WO2009040153A1 - Werkzeugmaschine - Google Patents

Werkzeugmaschine Download PDF

Info

Publication number
WO2009040153A1
WO2009040153A1 PCT/EP2008/059556 EP2008059556W WO2009040153A1 WO 2009040153 A1 WO2009040153 A1 WO 2009040153A1 EP 2008059556 W EP2008059556 W EP 2008059556W WO 2009040153 A1 WO2009040153 A1 WO 2009040153A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
tool
radiation
machine tool
wavelength range
Prior art date
Application number
PCT/EP2008/059556
Other languages
English (en)
French (fr)
Inventor
Benjamin Visel
Georg Stellmann
Joachim Platzer
Sebastian Jackisch
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP2010525281A priority Critical patent/JP2010538855A/ja
Priority to AT08786292T priority patent/ATE536952T1/de
Priority to RU2010115258/02A priority patent/RU2484929C2/ru
Priority to US12/733,764 priority patent/US8701534B2/en
Priority to ES08786292T priority patent/ES2376794T3/es
Priority to CN200880108075.4A priority patent/CN102046315B/zh
Priority to EP20080786292 priority patent/EP2195133B1/de
Publication of WO2009040153A1 publication Critical patent/WO2009040153A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D59/00Accessories specially designed for sawing machines or sawing devices
    • B23D59/001Measuring or control devices, e.g. for automatic control of work feed pressure on band saw blade
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/0078Safety devices protecting the operator, e.g. against accident or noise
    • B23Q11/0082Safety devices protecting the operator, e.g. against accident or noise by determining whether the operator is in a dangerous position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/24Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
    • B23Q17/2433Detection of presence or absence
    • B23Q17/2438Detection of presence or absence of an operator or a part thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/081With randomly actuated stopping means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/081With randomly actuated stopping means
    • Y10T83/088Responsive to tool detector or work-feed-means detector
    • Y10T83/089Responsive to tool characteristic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/525Operation controlled by detector means responsive to work
    • Y10T83/533With photo-electric work-sensing means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/768Rotatable disc tool pair or tool and carrier
    • Y10T83/7684With means to support work relative to tool[s]
    • Y10T83/7693Tool moved relative to work-support during cutting

Definitions

  • the invention relates to a machine tool according to the preamble of claim 1.
  • a panel saw having a worktable, a storage unit for rotatably supporting a saw blade and an operator operable sunken arm for moving the storage unit relative to the worktable.
  • the invention relates to a machine tool, in particular a sawing machine, with a work surface for placing a workpiece to be machined and a tool storage unit for supporting a tool which is mounted movably relative to the work surface.
  • the machine tool has a recognition unit, which for the presence detection of a Material type is provided in a tool area by means of the spectral evaluation of radiation.
  • a "tool area” should be understood to mean, in particular, an area which is composed of points which have a smallest distance to a tool and / or to a tool path area of the machine tool of not more than 10 cm, advantageously not more than 5 cm and preferably not more than 2 cm
  • a "tool path area” is composed, in particular, of points which can potentially be assigned by a tool, in particular due to the movable mounting of the tool storage unit for supporting the tool relative to the machine tool work surface.
  • the image acquisition unit has a field of view, which advantageously defines a monitored area of the machine tool during operation.
  • the monitored area preferably comprises at least a partial area of the tool area.
  • the vertical comprises
  • the monitored area Projection of the monitored area onto the work surface
  • the monitored area may comprise at least a partial area of the tool path area.
  • the detection unit is provided for detecting the presence, in particular of a human body part in the tool area. This can be done by recognizing a human tissue and / or a substance carried by the user.
  • radiation is meant in particular an electromagnetic radiation. to become.
  • a “spectrum” of a radiation is to be understood as meaning, in particular, a distribution of a radiation parameter, in particular the intensity of the radiation, as a function of the wavelength, the frequency and / or the time
  • Radiation in particular a signal evaluation, in which an evaluation result is obtained by detecting a characteristic of a spectrum of the radiation, such as e.g. an integrated over the wavelength intensity is recovered.
  • the recognition unit has at least one sensor means and the machine tool has an entrainment means which serves to take along the sensor means during a movement of the tool storage unit relative to the work surface.
  • the tool storage unit is provided for rotatably supporting a tool in a plane of rotation and the recognition unit has a sensor means which is arranged laterally of the plane of rotation.
  • An arrangement "laterally" of the plane of rotation is to be understood as meaning, in particular, an arrangement in a half-space bounded by the plane of rotation, in particular a complete embedding in this half-space. which has the center of gravity of the tool and is oriented perpendicular to a rotational axis of the tool.
  • the sensor means is arranged laterally of the tool.
  • the machine tool has a securing means which is provided to prevent a movement of the tool storage unit relative to the work surface by means of a signal of the recognition unit, whereby a contact of a stored tool with a in a tool - Elongated undesirable object or a human body part can be advantageously avoided.
  • the recognition unit is provided for detecting the presence by means of the evaluation of a reflection spectrum of a radiation reflected onto an examination subject, whereby an effective detection of the type of material based on a contrast detection can be achieved.
  • the detection unit has a sensor unit with at least one sensitivity range for radiation detection in a wavelength range which is at least partially arranged in the infrared spectrum, whereby a reliable and rapid detection can be achieved particularly cost.
  • the detection unit can have a
  • Signal unit which is intended for an ultra-wideband operation. Under a provided for an ultra-wideband operation signal unit is intended in particular a unit be understood, by means of which an ultrabroadbandiges signal can be generated, received and / or evaluated.
  • An "ultrabroadband signal” is to be understood in particular as meaning a signal which has a frequency spectrum with a center frequency and a frequency bandwidth of at least 500 MHz The center frequency is preferably selected in the frequency range from 1 GHz to 15 GHz.
  • a particularly reliable detection can be achieved if the wavelength range is a near-infrared range. It can thereby be provided a sensitivity range, which is tuned specifically to the detection and the evaluation of a reflection spectrum.
  • a "near-infrared range” is to be understood as meaning, in particular, a wavelength interval of the infrared spectrum which is arranged below the wavelength of 15 .mu.m.
  • a high contrast between human tissue and material can be achieved if the sensitivity range for detecting radiation
  • it is advantageous if the wavelength range is a near-infrared range.
  • a near-infrared range should be understood in this context to mean, in particular, a wavelength interval of the infrared spectrum below the infrared spectrum Wavelength of 1.5 microns is arranged, in particular a wavelength interval in the IR-A range.
  • the wavelength range may also be partially arranged in the visible region of the electromagnetic spectrum.
  • An evaluation signal with a high signal intensity can be achieved if the detection unit has a transmission unit that is intended to transmit radiation with at least one radiation component in the wavelength range.
  • the transmission unit is intended to transmit radiation in the wavelength range and in at least one further wavelength range, whereby the accuracy in a detection process can be increased.
  • these radiation components can each be transmitted in the form of a pulse, a specific wavelength range being assigned a specific pulse length.
  • the pulses can be sent simultaneously.
  • the transmitting unit is intended to transmit radiation successively in the wavelength range and in at least one further wavelength range.
  • radiation can be generated in a targeted manner in desired wavelength ranges, it being possible to dispense with elaborate filtering when the radiation is detected by the sensor unit.
  • a high signal-to-noise ratio can be achieved.
  • a "successive" transmission in two wavelength ranges is to be understood in particular as meaning that the transmission in the first wavelength range and the transmission in the second wavelength range are largely free of overlap, in which case an overlap duration at which radiation is transmitted simultaneously in both wavelength ranges is less than 10%. , advantageously less than 5% and preferably less than 1% of the smallest transmission duration in a wavelength range.
  • the transmission processes are free of overlapping, with separate pulses being emitted by the transmission unit.
  • the sensor unit has at least one further sensitivity range, which is provided for detecting radiation in a further wavelength range, whereby a further increased security in the recognition of the type of material can be achieved.
  • the wavelength ranges may overlap. However, it is advantageous if the wavelength ranges are separated from each other. A particularly accurate detection can be achieved if the sensor unit has at least three sensitivity ranges which are each provided for detecting radiation in a different wavelength range.
  • the recognition unit has an evaluation means which is provided to detect the presence of the type of material on the basis of a ratio of at least two radiation parameters which are each assigned to a radiation component in a different wavelength range.
  • rapid detection can advantageously be achieved.
  • it can be dispensed with the consideration of a reference radiation.
  • a "radiation parameter” is to be understood in particular to mean a parameter which is detected on the basis of a radiation incident on the sensor unit, which parameter may in particular be an electrical parameter.
  • the wavelength range is narrow-band.
  • a “narrow-band wavelength range” should be understood as meaning, in particular, a wavelength range which has a bandwidth of at most 100 nm, advantageously not more than 50 nm, preferably not more than 20 nm and particularly preferably not more than 10 nm a detected radiation is advantageously dispensed with.
  • FIG. 1 shows a panel saw with a tool operation monitoring device integrated in a protective hood in a side view
  • FIG. 2 shows the panel saw from FIG. 1 in a view from above
  • FIG. 3 shows a saw blade and a tool area of the panel saw in a front view
  • 4 a detection unit with a sensor unit, an evaluation unit and safety means for blocking a movement of the saw blade
  • FIG. 5 a schematic representation of the sensor unit with a transmission unit for transmitting a radiation
  • FIG. 8 shows the reflection spectrum of a radiation reflected on the reflection object as a function of the wavelength
  • FIG. 9 shows an internal circuit of the recognition unit
  • FIG. 11 shows an alternative transmission unit of the sensor unit for generating pulses
  • FIG. 12 shows the intensity of one of the transmission unit
  • FIG. 1 shows a machine tool 10 in the form of a stationary machine, namely a panel saw, in a side view.
  • FIG. 2 illustrates the machine tool 10 of FIG. 1 in a top view.
  • the machine tool 10 may also be designed as a miter saw or a pull saw.
  • the machine tool 10 has a work table 12 which an intended for placing, eg for laying or for setting up by means of the machine tool 10 to be machined workpiece working surface 14 forms. As can be seen from FIG.
  • the work table 12 has a first component 12.1, which is fixedly connected to a storage area or supporting device for parking or supporting the work table 12, and a second, circular component 12.2, which is um a perpendicular to the working surface 14 standing axis is rotatably mounted relative to the component 12.1.
  • a workpiece 16 to be sawn as a wooden plate is placed on the working surface 14.
  • the machine tool 10 comprises a tool 18, which is designed as a circular saw blade.
  • a tool storage unit 20 of the machine tool 10 is provided for mounting the tool 18.
  • the tool storage unit 20 has a bearing means 22 which serves to rotatably support the tool 18 about a rotation axis 24.
  • the tool storage unit 20 defines a rotation plane 25 for the tool 18, which includes the center of gravity of the tool 18 and is perpendicular to the axis of rotation 24.
  • the tool 18 is driven to rotate about the axis of rotation 24 by means of a drive unit 26 designed as an electric motor.
  • a protection device 28 provided as a protective cover for covering the tool 18, which covers a cutting edge 32 of the tool 18 by at least one half of its circumference.
  • the tool storage unit 20 is fastened to the protective device 28.
  • the tool 18, the tool storage unit 20, the drive unit 26 and the protective device 28 are components of a tool unit 36 which is mounted relative to the work table 12 and in particular to the component 12.1 movable.
  • the machine tool 10 has a bearing unit 38 which serves to mount the tool unit 36, including in particular the tool storage unit 20, movably relative to the work surface 14 and via which the tool storage unit 20 is connected to the work surface 14.
  • the tool unit 36 can be rotated by means of the bearing unit 38 and a Versenkarms 50 about a horizontal, parallel to the rotation axis 24 axis of rotation 52.
  • the tool 18 is movably mounted with its axis of rotation 24 along a curved path of movement 54 which, starting from a rest position of the tool unit 36 shown in FIG. 3, leads to the workpiece 16 to be machined in the lower working position shown in FIG.
  • the storage unit 38 is itself movably mounted relative to the work table 12.
  • the machine tool 10 has a second bearing unit 40.
  • the bearing unit 40 is designed as a receiving unit, which is provided for receiving and performing a guide unit 42.
  • This guide unit 42 which is firmly connected to the bearing unit 38, serves, in cooperation with the bearing unit 40, to guide the tool unit 36, including in particular the tool storage unit 20, and the bearing unit 38 relative to the work surface 14.
  • This guide takes place in a straight line Movement direction 44, which is aligned parallel to the work surface 14 and perpendicular to the axis of rotation 52.
  • the bearing units 38, 40 and the tool unit 36 can furthermore be arranged in a direction of rotation 46 about a plane perpendicular to the working surface 14 be rotated standing axis.
  • the storage unit 40 can itself be designed to be movable relative to the work table 12, in particular to the component 12.2. In particular, it can execute pivoting movements about an inclination axis 48 oriented horizontally and parallel to the movement direction 44, as a result of which tilting movements of the tool unit 36 relative to the working surface 14 can be executed.
  • the movements of the tool unit 36 relative to the work surface 14 can be actuated by the operator.
  • the machine tool 10 namely the tool unit 36, provided with an actuating unit 56 which is provided for movement of the tool storage unit 20 relative to the work surface 14 by an operator.
  • This has a handle 58, which is provided for gripping by a hand of an operator.
  • the movement of the tool unit 36 along the horizontal direction of movement 44 and the movement of the tool unit 36 about the axis of rotation 52 along the path of movement 54 in the direction of the working surface 14 and vice versa can be actuated by the operator.
  • an operator grips the handle 58 with one hand, while typically placing the other hand on the workpiece 16.
  • the machine tool 10 is provided with a tool operation monitoring device 60. This is done by means of a sensor unit 62, whose operation will be described below.
  • the sensor unit 62 is firmly connected to the tool unit 36, in particular to the tool storage unit 20.
  • the sensor unit 62 is attached to the protection device 28.
  • the protection Device 28 serves as entrainment means 64, which serves to take sensor unit 62 along with any movement of tool storage unit 20 relative to working surface 14.
  • FIG. 3 shows the tool unit 36 in its rest position in a front view.
  • the mobility of the tool 18 defines a tool span area 66 that corresponds to a space area that can potentially be occupied by the tool 18.
  • the tool path area 66 is represented by vertical dashed lines.
  • the tool path region 66 also extends due to the mobility of the tool 18 in the direction of movement 44 in the horizontal direction perpendicular to the plane of the drawing.
  • the tool operation monitoring device 60 serves to monitor a tool area 68.
  • This tool area 68 comprises the tool path area 66 and is additionally composed of points which have a smallest distance to the tool path area 66 of a maximum of 2 cm.
  • the tool area 68 to be monitored outside the tool path area 66 is arranged laterally of the plane of rotation 25, and indeed it faces away from the actuating unit 56, in particular the handle 58, relative to the plane of rotation 25.
  • the tool path region 66 and the tool region 68 are schematically delimited by dash-dotted lines.
  • the sensor unit 62 has a detection field 70 shown by single-dashed lines in FIG. 3 (see also FIG. 1), which defines a monitored area of the machine tool 10 that comprises a substantial part of the tool area 68. As can be seen in FIG. 3, the monitored area may also comprise part of the tool path area 66.
  • the Sensor unit 62 laterally of the plane of rotation 25 and the tool 18 is arranged, on a side facing away from the actuating unit 56, in particular the handle 58, side of the rotation plane 25.
  • the actuating unit 56 and the sensor unit 62 are arranged on both sides of the rotation plane 25.
  • FIG. 4 shows a schematic representation of a circuit of the machine tool 10.
  • the machine tool 10 has actuator units 72, 74 which are provided for carrying out safety measures in cooperation with the tool operation monitoring device 60.
  • the Aktorikikien 72, 74 are each provided to drive a securing means 76 and 78, respectively.
  • the securing means 76 which is shown schematically in FIG. 1, is as
  • Clamping means formed blocking means which is arranged in the region of the axis of rotation 52.
  • the securing means 76 may further be formed as a gear.
  • the securing means 76 is arranged in the storage unit 38.
  • the securing means 76 serves to prevent an operator-driven rotational movement of the tool unit 36 about the axis of rotation 52, ie a movement of the tool 18 along the path of movement 54. In a position that releases this movement, the securing means 76 is spring-loaded. This can be done for example by means of a mechanical spring and / or by means of a pull magnet.
  • the actuation unit 72 serves to bring the securing means 76 - starting from this position which releases the movement - into a blocking position blocking the movement and to actuate a reset of the securing means 76 in its releasing position.
  • the securing means 78 which in FIG 1 is also shown schematically, is arranged in the storage unit 40. It serves to prevent a movement of an operator-driven translation of the tool unit 36 along the direction of movement 44.
  • the securing means 78 is likewise a blocking means designed as a clamping means, as a wedge element and / or as a latching means, such as a latching pin, and can be actuated by means of the actuator unit 74 to prevent advancement of the guiding unit 42. Reference is made to the description of the fuse 76.
  • the actuator units 72, 74 initiate an actuation of the securing means 76 or 78 as a function of a signal of the tool operation monitoring device 60, specifically a signal of an evaluation unit 80 of the tool operation monitoring device 60.
  • the evaluation unit 80 in cooperation with the sensor unit 62, forms a Recognition unit 82, which is provided for the presence detection of human tissue in the tool area 68. If recognition of the presence of human tissue in the tool area 68 is detected by the recognition unit 82, an actuation signal is transmitted to an actuator unit 72 and / or 74 which triggers the above-described blocking of a movement of the tool storage unit 20 relative to the work surface 14 on the basis of this actuation signal.
  • the evaluation unit 80 is in operative connection with the Aktorikikien 72, 74. Furthermore, depending on such an actuation signal, a drive of the tool 18 can be braked or stopped. For this purpose, the evaluation unit 80 is in operative connection with the drive unit 26. Alternatively or additionally, a further actuator unit can be used in conjunction with the evaluation unit. unit 80 may be provided which serves to brake the tool 18. This can actuate a securing means which is designed, for example, as a brake disk or a drum brake and is in connection with a shaft, not shown, which is arranged in the tool storage unit 20 and is driven to rotate the tool 18 about the axis of rotation 24 by the drive unit 26.
  • a securing means which is designed, for example, as a brake disk or a drum brake and is in connection with a shaft, not shown, which is arranged in the tool storage unit 20 and is driven to rotate the tool 18 about the axis of rotation 24 by the drive unit 26.
  • the tool area 68 monitored by the sensor unit 62 is distributed over a plurality of mode areas which are each assigned to a safety mode.
  • a safety mode e.g. the tool area 68 into a danger area 68.1, in which the safety modes described above can be activated, and a warning area 68.2 are divided.
  • This warning area 68.2 preferably adjoins the danger area 68.1, is arranged in the direction of the rotation axis 24 on the plane of rotation 25 in front of the danger area 68.1 and has an extension in this direction of e.g. 1 cm up.
  • the recognition unit 82 recognizes the presence of a human body part in the warning area 68.2, then the evaluation unit 80 triggers a warning signal for warning the operator.
  • This warning may be visual or audible, or it may be accomplished by means of the locking means 76 and / or 78 described above, while braking or stopping a tool drive will not occur until the presence of a human body part in the hazardous area 68.1 is detected.
  • the functional principle of the recognition unit 82 will be described with reference to FIG. It is the worktable 12, the workbench piece 16 and the sensor unit 62 shown in a schematic view. For the sake of clarity, the representation of the tool 18 and the protective device 28 is dispensed with.
  • an examination object 84 is arranged on the workpiece 16 in the tool area 68. This can in particular be a hand of an operator, another interfering object or only the surface of the workpiece 16.
  • the sensor unit 62 has a transmitting unit 86, which transmits a radiation Si into the tool area 68 during operation. This radiation Si is reflected onto the examination object 84 and received as radiation S R from a receiving unit 88 of the sensor unit 62 shown schematically in the figure.
  • the sensor unit 62 also has a marking unit 89 for marking the tool area 68.
  • FIG. 6 shows the transmitting unit 86 and the receiving unit 88 of the sensor unit 62 in a front view, in which the optical axis of the arrangement cuts through the plane of the drawing.
  • the transmitting unit 86 has a transmitting means 90, which is designed as an LED.
  • four sensor means 92 of the receiving unit 88 are arranged, which are each designed as a photodiode.
  • FIG. 7 shows the profile of the transmission factor of the receiving unit 88 as a function of the wavelength ⁇ of the reflection radiation S R received by the receiving unit 88.
  • the wavelength ranges WL 1 are formed in the considered embodiment to each other without overlap.
  • the wavelength ranges WL 1 have, for example, a central wavelength of 630 nm, 700 nm, 980 nm, 1050 nm and 1200 nm and are formed in a narrow band, each with a bandwidth of approximately 10 nm.
  • the receiving unit 88 can be used for narrowband filtering of the detected radiation S R be provided in addition to the sensor means 92 with a system of filter components, which is the sensor means 92 upstream.
  • the sensor means 92 are designed as selective photodiodes, narrow-band filtering is inherent in the system, as a result of which further filter components can be advantageously avoided.
  • the sensor means 92 may be formed as CCD or CMOS arrays, InGaAs detectors, pyroelectric detectors, etc.
  • the wavelength ranges WL 2 , WL 3 , WL 4 are arranged in the infrared spectrum. In particular, these wavelength ranges WL 2 , WL 3 , WL 4 are each regions of the near infrared spectrum IR-A with the limit values [700 nm, 1400 nm].
  • the wavelength range WLi is at least partially arranged in the visible region of the electromagnetic spectrum. Alternatively or additionally, wavelength ranges in the infrared ranges IR-B (1.4-3 ⁇ m) and IR-C (3-15 ⁇ m) can be selected.
  • the transmission unit 86 with the transmission means 90 generates a radiation which comprises the wavelength ranges WL 1 shown in FIG.
  • FIG. 8 shows the reflection spectrum of FIG Object to be examined 84 and detected by the sensor means 92 radiation S R. This reflection spectrum corresponds to the distribution of the signal intensity as a function of the wavelength ⁇ of the radiation S R.
  • the sensor means 92 and the sensitivity areas 94 each detect one
  • the sensor means 92 generate at their output terminal in each case a radiation parameter V 1 , which is in each case designed as an electrical voltage.
  • the radiation characteristic Vi for example, is proportional to a signal intensity Si of the radiation S R integrated over the wavelength range WLi and hatched in FIG. 8.
  • the radiation characteristics V 1 are applied to an input of an evaluation means 96, for example a microprocessor, of the evaluation unit 80.
  • an evaluation means 96 for example a microprocessor
  • the radiation characteristics V 1 are amplified.
  • the radiation parameters V 1 are compared with values of a database 100 stored in a memory unit 98 of the evaluation unit 80 by means of logical operations.
  • This database 100 is shown schematically in FIG.
  • the acquired radiation parameters V 1 are compared with stored values Ai, A 2 , A 3 , etc.
  • Each pair (V 1 , A 1 ) is assigned a recognition variable which can take the values "False" (F) or "True” (T).
  • the value "F” precludes the presence of human tissue in the tool area 68.
  • the evaluation means 96 determines ratios Vi / V 2 , Vi / V 3 etc. between the different radiation characteristics V 1 Ratios are compared with stored values Ai, A 2 , A 3 , etc., whereby, as described above, the presence of human tissue in the tool area 68 can be concluded. Through the formation of ratios, an intensity-independent detection can be carried out. Information about the spectral sensitivity of the sensor means 92 can also be stored in the memory unit 98, which information can be used to evaluate the radiation characteristics V 1 .
  • the sensor unit 62 is provided with a transmitting unit 102 which has at least two, in particular at least three, and particularly preferably at least four transmitting means 104.1 to 104.4 for transmitting the radiation in each case different wavelength range WLi to WL 4 , which are operated in operation of the transmitting unit 102 successively.
  • FIG. 9 shows the transmitting unit 102, which generates a radiation Si which has a series of pulses 106.1 to 106.4 and is shown in FIG.
  • FIG. 12 shows the course of the intensity of the radiation Si as a function of the time t.
  • a pulse 106 has a width B of approximately 100 ⁇ s.
  • the transmission unit 102 is intended to transmit radiation successively in the wavelength ranges WLi to WL 4 .
  • the pulses are each assigned to a different wavelength range WLi to WL 4 .
  • the transmitting means 104 may be formed, for example, each as an LED. Such a successive blasting in different wavelength ranges WL 1 makes it possible to dispense with complex filtering of the detected reflected radiation S R.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Auxiliary Devices For Machine Tools (AREA)
  • Sawing (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Die Erfindung geht aus von einer Werkzeugmaschine, insbesondere einer Sägemaschine, mit einer Arbeitsfläche (14) zum Platzieren eines zu bearbeitenden Werkstücks (16) und einer Werkzeuglagereinheit (20) zum Lagern eines Werkzeugs (18), die relativ zur Arbeitsfläche (14) beweglich gelagert ist. Es wird vorgeschlagen, dass die Werkzeugmaschine eine Erkennungseinheit (82) aufweist, welche zur Anwesenheitserkennung einer Materialart in einem Werkzeugbereich (68) mittels der spektralen Auswertung einer Strahlung (S R) vorgesehen ist.

Description

Werkzeugmaschine
Stand der Technik
Die Erfindung geht aus von einer Werkzeugmaschine nach dem Oberbegriff des Anspruchs 1.
Es ist eine Paneelsäge bekannt, die einen Arbeitstisch, eine Lagereinheit zur rotatorischen Lagerung eines Sägeblatts und einen durch einen Bediener betätigbaren Versenkarm zum Bewegen der Lagereinheit relativ zum Arbeitstisch aufweist.
Vorteile der Erfindung
Die Erfindung geht aus von einer Werkzeugmaschine, insbesondere einer Sägemaschine, mit einer Arbeitsfläche zum Platzieren eines zu bearbeitenden Werkstücks und einer Werkzeuglagereinheit zum Lagern eines Werkzeugs, die relativ zur Arbeitsfläche beweglich gelagert ist.
Es wird vorgeschlagen, dass die Werkzeugmaschine eine Erkennungseinheit aufweist, welche zur Anwesenheitserkennung einer Materialart in einem Werkzeugbereich mittels der spektralen Auswertung einer Strahlung vorgesehen ist. Dadurch kann eine zuverlässige und schnelle Erkennung einer Anwendungssituation bei einer Werkzeugmaschine, insbesondere bei einer Bewegung der Werkzeuglagereinheit relativ zur Arbeitsfläche, erreicht werden. Unter einem „Werkzeugbereich" soll in diesem Zusammenhang insbesondere ein Bereich verstanden werden, der sich aus Punkten zusammensetzt, die einen kleinsten Abstand zu einem Werkzeug und/oder zu einem Werkzeugstreckenbereich der Werkzeugmaschine von maximal 10 cm, vorteilhaft maximal 5 cm und bevorzugt maximal 2 cm aufweisen. Ein „Werkzeugstreckenbereich" setzt sich hierbei insbesondere aus Punkten zusammen, die von einem Werkzeug potentiell belegbar sind, insbesondere aufgrund der beweglichen Lagerung der Werkzeugla- gereinheit zum Lagern des Werkzeugs relativ zur Werkzeugmaschinenarbeitsfläche. Die Bilderfassungseinheit besitzt ein Blickfeld, das im Betrieb vorteilhafterweise einen überwachten Bereich der Werkzeugmaschine festlegt. Der überwachte Bereich umfasst vorzugsweise zumindest einen Teilbereich des Werkzeugbereichs. Vorteilhafterweise umfasst die vertikale
Projektion des überwachten Bereichs auf die Arbeitsfläche die vertikale Projektion des Werkzeugbereichs auf die Arbeitsfläche. Ferner kann der überwachte Bereich zumindest einen Teilbereich des Werkzeugstreckenbereichs umfassen.
Außerdem wird vorgeschlagen, dass die Erkennungseinheit zur Anwesenheitserkennung insbesondere eines menschlichen Körperteils im Werkzeugbereich vorgesehen ist. Dies kann durch die Erkennung eines menschlichen Gewebes und/oder eines vom Be- diener getragenen Stoffs erfolgen. Unter einer „Strahlung" soll insbesondere eine elektromagnetische Strahlung verstan- den werden. Unter einem „Spektrum" einer Strahlung soll insbesondere eine Verteilung einer Strahlungskenngröße, insbesondere der Intensität der Strahlung, in Abhängigkeit von der Wellenlänge, der Frequenz und/oder der Zeit verstanden wer- den. Ferner soll unter einer „spektralen Auswertung" einer
Strahlung insbesondere eine Signalauswertung verstanden werden, bei der ein Auswerteergebnis durch Erfassung eines Charakteristikums eines Spektrums der Strahlung, wie z.B. einer über die Wellenlänge integrierten Intensität, gewonnen wird. Ferner wird vorgeschlagen, dass die Erkennungseinheit zumindest ein Sensormittel aufweist und die Werkzeugmaschine ein Mitnahmemittel aufweist, das bei einer Bewegung der Werkzeuglagereinheit relativ zur Arbeitsfläche zum Mitnehmen des Sensormittels dient. Dadurch kann eine hohe Sicherheit bei einer Bewegung der Werkzeuglagereinheit erreicht werden.
In einer bevorzugten Ausführungsform der Erfindung wird vorgeschlagen, dass die Werkzeuglagereinheit zur rotatorischen Lagerung eines Werkzeugs in einer Rotationsebene vorgesehen ist und die Erkennungseinheit ein Sensormittel aufweist, das seitlich der Rotationsebene angeordnet ist. Unter einer Anordnung „seitlich" der Rotationsebene soll insbesondere eine Anordnung in einem Halbraum verstanden werden, der durch die Rotationsebene begrenzt ist. Insbesondere soll eine vollstän- dige Einbettung in diesen Halbraum verstanden werden. Unter einer „Rotationsebene" soll insbesondere eine Ebene verstanden werden, die den Schwerpunkt des Werkzeugs aufweist und senkrecht zu einer Rotationsachse des Werkzeugs ausgerichtet ist. Besonders vorteilhaft ist das Sensormittel seitlich des Werkzeugs angeordnet. Hierbei ist die Projektion des Sensor- mittels senkrecht zur Rotationsebene auf das Werkzeug in einer Werkzeugfläche eingebettet.
In einer vorteilhaften Weiterbildung der Erfindung wird vor- geschlagen, dass die Werkzeugmaschine ein Sicherungsmittel aufweist, das dazu vorgesehen ist, anhand eines Signals der Erkennungseinheit eine Bewegung der Werkzeuglagereinheit relativ zur Arbeitsfläche zu verhindern, wodurch ein Kontakt eines gelagerten Werkzeugs mit einem sich in einem Werkzeug- Streckenbereich befindenden unerwünschten Objekt oder einem menschlichen Körperteil vorteilhaft vermieden werden kann.
Vorteilhafterweise ist die Erkennungseinheit zur Anwesenheitserkennung mittels der Auswertung eines Reflexionsspekt- rums einer auf ein Untersuchungsobjekt reflektierten Strahlung vorgesehen, wodurch eine effektive, auf einer Kontrasterfassung basierte Erkennung der Materialart erreicht werden kann .
In einer bevorzugten Ausführung der Erfindung wird vorgeschlagen, dass die Erkennungseinheit eine Sensoreinheit mit wenigstens einem Empfindlichkeitsbereich zur Strahlungserfassung in einem Wellenlängenbereich aufweist, der zumindest teilweise im Infrarotspektrum angeordnet ist, wodurch eine zuverlässige und schnelle Erkennung besonders kostengünstig erreicht werden kann.
Alternativ oder zusätzlich kann die Erkennungseinheit eine
Signaleinheit aufweisen, die zu einem Ultrabreitbandbetrieb vorgesehen ist. Unter einer für einen Ultrabreitbandbetrieb vorgesehenen Signaleinheit soll insbesondere eine Einheit verstanden werden, mittels der ein ultrabreitbandiges Signal erzeugt, empfangen und/oder ausgewertet werden kann. Unter einem „ultrabreitbandigen Signal" soll insbesondere ein Signal verstanden werden, welches ein Frequenzspektrum mit einer Mittenfrequenz und einer Frequenzbandbreite von zumindest 500 MHz aufweist. Die Mittenfrequenz ist vorzugsweise im Frequenzbereich von 1 GHz bis 15 GHz gewählt.
Es kann eine besonders zuverlässige Erkennung erreicht werden, wenn der Wellenlängenbereich ein nahmittlerer Infrarot- bereich ist. Es kann dadurch ein Empfindlichkeitsbereich bereitgestellt werden, welcher gezielt auf die Erfassung und die Auswertung eines Reflexionsspektrums abgestimmt ist. Unter einem „nahmittleren Infrarotbereich" soll in diesem Zusammenhang insbesondere ein Wellenlängenintervall des Infra- rotspektrums verstanden werden, welches unterhalb der Wellenlänge 15 μm angeordnet ist. Es kann ferner ein hoher Kontrast zwischen menschlichem Gewebe und Werkstoff erreicht werden, wenn der Empfindlichkeitsbereich zur Erfassung einer Strahlung in einem Wellenlängenintervall des Infrarotspektrums un- terhalb der Wellenlänge von 8 μm vorgesehen ist. Insbesondere ist von Vorteil, wenn der Wellenlängenbereich ein naher Infrarotbereich ist. Unter einem „nahen Infrarotbereich" soll in diesem Zusammenhang insbesondere ein Wellenlängenintervall des Infrarotspektrums verstanden werden, welches unterhalb der Wellenlänge von 1,5 μm angeordnet ist, wie insbesondere ein Wellenlängenintervall im IR-A Bereich. Der Wellenlängenbereich kann ferner teilweise im sichtbaren Bereich des e- lektromagnetischen Spektrums angeordnet sein. Es kann ein Auswertesignal mit einer hohen Signalintensität erreicht werden, wenn die Erkennungseinheit eine Sendeeinheit aufweist, die dazu vorgesehen ist, eine Strahlung mit zumindest einem Strahlungsanteil im Wellenlängenbereich zu senden.
Es wird außerdem vorgeschlagen, dass die Sendeeinheit dazu vorgesehen ist, eine Strahlung im Wellenlängenbereich und in zumindest einem weiteren Wellenlängenbereich zu senden, wodurch die Genauigkeit in einem Erkennungsvorgang erhöht wer- den kann. Hierbei können zur Unterscheidung der Strahlungsanteilen in den verschiedenen Wellenlängenbereichen diese Strahlungsanteile jeweils unter der Form eines Pulses gesendet werden, wobei einem bestimmten Wellenlängenbereich eine bestimmte Pulsenlänge zugeordnet ist. Beispielsweise können die Pulsen gleichzeitig gesendet werden.
Eine vorteilhafte Unterscheidung kann ferner erreicht werden, wenn die Sendeeinheit dazu vorgesehen ist, eine Strahlung sukzessiv im Wellenlängenbereich und in zumindest einem wei- teren Wellenlängenbereich zu senden. Es kann dadurch eine Strahlung gezielt in gewünschten Wellenlängenbereichen erzeugt werden, wobei bei einer Erfassung der Strahlung durch die Sensoreinheit auf eine aufwendige Filterung verzichtet werden kann. Ferner kann ein hohes Signal-/Rausch-Verhältnis erreicht werden. Unter einem „sukzessiven" Senden in zwei Wellenlängenbereichen soll insbesondere verstanden werden, dass das Senden im ersten Wellenlängenbereich und das Senden im zweiten Wellenlängenbereich weitestgehend überlappungsfrei sind. Hierbei soll eine Überlappungsdauer, bei der eine Strahlung simultan in beiden Wellenlängenbereichen gesendet wird, weniger als 10 %, vorteilhaft weniger als 5 % und be- vorzugt weniger als 1 % der kleinsten Sendedauer in einem Wellenlängenbereich betragen. Besonders vorteilhaft sind die Sendevorgänge überlappungsfrei, wobei durch die Sendeeinheit voneinander getrennte Pulse emittiert werden.
Vorteilhafterweise weist die Sensoreinheit zumindest einen weiteren Empfindlichkeitsbereich auf, der zur Strahlungserfassung in einem weiteren Wellenlängenbereich vorgesehen ist, wodurch eine weiter gesteigerte Sicherheit in der Erkennung der Materialart erreicht werden kann. Die Wellenlängenbereiche können sich überlappen. Jedoch ist von Vorteil, wenn die Wellenlängenbereiche voneinander getrennt sind. Eine besonders genaue Erkennung kann erreicht werden, wenn die Sensoreinheit zumindest drei Empfindlichkeitsbereiche aufweist, die jeweils zur Strahlungserfassung in einem unterschiedlichen Wellenlängenbereich vorgesehen sind.
In diesem Zusammenhang wird vorgeschlagen, dass die Erkennungseinheit ein Auswertemittel aufweist, das dazu vorgesehen ist, das Vorhandensein der Materialart anhand eines Verhältnisses von zumindest zwei Strahlungskenngrößen zu erkennen, die jeweils einem Strahlungsanteil in einem unterschiedlichen Wellenlängenbereich zugeordnet sind. Dadurch kann vorteilhaft eine schnelle Erkennung erreicht werden. Insbesondere kann auf die Berücksichtigung einer Referenzstrahlung verzichtet werden. Unter einer „Strahlungskenngröße" soll insbesondere eine Kenngröße verstanden werden, die anhand einer auf die Sensoreinheit einfallenden Strahlung erfasst wird. Diese Kenngröße kann insbesondere eine elektrische Kenngröße sein. In einer bevorzugten Ausführung der Erfindung wird vorgeschlagen, dass der Wellenlängenbereich schmalbandig ausgebildet ist. Unter einem „schmalbandigen Wellenlängenbereich" soll in diesem Zusammenhang insbesondere ein Wellenlängenbe- reich verstanden werden, der eine Bandbreite von maximal 100 nm, vorteilhaft maximal 50 nm, bevorzugt maximal 20 nm und besonders bevorzugt maximal 10 nm aufweist. Es kann dadurch auf eine konstruktionsaufwendige Filterung einer erfassten Strahlung vorteilhaft verzichtet werden.
Zeichnung
Weitere Vorteile ergeben sich aus der folgenden Zeichnungsbe- Schreibung. In der Zeichnung sind Ausführungsbeispiele der Erfindung dargestellt. Die Zeichnung, die Beschreibung und die Ansprüche enthalten zahlreiche Merkmale in Kombination. Der Fachmann wird die Merkmale zweckmäßigerweise auch einzeln betrachten und zu sinnvollen weiteren Kombinationen zusammen- fassen.
Es zeigen:
Fig. 1 eine Paneelsäge mit einer in einer Schutzhaube integrierten Werkzeugbetriebsüberwachungsvor- richtung in einer Seitenansicht, Fig. 2 die Paneelsäge aus Figur 1 in einer Ansicht von oben,
Fig. 3 ein Sägeblatt und einen Werkzeugbereich der Paneelsäge in einer Frontansicht, Fig. 4 eine Erkennungseinheit mit einer Sensoreinheit, einer Auswerteeinheit und Sicherheitsmitteln zum Blockieren einer Bewegung des Sägeblatts, Fig. 5 eine schematische Darstellung der Sensoreinheit mit einer Sendeeinheit zum Senden einer Strahlung,
Fig. 6 die Sensoreinheit in einer Frontansicht,
Fig. 7 den Verlauf des Transmissionsfaktors einer Empfangseinheit der Sensoreinheit in Abhängigkeit der Wellenlänge,
Fig. 8 das Reflexionsspektrum einer auf das Reflexionsobjekt reflektierten Strahlung in Abhängigkeit der Wellenlänge, Fig. 9 eine interne Schaltung der Erkennungseinheit,
Fig. 10 eine in der Erkennungseinheit gespeicherte Datenbank,
Fig. 11 eine alternative Sendeeinheit der Sensoreinheit zur Erzeugung von Pulsen und Fig. 12 die Intensität einer von der Sendeeinheit aus
Figur 11 erzeugten Strahlung.
Beschreibung der Ausführungsbeispiele
Figur 1 zeigt eine als Stationärgerät, und zwar als Paneelsäge ausgebildete Werkzeugmaschine 10 in einer Seitenansicht. In der folgenden Beschreibung wird ebenfalls auf die Figur 2 verwiesen, die die Werkzeugmaschine 10 aus Figur 1 in einer Ansicht von oben darstellt. Die Werkzeugmaschine 10 kann fer- ner als Kapp- und Gehrungssäge oder Zugsäge ausgebildet sein, Die Werkzeugmaschine 10 weist einen Arbeitstisch 12 auf, der eine zum Platzieren, z.B. zum Auflegen oder zum Aufstellen eines mittels der Werkzeugmaschine 10 zu bearbeitenden Werkstücks vorgesehene Arbeitsfläche 14 bildet. Wie Figur 2 zu entnehmen ist, weist der Arbeitstisch 12 ein erstes Bauele- ment 12.1, das mit einer nicht näher dargestellten Abstellfläche oder Stützvorrichtung zum Abstellen bzw. Stützen des Arbeitstischs 12 fest verbunden ist, und ein zweites, kreisförmiges Bauelement 12.2 auf, das um eine senkrecht zur Arbeitsfläche 14 stehende Achse relativ zum Bauelement 12.1 drehbar gelagert ist. In Figur 1 ist ein als Holzplatte ausgebildetes, zu sägendes Werkstück 16 auf die Arbeitsfläche 14 aufgelegt. Zur Bearbeitung des Werkstücks 16 umfasst die Werkzeugmaschine 10 ein Werkzeug 18, das als ein kreisförmiges Sägeblatt ausgeführt ist. Eine Werkzeuglagereinheit 20 der Werkzeugmaschine 10 ist zur Lagerung des Werkzeugs 18 vorgesehen. Die Werkzeuglagereinheit 20 weist ein Lagermittel 22 auf, das dazu dient, das Werkzeug 18 um eine Rotationsachse 24 rotatorisch zu lagern. Die Werkzeuglagereinheit 20 definiert hierbei eine Rotationsebene 25 für das Werkzeug 18, die den Schwerpunkt des Werkzeugs 18 einschließt und senkrecht zur Rotationsachse 24 steht. Bei einer Bearbeitung des Werkstücks 16 wird das Werkzeug 18 zu einer Rotation um die Rotationsachse 24 mittels einer als Elektromotor ausgebildeten Antriebseinheit 26 angetrieben. Zum Schutz eines Bedie- ners vor einer Berührung des Werkzeugs 18 ist die Werkzeugmaschine 10 mit einer als Schutzhaube vorgesehenen Schutzvorrichtung 28 zum Bedecken des Werkzeugs 18 versehen, die eine Schneidkante 32 des Werkzeugs 18 um zumindest eine Hälfte ihres Umfangs bedeckt. Wie Figur 1 zu entnehmen ist, ist die Werkzeuglagereinheit 20 an der Schutzvorrichtung 28 befestigt. Das Werkzeug 18, die Werkzeuglagereinheit 20, die An- triebseinheit 26 und die Schutzvorrichtung 28 sind Bestandteile einer Werkzeugeinheit 36, die relativ zum Arbeitstisch 12 und insbesondere zum Bauelement 12.1 beweglich gelagert ist. Die Werkzeugmaschine 10 weist hierzu eine Lagereinheit 38 auf, die dazu dient, die Werkzeugeinheit 36, darunter insbesondere die Werkzeuglagereinheit 20, relativ zur Arbeitsfläche 14 beweglich zu lagern und über welche die Werkzeuglagereinheit 20 mit der Arbeitsfläche 14 verbunden ist. Die Werkzeugeinheit 36 kann mittels der Lagereinheit 38 und eines Versenkarms 50 um eine horizontale, zur Rotationsachse 24 parallel ausgerichtete Rotationsachse 52 gedreht werden. Somit ist das Werkzeug 18 mit seiner Rotationsachse 24 entlang einer gekrümmten Bewegungsbahn 54 beweglich gelagert, welche ausgehend von einer in Figur 3 gezeigten Ruheposition der Werkzeugeinheit 36 in die in Figur 1 gezeigte tiefere Arbeitsposition an das zu bearbeitende Werkstück 16 führt.
Die Lagereinheit 38 ist selbst relativ zum Arbeitstisch 12 beweglich gelagert. Hierzu weist die Werkzeugmaschine 10 eine zweite Lagereinheit 40 auf. Die Lagereinheit 40 ist als eine Aufnahmeeinheit ausgeführt, die zur Aufnahme und Durchführung einer Führungseinheit 42 vorgesehen ist. Diese Führungseinheit 42, welche mit der Lagereinheit 38 fest verbunden ist, dient im Zusammenwirken mit der Lagereinheit 40 zu einer Füh- rung der Werkzeugeinheit 36, darunter insbesondere der Werkzeuglagereinheit 20, und der Lagereinheit 38 relativ zur Arbeitsfläche 14. Diese Führung erfolgt in einer geraden Bewegungsrichtung 44, die parallel zur Arbeitsfläche 14 und senkrecht zur Rotationsachse 52 ausgerichtet ist. Die Lagerein- heiten 38, 40 und die Werkzeugeinheit 36 können ferner in einer Drehrichtung 46 um eine senkrecht zur Arbeitsfläche 14 stehende Achse gedreht werden. Die Lagereinheit 40 kann selbst relativ zum Arbeitstisch 12, und zwar insbesondere zum Bauelement 12.2, beweglich ausgeführt sein. Insbesondere kann sie Schwenkbewegungen um eine horizontal und parallel zur Be- wegungsrichtung 44 ausgerichtete Neigungsachse 48 ausführen, wodurch Kippbewegungen der Werkzeugeinheit 36 relativ zur Arbeitsfläche 14 ausführbar sind.
Die Bewegungen der Werkzeugeinheit 36 relativ zur Arbeitsflä- che 14 können durch den Bediener betätigt werden. Hierzu ist die Werkzeugmaschine 10, und zwar die Werkzeugeinheit 36, mit einer Betätigungseinheit 56 versehen, die zu einer Bewegung der Werkzeuglagereinheit 20 relativ zur Arbeitsfläche 14 durch einen Bediener vorgesehen ist. Diese weist einen Hand- griff 58 auf, der zu einem Greifen durch eine Hand eines Bedieners vorgesehen ist. Hiermit können die Bewegung der Werkzeugeinheit 36 entlang der horizontalen Bewegungsrichtung 44 und die Bewegung der Werkzeugeinheit 36 um die Rotationsachse 52 entlang der Bewegungsbahn 54 in Richtung auf die Arbeits- fläche 14 zu und umgekehrt durch den Bediener betätigt werden. Bei einem Bedienen der Werkzeugmaschine 10 greift ein Bediener mit einer Hand den Handgriff 58, während er die andere Hand typischerweise auf das Werkstück 16 auflegt. Zur Verhinderung eines Kontakts der Hand eines Bedieners mit dem rotierenden Werkzeug 18 ist die Werkzeugmaschine 10 mit einer Werkzeugbetriebsüberwachungsvorrichtung 60 versehen. Dies erfolgt mittels einer Sensoreinheit 62, deren Funktionsweise weiter unten beschrieben wird. Die Sensoreinheit 62 ist mit der Werkzeugeinheit 36, und zwar insbesondere mit der Werk- zeuglagereinheit 20, fest verbunden. Hierbei ist die Sensoreinheit 62 an der Schutzvorrichtung 28 befestigt. Die Schutz- Vorrichtung 28 dient als Mitnahmemittel 64, das dazu dient, die Sensoreinheit 62 bei jeglicher Bewegung der Werkzeuglagereinheit 20 relativ zur Arbeitsfläche 14 mitzunehmen.
Figur 3 zeigt die Werkzeugeinheit 36 in deren Ruheposition in einer Frontansicht. Die Beweglichkeit des Werkzeugs 18 legt einen Werkzeugstreckenbereich 66 fest, der einem Raumbereich entspricht, welcher potentiell durch das Werkzeug 18 belegbar ist. Der Werkzeugstreckenbereich 66 ist mittels vertikaler gestrichelter Linien dargestellt. Der Werkzeugstreckenbereich 66 erstreckt sich ebenfalls aufgrund der Beweglichkeit des Werkzeugs 18 in Bewegungsrichtung 44 in horizontaler Richtung senkrecht zur Zeichnungsebene. Die Werkzeugbetriebsüberwa- chungsvorrichtung 60 dient dazu, einen Werkzeugbereich 68 zu überwachen. Dieser Werkzeugbereich 68 umfasst den Werkzeugstreckenbereich 66 und setzt sich zusätzlich aus Punkten zusammen, die einen kleinsten Abstand zum Werkzeugstreckenbereich 66 von maximal 2 cm aufweisen. Der zu überwachende Werkzeugbereich 68 außerhalb des Werkzeugstreckenbereichs 66 ist seitlich der Rotationsebene 25 angeordnet, und zwar ist er der Betätigungseinheit 56, insbesondere dem Handgriff 58, relativ zur Rotationsebene 25 abgewandt. Der Werkzeugstreckenbereich 66 und der Werkzeugbereich 68 sind mittels strichpunktierter Linien schematisch abgegrenzt. Die Sensor- einheit 62 weist ein durch einfach gestrichelte Linien in Figur 3 gezeigtes Erfassungsfeld 70 auf (siehe auch Figur 1), das einen überwachten Bereich der Werkzeugmaschine 10 definiert, der einen wesentlichen Teil des Werkzeugbereichs 68 umfasst. Wie Figur 3 zu entnehmen ist, kann der überwachte Bereich ebenfalls einen Teil des Werkzeugstreckenbereichs 66 umfassen. Zur Überwachung des Werkzeugbereichs 68 ist die Sensoreinheit 62 seitlich der Rotationsebene 25 und des Werkzeugs 18 angeordnet, und zwar auf einer der Betätigungseinheit 56, insbesondere dem Handgriff 58, abgewandten Seite der Rotationsebene 25. Hierbei sind die Betätigungseinheit 56 und die Sensoreinheit 62 beidseitig der Rotationsebene 25 angeordnet .
Figur 4 zeigt in einer schematischen Darstellung eine Schaltung der Werkzeugmaschine 10. Die Werkzeugmaschine 10 weist Aktorikeinheiten 72, 74 auf, die zur Durchführung von Sicherheitsmaßnahmen im Zusammenwirken mit der Werkzeugbetriebs- überwachungsvorrichtung 60 vorgesehen sind. Die Aktorikeinheiten 72, 74 sind jeweils dazu vorgesehen, ein Sicherungsmittel 76 bzw. 78 anzutreiben. Das Sicherungsmittel 76, wel- ches in Figur 1 schematisch dargestellt ist, ist ein als
Klemmmittel ausgebildetes Sperrmittel, das im Bereich der Rotationsachse 52 angeordnet ist. Das Sicherungsmittel 76 kann ferner als Zahnrad ausgebildet sein. Insbesondere ist das Sicherungsmittel 76 in der Lagereinheit 38 angeordnet. Das Si- cherungsmittel 76 dient dazu, eine durch den Bediener angetriebene Rotationsbewegung der Werkzeugeinheit 36 um die Rotationsachse 52, d.h. eine Bewegung des Werkzeugs 18 entlang der Bewegungsbahn 54, zu verhindern. In einer diese Bewegung freigebenden Stellung ist das Sicherungsmittel 76 federbelas- tet. Dies kann beispielsweise mittels einer mechanischen Feder und/oder mittels eines Zugmagnets erfolgen. Die Aktori- keinheit 72 dient dazu, das Sicherungsmittel 76 - ausgehend von dieser die Bewegung freigebenden Stellung - in eine die Bewegung sperrende Sperrstellung zu bringen sowie ein Zurück- setzen des Sicherungsmittels 76 in dessen freigebende Stellung zu betätigen. Das Sicherungsmittel 78, welches in Figur 1 ebenfalls schematisch dargestellt ist, ist in der Lagereinheit 40 angeordnet. Es dient dazu, eine Bewegung einer durch den Bediener angetriebenen Translation der Werkzeugeinheit 36 entlang der Bewegungsrichtung 44 zu verhindern. Das Siche- rungsmittel 78 ist ebenfalls ein als Klemmmittel, als Keilelement und/oder als Rastmittel, wie z.B. als Raststift, ausgebildetes Sperrmittel und kann mittels der Aktorikeinheit 74 zur Verhinderung eines Vorschubs der Führungseinheit 42 betätigt werden. Hierzu wird auf die Beschreibung des Sicherungs- mittels 76 verwiesen.
Die Aktorikeinheiten 72, 74 lösen eine Betätigung des Sicherungsmittels 76 bzw. 78 in Abhängigkeit eines Signals der Werkzeugbetriebsüberwachungsvorrichtung 60 aus, und zwar ins- besondere ein Signal einer Auswerteeinheit 80 der Werkzeugbe- triebsüberwachungsvorrichtung 60. Die Auswerteeinheit 80 bildet im Zusammenwirken mit der Sensoreinheit 62 eine Erkennungseinheit 82, die zur Anwesenheitserkennung von menschlichem Gewebe im Werkzeugbereich 68 vorgesehen ist. Wird durch die Erkennungseinheit 82 das Vorhandensein von menschlichem Gewebe im Werkzeugbereich 68 erkannt, so wird ein Betätigungssignal zu einer Aktorikeinheit 72 und/oder 74 übertragen, die anhand dieses Betätigungssignals die oben beschriebene Sperrung einer Bewegung der Werkzeuglagereinheit 20 re- lativ zur Arbeitsfläche 14 auslöst. Hierzu steht die Auswerteeinheit 80 in Wirkverbindung mit den Aktorikeinheiten 72, 74. Ferner kann abhängig von einem derartigen Betätigungssignal ein Antrieb des Werkzeugs 18 gebremst bzw. gestoppt werden. Hierzu steht die Auswerteeinheit 80 in Wirkverbindung mit der Antriebseinheit 26. Alternativ oder zusätzlich kann eine weitere Aktorikeinheit in Verbindung mit der Auswerte- einheit 80 vorgesehen sein, die zu einem Bremsen des Werkzeugs 18 dient. Diese kann ein Sicherungsmittel betätigen, welches z.B. als Bremsscheibe oder als Trommelbremse ausgebildet ist und in Verbindung mit einer nicht gezeigten Welle steht, die in der Werkzeuglagereinheit 20 angeordnet ist und zu einer Rotation des Werkzeugs 18 um die Rotationsachse 24 von der Antriebseinheit 26 angetrieben wird.
Es wird ferner vorgeschlagen, wie in der Ausführung gemäß Fi- gur 4 erkennbar ist, dass der von der Sensoreinheit 62 überwachte Werkzeugbereich 68 auf mehrere Modusbereiche verteilt ist, die jeweils einem Sicherheitsmodus zugeordnet sind. So kann z.B. der Werkzeugbereich 68 in einen Gefahrbereich 68.1, in welchem die oben beschriebenen Sicherheitsmodi aktivierbar sind, und einen Warnungsbereich 68.2 unterteilt werden. Dieser Warnungsbereich 68.2 grenzt vorzugsweise an den Gefahrbereich 68.1 an, ist in Richtung der Rotationsachse 24 auf die Rotationsebene 25 zu vor dem Gefahrbereich 68.1 angeordnet und weist eine Erstreckung in dieser Richtung von z.B. 1 cm auf. Erkennt die Erkennungseinheit 82 die Anwesenheit eines menschlichen Körperteils im Warnungsbereich 68.2, so löst die Auswerteeinheit 80 ein Warnsignal zum Warnen des Bedieners aus. Diese Warnung kann optisch oder akustisch erfolgen, oder sie kann mithilfe der oben beschriebenen Sperrung mittels des Sicherungsmittels 76 und/oder 78 erfolgen, während ein Bremsen oder ein Stoppen eines Werkzeugantriebs erst erfolgt, wenn das Vorhandensein eines menschlichen Körperteils im Gefahrbereich 68.1 erkannt ist.
Das Funktionsprinzip der Erkennungseinheit 82 wird anhand der Figur 5 beschrieben. Es sind der Arbeitstisch 12, das Werk- stück 16 und die Sensoreinheit 62 in einer schematischen Ansicht dargestellt. Der Übersichtlichkeit halber wird auf die Darstellung des Werkzeugs 18 und der Schutzvorrichtung 28 verzichtet. Auf dem Werkstück 16 im Werkzeugbereich 68 ist ein Untersuchungsobjekt 84 angeordnet. Dieses kann insbesondere eine Hand eines Bedieners, ein weiteres Störobjekt oder lediglich die Oberfläche des Werkstücks 16 sein. Die Sensoreinheit 62 weist eine Sendeeinheit 86 auf, die im Betrieb eine Strahlung Si in den Werkzeugbereich 68 sendet. Diese Strahlung Si wird auf das Untersuchungsobjekt 84 reflektiert und als Strahlung SR von einer in der Figur schematisch dargestellten Empfangseinheit 88 der Sensoreinheit 62 empfangen, Die Sensoreinheit 62 weist ferner eine Markierungseinheit 89 zur Markierung des Werkzeugbereichs 68 auf.
Figur 6 zeigt die Sendeeinheit 86 und die Empfangseinheit 88 der Sensoreinheit 62 in einer Frontansicht, in welcher die optische Achse der Anordnung die Zeichnungsebene durchschneidet. Die Sendeeinheit 86 weist ein Sendemittel 90 auf, das als LED ausgebildet ist. In der direkten Umgebung des Sendemittels 90 sind vier Sensormittel 92 der Empfangseinheit 88 angeordnet, die jeweils als Photodiode ausgebildet sind.
Die Sensormittel 92 weisen jeweils einen Empfindlichkeitsbe- reich 94 auf, der zur Strahlungserfassung jeweils in einem unterschiedlichen Wellenlängenbereich WLi = [λ12], WL2 = [λ3,λ4], WL3 = [λ5,λ6] bzw. WL4 = [λ78] vorgesehen ist. Dies ist in Figur 7 schematisch dargestellt. Figur 7 zeigt den Verlauf des Durchlassfaktors der Empfangseinheit 88 in Abhän- gigkeit der Wellenlänge λ der durch die Empfangseinheit 88 empfangenen Reflexionsstrahlung SR. Die Wellenlängenbereiche WL1 sind im betrachteten Ausführungsbeispiel zueinander überlappungsfrei ausgebildet. Die Wellenlängenbereiche WL1 weisen beispielhaft eine zentrale Wellenlänge von 630 nm, 700 nm, 980 nm, 1050 nm und 1200 nm auf und sind schmalbandig ausge- bildet mit jeweils einer Bandbreite von ca. 10 nm. Die Empfangseinheit 88 kann zu einer schmalbandigen Filterung der erfassten Strahlung SR zusätzlich zu den Sensormitteln 92 mit einem System von Filterbauteilen versehen sein, das den Sensormitteln 92 vorgeschaltet ist. Bei der Ausführung der Sen- sormittel 92 als selektive Photodioden ist eine schmalbandige Filterung systeminhärent, wodurch weitere Filterbauteile vorteilhaft vermieden werden können. Alternativ oder zusätzlich zu Photodioden können die Sensormittel 92 als CCD- oder CMOS- Felder, InGaAs-Detektoren, pyroelektrische Detektoren usw. ausgebildet sein.
Die Wellenlängenbereiche WL2, WL3, WL4 sind im Infrarotspektrum angeordnet. Insbesondere sind diese Wellenlängenbereiche WL2, WL3, WL4 jeweils Bereiche des nahen Infrarotspektrums IR- A mit den Grenzwerten [700 nm, 1400 nm] . Der Wellenlängebereich WLi ist zumindest teilweise im sichtbaren Bereich des elektromagnetischen Spektrums angeordnet. Alternativ oder zusätzlich können Wellenlängenbereiche in den Infrarotbereichen IR-B (1,4 - 3 μm) und IR-C (3 - 15 μm) gewählt werden. Die Sendeeinheit 86 mit dem Sendemittel 90 erzeugt eine Strahlung, die die in Figur 7 gezeigten Wellenlängenbereiche WL1 umfasst .
Das Prinzip der Anwesenheitserkennung von menschlichem Gewebe im Werkzeugbereich 68 wird anhand der Figuren 8, 9, und 10 erläutert. Figur 8 zeigt das Reflexionsspektrum der auf das Untersuchungsobjekt 84 reflektierten und von den Sensormitteln 92 erfassten Strahlung SR. Dieses Reflexionsspektrum entspricht der Verteilung der Signalintensität in Abhängigkeit der Wellenlänge λ der Strahlung SR. Die Sensormittel 92 bzw. die Empfindlichkeitsbereiche 94 erfassen jeweils einen
Teil des Reflexionsspektrums in den entsprechenden Wellenlängenbereichen WL1. Die Sensormittel 92 erzeugen an ihrer Ausgangsklemme jeweils eine Strahlungskenngröße V1, die jeweils als elektrische Spannung ausgebildet ist. Die Strahlungskenn- große Vi beispielsweise ist proportional zu einer über den Wellenlängenbereich WLi integrierten und in der Figur 8 schraffierten Signalintensität Si der Strahlung SR.
Wie der Figur 9 entnommen werden kann, werden die Strahlungs- kenngrößen V1 auf einen Eingang eines Auswertemittels 96, z.B. eines Mikroprozessors, der Auswerteeinheit 80 gegeben. In einer weiteren Variante ist denkbar, dass die Strahlungskenngrößen V1 verstärkt werden. Bei einer Auswertung werden die Strahlungskenngrößen V1 mit Werten einer in einer Spei- chereinheit 98 der Auswerteeinheit 80 gespeicherten Datenbank 100 mittels logischer Operationen verglichen. Diese Datenbank 100 ist in Figur 10 schematisch dargestellt. In einer ersten Auswertungsstrategie werden die erfassten Strahlungskenngrößen V1 mit gespeicherten Werten Ai, A2, A3 usw. verglichen. Jedem Paar (V1, A1) ist eine Erkennungsvariable zugeordnet, die die Werte „False" (F) oder „True" (T) annehmen kann. Beim Wert „F" wird ein Vorhandensein von menschlichem Gewebe im Werkzeugbereich 68 ausgeschlossen. In einer zweiten, alternativen oder zusätzlichen Auswertungsstrategie werden durch das Auswertemittel 96 Verhältnisse Vi / V2; Vi / V3 usw. zwischen den verschiedenen Strahlungskenngrößen V1 ermittelt. Diese Verhältnisse werden mit gespeicherten Werten Ai, A2, A3 usw. verglichen, wodurch, wie oben beschrieben, auf das Vorhandensein von menschlichem Gewebe im Werkzeugbereich 68 geschlossen werden kann. Durch die Bildung von Verhältnissen kann ei- ne intensitätsunabhängige Erkennung durchgeführt werden. In der Speichereinheit 98 können außerdem Informationen über die spektrale Empfindlichkeit der Sensormittel 92 gespeichert sein, die zur Auswertung der Strahlungskenngrößen V1 herangezogen werden können.
In einer alternativen Ausführungsvariante, die in den Figuren 11 und 12 gezeigt ist, ist die Sensoreinheit 62 mit einer Sendeeinheit 102 versehen, die zumindest zwei, insbesondere zumindest drei und besonders bevorzugt zumindest vier Sende- mittel 104.1 bis 104.4 zur Sendung der Strahlung in jeweils einem unterschiedlichen Wellenlängenbereich WLi bis WL4 aufweist, die im Betrieb der Sendeeinheit 102 sukzessiv betrieben werden. Figur 9 zeigt die Sendeeinheit 102, welche eine Strahlung Si erzeugt, die eine Reihe von Pulsen 106.1 bis 106.4 aufweist und in Figur 12 dargestellt ist. Figur 12 zeigt den Verlauf der Intensität der Strahlung Si in Abhängigkeit von der Zeit t. Ein Puls 106 weist eine Breite B von ca. 100 μs auf. Die Sendeeinheit 102 ist dazu vorgesehen, eine Strahlung sukzessiv in den Wellenlängenbereichen WLi bis WL4 zu senden. Hierbei sind in einer Folge von vier aufeinander folgenden Pulsen 106.1 bis 106.4 die Pulse jeweils einem unterschiedlichen Wellenlängenbereich WLi bis WL4 zugeordnet. Die Sendemittel 104 können z.B. jeweils als LED ausgebildet sein. Durch ein solches sukzessives Strahlen in verschiedenen Wellenlängenbereichen WL1 kann auf eine aufwendige Filterung der erfassten reflektierten Strahlung SR verzichtet werden.

Claims

ROBERT BOSCH GMBH; D-70442 StuttgartAnsprüche
1. Werkzeugmaschine, insbesondere Sägemaschine, mit einer Arbeitsfläche (14) zum Platzieren eines zu bearbeitenden Werkstücks (16) und einer Werkzeuglagereinheit (20) zum Lagern eines Werkzeugs (18), die relativ zur Arbeitsflä- che (14) beweglich gelagert ist, gekennzeichnet durch eine Erkennungseinheit (82), welche zur Anwesenheitserkennung einer Materialart in einem Werkzeugbereich (68) mittels der spektralen Auswertung einer Strahlung (SR) vorgesehen ist.
2. Werkzeugmaschine nach Anspruch 1, dadurch gekennzeichnet, dass die Erkennungseinheit (82) zumindest ein Sensormittel (92) aufweist und ein Mitnahmemittel (64) vorgesehen ist, das bei einer Bewegung der Werkzeuglagereinheit (20) relativ zur Arbeitsfläche (14) zum Mitnehmen des Sensormittels (92) dient.
3. Werkzeugmaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Werkzeuglagereinheit (20) zur rotatorischen Lagerung eines Werkzeugs (18) in einer Rotationsebene (25) vorgesehen ist und die Erkennungseinheit (82) ein Sensormittel (92) aufweist, das seitlich der Rotationsebene (25) angeordnet ist.
4. Werkzeugmaschine nach einem der vorhergehenden Ansprüche, gekennzeichnet durch ein Sicherungsmittel (76, 78), das dazu vorgesehen ist, anhand eines Signals der Erkennungseinheit (82) eine Bewegung der Werkzeuglagereinheit (20) relativ zur Arbeitsfläche (14) zu verhindern.
5. Werkzeugmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Erkennungseinheit (82) zur Anwesenheitserkennung mittels der Auswertung eines Reflexionsspektrums einer auf ein Untersuchungsobjekt (84) reflektierten Strahlung (SR) vorgesehen ist.
6. Werkzeugmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Erkennungseinheit (82) eine Sensoreinheit mit wenigstens einem Empfindlichkeitsbereich (94.2) zur Strahlungserfassung in einem Wellenlängenbereich (WL2) aufweist, der zumindest teilweise im Infrarotspektrum angeordnet ist.
7. Werkzeugmaschine nach Anspruch 6, dadurch gekennzeichnet, dass der Wellenlängenbereich (WL2) ein nahmittlerer Infrarotbereich ist.
8. Werkzeugmaschine nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die Erkennungseinheit (82) eine Sendeeinheit (86; 102) aufweist, die dazu vorgesehen ist, eine Strahlung mit zumindest einem Strahlungsanteil im Wellen- längenbereich (WL2) zu senden.
9. Werkzeugmaschine nach Anspruch 8, dadurch gekennzeichnet, dass die Sendeeinheit (102) dazu vorgesehen ist, eine Strahlung im Wellenlängenbereich (WL2) und in zumindest einem weiteren Wellenlängenbereich (WLi, WL3, WL4) zu senden .
10. Werkzeugmaschine nach Anspruch 9, dadurch gekennzeichnet, dass die Sendeeinheit (102) dazu vorgesehen ist, eine Strahlung sukzessiv im Wellenlängenbereich (WL2) und im weiteren Wellenlängenbereich (WLi, WL3, WL4) zu senden.
11. Werkzeugmaschine nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, dass die Sensoreinheit (62) zumindest einen weiteren Empfindlichkeitsbereich (94.1, 94.3, 94.4) aufweist, der zur Strahlungserfassung in einem wei- teren Wellenlängenbereich (WLi, WL3, WL4) vorgesehen ist.
12. Werkzeugmaschine nach Anspruch 11, dadurch gekennzeichnet, dass die Erkennungseinheit (82) ein Auswertemittel
(96) aufweist, das dazu vorgesehen ist, das Vorhandensein der Materialart anhand eines Verhältnisses von zumindest zwei Strahlungskenngrößen (Vi, V2, V3, V4) zu erkennen, die jeweils einem Strahlungsanteil in einem unterschiedlichen Wellenlängenbereich (WLi, WL2, WL3, WL4) zugeordnet sind.
13. Werkzeugmaschine nach einem der Ansprüche 6 bis 12, dadurch gekennzeichnet, dass der Wellenlängenbereich (WL2) schmalbandig ausgebildet ist.
PCT/EP2008/059556 2007-09-20 2008-07-22 Werkzeugmaschine WO2009040153A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2010525281A JP2010538855A (ja) 2007-09-20 2008-07-22 工作機械
AT08786292T ATE536952T1 (de) 2007-09-20 2008-07-22 Werkzeugmaschine
RU2010115258/02A RU2484929C2 (ru) 2007-09-20 2008-07-22 Технологическая машина
US12/733,764 US8701534B2 (en) 2007-09-20 2008-07-22 Machine tool
ES08786292T ES2376794T3 (es) 2007-09-20 2008-07-22 Máquina herramienta
CN200880108075.4A CN102046315B (zh) 2007-09-20 2008-07-22 机床
EP20080786292 EP2195133B1 (de) 2007-09-20 2008-07-22 Werkzeugmaschine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007044800A DE102007044800A1 (de) 2007-09-20 2007-09-20 Werkzeugmaschine
DE102007044800.9 2007-09-20

Publications (1)

Publication Number Publication Date
WO2009040153A1 true WO2009040153A1 (de) 2009-04-02

Family

ID=39862962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/059556 WO2009040153A1 (de) 2007-09-20 2008-07-22 Werkzeugmaschine

Country Status (9)

Country Link
US (1) US8701534B2 (de)
EP (1) EP2195133B1 (de)
JP (1) JP2010538855A (de)
CN (1) CN102046315B (de)
AT (1) ATE536952T1 (de)
DE (1) DE102007044800A1 (de)
ES (1) ES2376794T3 (de)
RU (1) RU2484929C2 (de)
WO (1) WO2009040153A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011042234A1 (de) * 2009-10-05 2011-04-14 Robert Bosch Gmbh Werkzeugvorrichtung
WO2013046523A1 (en) * 2011-09-27 2013-04-04 Hitachi Koki Co., Ltd. Cutting machine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009054977A1 (de) * 2009-12-18 2011-06-22 Robert Bosch GmbH, 70469 Werkzeugmaschinensystem, insbesondere für handgehaltene Werkzeugmaschinen
US10160080B2 (en) 2013-12-18 2018-12-25 Robert Bosch Tool Corporation Skin sensing using spectral analysis
AU2017262385B2 (en) * 2016-05-12 2019-06-20 Kando Innovation Limited Enhanced safety attachment for cutting machine
DE202016106865U1 (de) * 2016-12-09 2018-03-12 Tridonic Gmbh & Co Kg Sensor-Anordnung zum Erkennen einer Bewegung und/oder einer Anwesenheit einer Person
RU2709064C1 (ru) * 2018-11-09 2019-12-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский национальный исследовательский технический университет" Модульный многофункциональный пильный станок

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4500784A (en) * 1982-09-29 1985-02-19 Michael Hacskaylo Automatic human body detector
WO2000016036A1 (en) * 1998-09-11 2000-03-23 Renishaw Plc Tool condition monitoring
EP1182425A1 (de) * 2000-08-26 2002-02-27 Robert Bosch Gmbh Materialprüfvorrichtung und deren Verwendung
US20040226424A1 (en) * 2001-07-11 2004-11-18 O'banion Michael Power tool safety mechanisms

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3573670D1 (en) * 1985-01-08 1989-11-16 Cerberus Ag Infrared intrusion detector
RU1607204C (ru) * 1988-10-06 1993-03-23 Предприятие П/Я Р-6476 Пильное устройство
JP2767714B2 (ja) 1989-10-05 1998-06-18 富士写真フイルム株式会社 塗布注液器
JPH03123660U (de) * 1990-03-30 1991-12-16
US5400784A (en) 1993-10-15 1995-03-28 Case Western Reserve University Slowly penetrating inter-fascicular nerve cuff electrode and method of using
JP3716573B2 (ja) * 1997-09-30 2005-11-16 住友電気工業株式会社 非接触温度分布計測装置
RU2131335C1 (ru) * 1998-03-02 1999-06-10 Акционерное общество "Новолипецкий металлургический комбинат" Пила для резки проката
US7210383B2 (en) * 2000-08-14 2007-05-01 Sd3, Llc Detection system for power equipment
US7353737B2 (en) * 2001-08-13 2008-04-08 Sd3, Llc Miter saw with improved safety system
ATE293821T1 (de) * 2001-02-14 2005-05-15 Infrared Integrated Syst Ltd Brandmelder
JP2002263989A (ja) * 2001-03-07 2002-09-17 Mori Seiki Co Ltd 工作機械
JP4255679B2 (ja) * 2002-11-12 2009-04-15 株式会社マキタ 電動工具
DE10261791A1 (de) * 2002-12-23 2004-07-15 Robert Bosch Gmbh Vorrichtung zum Berührungsschutz und Verfahren zum Schutz von dem Berühren eines beweglichen Teils
US20040194594A1 (en) * 2003-01-31 2004-10-07 Dils Jeffrey M. Machine safety protection system
US20060101960A1 (en) * 2003-03-10 2006-05-18 Smith Matthew A Optical proximity device for power tools
US20100037739A1 (en) * 2005-06-01 2010-02-18 Anderson Will H Power cutting tool with overhead sensing system
WO2007000766A2 (en) * 2005-06-28 2007-01-04 Passive Medical Systems Engineering Ltd. Non-invasive method to identify hidden foreign objects near a human subject
JP4656420B2 (ja) * 2006-02-22 2011-03-23 日立工機株式会社 携帯用丸のこ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4500784A (en) * 1982-09-29 1985-02-19 Michael Hacskaylo Automatic human body detector
WO2000016036A1 (en) * 1998-09-11 2000-03-23 Renishaw Plc Tool condition monitoring
EP1182425A1 (de) * 2000-08-26 2002-02-27 Robert Bosch Gmbh Materialprüfvorrichtung und deren Verwendung
US20040226424A1 (en) * 2001-07-11 2004-11-18 O'banion Michael Power tool safety mechanisms

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011042234A1 (de) * 2009-10-05 2011-04-14 Robert Bosch Gmbh Werkzeugvorrichtung
WO2013046523A1 (en) * 2011-09-27 2013-04-04 Hitachi Koki Co., Ltd. Cutting machine

Also Published As

Publication number Publication date
US8701534B2 (en) 2014-04-22
ES2376794T3 (es) 2012-03-16
EP2195133B1 (de) 2011-12-14
CN102046315A (zh) 2011-05-04
RU2484929C2 (ru) 2013-06-20
US20110277609A1 (en) 2011-11-17
CN102046315B (zh) 2014-06-25
RU2010115258A (ru) 2011-10-27
DE102007044800A1 (de) 2009-04-02
ATE536952T1 (de) 2011-12-15
EP2195133A1 (de) 2010-06-16
JP2010538855A (ja) 2010-12-16

Similar Documents

Publication Publication Date Title
EP2386383B1 (de) Werkzeugmaschinenüberwachungsvorrichtung
EP2073954B1 (de) Werkzeugmaschinenüberwachungsvorrichtung
EP2212057B1 (de) Werkzeugmaschinensicherheitsvorrichtung
EP2212047B1 (de) Werkzeugmaschine
EP2195133B1 (de) Werkzeugmaschine
EP2509743A1 (de) Überwachungsvorrichtung einer werkzeugmaschine
DE102008054559A1 (de) Werkzeugmaschinenschutzvorrichtung
EP2234778A1 (de) Werkzeugmaschinenvorrichtung
EP2160269B1 (de) Werkzeugmaschinenüberwachungsvorrichtung
DE102007048052A1 (de) Handwerkzeugmaschine sowie Verfahren zum Betreiben der Handwerkzeugmaschine
EP3774240A2 (de) Hand-werkzeugmaschine
EP2291261A1 (de) Werkzeugmaschinenüberwachungsvorrichtung
DE10340426B4 (de) Handgeführte Werkzeugmaschine
DE102008013055A1 (de) Werkzeugmaschinenüberwachungsvorrichtung
WO2008028726A1 (de) Werkzeugmaschinenüberwachungsvorrichtung
EP2512714B1 (de) Werkzeugmaschinensystem, insbesondere für handgehaltene werkzeugmaschinen
DE102008041653A1 (de) Werkzeugmaschinenschutzvorrichtung
DE102007039571A1 (de) Werkzeugmaschinenüberwachungsvorrichtung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880108075.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08786292

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008786292

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010525281

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010115258

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 12733764

Country of ref document: US