WO2009030796A2 - Use of a mixture of compost and vivianite in the prevention and control of iron chlorosis in plants - Google Patents

Use of a mixture of compost and vivianite in the prevention and control of iron chlorosis in plants Download PDF

Info

Publication number
WO2009030796A2
WO2009030796A2 PCT/ES2008/000577 ES2008000577W WO2009030796A2 WO 2009030796 A2 WO2009030796 A2 WO 2009030796A2 ES 2008000577 W ES2008000577 W ES 2008000577W WO 2009030796 A2 WO2009030796 A2 WO 2009030796A2
Authority
WO
WIPO (PCT)
Prior art keywords
compost
vivianite
iron
mixture
plants
Prior art date
Application number
PCT/ES2008/000577
Other languages
Spanish (es)
French (fr)
Other versions
WO2009030796A3 (en
Inventor
Ana DE SANTIAGO ROLDÁN
Eusebio Carmona Chiara
José Manuel QUINTERO ARIZA
Antonio DELGADO GARCÍA
María del Carmen DEL CAMPILLO GARCÍA
Vidal BARRÓN LOPE DE TORRE
José TORRENT CASTELLET
Original Assignee
Universidad De Sevilla
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ES200702426A external-priority patent/ES2315195B2/en
Application filed by Universidad De Sevilla filed Critical Universidad De Sevilla
Publication of WO2009030796A2 publication Critical patent/WO2009030796A2/en
Publication of WO2009030796A3 publication Critical patent/WO2009030796A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05BPHOSPHATIC FERTILISERS
    • C05B17/00Other phosphatic fertilisers, e.g. soft rock phosphates, bone meal

Definitions

  • the object of the present invention is the use of compost, obtained from agro-industrial waste, for the prevention and control of iron deficiency [Fe (II)] in plants, by means of the joint application of a mixture of compost with a iron salt [Fe (II)] to the soil directly or through irrigation water.
  • This invention can be used as a fertilizer product in the agricultural sector.
  • Iron chlorosis is a deficiency of iron (Fe) in plants induced by soil properties when plants grow in soils with basic pH. It is a common problem in calcareous soils, which are frequent in arid and semi-arid areas of the planet. The typical symptomatology is an internervial chlorosis in the areas closest to the apex, and there is a clear negative effect on growth and crop production.
  • the correction of iron chlorosis implies the application to the soil or the plant of an iron source.
  • various inorganic products have been used for soil application, such as ferrous iron salts, pyrites and various iron oxides.
  • the required doses were high due to the reduced solubility of some, or, because the iron applied in the case of soluble compounds quickly passed into insoluble forms and, therefore, little assimilable by the plants.
  • the most efficient sources are chelates (in conditions of calcareous soils Fe-EDDHA) that have become common in the last thirty years. They are effective but very expensive products, which can condition the economic viability of certain crops sensitive to such deficiency in calcareous soils.
  • Another limitation of chelates is their reduced persistence and the susceptibility of being washed, which forces several treatments throughout a crop cycle.
  • composted materials can be obtained that can be interesting organic sources for application to agricultural soils or culture media.
  • the application of compost together with sources of Fe can be interesting, for everything I commented previously, in the prevention and correction of the iron chlorosis of the plants.
  • Soil 235 105-114. Lindsay W. L. and Norwell W.A. 1978. Development of DTPA test for zinc, iron, manganese and copper. Soil Sci. Soc. Am. J. 42, 215-221.
  • the present invention aims at the application to agricultural soils or compost culture media together with sources of Fe, in the prevention and control of ferric chlorosis in plants.
  • the most efficient solution to iron chlorosis is the application of Fe chelates (particularly Fe-EDDHA in calcareous soils).
  • Fe-EDDHA Fe-EDDHA in calcareous soils.
  • Sources of Faith such as vivianite (ferrous phosphate)
  • vivianite ferrrous phosphate
  • the mixture of vivianite and compost is performed by preparing a suspension of compost to which a solution of ferrous sulfate and subsequently diammonium phosphate is added.
  • the precipitation of the vivianite formed from the two added salts occurs.
  • the resulting product is mixed with the culture medium at a rate that provides 0.3 g of Fe per kg of culture medium or soil, or 0.3 kg per tree in the case of woody crops.
  • any compost obtained by composting process can be used (aerobic fermentation in open batteries with flip, batteries with aeration ”) that allows to obtain a microbiologically stable product, free of phytotoxic substances and pathogen residues, plants or weeds.
  • Anaerobic fermentation by-products are not recommended.
  • the product must have a high humic fraction, which according to previous works contributes to raising the efficiency of the Fe sources added to the plant.
  • Compost is not the source of Faith for the plant. Its action is to favor a lower crystallinity in oxides formed from said sources and also the complexation of Fe by organic compounds present in the compost.
  • the complexes between Fe and organic compounds present in the compost have been revealed as an effective source of Fe for plants.
  • the presence of humic substances in the compost can favor the development of the plant by direct effect on its metabolism (effect similar to auxins, effect on proton pumps and root reducing capacity) that can also increase the assimilation of Fe by Ia plant.
  • the method of production of the mixture will be: 1. Suspend a given amount of compost in a solution containing 7.5% (w / v) FeSO 4 -7H 2 O.
  • a compost obtained from industrial cork waste has been used.
  • the compost was obtained using the open trapezoid battery method with a base of 2.5 to 3.5 m.
  • the frequency of flips was established according to composting evolution parameters.
  • the time required to obtain a stable product was about six months.
  • the pH of the product obtained was basic (depending on the battery between 7.5 and 8.5).
  • the mixing was carried out as described in the previous section, using a suspension with 30% (w / v) of compost in a solution of ferrous sulfate. Two mixtures were made, which differed in the time elapsed until the addition of the diammonium phosphate. It was not necessary to adjust the pH after the addition of this last product, since it was basic, so it is assumed that all the vivianite that could be formed from the two salts precipitated.
  • the resulting suspension should have 0.5% vivianite (w / v).
  • the mixture of compost and vivianite type 1 was prepared by dissolving 15 g of FeSO 4 heptahydrate in about 40 ml of water, to which immediately afterwards 30 g of cork compost were added. The mixture was homogenized and allowed to stand for 18 hours. After the time elapsed, 5 g of diammonium phosphate were dissolved. Subsequently, the pH of the mixture was brought to 6 with 5N KOH.
  • the type 2 mixture was prepared by dissolving 15 g of FeSO 4 heptahydrate in about 40 ml of water. Subsequently, 5 g of diammonium phosphate were dissolved and the pH was brought to 6 using 5N KOH. The volume was brought to 50 ml with water. Finally, 30 g of compost were added.
  • the amount of Fe applied was 0.3 g per Kg of culture medium (1 g of vivianite).
  • the Fe / compost ratio was 1: 10 by weight in the treatments with vivianite and compost mixture, that is, 3 g of compost applied per Kg of culture medium, which was calcareous sand with 99% calcium carbonate as constituent principal.
  • Type 1 was especially effective by increasing Fe in the plant and in the culture medium.
  • the type 1 mixture increased twice the assimilable reserve of Fe in the medium (estimated by extraction with DTPA) and 60% the Fe in plant and the root reducing capacity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Fertilizers (AREA)

Abstract

The invention relates to the use of compost obtained from agorindustrial waste for the prevention and control of iron [Fe (II)] deficiency in plants, whereby a mixture of compost and an iron [Fe (II)] salt is applied to the soil either directly or using irrigation water. The invention can be used as a fertiliser in the agricultural sector.

Description

Título Title
Utilización de mezcla de compost y vivianita en Ia prevención y control de Ia clorosis férrica en plantasUse of mixture of compost and vivianite in the prevention and control of iron chlorosis in plants
Objeto de Ia invenciónObject of the invention
El objeto de Ia presente invención es Ia utilización de compost, obtenido a partir de residuos agroindustriales, para Ia prevención y el control de Ia deficiencia de hierro [Fe (II)] en plantas, mediante Ia aplicación conjunta de una mezcla de compost con una sal de hierro [Fe (II)] al suelo directamente o mediante el agua de riego. Esta invención puede ser usada como producto fertilizante en el sector agrícola.The object of the present invention is the use of compost, obtained from agro-industrial waste, for the prevention and control of iron deficiency [Fe (II)] in plants, by means of the joint application of a mixture of compost with a iron salt [Fe (II)] to the soil directly or through irrigation water. This invention can be used as a fertilizer product in the agricultural sector.
Estado de Ia técnicaState of the art
La clorosis férrica es una deficiencia de hierro (Fe) en las plantas inducida por las propiedades del suelo cuando las plantas crecen en suelos con pH básico. Es un problema habitual en suelos calcáreos, que son frecuentes en áreas áridas y semiáridas del planeta. La sintomatología típica es una clorosis internervial en las zonas más próximas a los ápices, y hay un claro efecto negativo sobre crecimiento y producción del cultivo. La corrección de Ia clorosis férrica implica Ia aplicación al suelo o a Ia planta de una fuente de hierro. Tradicionalmente se han utilizado, para su aplicación al suelo, diversos productos de naturaleza inorgánica, como sales de hierro en forma ferrosa, piritas y diversos óxidos de hierro. Las dosis requeridas eran elevadas por Ia reducida solubilidad de algunos, o bien, porque el hierro aplicado en el caso de compuestos solubles pasaba rápidamente a formas insolubles y, por tanto, poco asimilable por las plantas. Las fuentes más eficientes son los quelatos (en condiciones de suelos calcáreos el Fe-EDDHA) que se han hecho habituales en los últimos treinta años. Son productos eficaces pero muy caros, Io que puede condicionar Ia viabilidad económica de ciertos cultivos sensibles a tal deficiencia en suelos calcáreos. Otra limitación de los quelatos es su reducida persistencia y Ia susceptibilidad de ser lavados, Io que obliga a varios tratamientos a Io largo de un ciclo de cultivo.Iron chlorosis is a deficiency of iron (Fe) in plants induced by soil properties when plants grow in soils with basic pH. It is a common problem in calcareous soils, which are frequent in arid and semi-arid areas of the planet. The typical symptomatology is an internervial chlorosis in the areas closest to the apex, and there is a clear negative effect on growth and crop production. The correction of iron chlorosis implies the application to the soil or the plant of an iron source. Traditionally, various inorganic products have been used for soil application, such as ferrous iron salts, pyrites and various iron oxides. The required doses were high due to the reduced solubility of some, or, because the iron applied in the case of soluble compounds quickly passed into insoluble forms and, therefore, little assimilable by the plants. The most efficient sources are chelates (in conditions of calcareous soils Fe-EDDHA) that have become common in the last thirty years. They are effective but very expensive products, which can condition the economic viability of certain crops sensitive to such deficiency in calcareous soils. Another limitation of chelates is their reduced persistence and the susceptibility of being washed, which forces several treatments throughout a crop cycle.
Schwetmann y Fitzpatrick (1992) consideran que Ia preservación de óxidos de baja cristalinidad en el suelo (en especial ferrihidrita) es fundamental para mantener hierro disponible para microorganismos y plantas, por Io que aquellos factores que contribuyan a una baja cristalinidad en el óxido formado a partir del Fe2+ liberado por las fuentes de Fe aplicadas contribuirán a que el hierro presente en dichos óxidos sea más biodisponible (utilizable por plantas y microorganismos). Este hecho explica Ia eficiencia del fosfato ferroso (vivanita) sobre otras sales de Fe como el sulfato ferroso, ya que el fosfato presente en Ia vivianita favorece que se formen predominantemente óxidos de baja cristalinidad (Barrón et al., 1997; Gálvez et al., 1999). La presencia de ciertos iones y compuestos orgánicos puede actuar como inhibidores de Ia cristalización, como Delgado et al. (2002a, 2002b) han comprobado para otros minerales que se forman en ambientes edáficos. Esto puede contribuir a una mayor eficiencia del hierro aplicado como sales inorgánicas en Ia corrección de Ia clorosis férrica. Se ha observado que Ia materia orgánica en el medio de crecimiento incrementa Ia disponibilidad de hierro para las plantas (Wilkinson, 1972). Esto parece ser debido a dos procesos: (i) Ia complejación del Fe que Io protege de Ia precipitación, manteniéndolo más disponible y contribuye a Ia disolución de óxidos de hierro de baja cristalinidad, y (ii) el incremento de Ia difusión del Fe hacia las raíces. La complejación de los cationes metálicos por Ia materia orgánica del suelo los puede hacer más disponibles para las plantas (Datta et al., 2001 ; Greman et al., 2001 ; Pandeya et al. 1998). Pintón et al. (1999) comprobaron que Ia recuperación de plantas deficientes en hierro era más rápida cuando el hierro se aplicaba junto con sustancias húmicas que si se aplicaba sólo o con otros complejantes orgánicos como EDTA o citrato. Estas evidencias inducen a pensar que el suministro de hierro en forma de sales inorgánicas como Ia vivianita o el sulfato ferroso junto con una fuente orgánica puede incrementar Ia eficiencia de dichas fuentes como correctores de Ia clorosis férrica.Schwetmann and Fitzpatrick (1992) consider that the preservation of oxides of low crystallinity in the soil (especially ferrihydrite) is essential to maintain iron available for microorganisms and plants, so that those factors that contribute to a low crystallinity in the oxide formed from Faith 2+ released by the sources of Faith applied will contribute to the iron present in these oxides it is more bioavailable (usable by plants and microorganisms). This fact explains the efficiency of ferrous phosphate (vivanite) over other Fe salts such as ferrous sulfate, since the phosphate present in vivianite favors the formation of oxides of low crystallinity (Barrón et al., 1997; Galvez et al. , 1999). The presence of certain ions and organic compounds can act as inhibitors of crystallization, such as Delgado et al. (2002a, 2002b) have been checked for other minerals that are formed in edaphic environments. This may contribute to a greater efficiency of the iron applied as inorganic salts in the correction of iron chlorosis. It has been observed that the organic matter in the growth medium increases the availability of iron for the plants (Wilkinson, 1972). This seems to be due to two processes: (i) the complexation of the Faith that protects it from precipitation, keeping it more available and contributing to the dissolution of iron oxides of low crystallinity, and (ii) the increase in the diffusion of the Faith towards the roots. The complexation of metal cations by soil organic matter can make them more available to plants (Datta et al., 2001; Greman et al., 2001; Pandeya et al. 1998). Pintón et al. (1999) found that the recovery of iron-deficient plants was faster when iron was applied together with humic substances than if it was applied alone or with other organic complexing agents such as EDTA or citrate. These evidences lead us to believe that the supply of iron in the form of inorganic salts such as vivianite or ferrous sulfate together with an organic source can increase the efficiency of said sources as correctors of iron chlorosis.
A partir de residuos orgánicos, se pueden obtener materiales compostados ("compost") que pueden resultar fuentes orgánicas interesantes para su aplicación a suelos agrícolas o medios de cultivo. La aplicación de compost junto con fuentes de Fe pueden resultar interesantes, por todo Io comentado anteriormente, en Ia prevención y corrección de Ia clorosis férrica de las plantas.From organic waste, composted materials ("compost") can be obtained that can be interesting organic sources for application to agricultural soils or culture media. The application of compost together with sources of Fe can be interesting, for everything I commented previously, in the prevention and correction of the iron chlorosis of the plants.
ReferenciasReferences
Barrón, V., Gálvez N., Hochela M. F. y Torrent J. 1997. Epitaxial overgrowth of goethite on hematite synthesized in phosphate media: a scanning forcé and transmissión electrón microscopy study. American míneralogist 82: 1091-1100. Datta A., Sanyal S. K., y Saha S. 2001. A study on natural and synthetic humic acids and their complexing ability towards cadmium. Plant and Soil 235: 115-125.Barrón, V., Gálvez N., Hochela MF and Torrent J. 1997. Epitaxial overgrowth of goethite on hematite synthesized in phosphate media: a scanning force and transmission electron microscopy study. American mineralogist 82: 1091-1100. Datta A., Sanyal SK, and Saha S. 2001. A study on natural and synthetic humic acids and their complexing ability towards cadmium. Plant and Soil 235: 115-125.
Delgado A., Madrid A., Kassem S., Andreu L. Y del Campillo M. C. 2002a.Delgado A., Madrid A., Kassem S., Andreu L. And del Campillo M. C. 2002a.
Phosphorus fertilizer recoven/ from calcareous soils amended with humic and fulvic acids. Plant and Soil, 245: 277-286.Phosphorus fertilizer recoven / from calcareous soils amended with humic and fulvic acids. Plant and Soil, 245: 277-286.
Eynard, A., del Campillo, M. C1 Barrón, V. y Torrent, J. (1992). Use of vivianiteEynard, A., del Campillo, M. C 1 Barrón, V. and Torrent, J. (1992). Use of vivianite
(Fe3(PO4)2 8H2O) to prevent ¡ron chlorosis in calcareous soils. Fertilizer Research.(Fe 3 (PO 4 ) 2 8H 2 O) to prevent rum chlorosis in calcareous soils. Fertilizer Research
31 :61-67.31: 61-67.
Gálvez N., Barrón V. y Torrent J. 1999 Effect of phosphate on the crystallization of hematite, goethite, and lepidocrocite from ferrihydrite. Clays & Clay Minerals 47:Gálvez N., Barrón V. and Torrent J. 1999 Effect of phosphate on the crystallization of hematite, goethite, and lepidocrocite from ferrihydrite. Clays & Clay Minerals 47:
304-311.304-311.
Greman H., Velikonja S., Vodnik D., Kos B. y Lestan D. 2001. EDATA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant andGreman H., Velikonja S., Vodnik D., Kos B. and Lestan D. 2001. EDATA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant and
Soil 235: 105-114. Lindsay W. L. y Norwell W.A. 1978. Development of DTPA test for zinc, iron, manganese and cópper. Soil Sci. Soc. Am. J. 42, 215-221.Soil 235: 105-114. Lindsay W. L. and Norwell W.A. 1978. Development of DTPA test for zinc, iron, manganese and copper. Soil Sci. Soc. Am. J. 42, 215-221.
Loeppert R. H. y Inskeep W.P. 1996. Iron. En: Sparks D.L (Ed.) Methods of soils analysis. Part 3, Chemical Methods. Soil Science Society of America. Madison, WlLoeppert R. H. and Inskeep W.P. 1996. Iron. In: Sparks D.L (Ed.) Methods of soils analysis. Part 3, Chemical Methods. Soil Science Society of America. Madison, Wl
Rosado R., del Campillo M. C, Martínez M. A., Barrón V. y Torrent J. 2002. Long- term effectiveness of vivianite in reducing iron clorosis in olive trees. Plant and SoilRosado R., from Campillo M. C, Martínez M. A., Barrón V. and Torrent J. 2002. Long-term effectiveness of vivianite in reducing iron chlorosis in olive trees. Plant and Soil
241 : 139-144.241: 139-144.
Pandeya S. B., Singh A.K. y Dhar P. 1998. Influence of fulvic acid on transport of iron in soils and uptake by paddy seedlings. Plant and Soil, 198: 117-125.Pandeya S. B., Singh A.K. and Dhar P. 1998. Influence of fulvic acid on transport of iron in soils and uptake by paddy seedlings. Plant and Soil, 198: 117-125.
Pintón R., Cesco S., Santi S., Agnolon F. Y Varanini Z. 1999. Water-extracta ble humic substances enhance iron deficiency responses by Fe-deficient cucumber plants. Plant and Soil 210: 145-157.Pintón R., Cesco S., Santi S., Agnolon F. and Varanini Z. 1999. Water-extractable ble humic substances enhance iron deficiency responses by Fe-deficient cucumber plants. Plant and Soil 210: 145-157.
Schwertmann U. y Fitzpatrick R.W. 1992. Iron minerals in surface environments.Schwertmann U. and Fitzpatrick R.W. 1992. Iron minerals in surface environments.
En Skinner H. CW. y Fitspatrick R.W. (eds) Biomineralization. Processes of iron and manganese -modern and ancient environments-. Catena supplement 21. Catena Verlag, Cremlingen-Desdedt, Alemania.In Skinner H. CW. and Fitspatrick R.W. (eds) Biomineralization. Processes of iron and manganese -modern and ancient environments-. Catena supplement 21. Catena Verlag, Cremlingen-Desdedt, Germany.
Descripción de Ia invenciónDescription of the invention
La presente invención tiene por objeto Ia aplicación a suelos agrícolas o medios de cultivo de compost junto con fuentes de Fe, en Ia prevención y el control de Ia clorosis férrica en plantas. La solución más eficiente a Ia clorosis férrica es Ia aplicación de quelatos de Fe (particularmente Fe-EDDHA en suelos calcáreos). Sin embargo, el elevado precio de estos productos hace únicamente posible su aplicación en cultivos altamente rentables. Fuentes de Fe como Ia vivianita (fosfato ferroso), se ha mostrado muy eficaz en Ia corrección y prevención del problema, incrementando su eficacia cuando se aplica junto con una fuente orgánica, compost obtenido a partir de residuos agroindustriales. La mezcla de vivianita y compost se realiza mediante Ia preparación de una suspensión de compost a Ia que se añade una disolución de sulfato ferroso y posteriormente de fosfato diamónico. Cuando el pH del compost es superior a 6, se produce Ia precipitación de Ia vivianita formada a partir de las dos sales añadidas. El producto resultante se mezcla con el medio de cultivo a razón de manera que se aporten 0.3 g de Fe por kg de medio de cultivo o suelo, ó 0.3 kg por árbol en el caso de cultivos leñosos.The present invention aims at the application to agricultural soils or compost culture media together with sources of Fe, in the prevention and control of ferric chlorosis in plants. The most efficient solution to iron chlorosis is the application of Fe chelates (particularly Fe-EDDHA in calcareous soils). However, the high price of these products only makes their application possible in highly profitable crops. Sources of Faith such as vivianite (ferrous phosphate), has been very effective in correcting and preventing the problem, increasing its effectiveness when applied together with an organic source, compost obtained from agroindustrial waste. The mixture of vivianite and compost is performed by preparing a suspension of compost to which a solution of ferrous sulfate and subsequently diammonium phosphate is added. When the pH of the compost is greater than 6, the precipitation of the vivianite formed from the two added salts occurs. The resulting product is mixed with the culture medium at a rate that provides 0.3 g of Fe per kg of culture medium or soil, or 0.3 kg per tree in the case of woody crops.
Para Ia realización de las mezclas se pueden utilizar cualquier compost obtenido mediante proceso de compostaje (fermentación aeróbica en pilas abiertas con volteo, pilas con aireación...) que permita obtener un producto microbiológicamente estable, libre de sustancias fitotóxicas y residuos de patógenos, plantas o malas hierbas. No son recomendables subproductos de fermentaciones anaeróbicas. El producto debe tener una fracción húmica elevada, que según trabajos precedentes contribuye a elevar Ia eficiencia de las fuentes de Fe añadidas para Ia planta. El compost no es Ia fuente de Fe para Ia planta. Su acción es favorecer una menor cristalinidad en óxidos formados a partir de dichas fuentes y también Ia complejación de Fe por compuestos orgánicos presentes en el compost. Los complejos entre Fe y compuestos orgánicos presentes en el compost se han revelado como una fuente efectiva de Fe para las plantas. La presencia de sustancias húmicas en el compost puede favorecer el desarrollo de Ia planta por efecto directo sobre su metabolismo (efecto similar a auxinas, efecto sobre bombas de protones y capacidad reductora de raíz) que pueden, además, incrementar Ia asimilación de Fe por Ia planta.For the realization of the mixtures, any compost obtained by composting process can be used (aerobic fermentation in open batteries with flip, batteries with aeration ...) that allows to obtain a microbiologically stable product, free of phytotoxic substances and pathogen residues, plants or weeds. Anaerobic fermentation by-products are not recommended. The product must have a high humic fraction, which according to previous works contributes to raising the efficiency of the Fe sources added to the plant. Compost is not the source of Faith for the plant. Its action is to favor a lower crystallinity in oxides formed from said sources and also the complexation of Fe by organic compounds present in the compost. The complexes between Fe and organic compounds present in the compost have been revealed as an effective source of Fe for plants. The presence of humic substances in the compost can favor the development of the plant by direct effect on its metabolism (effect similar to auxins, effect on proton pumps and root reducing capacity) that can also increase the assimilation of Fe by Ia plant.
Es recomendable que Ia mezcla de compost y vivianita se haga en húmedo y que Ia síntesis de Ia vivianita se realice en un medio donde el compost se encuentre en suspensión. El método de producción de Ia mezcla será: 1. Suspender una cantidad dada de compost en una disolución que contenga 7.5% (p/v) de FeSO4-7H2O.It is recommended that the mixture of compost and vivianite be made wet and that the synthesis of vivianite be performed in a medium where the compost is in suspension. The method of production of the mixture will be: 1. Suspend a given amount of compost in a solution containing 7.5% (w / v) FeSO 4 -7H 2 O.
2. Añadir a Ia suspensión 25 Kg de (NH4)2HPO4 por cada m3.2. Add 25 kg of (NH 4 ) 2 HPO 4 to each suspension per m 3 .
3. Agitar y homogeneizar durantelO minutos. Si el pH de Ia suspensión no fuese superior a 6 deberá ser elevado con Ia adición de K(OH).3. Stir and homogenize for 10 minutes. If the pH of the suspension does not exceed 6, it must be elevated with the addition of K (OH).
Modo de realización de Ia invenciónEmbodiment of the invention
Como ejemplo de realización de Ia invención, se ha utilizado un compost obtenido a partir de residuo industrial de corcho. El compost se obtuvo mediante el método de pilas trapezoides abiertas con base de 2.5 a 3.5 m. La frecuencia de volteos se estableció según parámetros de evolución del compostaje. El tiempo necesario para Ia obtención de un producto estable fue de unos seis meses. Tras el compostaje, el pH del producto obtenido fue básico (dependiendo de Ia pila entre 7.5 y 8.5). La mezcla se realizó según se describe en el apartado anterior, utilizando para ello una suspensión con un 30% (p/v) de compost en una disolución de sulfato ferroso. Se realizaron dos mezclas, que difirieron en el tiempo transcurrido hasta Ia adición del fosfato diamónico. No fue preciso ajustar el pH tras Ia adición de este último producto, ya que era básico, con Io que es de suponer que precipitó toda Ia vivianita que se podía formar a partir de las dos sales. La suspensión resultante debe tener 0.5% de vivianita (p/v).As an example of embodiment of the invention, a compost obtained from industrial cork waste has been used. The compost was obtained using the open trapezoid battery method with a base of 2.5 to 3.5 m. The frequency of flips was established according to composting evolution parameters. The time required to obtain a stable product was about six months. After composting, the pH of the product obtained was basic (depending on the battery between 7.5 and 8.5). The mixing was carried out as described in the previous section, using a suspension with 30% (w / v) of compost in a solution of ferrous sulfate. Two mixtures were made, which differed in the time elapsed until the addition of the diammonium phosphate. It was not necessary to adjust the pH after the addition of this last product, since it was basic, so it is assumed that all the vivianite that could be formed from the two salts precipitated. The resulting suspension should have 0.5% vivianite (w / v).
Para comprobar Ia eficiencia del producto se realizaron dos ensayos con 6 repeticiones utilizando los siguientes tratamientos:To verify the efficiency of the product, two trials were carried out with 6 repetitions using the following treatments:
1. Testigo con adición de Fe-EDDHA (que es una fuente efectiva de Fe en medios básicos) en disolución nutritiva (10 μM)1. Witness with the addition of Fe-EDDHA (which is an effective source of Fe in basic media) in nutritive solution (10 μM)
2. Vivianita sin compost.2. Vivianita without compost.
3. Compost + vivianita (tipo 1)3. Compost + vivianite (type 1)
4. Compost + vivianita (tipo 2).4. Compost + vivianite (type 2).
La mezcla de compost y vivianita tipo 1 se preparó disolviendo 15 g de FeSO4 heptahidratado en unos 40 mi de agua, a los que inmediatamente después se añadieron 30 g de compost de corcho. La mezcla se homogeneizó y se dejó reposar durante 18 horas. Una vez transcurrido el tiempo se disolvieron 5 g de fosfato diamónico. Posteriormente el pH de Ia mezcla se llevó a 6 con 5N KOH. La mezcla tipo 2 se preparó disolviendo 15 g de FeSO4 heptahidratado en unos 40 mi de agua. Posteriormente se disolvieron 5 g de fosfato diamónico y el pH se llevó a 6 utilizando 5N KOH. El volumen se llevó a 50 mi con agua. Finalmente se añadieron los 30 g de compost.The mixture of compost and vivianite type 1 was prepared by dissolving 15 g of FeSO 4 heptahydrate in about 40 ml of water, to which immediately afterwards 30 g of cork compost were added. The mixture was homogenized and allowed to stand for 18 hours. After the time elapsed, 5 g of diammonium phosphate were dissolved. Subsequently, the pH of the mixture was brought to 6 with 5N KOH. The type 2 mixture was prepared by dissolving 15 g of FeSO 4 heptahydrate in about 40 ml of water. Subsequently, 5 g of diammonium phosphate were dissolved and the pH was brought to 6 using 5N KOH. The volume was brought to 50 ml with water. Finally, 30 g of compost were added.
En los tratamientos 2, 3 y 4, Ia cantidad de Fe aplicada fue de 0.3 g por Kg de medio de cultivo (1 g de vivianita). La relación Fe / compost fue de 1 :10 en peso en los tratamientos con mezcla de vivianita y compost, o sea, 3 g de compost aplicado por Kg de medio de cultivo, que fue arena calcárea con un 99% de carbonato calcico como constituyente principal.In treatments 2, 3 and 4, the amount of Fe applied was 0.3 g per Kg of culture medium (1 g of vivianite). The Fe / compost ratio was 1: 10 by weight in the treatments with vivianite and compost mixture, that is, 3 g of compost applied per Kg of culture medium, which was calcareous sand with 99% calcium carbonate as constituent principal.
10 Se estudiaron variables relacionadas con Ia nutrición de Fe de las plantas. En el primer cultivo, sólo el contenido en clorofila medido con medidor SPAD. En el segundo se analizó además el contenido en Fe de Ia parte aérea, el Fe extraíble con DTPA en el medio tras el cultivo y Ia capacidad reductora de raíz. Los resultados se indican en Ia Tabla 1.10 Variables related to plant Fe nutrition were studied. In the first culture, only the chlorophyll content measured with SPAD meter. In the second one, the Fe content of the aerial part, the extractable Fe with DTPA in the medium after cultivation and the root reducing capacity were also analyzed. The results are indicated in Table 1.
15fifteen
Figure imgf000007_0001
Se puede observar que los tratamientos no dieron diferencias significativas en clorofila en el primer cultivo. En el segundo, todos los tratamientos con vivianita dieron significativamente más clorofila en planta que el quelato. Se puede apreciar que en las mezclas de compost con vivianita el Fe en el medio de cultivo y Ia capacidad reductora de raíz fue significativamente mayor que en el resto de los tratamientos. El compost mezclado con vivianita tipo 1 fue, además, el que más incrementó Ia concentración de Fe en Ia parte aérea.
Figure imgf000007_0001
It can be seen that the treatments did not give significant differences in chlorophyll in the first culture. In the second, all treatments with vivianite gave significantly more chlorophyll in the plant than chelate. It can be seen that in the compost mixtures with vivianite, the Fe in the culture medium and the root reducing capacity was significantly greater than in the rest of the treatments. The compost mixed with vivianite type 1 was also the one that most increased the concentration of Fe in the aerial part.
A tenor de estos resultados se puede concluir que Ia mezcla de compost y vivianita es una fuente efectiva de Fe para las plantas. El tipo 1 fue especialmente efectivo incrementando Fe en planta y en el medio de cultivo. Respecto a Ia vivianita sin mezcla, Ia mezcla tipo 1 incrementó el doble Ia reserva asimilable de Fe en el medio (estimada mediante extracción con DTPA) y un 60% el Fe en planta y Ia capacidad reductora de raíz. Based on these results, it can be concluded that the mixture of compost and vivianite is an effective source of Fe for plants. Type 1 was especially effective by increasing Fe in the plant and in the culture medium. Regarding vivianite without mixing, the type 1 mixture increased twice the assimilable reserve of Fe in the medium (estimated by extraction with DTPA) and 60% the Fe in plant and the root reducing capacity.

Claims

Reivindicaciones Claims
1. Utilización de mezcla de compost y vivianita en Ia prevención y control de Ia clorosis férrica en plantas caracterizado por Ia aplicación al medio de crecimiento, suelo o sustrato, de mezcla de productos orgánicos obtenidos mediante procesos de compostaje y vivianita como producto fertilizante.1. Use of a mixture of compost and vivianite in the prevention and control of iron chlorosis in plants characterized by the application to the growth medium, soil or substrate, of a mixture of organic products obtained by composting and vivianite processes as a fertilizer product.
2. Utilización de mezcla de compost y vivianita en Ia prevención y control de Ia clorosis férrica en plantas según reivindicación 1 , caracterizado porque Ia aplicación comprende una mezcla de compost y vivianita, siendo Ia dosis recomendada de 1g de vivianita y 3 g de compost por cada gramo de vivianita. 2. Use of mixture of compost and vivianite in the prevention and control of iron chlorosis in plants according to claim 1, characterized in that the application comprises a mixture of compost and vivianite, the recommended dose being 1g of vivianite and 3 g of compost per Every gram of vivianite.
PCT/ES2008/000577 2007-09-06 2008-09-04 Use of a mixture of compost and vivianite in the prevention and control of iron chlorosis in plants WO2009030796A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200702426 2007-09-06
ES200702426A ES2315195B2 (en) 2004-06-11 2007-09-06 USE OF COMPOST AND VIVIANITA MIXTURE IN THE PREVENTION AND CONTROL OF FERRIC CHLOROSIS IN PLANTS.

Publications (2)

Publication Number Publication Date
WO2009030796A2 true WO2009030796A2 (en) 2009-03-12
WO2009030796A3 WO2009030796A3 (en) 2009-05-14

Family

ID=40430101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2008/000577 WO2009030796A2 (en) 2007-09-06 2008-09-04 Use of a mixture of compost and vivianite in the prevention and control of iron chlorosis in plants

Country Status (1)

Country Link
WO (1) WO2009030796A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013093042A3 (en) * 2011-12-21 2013-08-15 Chemische Fabrik Budenheim Kg Nutrient composition for biological systems
EP2666759A1 (en) * 2012-05-24 2013-11-27 Fertiberia, S.A. Method of synthesis of ferrous phosphate from waste materials
EP3162770A2 (en) 2015-11-02 2017-05-03 Vitens N.V. A method for efficiently recycling a stream containing iron sludge

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1265660A (en) * 1968-08-17 1972-03-01
ES2035766A1 (en) * 1991-04-03 1993-04-16 Torrent Castellet Jose Correcting ferric chlorosis in plants
US20040089042A1 (en) * 2002-11-12 2004-05-13 Magic 100 Power Soil, Inc. Organic potting soil and soil conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1265660A (en) * 1968-08-17 1972-03-01
ES2035766A1 (en) * 1991-04-03 1993-04-16 Torrent Castellet Jose Correcting ferric chlorosis in plants
US20040089042A1 (en) * 2002-11-12 2004-05-13 Magic 100 Power Soil, Inc. Organic potting soil and soil conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013093042A3 (en) * 2011-12-21 2013-08-15 Chemische Fabrik Budenheim Kg Nutrient composition for biological systems
AU2012356769B2 (en) * 2011-12-21 2016-04-14 Chemische Fabrik Budenheim Kg Nutrient composition for biological systems
US9375026B2 (en) 2011-12-21 2016-06-28 Chemische Fabrik Budenheim Kg Nutrient composition for biological systems
EP2666759A1 (en) * 2012-05-24 2013-11-27 Fertiberia, S.A. Method of synthesis of ferrous phosphate from waste materials
EP3162770A2 (en) 2015-11-02 2017-05-03 Vitens N.V. A method for efficiently recycling a stream containing iron sludge

Also Published As

Publication number Publication date
WO2009030796A3 (en) 2009-05-14

Similar Documents

Publication Publication Date Title
He et al. Clinoptilolite zeolite and cellulose amendments to reduce ammonia volatilization in a calcareous sandy soil
CN103958444B (en) Fluid ions composition, preparation method and use
CN101624305B (en) Organic fluid fertilizer and preparation method and application thereof
ES2335562B2 (en) HETEROMOLECULAR METALIC COMPLEXES (CHELATES) OF HUMAN NATURE.
Mengel Agronomic measures for better utilization of soil and fertilizer phosphates
CN103936500A (en) Fertilizer composition for improving stress resistance of land planted pear trees
CN104692937A (en) Double-chelate liquid fertilizer and preparation method thereof
CN109400371A (en) A kind of carbon coupled mode stability compound fertilizer's fertilizer and preparation method
US20080134575A1 (en) Cremation ash as phosphorous source for soil additive or fertilizer
Han et al. Application of humic acid and hydroxyapatite in Cd-contaminated alkaline maize cropland: A field trial
Sharma et al. Emerging role of phosphate nanoparticles in agriculture practices
Tiwari et al. Nano technology based P fertilizers for higher efficiency and agriculture sustainability
WO2009030796A2 (en) Use of a mixture of compost and vivianite in the prevention and control of iron chlorosis in plants
ES2315195B2 (en) USE OF COMPOST AND VIVIANITA MIXTURE IN THE PREVENTION AND CONTROL OF FERRIC CHLOROSIS IN PLANTS.
WO2017200467A1 (en) Solid phase fertilizer composition
ES2236227T3 (en) FERTILIZER CONTAINING NITROGEN FOR GROWTH OF PLANTS.
Kłeczek et al. Humic substances and significance of their application–a review
Islas‐Valdez et al. Effect of Fe: ligand ratios on hydroponic conditions and calcareous soil in Solanum lycopersicum L. and Glycine max L. fertilized with heptagluconate and gluconate
Savini et al. Influence of Tithonia diversifolia and triple superphosphate on dissolution and effectiveness of phosphate rock in acidic soil
WO2020260728A1 (en) Fertiliser composition including elemental sulfur and trigonelline as an enhancer of microbiological oxidation of s0
Mukherjee et al. Soil conditioner and fertilizer industry
Wallace et al. Experiments on correcting iron deficiency in plants
Habashy et al. Effects of elemental sulphur and partial substitution of N-mineral fertilizer by organic amendments on some properties of slight saline soils
ES2343160B1 (en) METHOD TO PREVENT AND CORRECT FERRIC CHLOROSIS IN PLANTS.
ES2320841B1 (en) CORRECTION METHOD OF FERRIC CHLOROSIS IN PLANTS FROM PHOSPHORIC ACID ENRIQUECIDO IN FE.

Legal Events

Date Code Title Description
NENP Non-entry into the national phase in:

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08829662

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 08829662

Country of ref document: EP

Kind code of ref document: A2