WO2009034048A1 - Procédé de production, au moyen d'une structure métallo-organique, de gaz de synthèse purifié à partir de gaz de synthèse contenant des traces de contaminants soufrés - Google Patents

Procédé de production, au moyen d'une structure métallo-organique, de gaz de synthèse purifié à partir de gaz de synthèse contenant des traces de contaminants soufrés Download PDF

Info

Publication number
WO2009034048A1
WO2009034048A1 PCT/EP2008/061844 EP2008061844W WO2009034048A1 WO 2009034048 A1 WO2009034048 A1 WO 2009034048A1 EP 2008061844 W EP2008061844 W EP 2008061844W WO 2009034048 A1 WO2009034048 A1 WO 2009034048A1
Authority
WO
WIPO (PCT)
Prior art keywords
synthesis gas
sulphur contaminants
sulphur
process according
contaminants
Prior art date
Application number
PCT/EP2008/061844
Other languages
English (en)
Inventor
Roberto Andres Estaba Sambrano
Renze Wijntje
Original Assignee
Shell Internationale Research Maatschappij B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij B.V. filed Critical Shell Internationale Research Maatschappij B.V.
Priority to CA2698875A priority Critical patent/CA2698875A1/fr
Priority to AU2008297220A priority patent/AU2008297220A1/en
Priority to CN200880106441A priority patent/CN101801500A/zh
Priority to EA201000464A priority patent/EA201000464A1/ru
Priority to EP08803813A priority patent/EP2190558A1/fr
Publication of WO2009034048A1 publication Critical patent/WO2009034048A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/041,2,3-Triazoles; Hydrogenated 1,2,3-triazoles
    • C07D249/061,2,3-Triazoles; Hydrogenated 1,2,3-triazoles with aryl radicals directly attached to ring atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/204Metal organic frameworks (MOF's)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/306Surface area, e.g. BET-specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/20Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/306Organic sulfur compounds, e.g. mercaptans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/308Carbonoxysulfide COS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0485Composition of the impurity the impurity being a sulfur compound

Definitions

  • the invention relates to a process for producing purified synthesis gas from synthesis gas comprising trace amounts of sulphur contaminants.
  • Synthesis gas is rich in carbon monoxide and hydrogen and further usually contains sulphur contaminants.
  • Producing purified synthesis gas from synthesis gas comprising trace amounts of sulphur contaminants involves removal of trace amounts of sulphur contaminants.
  • Synthesis gas streams are generally used in catalytic chemical conversion processes. Often, desulphurization of the feedstock used for the preparation of synthesis gas is difficult to achieve or incomplete and consequently unwanted sulphur contaminants are still present in synthesis gas. Removal of these sulphur compounds to low levels is of considerable importance, because they may bind irreversibly on catalysts and cause sulphur poisening. This results in a deactivated catalyst, which severely hampers the catalytic process. Some catalysts are even sensitive to sulphur concentrations as low as 5 to
  • sulphur contaminants need to be removed even to the ppbv range.
  • bulk removal processes enable removal of sulphur contaminants to a certain level, say for example to levels in the ppmv range, for removal of trace amounts of sulphur contaminants to very low levels, in the ppbv range, different measures are needed.
  • Processes for removal of trace amounts of sulphur contaminants from a synthesis gas are known in the art and are generally based on solid bed adsorption processes . For example, in US 3,441,370 a process is described for removal of sulphur compounds from gases by passing the gases over a zinc oxide adsorbent. Removal of hydrogen sulphide is achieved at ambient temperatures.
  • the zinc oxide sorbent employed has a surface area of 30 to 100 square meters per gram.
  • the process described in US 3,441,370 requires the presence of steam and a temperature of above 300 0 F (about 149 0 C) . It would be desirable to have a more flexible process, enabling removal of trace amounts of sulphur at lower temperatures .
  • the invention provides a process for producing purified synthesis gas from synthesis gas comprising sulphur contaminants in the ppmv range, the process comprising the step of:
  • Solid sorbents comprising a metal organic framework have been employed in the separation of methane from a mixture of gases including methane from other components, as described in European Patent Application EP-A-I, 674, 555.
  • the gas mixtures to be purified described in EP-A-I, 674, 555 are relatively clean gases and do not contain any sulphur contaminants. It has now surprisingly been found that metal organic framework material can be used for removal of trace amounts of sulphur contaminants.
  • the process enables removal of sulphur contaminants from the ppmv range to very low levels, suitably in the ppbv range.
  • sulphur contaminants are removed to a level of 10 ppbv or less, more preferably 5 ppbv or less of total sulphur contaminants.
  • the process according to the invention can be applied to any synthesis gas, which contains sulphur contaminants in the ppmv range.
  • synthesis gas is generated from a feedstock such as natural gas, coal or oil residue in a synthesis generation unit such as a high temperature reformer, an autothermal reformer or a gasifier.
  • a synthesis generation unit such as a high temperature reformer, an autothermal reformer or a gasifier.
  • the sulphur amount in the synthesis gas leaving the synthesis gas producing unit which can be for example a gasifier, a reformer or an autothermal reformer, exceeds 10 ppmv
  • the sulphur amount in the synthesis gas is preferably reduced in a bulk sulphur contaminant removal step as described hereinbefore. This results in a synthesis gas stream having an amount of sulphur contaminants of up to
  • the process is especially suitable for synthesis gas comprising a total amount of sulphur contaminants in the range of from 0.1 to 100 ppmv, based on the synthesis gas.
  • the amount of sulphur contaminants, in particular H2S and COS, in the synthesis gas is up to 10 ppmv, preferably up to 5 ppmv.
  • the sulphur contaminants include H2S
  • the amount of H2S is preferably up to 500 ppbv H2S, still more preferably up to 300 ppbv H2S and most preferably up to 100 ppbv H2S, based on the total gas .
  • the process can be preceded by a bulk contaminant removal step to reduce the level of contaminants to the ppmv range. Suitable bulk contaminant removal steps include the use of one or more solvent formulations based on amines or physical solvents .
  • the bulk contaminant removal step is a process selected from the group of ADIP, SuIfinol, Flexsorb, Purisol, Rectisol and Selexol. These processes are described in Kohl and Riesenfeld, third edition. These processes are at least partly based on the finding that carbon dioxide and hydrogen sulphide are highly soluble under pressure in certain solvents, and readily releasable from solution when the pressure is reduced.
  • the bulk contaminant removal step is a process based on the direct oxidation of H2S.
  • the bulk contaminant removal step is a process based on refigirated methanol as a scrubbing solvent. When using refigirated methanol, sulphur levels of 0.1 ppmv can be achieved. The use of refrigerated methanol is especially preferred when the synthesis gas is synthesis gas.
  • All the bulk contaminant removal steps mentioned hereinabove enable removal of sulphur contaminants to levels in the range of from 0.1 to 100 ppmv, or even from 0.1 to 10 ppmv.
  • the sulphur contaminants in the synthesis gas may include hydrogen sulpide (H2S), mercaptans (RSH) and carbonyl sulphide (COS) .
  • H2S hydrogen sulpide
  • RSH mercaptans
  • COS carbonyl sulphide
  • purified synthesis gas especially purified synthesis gas that is intended to be used in a catalytic chemical conversion
  • concentration of sulphur contaminants is in the ppbv range, say below 10 ppbv, sometimes below 5 ppbv or even as low as at most 1 ppbv, based on the purified synthesis gas.
  • the process according to the invention enables the production of purified synthesis gas having such a low concentration of sulphur contaminants, especially hydrogen sulphide.
  • step (a) the synthesis gas comprising sulphur contaminants is contacted with a sorbent comprising a metal organic framework to separate sulphur contaminants from the synthesis gas to obtain purified synthesis gas. Separation of sulphur contaminants can take place by adsorption of sulphur contaminants from the synthesis gas onto the sorbent. Separation of sulphur contaminants may also take place by passing the sulphur contaminants to the sorbent, while purified synthesis gas stays behind onto or into the sorbent .
  • the temperature at which step (a) is carried out may vary between wide ranges, and is suitably between 0 and 80 0 C, preferably between 10 and 60 0 C, and more preferably at ambient temperature. Thus, the process can be carried out at relatively low temperatures. This offers considerable energy-savings compared to conventional trace removal processes where a higher temperature is needed.
  • the pressure at which step (a) is carried out is suitably between 1 and 150 bara, more preferably between 1 and 100 bara.
  • the process can be carried out at high pressures.
  • the metal organic framework comprises at least one metal ion and at least one bidentate organic compound, wherein the bidentate organic compound is bound to the metal ion.
  • the metal ion is an ion of a metal selected from Groups Ia, Ha, IHa, IVa to Villa and Ib to VIb of the Periodic Table of the elements.
  • References to the Periodic Table and groups thereof used herein refer to the previous IUPAC version of the Periodic Table of Elements such as that described in the 68th Edition of the Handbook of Chemistry and Physics (CRC
  • metals particular reference is made to Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, Al, Ga, In, Tl, Si, Ge, Sn, Pb, As, Sb, and Bi, more preferably to Zn, Cu, Ni, Pd, Pt, Ru, Rh and Co. Most preferred metals are Zn and Cu.
  • a bidentate organic compound is to a compound comprising at least one functional group capable to form at least two coordination bonds with the metal ion.
  • Especially suitable bidentate organic compounds are compounds selected from the group of -COOH, -CS2H, -NO 2 , -B(OH) 2 , -SO3H, -Si(OH) 3 , -Ge(OH) 3 , -Sn(OH) 3 , -Si(SH) 4 , -Ge(SH) 4 , -Sn(SH) 3 , -PO 3 H, -AsO 3 H, -AsO 4 H, -P(SH) 3 , -As(SH) 3 , -CH(RSH) 2 , -C(RSH) 3 , -CH (RNH 2 ) 2 , -C (RNH 2 ) 3, -CH(ROH) 2 , -C(ROH) 3 , -CH(RCN)
  • the metal ion is Cu 2 + and the bidentate organic compound is benzenetricarboxylic acid.
  • a metal organic framework is known as "HKUST-I” or "Cu-BTC”.
  • an advantage of using a sorbent comprising a metal organic framework is that the BET surface area of such a sorbent is considerably higher than the BET surface area of for example a zeolite molecular sieve.
  • the BET surface area of the sorbent comprising a metal organic framework is at least 500 m 2 /g, preferably at least 1000 m 2 /g and more preferable at least 2000 m 2 /g.
  • step (a) results in purified synthesis gas and solid sorbent comprising metal organic framework loaded with sulphur contaminants .
  • the process will not be regenerative, as desorption of the sulphur contaminants will be difficult.
  • the process is preferably carried out in a continuous mode.
  • step (a) is performed using two or more sorbent beds, wherein at least one sorbent bed is in an adsorbing mode while at least one sorbent bed, comprising spent sorbent enriched with contaminants, is removed and replaced by a sorbent bed comprising fresh sorbent.
  • the synthesis gas is directed to a first bed, the so-called lead bed, which is packed with the solid adsorbent comprising a metal organic framework.
  • the sulphur contaminants are removed from the gas by the adsorbent, and as a consequence the adsorbent will load with sulphur contaminants.
  • the so-called lag bed where fresh adsorbent comprising a metal organic framework will remove the sulphur contaminants.
  • the synthesis gas stream may be contacted with solid adsorbent either once or a plurality of times, preferably in a serial manner using more than one guard bed comprising solid adsorbent, so as to continue to reduce the content of sulphur contaminants.
  • Using the same material in more than one cleaning or guard bed provides additional advantages. If one guard bed fails, there is immediate 'back up' to maintain guard of the catalyst material, which material is generally much more expensive than guard bed material. This back-up helps in terms of safety as well as catalyst preserver. It also allows a guard bed to be off-line for other reasons, such as reloading, regeneration, cleaning, servicing or emergencies, whilst the other (s) guard bed is maintained and the overall catalytic process continues. Using individual guard bed materials for different impurities requires the catalytic process to stop every time any guard bed material or guard bed unit must be off-line or malfunctions .
  • the purified synthesis gas stream comprises predominantly hydrogen and carbon monoxide and very low levels, in the ppbv range, of sulphur contaminants.
  • the purified synthesis gas comprises levels sulphur contaminants below 0.1 ppmv, more preferably below 10 ppbv and still more preferably below 5 ppbv, based on the total purified synthesis gas.
  • the purified synthesis gas is very suitable for conversion to chemicals in a catalytic process.
  • the invention also comprises the purified synthesis gas.
  • the purified synthesis gas is especially suitable for the manufacture of methanol or ethanol, the production of aldehydes using the oxo process, the production of glycols and the production of hydrocarbons .
  • the purified synthesis gas stream is contacted with a suitable hydrocarbon synthesis catalyst to form normally liquid hydrocarbons in a hydrocarbon synthesis reaction.
  • a suitable hydrocarbon synthesis catalyst to form normally liquid hydrocarbons in a hydrocarbon synthesis reaction.
  • the purified synthesis gas stream prepared by the present invention is used in a number of chemical reactions, in particular in Fischer-Tropsch reactions or processes.
  • Catalysts for use in the Fischer Tropsch reaction frequently comprise, as the catalytically active component, a metal from Group VIII of the Periodic Table of Elements.
  • Particular catalytically active metals include ruthenium, iron, cobalt and nickel. Cobalt is a preferred catalytically active metal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Materials For Medical Uses (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

La présente invention concerne un procédé de production de gaz de synthèse purifié à partir de gaz de synthèse comprenant quelques ppmv de contaminants soufrés, ledit procédé comprenant l'étape consistant (a) à mettre en contact le gaz de synthèse comprenant des contaminants soufrés avec un sorbant solide comprenant une structure métallo-organique, de façon à séparer les contaminants soufrés du gaz de synthèse en vue d'obtenir du gaz de synthèse purifié.
PCT/EP2008/061844 2007-09-10 2008-09-08 Procédé de production, au moyen d'une structure métallo-organique, de gaz de synthèse purifié à partir de gaz de synthèse contenant des traces de contaminants soufrés WO2009034048A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2698875A CA2698875A1 (fr) 2007-09-10 2008-09-08 Procede de production, au moyen d'une structure metallo-organique, de gaz de synthese purifie a partir de gaz de synthese contenant des traces de contaminants soufres
AU2008297220A AU2008297220A1 (en) 2007-09-10 2008-09-08 Process for producing purified synthesis gas from synthesis gas comprising trace amounts of sulphur contaminants with a metal-organic framework
CN200880106441A CN101801500A (zh) 2007-09-10 2008-09-08 利用金属有机骨架由含有痕量硫污染物的合成气生产纯化合成气的方法
EA201000464A EA201000464A1 (ru) 2007-09-10 2008-09-08 Способ получения очищенного синтез-газа из синтез-газа, содержащего следовые количества примеси сернистых соединений, с помощью металлорганической структуры
EP08803813A EP2190558A1 (fr) 2007-09-10 2008-09-08 Procédé de production, au moyen d'une structure métallo-organique, de gaz de synthèse purifié à partir de gaz de synthèse contenant des traces de contaminants soufrés

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07115991.7 2007-09-10
EP07115991 2007-09-10

Publications (1)

Publication Number Publication Date
WO2009034048A1 true WO2009034048A1 (fr) 2009-03-19

Family

ID=38951275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/061844 WO2009034048A1 (fr) 2007-09-10 2008-09-08 Procédé de production, au moyen d'une structure métallo-organique, de gaz de synthèse purifié à partir de gaz de synthèse contenant des traces de contaminants soufrés

Country Status (7)

Country Link
US (1) US8252255B2 (fr)
EP (1) EP2190558A1 (fr)
CN (1) CN101801500A (fr)
AU (1) AU2008297220A1 (fr)
CA (1) CA2698875A1 (fr)
EA (1) EA201000464A1 (fr)
WO (1) WO2009034048A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3553024A3 (fr) * 2018-03-30 2019-10-30 Panasonic Intellectual Property Management Co., Ltd. Dispositif de désulfuration, dispositif de génération d'hydrogène et système de pile à combustible
EP4013544A4 (fr) * 2019-08-15 2024-02-28 Numat Technologies Inc. Compositions de cadre organique métallique à roue à aubes de cuivre stables à l'eau (mof) et processus utilisant les mofs

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018045182A1 (fr) * 2016-09-01 2018-03-08 The Board Of Regents Of Hte University Of Texas System 1,2,3-triazoles disubstitués et trisubtitutés utilisés en tant qu'inhibiteurs de wnt
CN108097015B (zh) * 2016-11-25 2021-03-05 中国石油化工股份有限公司 一种胺液脱硫吸收剂及其制备方法和应用
CN106902746A (zh) * 2017-03-23 2017-06-30 江苏苏净集团有限公司 一种金属有机框架/分子筛复合吸附材料
CN109575306B (zh) * 2018-12-20 2022-03-25 华东理工大学 一种改性Cu-BTC材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1099680A (ja) * 1996-06-07 1998-04-21 Osaka Gas Co Ltd イオウ化合物の処理方法、処理材及び硫化水素処理材
WO1999037741A1 (fr) * 1998-01-23 1999-07-29 Exxon Research And Engineering Company Production de gaz de synthese a taux de soufre tres reduit a partir de gaz naturel avec recuperation d'hydrocarbures c4+/c¿5+?
DE102005054523A1 (de) * 2005-11-14 2007-05-16 Basf Ag Poröses metallorganisches Gerüstmaterial enthaltend ein weiteres Polymer
WO2008021194A2 (fr) * 2006-08-10 2008-02-21 The University Of Houston System Solides poreux, séparations sélectives, élimination de composés soufrés, adsorption

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3441370A (en) 1966-04-25 1969-04-29 Catalysts & Chem Inc Method of removing sulfur compounds from gases
US4359450A (en) * 1981-05-26 1982-11-16 Shell Oil Company Process for the removal of acid gases from gaseous streams
NL9002661A (nl) 1990-12-04 1992-07-01 Pacques Bv Werkwijze voor de verwijdering van h2s uit gas.
US5648054A (en) * 1995-01-31 1997-07-15 Gas Research Institute Double loop liquid-liquid H2 S removal process
US6929679B2 (en) 2002-02-01 2005-08-16 Basf Aktiengesellschaft Method of storing, uptaking, releasing of gases by novel framework materials
JP2003342260A (ja) 2002-05-23 2003-12-03 Osaka Gas Co Ltd 三次元型金属錯体、吸着材および分離材
US7753973B2 (en) * 2002-06-27 2010-07-13 Galloway Terry R Process and system for converting carbonaceous feedstocks into energy without greenhouse gas emissions
US7517389B2 (en) 2002-10-29 2009-04-14 Shell Oil Company Removal of sulphur compounds from hydrocarbon streams using adsorbents and regeneration of the loaded adsorbents
GB0227081D0 (en) * 2002-11-20 2002-12-24 Exxonmobil Res & Eng Co Methods for preparing catalysts
DE10355087A1 (de) * 2003-11-24 2005-06-09 Basf Ag Verfahren zur elektrochemischen Herstellung eines kristallinen porösen metallorganischen Gerüstmaterials
WO2006055030A2 (fr) 2004-04-19 2006-05-26 The Curators of the University of Missouri Office of Technology and Special Projects Procede permettant de separer et de stocker des gaz volatils
DE102004061238A1 (de) 2004-12-20 2006-06-22 Basf Ag Adsorptive Anreicherung von Methan in Methan-haltigen Gasgemischen
EP1700630B1 (fr) 2005-03-08 2011-05-25 Institut Français du Pétrole Procédé d'elimination de composés sulfururés de flu d'hydrocarbures gazeux au moyens d'adsorbants
DE102005022844A1 (de) 2005-05-18 2006-11-23 Basf Ag Abtrennung von Geruchsstoffen aus Gasen
DE102005054636A1 (de) 2005-11-16 2007-05-24 Basf Ag Metallorganische Gerüstmaterialien der III. Nebengruppe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1099680A (ja) * 1996-06-07 1998-04-21 Osaka Gas Co Ltd イオウ化合物の処理方法、処理材及び硫化水素処理材
WO1999037741A1 (fr) * 1998-01-23 1999-07-29 Exxon Research And Engineering Company Production de gaz de synthese a taux de soufre tres reduit a partir de gaz naturel avec recuperation d'hydrocarbures c4+/c¿5+?
DE102005054523A1 (de) * 2005-11-14 2007-05-16 Basf Ag Poröses metallorganisches Gerüstmaterial enthaltend ein weiteres Polymer
WO2008021194A2 (fr) * 2006-08-10 2008-02-21 The University Of Houston System Solides poreux, séparations sélectives, élimination de composés soufrés, adsorption

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 199826, Derwent World Patents Index; AN 1998-290380 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3553024A3 (fr) * 2018-03-30 2019-10-30 Panasonic Intellectual Property Management Co., Ltd. Dispositif de désulfuration, dispositif de génération d'hydrogène et système de pile à combustible
EP4013544A4 (fr) * 2019-08-15 2024-02-28 Numat Technologies Inc. Compositions de cadre organique métallique à roue à aubes de cuivre stables à l'eau (mof) et processus utilisant les mofs

Also Published As

Publication number Publication date
AU2008297220A1 (en) 2009-03-19
EP2190558A1 (fr) 2010-06-02
US20100207068A1 (en) 2010-08-19
CA2698875A1 (fr) 2009-03-19
EA201000464A1 (ru) 2010-08-30
CN101801500A (zh) 2010-08-11
US8252255B2 (en) 2012-08-28

Similar Documents

Publication Publication Date Title
EP1791622B1 (fr) Procede d'elimination de cos dans un flux de gaz de synthese contenant h2s et cos
US8043589B2 (en) Process for removing carbonyl sulphide and hydrogen sulphide from a synthesis gas stream
AU2008349418B2 (en) Contaminant removal from a gas stream
US8772361B2 (en) Process for producing a purified synthesis gas stream
US8252255B2 (en) Process for producing purified synthesis gas from synthesis gas comprising trace amounts of sulphur contaminants with a metal-organic framework
RU2508155C2 (ru) Способ и устройство для уменьшения сероокиси углерода, сероуглерода, соединений карбонилов металлов, сероводорода и циановодорода, аммиака и соединений мышьяка и хлора в сырьевом газе
JP2010513201A (ja) 圧力下のco2流の同時発生を伴う水素吸着による精製法
CA2663619C (fr) Procede d'elimination de sulphure d'hydrogene, de pentacarbonyle de fer et de tetracarbonyle de cuivre d'un flux gazeux de synthese
CA2967121C (fr) Procede d'extraction et de recuperation de h2s dans un courant gazeux, par adsorption cyclique
FR2856049A1 (fr) Purification d'un melange h2/co par catalyse des impuretes
JP2519998B2 (ja) 炭化水素から水素を製造する方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880106441.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08803813

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008803813

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008297220

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 12676475

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2698875

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2008297220

Country of ref document: AU

Date of ref document: 20080908

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PI 2010000990

Country of ref document: MY

WWE Wipo information: entry into national phase

Ref document number: 201000464

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: DZP2010000252

Country of ref document: DZ