the parameter sensor such that the processor receives the output signals generated by the sleep sensor and the parameter sensor.
  • the processor is configured to determine, based on the one or more output signals received from the sleep sensor, whether a trigger condition related to the current sleep stage of the subject is satisfied, and to determine information related to the one or more sleep pheno typing parameters of the subject based on the one or more output signals generated by the parameter sensor if the trigger condition is satisfied.
  • the method comprises generating one or more output signals related to a sleep stage of the subject, the one or more output signals related to the sleep stage of the subject conveying information related to one or more physiological functions of the subject that indicate a sleep stage of the subject; generating one or more output signals related to one or more sleep phenotyping parameters of the subject, the one or more output signals related to the one or more sleep phenotyping parameters of the subject conveying information related to one or more physiological functions of the subject associated with the one or more sleep phenotyping parameters of the subject; determining, based on the one or more output signals related to the sleep stage of the subject, whether a trigger condition related to the current sleep stage of the subject is satisfied; and determining information related to the one or more sleep phenotyping parameters of the subject based on the one or more output signals related to the one or more sleep phenotyping parameters of the subject generated
  • the system comprises means for generating one or more output signals related to a sleep stage of the subject, the one or more output signals related to the sleep stage of the subject conveying information related to one or more physiological functions of the subject that indicate a sleep stage of the subject; means for generating one or more output signals related to one or more sleep phenotyping parameters of the subject, the one or more output signals related to the one or more sleep phenotyping parameters of the subject conveying info ⁇ nation related to one or more physiological functions of the subject associated with the one or more sleep phenotyping parameters of the subject; means for determining, based on the one or more output signals related to the sleep stage of the subject, whether a trigger condition related to the current sleep stage of the subject is satisfied; and means for determining information related to the one or more sleep phenotyping parameters of the subject based on the one or more output signals related to the one or more sleep
  • the system comprises a sleep sensor, a parameter sensor, and a processor.
  • the sleep sensor is configured to generate one or more output signals that convey information related to one or more physiological functions that indicate a sleep stage of the subject.
  • the parameter sensor is configured to generate one or more output signals that convey information related to one or more physiological functions related to two or more sleep phenotyping parameters of the subject.
  • the processor is in operative communication with each of the sleep sensor and the parameter sensor such that the processor receives the output signals generated by the sleep sensor and the parameter sensor.
  • the processor is configured to determine, based on the one or more output signals received from the sleep sensor, whether one or more trigger conditions related to the current sleep stage of the subject are satisfied, wherein individual ones of the one or more trigger conditions correspond to one or more of the two or more sleep phenotyping parameters, and to determine information related to the two or more sleep phenotyping parameters of the subject, wherein the processor is configured to determine information related to a given one of the two or more sleep phenotyping parameters based on the one or more output signals generated by the parameter sensor if the trigger condition that corresponds to the given sleep phenotyping parameter is satisfied, and wherein the two or more sleep phenotyping parameters comprises one or more of a critical pharyngeal closing pressure, upper airway vibration, upper airway muscle responsiveness, arousal threshold, or loop gain.
  • Another aspect of the invention relates to a method of determining information related to sleep phenotyping parameters of a subject.
  • the method comprises generating one or more output signals related to a sleep stage of the subject, the one or more output signals related to the sleep stage of the subject conveying information related to one or more physiological functions of the subject that indicate a sleep stage of the subject; generating one or more output signals related to sleep phenotyping parameters of the subject, the one or more output signals related to the sleep phenotyping parameters of the subject conveying information related to one or more physiological functions of the subject associated with the sleep phenotyping parameters of the subject; determining, based on the one or more output signals related to the sleep stage of the subject, whether a first trigger condition related to the current sleep stage of the subject is satisfied; determining information related to a first sleep phenotyping parameter of the subject based on the one or more output signals related to the sleep phenotyping parameters of the subject generated while the first trigger condition is satisfied; determining, based on the one
  • the system comprises means for generating one or more output signals related to a sleep stage of the subject, the one or more output signals related to the sleep stage of the subject conveying information related to one or more physiological functions of the subject that indicate a sleep stage of the subject; means for generating one or more output signals related to sleep phenotyping parameters of the subject, the one or more output signals related to the sleep phenotyping parameters of the subject conveying information related to one or more physiological functions of the subject associated with the sleep phenotyping parameters of the subject; means for determining, based on the one or more output signals related to the sleep stage of the subject, whether a first trigger condition related to the current sleep stage of the subject is satisfied; means for determining info ⁇ nation related to a first sleep phenotyping parameter of the subject based on the one or more output signals related to the sleep phenotyping parameters of the subject generated while the first trigger condition
  • Another aspect of the invention relates to a method of diagnosing and treating a sleep-related breathing disorder of a subject.
  • the method comprises generating one or more output signals related to sleep phenotyping parameters of the subject, the one or more output signals related to the sleep phenotyping parameters of the subject conveying information related to one or more physiological functions of the subject associated with the sleep phenotyping parameters of the subject; determining information related to a plurality of sleep phenotyping parameters, wherein at least one of the plurality of sleep phenotyping parameters is determined based on the one or more output signals related to the sleep phenotyping parameters of the subject; and determining a metric that represents a sleep phenotype of the subject, the metric being derived from the determined information related to the plurality of sleep phenotyping parameters, wherein the sleep phenotype of the subject is indicative of one or more sleep related breathing disorders from which the subject suffers.
  • FIG. 1 illustrates a system configured to determine information related to sleep phenotyping parameters of a subject, in accordance with one embodiment of the invention
  • FIG. 2 illustrates a plot used to determine a critical pharyngeal closing pressure of a patient, in accordance with one embodiment of the invention
  • FIG. 3 illustrates the placement of sensor units on a subject, according to one embodiment of the invention
  • FIG. 4 illustrates a method of determining information related to a phenotyping parameter of a patient, according to one embodiment of the invention
  • FIG. 5 is a chart illustrating an example of phenotype clusters and potential therapies for 3 parameters in 3 dimensions.
  • FIG. 1 is a schematic diagram of a system 10 configured to determine information related to sleep phenotyping parameters of a subject 12.
  • sleep phenotyping parameters comprise metrics that quantify aspects of the physiology and/or physiological performance of the subject 12 that characterize a sleep phenotype of the subject.
  • the sleep phenotype of the subject 12 describes the predisposition of the subject 12 (e.g., due to physiological characteristics of subject 12) to one or more sleep disorders (e.g., obstructive sleep apnea, Cheyne-Stokes breathing, restless legs syndrome, etc.).
  • sleep phenotyping parameters include critical pharyngeal closing pressure, upper airway vibration characteristics, upper airway muscle responsiveness, arousal threshold, and ventilatory control feedback loop gain.
  • system 10 may be configured to determine information related to phenotyping parameters other than those listed here.
  • a sleep phenotyping parameter can include any combination of the parameters noted above.
  • system 10 includes a sleep sensor 14, a parameter sensor 16, a stimulus generator 18, a processor 20, and a storage module 22.
  • Sleep sensor 14 is configured to monitor one or more physiological functions of subject 12 that indicate a sleep stage of subject 12. More particularly, sleep sensor 14 includes one or more sensor units 24 that generate one or more output signals conveying information related to the one or more physiological functions.
  • sleep sensor 14 may include an electroencephalographic sensor unit, an electromyography sensor unit, an electro-oculographic sensor unit, and/or an oxygen saturation sensor unit. Such sensor units are known in the art to produce data from which the sleep stage of subject 12 may be determined.
  • sleep sensor 14 may include other, less traditional, sensor units, such as a respiratory sensor unit, an actimetry sensor unit, an arterial tonometry sensor unit, and/or other sensor units that generate output signals that convey information related to one or more physiological functions that vary in a predictable manner with the sleep stage of subject 12.
  • sensor units such as a respiratory sensor unit, an actimetry sensor unit, an arterial tonometry sensor unit, and/or other sensor units that generate output signals that convey information related to one or more physiological functions that vary in a predictable manner with the sleep stage of subject 12.
  • a respiratory sensor unit would include a sensor unit that generates output signals that convey information about the respiration of the subject 12 (e.g., breath rate, respiration volume, constituent concentration levels, respiration flow, pressure at or near the upper airway of subject 12, etc.). Such sensor units include a pressure sensor unit, a flow sensor unit, and/or other sensor units.
  • An actimetry sensor unit would include a sensor unit that generates output signals that convey information related to the position and/or movement of subject 12. For instance, an actimetry sensor unit may include a position sensor unit, a vibration sensor unit, a sound sensor unit, an accelerometer sensor unit, and/or other sensor units.
  • Parameter sensor 16 is configured to monitor one or more physiological functions of subject 12 related to the one or more sleep pheno typing parameters of subject 12. To monitor the one or more physical functions of subject 12 related to the one or more sleep phenotyping parameters of subject 12, parameter sensor 16 includes one or more sensor units 26 that generate output signals conveying information related to the one or more physiological functions.
  • parameter sensor 16 may include a respiratory sensor unit (e.g., monitoring function(s) related to airflow, monitoring function(s) related to respiratory effort, etc.), a cardiovascular sensor unit, a vibration sensor unit, an actimetry sensor unit, an electromyography sensor unit, an oxygen saturation sensor unit, a carbon dioxide sensor unit, an electroencephalographic sensor unit, an electro-oculographic sensor unit, and/or other sensor units that monitor one or more physiological functions that are related to a sleep phenotyping parameter of subject 12.
  • Stimulus generator 18 is configured to selectively provide a stimulus to subject 12. The stimulus provided to subject 12 is such that a response of subject 12 to the stimulus enables the gathering of information related to one or more sleep phenotyping parameters.
  • a stimulus is provided by stimulus generator 18 to subject 12 in order to determine information related to the critical pharyngeal closing pressure, upper airway muscle responsiveness, arousal threshold, and loop gain.
  • stimulus generator 18 is configured to provide aid to subject 12, and the provision of the stimulus to subject 12 includes halting, reducing, and/or altering the aid being provided to subject 12.
  • stimulus generator 18 comprises a device that provides a flow of pressurized gas to the airway of subject 12 to support the airway during sleep (e.g., a Positive Airway Pressure device ("PAP device”)).
  • PAP device Positive Airway Pressure device
  • stimulus generator 18 is referred to in the application in the singular, as used herein the term "stimulus generator” should be construed to include a single device providing a single stimulus, a single device capable of selectively providing a plurality of different stimuli to subject 12, a plurality of devices that selectively provide a single stimulus to subject 12, and/or a plurality of devices configured to selectively provide a plurality of different stimuli to subject 12.
  • sleep sensor 14 and parameter sensor 16 include one or more common sensor units, as the physiological functions relevant to determining a sleep stage of subject 12 may also be relevant to determining information related to one or more sleep phenotyping parameters.
  • stimulus generator 18 includes one or more sensor units that monitor the provision of the stimulus to subject 12 (e.g., a flow sensor unit and/or a pressure sensor unit included in a PAP device), and at least one of the one or more sensor units that monitor the provision of the stimulus to subject 12 also functions as a sensor unit 24 and/or 26 in one or both of sleep sensor 14 and parameter sensor 16.
  • the co -implementation of components (e.g., sensor units) within sleep sensor 14, parameter 16, and/or stimulus generator 18 may include a physical integration of all or part of sensors 14 and 16 and/or stimulus generator 18. In other configurations, sensors 14 and 16 and stimulus generator 18 are maintained discretely from each other.
  • Storage module 22 provides electronic storage capabilities for system 10.
  • Storage module 22 includes one or more electronically readable storage media that are operatively coupled with one or more of sleep sensor 14, parameter sensor 16, stimulus generator 18, and/or processor 20. This operative couple is illustrated in FIG. 1.
  • the electronically readable storage media of storage module 22 may include one or both of system storage that is provided integrally (i.e., substantially non-removable) with system 10 and removable storage that is removably connectable to system 10 via, for example, a port (e.g., a USB port, a firewire port, etc.) or a drive (e.g., a disk drive, etc.).
  • Storage module 22 may include optically readable storage media (e.g., optical disks, etc.), magnetically readable storage media (e.g., magnetic tape, magnetic hard drive, floppy drive, etc.), solid-state storage media (e.g., flash drive, etc.), and/or other electronically readable storage media.
  • storage module 22 may include a smart card with writeable memory that receives information from and provides information to system 10 wirelessly.
  • Storage module 22 may store software algorithms, information related to the output signals generated by one or both of sensors 14 and 16, information determined by processor 20, and/or other information that enables processor 20 to function properly.
  • Storage module 22 may be a separate component within system 10, or storage module 22 may be provided integrally with one or more of sensors 14 and 16, stimulus generator 18, or processor 20.
  • system 10 further includes a user interface 28.
  • User interface 28 provides an interface between system 10 and one or more users (e.g., a caregiver, a researcher, subject 12, etc.) through which users may provide information to and receive information from system 10. This enables data, results, and/or instructions and any other communicable items, collectively referred to as "information", to be communicated between the user(s) and one or more of sleep sensors 14, parameters sensors 16, stimulus generator 18, processor 20 and/or storage module 22. This information may be communicated from user interface 28 to system 10 by an operative communication link illustrated in FIG. 1 by an arrow.
  • Examples of conventional interface devices suitable for inclusion in user interface 28 include a keypad, buttons, switches, a keyboard, knobs, levers, a display screen, a touch screen, speakers, a microphone, an indicator light, and a printer.
  • User interface 28 may be a separate component within system 10, or user interface 28 may be provided integrally with one or more of sensors 14 and 16, stimulus generator 18, processor 20, or storage module 22.
  • user interface 28 may be integrated with a removable storage interface provided by storage module 22.
  • information may be loaded into system 10 from removable storage (e.g., a smart card, a flash drive, a removable disk, etc.) that enables the user(s) to customize the implementation of system 10.
  • removable storage e.g., a smart card, a flash drive, a removable disk, etc.
  • Other exemplary input devices and techniques adapted for use with the pressure support system 10 as user interface 28 include, but are not limited to, an RS-232 port, RF link, an IR link, modem (telephone, cable or other).
  • any technique for providing information to system 10 is contemplated by the present invention as user interface 28.
  • Processor 20 is configured to provide information processing capabilities in system 10.
  • processor 20 may include one or more of a digital processor, an analog processor, a digital circuit designed to process information, an analog circuit designed to process information, a state machine, and/or other mechanisms for electronically processing information.
  • processor 20 is shown in FIG. 1 as a single entity, this is for illustrative purposes only.
  • processor 20 may include a plurality of processing units. These processing units may be physically located within the same device, or processor 20 may represent processing functionality of a plurality of devices operating in coordination. In instances in which a plurality of devices are implemented, operative communications links may be formed between the devices to enable communication and coordination therebetween.
  • processor 20 may include one or more processors external to the other components of system 10 (e.g., a host computer), one or more processors that are included integrally in one or more of the components of system 10 (e.g., one or more processors included integrally with one or more of sensors 14 and 16, stimulus generator 18, storage module 22, etc.), or both.
  • processors external to other components within system 10 may, in some cases, provide redundant processing to the processors that are integrated with components in system 10, and/or the external processor(s) may provide additional processing to determine additional information related to the operation of system 10 and/or the determination of sleep pheno typing parameters of subject 12.
  • processor 20 includes a sleep module 30, a trigger module 32, a stimulus module 34, an event module 36, a parameter module 38, and a phenotype module 40.
  • Modules 30, 32, 34, 36, 38, and 40 may be implemented in software; hardware; firmware; some combination of software, hardware, and/or firmware; and/or otherwise implemented. It should be appreciated that although modules 30, 32, 34, 36, 38, and 40 are illustrated in FIG.
  • modules 30, 32, 34, 36, 38, and/or 40 may be located remotely from the other modules and operative communication between modules 30, 32, 34, 36, 38, and/or 40 may be achieved via one or more communication links.
  • Such communication links may be wireless or hard wired.
  • Sleep module 30 is configured to determine information related to a current sleep stage of subject 12 based on the one or more output signals generated by sleep sensor 14. In one embodiment, determining information related to the current sleep stage includes determining the sleep stage directly from the output signals. In one embodiment, determining information related to the current sleep stage includes first determining a physiological function of subject 12 from the output signals, and then determining information related to the current sleep stage (e.g., determining the sleep stage) based on the dete ⁇ nined physiological function. In this embodiment, the determined physiological function may further be implemented in the control of system 10 and/or the analysis of the sleep phenotype of subject 12.
  • trigger module 32 is configured to determine, based on the one or more output signals generated by sleep sensor 14, whether a trigger condition related to the current sleep stage of subject 12 is satisfied. In one embodiment, determining whether a trigger condition is satisfied includes comparing the information determined by sleep module 30 with the trigger condition. Trigger conditions are set such that they are satisfied when subject's 12 sleep stage is such that observation of one or more of her physiological functions will enable determination of at least one phenotyping parameter, or related information.
  • a given trigger condition comprises a requisite sleep stage such that the given trigger condition is satisfied if the current sleep stage of subject 12 (e.g., as determined by sleep module 30) is the requisite sleep stage.
  • the given trigger condition further requires that the current sleep stage of subject 12 remain at the requisite sleep stage for a predetermined amount of time before the trigger condition is satisfied.
  • a given trigger condition comprises a threshold measurement of at least one of the physiological functions monitored by sleep sensor 14 such that if the physiological function(s) crosses the threshold measurement, the trigger condition is satisfied.
  • trigger module 32 may implement information related to the physiological function(s) determined by sleep module 30 (as discussed above), or trigger module 32 may simply compare the output signals generated by sleep module 30 with a signal threshold. Similar to the previous example, in some instances, the given trigger condition may further require that the physiological function(s) remain across the threshold measurement for a predetermined amount of time before the trigger condition is satisfied.
  • Stimulus module 34 is configured to control stimulus generator 18 to selectively provide stimulation to subject 12 such that a response of the subject to the stimulation will enable the determination of information related to one or more sleep phenotyping parameters.
  • the control of stimulus module 34 over stimulus generator 18 is based on the satisfaction of one or more trigger conditions.
  • information related to a given sleep phenotyping parameter may be determined from a response of subject 12 to a corresponding response when subject 12 is experiencing stable Non-Rapid Eye Movement sleep ("NREM" sleep) (selected merely for illustrative purposes).
  • stimulus module 34 is configured such that if trigger module 32 determines that the current sleep stage of subject 12 satisfies a trigger condition associated with stable NREM sleep, stimulus generator 18 is controlled to initiate provision of the stimulation to subject 12.
  • the provision of the stimulation to subject 12 is continued according to a predetermined algorithm regardless of the reaction of subject 12 to the stimulation.
  • the provision of the stimulation may be altered based on the response of subject 12 (e.g., as discussed below with respect to event module 36), or the stimulation may be halted or paused altogether (e.g., based on a determination by trigger module 32 that the trigger condition associated with stable NREM sleep is no longer satisfied). Further description of examples of the control of stimulus module 34 over stimulus generator 18 to enable determination of some non-limiting specific examples of sleep phenotyping parameters are provided below.
  • subject 12 In order to determine information related to some phenotyping parameters, subject 12 must be observed before, during, or after a certain type of physiological event. This may include observation of the subject prior to the event, at the beginning of the event, while the event is ongoing, at the end of the event, and/or subsequent to the event.
  • the event may include a respiratory event (e.g., an inhalation, an exhalation, a flow limited breath, an apnea, a hypopnea, upper airway instability, snoring, an airway blockage, etc.).
  • a respiratory event e.g., an inhalation, an exhalation, a flow limited breath, an apnea, a hypopnea, upper airway instability, snoring, an airway blockage, etc.
  • Event module 26 is configured to identify events based on the output signals generated by parameter sensors 16. This includes the identification of transition into, out of, and/or within the events.
  • Parameter module 38 is configured to determine information related to one or more sleep phenotyping parameters based on the output signals generated by parameter sensor 16.
  • the determined information includes information related to the one or more physiological functions of subject 12 monitored by sleep sensor 14 and/or parameter sensor 16.
  • the one or more sleep phenotyping parameters may include one or more of a critical pharyngeal closing pressure ("critical pressure"), upper airway vibration, upper airway muscle responsiveness, arousal threshold, loop gain, and/or other sleep phenotyping parameters.
  • critical pressure critical pharyngeal closing pressure
  • upper airway vibration upper airway vibration
  • upper airway muscle responsiveness upper airway muscle responsiveness
  • arousal threshold arousal threshold
  • loop gain loop gain
  • parameter module 38 determines this information in real-time or near real-time.
  • parameter module 38 may determine one or more of the sleep phenotyping parameters based on previously stored information. Further, in one embodiment, a given parameter is determined in real-time or near real-time, and then is refined at some later time based on additional information.
  • parameter module 38 is configured to determine information related to the critical pressure of subject 12.
  • the critical pressure is the pressure at which the upper airway of subject 12 collapses and an obstructive apnea develops. This includes providing a pressurized flow of breathable gas to the upper airway of subject 12 (e.g., via stimulus generator 18 as described above) to support the airway until subject 12 enters an appropriate stage of sleep (e.g., stage 2 sleep).
  • the determination that subject 12 has entered the appropriate stage of sleep is made by sleep module 30 and/or trigger module 32(e.g., as a trigger condition).
  • a respiratory stimulus, or "challenge” is provided to subject 12 by stimulus generator 18 (as controlled by stimulus module 34).
  • the stimulus includes reducing the pressure of the airway to a first reduced pressure.
  • the response of subject 12 to the stimulus is then monitored by parameter sensor 16 (e.g., the response is reflected in the output signals generated by parameter sensor 16).
  • information related to the flow of inhalation(s) and/or exhalation(s) of subject 12 while the stimulus is being provided is reflected in the output signals generated by parameter sensor 16.
  • the information related to the flow of inhalation(s) and/or exhalation(s) of subject 12 may include flow rate, volume, and/or other information related to the flow of gas through the airway of subject 12.
  • the stimulus is then terminated (e.g., the pressure of the airway is returned to the pressure prior to the provision of the stimulus). This process is repeated at a plurality of different levels of stimuli (e.g., different reduced pressures are applied as stimuli), and based on the response of subject 12 to the stimuli, the critical pressure is determined.
  • trigger module 32 determines at any point during this process that the stability of subject 12 has fallen below a predetermined threshold (e.g., comes out of the appropriate sleep stage, etc.) a trigger condition may be satisfied that ceases or pauses the provision of stimuli to subject 12. If such a trigger condition is satisfied, trigger module 32 again monitors the sleep of subject 12 until a trigger condition is satisfied that indicates that the sleep of subject 12 is stable enough to permit the provision of stimuli to be resumed.
  • the stimulus includes reducing the pressure of the airway of subject 12.
  • the c ⁇ tical pressure is determined by plotting the information related to the flow of subject 12' s breathing against the reduced pressure provided to subject 12 as a stimulus, and then determining (e g., via a linear regression) the pressure at which the flow of subject 12's breathing goes to zero.
  • FIG. 2 illustrates such a plot.
  • parameter module 38 determines information related to the vibration of the upper airway of subject 12.
  • sensor devices 26 of parameter sensor 16 includes a plurality of vibration sensors on subject 12 to monitor the vibration of the upper airway.
  • FIG. 3 illustrates the placement of 4 sensor devices 42a-42d on the neck of subject 12 Based on the signals generated by sensor devices 42a-42d, information related to the source of airway obstructions may be determined.
  • the output signals generated by sensor devices 42a-42d may be discarded if a trigger condition related to some predetermined level of stable sleep is not determined by trigger module 32 to be satisfied.
  • information determined based on the output signals of sensor devices 42a-42d when the trigger condition is not satisfied may be marked or flagged as so that it will not be implemented in determining information related to the airway anatomy of subject 12
  • parameter module 38 determines information related to upper airway muscle responsiveness of subject 12.
  • stimulation is provided to subject 12 while subject 12 is asleep.
  • the stimulation is provided by stimulus generator 18 (as controlled by stimulus module 34) and includes reducing the pressure of the upper airway of subject 12 so that subject 12 expe ⁇ ences flow limited breathing.
  • parameter module 38 determines information related to upper airway muscle responsiveness based on the number of breaths and/or amount of time that it takes for the breathing of subject 12 to return to normal This determination is based on output signal(s) of one or more sensor devices 26 of parameter sensor 16 that convey information related to the flow of gas through the upper airway of subject 12. It should be appreciated that this is not intended to be limiting.
  • parameter sensor 16 includes an intraoral or sublingual EMG electrode, and information related to upper airway responsiveness is determined based on output signals from such an electrode.
  • parameter module 38 determines information related to the arousal threshold of subject 12.
  • the arousal threshold corresponds to the maximal respiratory effort developed in response to a respiratory event at which subject 12 becomes aroused.
  • a stimulus is provided to subject 12 while the subject is asleep.
  • the determination that subject 12 has attained sleep of an appropriate stability may be made by trigger module 32, for example, in the manner discussed above with respect to the determination of critical pressure and/or airway vibration.
  • a stimulus is provided to subject 12 by stimulus generator 18 to wake the subject.
  • the stimulus may include one or more of decreasing the pressure of the airway of subject 12, increasing the carbon dioxide inhaled by the subject (e.g., by re-breathing), and/or decreasing the oxyhemoglobin saturation of the subject.
  • Such stimulus is provided to subject 12 in an incremental manner until arousal takes place.
  • parameter sensor 16 includes a sensor unit that monitors the effort expended by subject 12 at arousal directly (e.g., an effort belt worn by the subject that monitors muscle contraction).
  • information related to the arousal threshold of subject 12 is determined based on the magnitude of the stimulus (e.g., the decrease in pressure at the airway, the increase in carbon dioxide inhalation, the decrease in oxyhemoglobin saturation, etc.) required to wake the subject from stable sleep.
  • the determination as whether subject 12 has been wakened is made by trigger module 32.
  • parameter module 38 determines information related to ventilatory control feedback loop gain of subject 12.
  • gas exchange between blood and atmosphere occurs in the lungs.
  • respiration is controlled based on levels of these gases (e.g., oxygen, carbon dioxide, etc.) present in the blood when it reaches the brain. Therefore, there is a lag between an increase or decrease in the levels of these gases in the blood as it leaves the lungs and the detection of the change at the brain. Respiration increases with an increasing level of carbon dioxide and the rate of this increase in respiration rises with a lack of oxygenation.
  • a response to a lack of oxygenation (e.g., or a surplus of carbon dioxide) in the blood is inhibited by flow limited breathing.
  • the loop gain of subject 12 is related to the amount of time it takes for the subject to be able to correct a fluctuation in the oxygenation level (e.g., or the carbon dioxide level) of the blood.
  • This correction time is a function of both circulation (e.g., the amount of time it takes for the blood to reach the brain from the lungs) and breathing effort (e.g., as impacted by the change in respiration for a given stimulus to subject 12 and sleep induced respiratory events such as flow limited breathing).
  • stimulus is provided to the subject while the subject is asleep.
  • the stability of the sleep of subject 12 is determined by trigger module 32, as described above, and if the subject wakes up during the provision of the stimulus to the subject, then the provision is paused or ceased until the stability of the sleep of the subject again becomes sufficient.
  • the stimulus is applied by stimulus generator 18 and includes decreasing the level of carbon dioxide in the gas present at the airway of subject 12. This may be accomplished, for example, by increasing the pressure and/or the flow rate of the flow of gas provided to the airway of subject 12, increasing minute ventilation, which will decrease the carbon dioxide inhaled by the subject as a result of washing out carbon dioxide from the airway.
  • parameter module 38 obtains information related to one or more sleep phenotyping parameters from a user of system 10.
  • the user may include subject 12, a care-provider, a researcher, etc.
  • the user provides the information to parameter module 38 by inputting the information to system via user interface 28
  • the user may provide information related to patient-reported symptoms or responses to predetermined questions (e.g., the Epworth Sleepiness Scale, the Pittsburgh Sleep Quality Index, etc.).
  • Phenotyping module 40 is configured to determine a sleep phenotype of subject 12 based on the one or more sleep phenotyping parameters determined by parameter module 38 Determining the phenotype of subject 12 may include determining a metric that represents the sleep phenotype of the subject. The sleep phenotype of subject 12 may be indicative of one or more sleep related breathing disorders from which the subject suffers. In one embodiment, phenotyping module 40 determines the sleep phenotype in real-time or near real-time. As noted above, the sleep phenotyping parameters include, but are not limited to a c ⁇ tical pharyngeal closing pressure, upper airway vibration, upper airway muscle responsiveness, arousal threshold, or loop gain.
  • Phenotyping module 40 may leverage the determined sleep phenotype to prescribe treatment for subject 12 likely to be successful in treating the one or more sleep related breathing disorders suffered by the subject.
  • system 10 may apply the prescribed treatment instantaneous (or substantially so) with the determination of the sleep phenotype. This may enable the responsiveness of subject 12 to the prescribed treatment to be monitored during the same pe ⁇ od of sleep as the testing conducted to determine the one or more sleep phenotyping parameters.
  • the information related to sleep phenotyping parameters determined by parameter module 38 includes numeric scores for individual sleep phenotyping parameters. These scores are then implemented by sleep phenotyping module 40 to determine the metric. For example, the scores may be aggregated (e.g., by averaging, by weighted averaging, etc.) to determine a single score that represents the sleep phenotype of patient 12.
  • the scores determined by parameter module 38 are used to determine a vector 70 in an n-dimensional space 72, where n represents that number of sleep phenotyping parameters for which parameter module 38 has determined a score, and the individual scores are the coordinates of the vector.
  • the n-dimensional space may be divided into regions A, B, C, and D. The regions may be predetermined to correspond with clusters of sleep phenotypes that respond positively to the same types of treatment. Phenotyping module 40 then prescribes the course of treatment for the sleep related breathing disorder(s) suffered by subject 12 that corresponds to the region in which the vector associated with subject 12 resides. In the example shown in FIG.
  • space 72 includes phenotype clusters and potential therapies for the following parameters, Pcrit, Loop Gain, and Arousal Threshold.
  • Each potential therapy is indicated with a shaded ellipse.
  • the patient exhibits a phenotype based on Pcrit, Loop Gain, and Arousal Threshold measurements, suggesting that a neuro pharmaceutical treatment would be optical for him/her. It can thus be appreciated that the type of therapy believed to be optimal for a given patient will depend on the phenotyping
  • FIG. 4 illustrates a method 44 of determining a sleep phenotyping parameter of a subject. It should be appreciated that although various operations of method 44 are disclosed hereafter as being performed and/or executed by components of system 10 (illustrated in FIG. 1 and described above), this is for illustrative purposes only. In other embodiments, method 44 can be implemented by a variety of systems and in a variety of contexts.
  • Method 44 includes an operation 46, at which one or more output signals are generated that convey information related to one or more physiological functions of the subject.
  • the one or more physiological functions indicate a sleep stage of the subject.
  • operation 46 is performed by a sleep sensor similar to sleep sensor 14 (illustrated in FIG. 1 and described above).
  • a current sleep stage of the subject is determined based on the output signals generated at operation 46.
  • operation 48 is performed by a sleep module within a processor similar to sleep module 30 within processor 20 (illustrated in FIG. 1 and described above).
  • the determination at operation 50 may be based on one or both of the output signals generated at operation 46 and the current sleep stage of the subject determined at operation 48.
  • operation 50 is performed by a trigger module within a processor similar to trigger module 32 within processor 20 (illustrated in FIG. 1 and described above).
  • operation 50 is not a "one-time” determination, but instead includes a continuous or frequent monitoring of the sleep of the subject to ensure that the trigger condition continues to be satisfied throughout method 44 as information that enables the determination of the sleep phenotyping parameter is gathered.
  • one or more output signals are generated that convey information related to one or more physiological functions related to the sleep phenotyping parameter.
  • operation 52 is performed by a parameter sensor similar to parameter sensor 16 (illustrated in FIG. 1 and described above). It should be appreciated that in one embodiment, the one or more output signals are generated without regard for the determination made at operation 50, but the output signal(s) generated at operation 52 are not implemented in the determination of the sleep phenotyping parameter unless the trigger condition is determined to have been satisfied at operation 50.
  • a stimulus is provided to the subject.
  • the stimulus is provided to the subject such that the response of the subject to the stimulus enables the sleep phenotyping parameter to be determined from the output signals generated at operation 52.
  • operation 54 is performed by a stimulus generator similar to stimulus generator 18 (illustrated in FIG. 1 and described above).
  • the stimulus generator may be controlled by a stimulus module within a processor similar to stimulus module 34 within processor 20 (illustrated in FIG. 1 and described above). It should be appreciated from the discussion above regarding the particulars of determining specific sleep phenotyping parameters that operation 54 is not included in method 44 for every pheno typing parameter, but only for those parameters for which provision of a stimulus facilitates determination.
  • the predetermined event includes a respiratory event (e.g., flow limited breathing, an airway obstruction (complete or partial), snoring, etc.).
  • the determination made at operation 56 is made based on the output signals generated at one or both of operations 46 and 52.
  • operation 56 is performed by an event module within a processor similar to event module 36 within processor 20. It should be appreciated from the foregoing discussion related to the determination of specific sleep phenotyping parameters that operation 56 is not included in method 44 for every phenotyping parameter, but only for those parameters for which the subjects response to the event facilitates determination.
  • operation 58 information related to the sleep phenotyping parameter is determined.
  • operation 58 is performed by a parameter module within a processor similar to parameter module 38 within processor 20 (illustrated in FIG. 1 and described above).
  • the information related to trie sleep phenotyping parameter determined at operation 58 is stored.
  • the information is stored within a storage module similar to storage module 22 (illustrated in FIG. 1 and described above).
  • a sleep phenotype of the subject is determined based on the information determined at operation 58.
  • operation 62 is performed by a phenotype module within a processor similar to phenotype module 40 within processor 20 (illustrated in FIG. 1 and described above).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Pulmonology (AREA)
  • Physiology (AREA)
  • Hematology (AREA)
  • Anesthesiology (AREA)
  • Emergency Medicine (AREA)
  • Cardiology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Developmental Disabilities (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Social Psychology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
PCT/US2008/076560 2007-09-25 2008-09-16 Automated sleep phenotyping Ceased WO2009042454A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP08834448.6A EP2194850B1 (en) 2007-09-25 2008-09-16 Automated sleep phenotyping
CN2008801087575A CN101868176B (zh) 2007-09-25 2008-09-16 自动化的睡眠表型
AU2008305313A AU2008305313B2 (en) 2007-09-25 2008-09-16 Automated sleep phenotyping
JP2010527025A JP5714903B2 (ja) 2007-09-25 2008-09-16 自動化した睡眠の表現型

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US97492007P 2007-09-25 2007-09-25
US60/974,920 2007-09-25
US12/210,244 US9743841B2 (en) 2007-09-25 2008-09-15 Automated sleep phenotyping
US12/210,244 2008-09-15

Publications (1)

Publication Number Publication Date
WO2009042454A1 true WO2009042454A1 (en) 2009-04-02

Family

ID=40472455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/076560 Ceased WO2009042454A1 (en) 2007-09-25 2008-09-16 Automated sleep phenotyping

Country Status (6)

Country Link
US (1) US9743841B2 (enExample)
EP (1) EP2194850B1 (enExample)
JP (1) JP5714903B2 (enExample)
CN (1) CN101868176B (enExample)
AU (1) AU2008305313B2 (enExample)
WO (1) WO2009042454A1 (enExample)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012532703A (ja) * 2009-07-16 2012-12-20 レスメド・リミテッド 睡眠状態の検出
WO2013144893A1 (en) * 2012-03-28 2013-10-03 Koninklijke Philips N.V. System and method for a wakeful sleep detection alarm
CN107233652A (zh) * 2017-05-27 2017-10-10 众德云格机器人(苏州)有限公司 可接入在线心理辅导云端服务功能的辅助睡眠系统
EP3169388A4 (en) * 2014-07-17 2018-03-28 DeVilbiss Healthcare LLC Phenotyping of sleep breathing disorders using a breathing therapy machine

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090076350A1 (en) * 2007-09-14 2009-03-19 Corventis, Inc. Data Collection in a Multi-Sensor Patient Monitor
US20170188940A9 (en) 2007-11-26 2017-07-06 Whispersom Corporation Device to detect and treat Apneas and Hypopnea
CN102469957B (zh) * 2009-07-20 2015-09-30 皇家飞利浦电子股份有限公司 用于操作监测系统的方法
WO2011161561A1 (en) 2010-06-22 2011-12-29 Koninklijke Philips Electronics N.V. Respiratory interface apparatus
ITMI20112324A1 (it) * 2011-12-20 2013-06-21 Associazione La Nostra Famiglia Ir Ccs Eugenio Med Apparecchiatura per il ripristino della ventilazione particolarmente in soggetti affetti dalla sindrome da ipoventilazione centrale congenita (cchs)
EP2840959B1 (en) * 2012-05-18 2018-08-22 Fisher&Paykel Healthcare Limited Control of flow and/or pressure provided by breathing apparatus
CN102727981B (zh) * 2012-07-12 2014-05-07 张斌 一种失眠认知行为治疗仪
JP6202485B2 (ja) * 2013-01-11 2017-09-27 株式会社タニタ 生体情報管理モジュール、睡眠計、およびシステム
AU2014210846B2 (en) * 2013-01-29 2018-03-15 Koninklijke Philips N.V. Sensory stimuli to increase accuracy of sleep staging
EP2986209B1 (en) * 2013-04-17 2022-01-19 Koninklijke Philips N.V. Adjustment of sensory stimulation intensity to enhance sleep slow wave activity
CN105324077B (zh) 2013-04-19 2018-10-26 皇家飞利浦有限公司 用于基于对象中的慢波睡眠活动的睡眠期管理的系统和方法
EP3107608B1 (en) * 2014-02-19 2018-12-19 Koninklijke Philips N.V. Reverse dual positive airway pressure challenges for breathing disorder diagnostics
WO2016011645A1 (zh) * 2014-07-24 2016-01-28 深圳迈瑞生物医疗电子股份有限公司 超声成像方法和系统
CN107921227A (zh) * 2015-08-07 2018-04-17 皇家飞利浦有限公司 心脏、心肺和/或血液动力学表型分析
CN107647847A (zh) * 2016-07-26 2018-02-02 纽沃凯生物科技(深圳)有限公司 睡眠深度监测方法和睡眠深度监测仪
CN106333673B (zh) * 2016-09-21 2019-07-09 广州视源电子科技股份有限公司 催眠深度检测器
CA3043325A1 (en) 2016-11-10 2018-05-17 The Research Foundation For The State University Of New York System, method and biomarkers for airway obstruction
CN106618839A (zh) * 2017-03-03 2017-05-10 薛令军 一种呼吸暂停治疗仪
EP3678543A1 (en) 2017-09-08 2020-07-15 Nox Medical System and method for non-invasively determining an internal component of respiratory effort
AU2020278409B2 (en) * 2019-05-22 2025-03-06 Flinders University Methods for estimating key phenotypic traits for obstructive sleep apnea and simplified clinical tools to direct targeted therapy
US12011286B2 (en) * 2020-03-16 2024-06-18 Koninklijke Philips N.V. Detecting undiagnosed sleep disordered breathing using daytime sleepiness and nighttime obstructive sleep apnea (OSA) severity
WO2021222897A2 (en) * 2020-05-01 2021-11-04 The Brigham And Women's Hospital, Inc. System and method for endo-phenotyping and risk stratfying obstructive sleep apnea
RU2751137C1 (ru) * 2020-05-15 2021-07-08 ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "СберМедИИ" Способ определения фазы сна в длительной записи ээг
AU2021294415A1 (en) * 2020-06-26 2023-02-02 Resmed Sensor Technologies Limited Systems and methods for communicating an indication of a sleep-related event to a user

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070191697A1 (en) * 2006-02-10 2007-08-16 Lynn Lawrence A System and method for SPO2 instability detection and quantification

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE193656T1 (de) * 1991-11-14 2000-06-15 Univ Technologies Int Automatisches system zum erzeugen eines kontinuierlichen positiven atemwegsdruck
SE0003531D0 (sv) * 2000-10-02 2000-10-02 Breas Medical Ab Auto CPAP
CN100506147C (zh) * 2001-06-13 2009-07-01 康普麦迪克斯有限公司 用于监测意识的方法和设备
US6881192B1 (en) * 2002-06-12 2005-04-19 Pacesetter, Inc. Measurement of sleep apnea duration and evaluation of response therapies using duration metrics
AU2002951984A0 (en) 2002-10-10 2002-10-31 Compumedics Limited Sleep quality and auto cpap awakening
KR20050072435A (ko) * 2002-10-09 2005-07-11 컴퓨메딕스 리미티드 치료 처리중 수면 품질을 유지하고 모니터하기 위한 방법및 장치
DE10248590B4 (de) * 2002-10-17 2016-10-27 Resmed R&D Germany Gmbh Verfahren und Vorrichtung zur Durchführung einer signalverarbeitenden Betrachtung eines mit der Atmungstätigkeit einer Person im Zusammenhang stehenden Messsignales
US7189204B2 (en) * 2002-12-04 2007-03-13 Cardiac Pacemakers, Inc. Sleep detection using an adjustable threshold
US20040200472A1 (en) * 2003-01-09 2004-10-14 Suny Stony Brook/Respironics Method of treating functional somatic syndromes and diagnosing sleep disorders based on functional somatic syndrome symptoms
US7025730B2 (en) * 2003-01-10 2006-04-11 Medtronic, Inc. System and method for automatically monitoring and delivering therapy for sleep-related disordered breathing
US7896812B2 (en) * 2003-08-14 2011-03-01 New York University System and method for diagnosis and treatment of a breathing pattern of a patient
US6988994B2 (en) * 2003-08-14 2006-01-24 New York University Positive airway pressure system and method for treatment of sleeping disorder in patient
US7668591B2 (en) * 2003-09-18 2010-02-23 Cardiac Pacemakers, Inc. Automatic activation of medical processes
US7591265B2 (en) * 2003-09-18 2009-09-22 Cardiac Pacemakers, Inc. Coordinated use of respiratory and cardiac therapies for sleep disordered breathing
US7572225B2 (en) * 2003-09-18 2009-08-11 Cardiac Pacemakers, Inc. Sleep logbook
US7041049B1 (en) 2003-11-21 2006-05-09 First Principles, Inc. Sleep guidance system and related methods
US6964641B2 (en) * 2003-12-24 2005-11-15 Medtronic, Inc. Implantable medical device with sleep disordered breathing monitoring
EP1711104B1 (en) * 2004-01-16 2014-03-12 Compumedics Limited Method and apparatus for ecg-derived sleep disordered breathing monitoring, detection and classification
US20060293608A1 (en) * 2004-02-27 2006-12-28 Axon Sleep Research Laboratories, Inc. Device for and method of predicting a user's sleep state
US20070249952A1 (en) * 2004-02-27 2007-10-25 Benjamin Rubin Systems and methods for sleep monitoring
US7491181B2 (en) * 2004-03-16 2009-02-17 Medtronic, Inc. Collecting activity and sleep quality information via a medical device
US20050209512A1 (en) * 2004-03-16 2005-09-22 Heruth Kenneth T Detecting sleep
US8308661B2 (en) * 2004-03-16 2012-11-13 Medtronic, Inc. Collecting activity and sleep quality information via a medical device
US8725244B2 (en) * 2004-03-16 2014-05-13 Medtronic, Inc. Determination of sleep quality for neurological disorders
US7717848B2 (en) * 2004-03-16 2010-05-18 Medtronic, Inc. Collecting sleep quality information via a medical device
US7387608B2 (en) * 2004-04-06 2008-06-17 David A Dunlop Apparatus and method for the treatment of sleep related disorders
US20070208269A1 (en) * 2004-05-18 2007-09-06 Mumford John R Mask assembly, system and method for determining the occurrence of respiratory events using frontal electrode array
US9220856B2 (en) * 2004-10-06 2015-12-29 Resmed Limited Method and apparatus for non-invasive monitoring of respiratory parameters in sleep disordered breathing
US20060241708A1 (en) * 2005-04-22 2006-10-26 Willem Boute Multiple sensors for sleep apnea with probability indication for sleep diagnosis and means for automatic activation of alert or therapy
US8021299B2 (en) * 2005-06-01 2011-09-20 Medtronic, Inc. Correlating a non-polysomnographic physiological parameter set with sleep states
US20070055115A1 (en) * 2005-09-08 2007-03-08 Jonathan Kwok Characterization of sleep disorders using composite patient data
KR100791371B1 (ko) * 2005-10-07 2008-01-07 삼성전자주식회사 숙면 및 기상 유도 장치 및 방법
KR100809041B1 (ko) * 2006-06-20 2008-03-03 삼성전자주식회사 수면 상태 감지 장치 및 그 방법
US8083682B2 (en) * 2006-07-19 2011-12-27 Cardiac Pacemakers, Inc. Sleep state detection
US8226570B2 (en) * 2006-08-08 2012-07-24 Cardiac Pacemakers, Inc. Respiration monitoring for heart failure using implantable device
US8276585B2 (en) * 2007-04-10 2012-10-02 Resmed Limited Systems and methods for visualizing pressures and pressure responses to sleep-related triggering events
US20090078258A1 (en) * 2007-09-21 2009-03-26 Bowman Bruce R Pressure regulation methods for positive pressure respiratory therapy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070191697A1 (en) * 2006-02-10 2007-08-16 Lynn Lawrence A System and method for SPO2 instability detection and quantification

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHAMPAGNAT ET AL.: "Neural control of breathing", RESPIRATORY RESEARCH, vol. 2, 17 August 2001 (2001-08-17), pages S1 - S37, XP008135097, Retrieved from the Internet <URL:http://www.biomedcentral.com/content/pdf/rr149.pdf> [retrieved on 20081111] *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012532703A (ja) * 2009-07-16 2012-12-20 レスメド・リミテッド 睡眠状態の検出
WO2013144893A1 (en) * 2012-03-28 2013-10-03 Koninklijke Philips N.V. System and method for a wakeful sleep detection alarm
US9579482B2 (en) 2012-03-28 2017-02-28 Koninklijke Philips N.V. System and method for a wakeful sleep detection alarm
EP3169388A4 (en) * 2014-07-17 2018-03-28 DeVilbiss Healthcare LLC Phenotyping of sleep breathing disorders using a breathing therapy machine
US10286168B2 (en) 2014-07-17 2019-05-14 Devilbiss Healthcare Llc Phenotyping of sleep breathing disorders using a breathing therapy machine
CN107233652A (zh) * 2017-05-27 2017-10-10 众德云格机器人(苏州)有限公司 可接入在线心理辅导云端服务功能的辅助睡眠系统

Also Published As

Publication number Publication date
EP2194850A1 (en) 2010-06-16
CN101868176B (zh) 2013-11-20
CN101868176A (zh) 2010-10-20
JP2011500110A (ja) 2011-01-06
US20090082639A1 (en) 2009-03-26
US9743841B2 (en) 2017-08-29
EP2194850B1 (en) 2020-12-02
EP2194850A4 (en) 2017-11-08
AU2008305313B2 (en) 2014-01-23
JP5714903B2 (ja) 2015-05-07
AU2008305313A1 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
US9743841B2 (en) Automated sleep phenotyping
JP2011500110A5 (enExample)
US20230330375A1 (en) Systems and methods for detecting an intentional leak characteristic curve for a respiratory therapy system
US10327711B2 (en) Post-hospital-discharge COPD-patient monitoring using a dynamic baseline of symptoms/measurement
EP3860433B1 (en) Systems and computer programs for using breath events in sleep staging
US11179099B2 (en) Reverse dual positive airway pressure challenges for breathing disorder diagnostics
JP7692472B2 (ja) 併存疾患を監視するシステム及び方法
US20240000344A1 (en) Systems and methods for identifying user body position during respiratory therapy
CN116528751A (zh) 用于确定呼吸治疗系统的使用的系统和方法
EP4103048A1 (en) Systems and methods for therapy cessation diagnoses
EP4037742B1 (en) Detecting and treating copd-osa overlap syndrome
US20250050045A1 (en) Accelerometer-based user interface leakage detection
WO2024069500A1 (en) Systems and methods for cardiogenic oscillation detection
CN120641990A (zh) 用于使用流量发生器数据来表征用户接口的系统和方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880108757.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08834448

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008834448

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010527025

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2162/CHENP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2008305313

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2008305313

Country of ref document: AU

Date of ref document: 20080916

Kind code of ref document: A