WO2009035444A1 - Procédés de façonnage de la topographie de surface d'un métal ou d'un alliage nanocristallin ou amorphe et articles formés par de tels procédés - Google Patents

Procédés de façonnage de la topographie de surface d'un métal ou d'un alliage nanocristallin ou amorphe et articles formés par de tels procédés Download PDF

Info

Publication number
WO2009035444A1
WO2009035444A1 PCT/US2007/023939 US2007023939W WO2009035444A1 WO 2009035444 A1 WO2009035444 A1 WO 2009035444A1 US 2007023939 W US2007023939 W US 2007023939W WO 2009035444 A1 WO2009035444 A1 WO 2009035444A1
Authority
WO
WIPO (PCT)
Prior art keywords
etching
electrochemically
workpiece
achieve
topography
Prior art date
Application number
PCT/US2007/023939
Other languages
English (en)
Inventor
Christopher A. Schuh
Shiyun Ruan
Original Assignee
Massachusetts Institute Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Massachusetts Institute Of Technology filed Critical Massachusetts Institute Of Technology
Priority to EP07875205A priority Critical patent/EP2092092A1/fr
Publication of WO2009035444A1 publication Critical patent/WO2009035444A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • B23H9/008Surface roughening or texturing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • C25D5/611Smooth layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/619Amorphous layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/08Etching of refractory metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/14Etching locally

Definitions

  • Metals and alloys with nanocrystalline or amorphous structures often exhibit superior physical and/or functional properties, such as high strength, high corrosion-resistance and low coefficient of friction. They may also have desirable magnetic, electronic, optical, or biological properties in specific applications. For these reasons, nanocrystalline or amorphous metals and alloys are gaining wide usage throughout many industries .
  • Nanocrystalline metal refers to a metallic body in which the number-average size of the crystalline grains is less than one micrometer. The number-average size of the crystalline grains provides equal statistical weight to each grain. The number-average size of the crystalline grains is calculated as the sum of all spherical equivalent grain diameters divided by the total number of grains in a representative volume of the body.
  • Amorphous metal refers to a metallic body without long-range crystalline order, i.e., a metallic body which is solid but not crystalline.
  • a rough surface may be desirable to control the frictional contact with a mating component, (i.e., to improve traction, or reduce contact area, etc.).
  • a controlled surface structure allows a range of optical luster and/or colors.
  • the surface topography may require control as part of a micro-manufacturing application, as for example in electroformed stamps or embossing equipment.
  • Fig. 3A is a digital image of an SEM of Ni-W film after reverse current etching, the deposit having been made using a high (100%) deposition phase duty cycle, a current density of 0.2A/cm 2 , and etching having been done with a 30% duty cycle and with a current density of 0.1 A/cm 2 ;
  • Fig. 3B is a digital image of an SEM of Ni-W film after reverse current etching, the deposit having been made using a low (25%) deposition phase duty cycle a current density of 0.2A/cm 2 and the other parameters the same as was for Fig. 3A;
  • Each nanocrystalline or amorphous metal or alloy take for example block 'Ml', can in turn be tailored to form nanocrystalline or amorphous metals or alloys of different surface morphologies, as represented in this example by blocks 'Sl', 'S2' and 'S3'. Arrows '1', '2' and '3' represent different etching methods and/or parameters. As represented by arrows '3' and '4', blocks 'Ml' and 'M2', which have different surface morphologies and microstructures, may be tailored to form the same structure 'S3' via different etching processes and/or parameters.
  • Figs. 3A and B show the etched surface morphology of Ni-W alloy, whose surface morphologies before reverse etching correspond to Figures 2A and 2B respectively.
  • the current density, duty cycle and total duration of the current are O.lA/cm 2 , 30% and 20 minutes respectively for both films.
  • the roughness of the surface could be measured and quantified using, for example, a profilometer or other roughness measurement system.
  • the roughness could be quantified using the standard R a measurement, or the root-mean-square or RMS roughness, the density of peaks in the topography, their average height, etc. This roughness could then be correlated to processing parameters, both for a provided workpiece, deposition parameters and etching parameters, to establish a relationship between these properties and finished article roughness.
  • an invention disclosed herein is a method of making an article having an at most nanocrystalline surface with a specified roughness.
  • the method comprising the steps of: providing a workpiece having a surface comprising an at most nanocrystalline material comprising at least two elements, at least one of which is metal, and one of which is more electrochemically active than the others, and which more electrochemically active element has a definite spatial distribution in the workpiece, which distribution bears a predecessor spatial relationship to a topography, which topography functionally establishes the specified roughness.
  • the method also comprises the step of electrochemically etching the workpiece to remove a portion of the more electrochemically active element preferentially, as compared to any other components of the workpiece, values for parameters of etching having been selected with regard to the predecessor relationship to achieve the topography and thus, the specified roughness.
  • An invention closely related to this, has the step of providing a workpiece comprising electrochemically depositing an at most nanocrystalline material using parameters of deposition selected to achieve the definite spatial distribution of the more electrochemically active element.
  • a closely related embodiment of an invention hereof further comprises using a low deposition duty cycle to obtain a surface exhibiting a plurality of spaced apart pits.
  • a low deposition duty cycle with a high etching duty cycle achieves a plurality of pits that are wide, or deep, or in a lower number density, or any of these three properties in combination.
  • Using a low deposition duty cycle with a high etching current density achieves similar results to that just mentioned with high etching duty cycle. Further, such methods produce thicker ligaments between pits.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

La présente invention concerne la gravure électrochimique qui permet de façonner la topographie d'un métal ou d'un alliage nanocristallin ou amorphe, laquelle peut être produite par tout procédé incluant un dépôt électrochimique. Des procédés de gravure courants peuvent être utilisés. La topographie peut être régulée par des paramètres variables qui produisent l'élément et/ou les paramètres de gravure. L'article nanocristallin présente une surface comprenant au moins deux éléments, au moins l'un d'eux étant un métal, et l'un d'eux étant plus actif sur le plan électrochimique que les autres. L'élément actif a une distribution spatiale définie dans la pièce à travailler, qui est en rapport spatial prédécesseur avec la topographie spécifiée. La gravure élimine préférentiellement une partie de l'élément actif, de façon à obtenir la topographie spécifiée. Une régulation est possible en ce qui concerne : la rugosité, la couleur, en particulier dans un spectre allant de l'argent au noir en passant par le gris, la réflectivité et la présence, la distribution et la densité du nombre de creux et de canaux, ainsi que leur profondeur, largeur, dimension. Des paramètres de traitement qui ont été corrélés dans le système Ni-W aux caractéristiques topographiques incluent, tant pour la phase de dépôt que pour la phase de gravure d'une surface nanocristalline : le cycle de service, la densité du courant, la durée de dépôt, la chimie du dépôt, le rapport de polarité. L'influence relative des paramètres de traitement peut être notée et corrélée pour établir un rapport entre les valeurs des paramètres de traitement et le degré des caractéristiques topographiques. Une régulation peut être établie en ce qui concerne les caractéristiques topographiques. Une corrélation peut être réalisée pour tout système qui présente une distribution spatiale définie d'un élément actif qui est en rapport spatial prédécesseur avec une caractéristique topographique souhaitée.
PCT/US2007/023939 2006-11-15 2007-11-14 Procédés de façonnage de la topographie de surface d'un métal ou d'un alliage nanocristallin ou amorphe et articles formés par de tels procédés WO2009035444A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07875205A EP2092092A1 (fr) 2006-11-15 2007-11-14 Procédés de façonnage de la topographie de surface d'un métal ou d'un alliage nanocristallin ou amorphe et articles formés par de tels procédés

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US85906706P 2006-11-15 2006-11-15
US60/859,067 2006-11-15

Publications (1)

Publication Number Publication Date
WO2009035444A1 true WO2009035444A1 (fr) 2009-03-19

Family

ID=39941858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/023939 WO2009035444A1 (fr) 2006-11-15 2007-11-14 Procédés de façonnage de la topographie de surface d'un métal ou d'un alliage nanocristallin ou amorphe et articles formés par de tels procédés

Country Status (3)

Country Link
US (1) US20100282613A1 (fr)
EP (1) EP2092092A1 (fr)
WO (1) WO2009035444A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014005941A1 (de) * 2014-04-24 2015-11-12 Te Connectivity Germany Gmbh Verfahren zum Herstellen eines elektrischen Kontaktelements zur Vermeidung von Zinnwhiskerbildung, und Kontaktelement
EP3438330A1 (fr) 2017-08-03 2019-02-06 Groz-Beckert KG Partie d'outil de machine textile et procédé de fabrication d'un outil textile

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2006420A1 (fr) * 2007-06-22 2008-12-24 Danmarks Tekniske Universitet - DTU Couche microporeuse pour diminuer la friction dans un procédé de formage de métaux
US9011706B2 (en) * 2008-12-16 2015-04-21 City University Of Hong Kong Method of making foraminous microstructures
US9522387B2 (en) * 2012-06-15 2016-12-20 Lawrence Livermore National Security, Llc Highly active thermally stable nanoporous gold catalyst
US9004240B2 (en) 2013-02-27 2015-04-14 Integran Technologies Inc. Friction liner
US9518335B2 (en) * 2014-01-02 2016-12-13 City University Of Hong Kong Method of fabricating improved porous metallic material and resulting structure thereof
US9840789B2 (en) 2014-01-20 2017-12-12 City University Of Hong Kong Etching in the presence of alternating voltage profile and resulting porous structure
US10199630B2 (en) * 2015-08-21 2019-02-05 TOP Battery Co., Ltd Electrode terminal, electro-chemical device and electro-chemical device comprising same
CN107815720B (zh) * 2017-09-15 2020-04-17 广东工业大学 一种自支撑还原氧化石墨烯涂层及其制备方法和应用
EP3460102B1 (fr) * 2017-09-21 2020-04-08 Hymeth ApS Procédé de production d'un électrocatalyseur
US11492723B2 (en) * 2019-11-05 2022-11-08 Cilag Gmbh International Electrolyte solutions for electropolishing of nitinol needles
WO2023136979A2 (fr) * 2022-01-14 2023-07-20 EvolOH, Inc. Champs d'écoulement d'électrode échelonnables pour électrolyseurs d'eau et procédé de fabrication à grande vitesse de ceux-ci
CN115094460B (zh) * 2022-07-19 2023-08-29 同济大学 一种碱性电解槽用镍基复合电极及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3945893A (en) * 1972-12-30 1976-03-23 Suzuki Motor Company Limited Process for forming low-abrasion surface layers on metal objects
US4126934A (en) * 1974-02-05 1978-11-28 Siemens Aktiengesellschaft Method for the manufacture of an electrode for electrochemical cells
US4437956A (en) * 1982-05-19 1984-03-20 The United States Of America As Represented By The United States Department Of Energy Method for preparing surfaces of metal composites having a brittle phase for plating
EP0392738A1 (fr) * 1989-04-14 1990-10-17 Karl Sieradzki Structures métalliques, micro- et nano poreuses
US5616432A (en) * 1994-06-14 1997-04-01 Ovonic Battery Company, Inc. Electrochemical hydrogen storage alloys and batteries fabricated from Mg containing base alloys
EP1180392A1 (fr) * 2000-08-12 2002-02-20 OMG AG & Co. KG Membrane métallique supporté, son procédé de fabrication er son utilisation
WO2004005193A2 (fr) * 2002-07-03 2004-01-15 Xintek, Inc. Procedes de fabrication et d'activation de cathodes a emission de champ composites a nanostructure
WO2004111312A2 (fr) * 2003-06-13 2004-12-23 Robert Bosch Gmbh Surfaces de contact pour contacts electriques, et procede de production correspondant
KR20050074283A (ko) * 2004-12-27 2005-07-18 진텍, 인크. 나노구조 복합체 전계 방출 음극에 대한 제조 및 활성화방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2260296A (en) * 1939-09-29 1941-10-28 Bell Telephone Labor Inc Electrical filter
US4461680A (en) * 1983-12-30 1984-07-24 The United States Of America As Represented By The Secretary Of Commerce Process and bath for electroplating nickel-chromium alloys
US5433797A (en) * 1992-11-30 1995-07-18 Queen's University Nanocrystalline metals
US5389226A (en) * 1992-12-17 1995-02-14 Amorphous Technologies International, Inc. Electrodeposition of nickel-tungsten amorphous and microcrystalline coatings
US6080504A (en) * 1998-11-02 2000-06-27 Faraday Technology, Inc. Electrodeposition of catalytic metals using pulsed electric fields
US20060118425A1 (en) * 2000-04-19 2006-06-08 Basol Bulent M Process to minimize and/or eliminate conductive material coating over the top surface of a patterned substrate
US6558231B1 (en) * 2000-10-17 2003-05-06 Faraday Technology Marketing Goup, Llc Sequential electromachining and electropolishing of metals and the like using modulated electric fields
US7758708B2 (en) * 2006-07-31 2010-07-20 The Governors Of The University Of Alberta Nanocomposite films

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3945893A (en) * 1972-12-30 1976-03-23 Suzuki Motor Company Limited Process for forming low-abrasion surface layers on metal objects
US4126934A (en) * 1974-02-05 1978-11-28 Siemens Aktiengesellschaft Method for the manufacture of an electrode for electrochemical cells
US4437956A (en) * 1982-05-19 1984-03-20 The United States Of America As Represented By The United States Department Of Energy Method for preparing surfaces of metal composites having a brittle phase for plating
EP0392738A1 (fr) * 1989-04-14 1990-10-17 Karl Sieradzki Structures métalliques, micro- et nano poreuses
US5616432A (en) * 1994-06-14 1997-04-01 Ovonic Battery Company, Inc. Electrochemical hydrogen storage alloys and batteries fabricated from Mg containing base alloys
EP1180392A1 (fr) * 2000-08-12 2002-02-20 OMG AG & Co. KG Membrane métallique supporté, son procédé de fabrication er son utilisation
WO2004005193A2 (fr) * 2002-07-03 2004-01-15 Xintek, Inc. Procedes de fabrication et d'activation de cathodes a emission de champ composites a nanostructure
WO2004111312A2 (fr) * 2003-06-13 2004-12-23 Robert Bosch Gmbh Surfaces de contact pour contacts electriques, et procede de production correspondant
KR20050074283A (ko) * 2004-12-27 2005-07-18 진텍, 인크. 나노구조 복합체 전계 방출 음극에 대한 제조 및 활성화방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 200411, Derwent World Patents Index; AN 2004-108799, XP002505356 *
DETOR ET AL: "Tailoring and patterning the grain size of nanocrystalline alloys", ACTA MATERIALIA, ELSEVIER, OXFORD, GB, vol. 55, no. 1, 27 October 2006 (2006-10-27), pages 371 - 379, XP005786826, ISSN: 1359-6454 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014005941A1 (de) * 2014-04-24 2015-11-12 Te Connectivity Germany Gmbh Verfahren zum Herstellen eines elektrischen Kontaktelements zur Vermeidung von Zinnwhiskerbildung, und Kontaktelement
EP3438330A1 (fr) 2017-08-03 2019-02-06 Groz-Beckert KG Partie d'outil de machine textile et procédé de fabrication d'un outil textile
WO2019025203A1 (fr) 2017-08-03 2019-02-07 Groz-Beckert Kommanditgesellschaft Pièce d'outil de machine textile et procédé pour fabriquer un outil textile

Also Published As

Publication number Publication date
EP2092092A1 (fr) 2009-08-26
US20100282613A1 (en) 2010-11-11

Similar Documents

Publication Publication Date Title
US20100282613A1 (en) Methods for tailoring the surface topography of a nanocrystalline or amorphous metal or alloy and articles formed by such methods
JP6644831B2 (ja) 被コーティング物品およびそのコーティング方法
Dennis et al. Nickel and chromium plating
US10179954B2 (en) Articles incorporating nickel tungsten alloy deposits having controlled, varying, nanostructure
Ranjith et al. Ni–Co–TiO2 nanocomposite coating prepared by pulse and pulse reversal methods using acetate bath
EP2096194B1 (fr) Revêtement protecteur pour joints métalliques
KR20110008027A (ko) 구조화된 크롬 고체 입자들 층 및 이의 제조 방법
Lee Synergy between corrosion and wear of electrodeposited Ni–W coating
Sheu et al. Effects of alumina addition and heat treatment on the behavior of Cr coatings electroplated from a trivalent chromium bath
Satpathy et al. A comparative study of electrodeposition routes for obtaining silver coatings from a novel and environment-friendly thiosulphate-based cyanide-free electroplating bath
EP2356267A1 (fr) Bains, systèmes et procédés de dépôt électrolytique
WO2015002838A1 (fr) Articles revêtus comportant une couche métallique
CN102089464A (zh) 经涂覆的物品及相关方法
WO2006011922A2 (fr) Electrolyse a impulsions inversees de solutions acides de galvanoplastie du cuivre
CN101460664B (zh) 次膦酸和/或膦酸在氧化还原法中的用途
Bedir et al. Effect of pH values on the characterization of electrodeposited Zn–Mn coatings in chloride-based acidic environment
Celis et al. Electroplating technology
Karadag et al. Tribological performance of Ni-W/PTFE composite coating via pulse electrodeposition
Tang et al. Pulse reversal plating of nickel–cobalt alloys
WO2024130227A1 (fr) Outils et éléments de fixation comprenant des revêtements de surface
Belevskii et al. The influence of gluconate bath parameters on the rate of electrodeposition and mechanical properties of Co–W coatings
KR20230041745A (ko) 다층 아연 합금 코팅 및 금속 물품을 형성하기 위한 방법 및 시스템
Gholizadeh et al. A promising perspective in improving corrosion and wear resistance of plain steel through electrodeposition of thick Ni–Mo–W ternary alloy
Doumi et al. IMPROVEMENT OF THE MANUFACTURING OF NI-P-AL 2 O 3 COMPOSITE COATINGS BY OPTIMIZING THE PARAMETERS OF ELECTROPLATING PROCESS.
Dadvand Development of Electrodeposited Nickel-Tungsten Composite Materials with Effective Additives for Tribological and Corrosion Resistance Applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07875205

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007875205

Country of ref document: EP