WO2009029421A1 - Two-cycle gasoline engine lubricant - Google Patents

Two-cycle gasoline engine lubricant Download PDF

Info

Publication number
WO2009029421A1
WO2009029421A1 PCT/US2008/073102 US2008073102W WO2009029421A1 WO 2009029421 A1 WO2009029421 A1 WO 2009029421A1 US 2008073102 W US2008073102 W US 2008073102W WO 2009029421 A1 WO2009029421 A1 WO 2009029421A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating oil
less
oil
kinematic viscosity
pour point
Prior art date
Application number
PCT/US2008/073102
Other languages
French (fr)
Inventor
Joseph Timar
Nancy J. Bertrand
John M. Rosenbaum
Joseph Pudlak
Stephen J. Miller
Original Assignee
Chevron U.S.A. Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chevron U.S.A. Inc. filed Critical Chevron U.S.A. Inc.
Priority to AU2008293794A priority Critical patent/AU2008293794A1/en
Priority to GB1003142A priority patent/GB2464883A/en
Priority to CN200880109625A priority patent/CN101809130A/en
Priority to JP2010523028A priority patent/JP2010538115A/en
Publication of WO2009029421A1 publication Critical patent/WO2009029421A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • C10M2205/0265Butene used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/16Paraffin waxes; Petrolatum, e.g. slack wax
    • C10M2205/163Paraffin waxes; Petrolatum, e.g. slack wax used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/17Fisher Tropsch reaction products
    • C10M2205/173Fisher Tropsch reaction products used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/015Distillation range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/065Saturated Compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/071Branched chain compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/45Ash-less or low ash content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/50Emission or smoke controlling properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/70Soluble oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/74Noack Volatility
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • C10N2040/26Two-strokes or two-cycle engines

Definitions

  • This invention is directed to an improved two-cycle gasoline engine lubricant composition requiring reduced amounts of hydrocarbon solvent.
  • Two-cycle engines can work in any orientation, which can be important in something like a chainsaw.
  • a standard four-cycle engine may have problems with oil flow unless it is upright, and solving this problem can add complexity to the engine.
  • Two-cycle gasoline engine lubricant is expensive, and you need about 4 ounces of it per gallon of gasoline. About a gallon of lubricant would be consumed every 1 ,000 miles if you used a two-cycle engine in an automobile. • Two-cycle engines produce a lot of pollution, including smoke from the combustion of the two-cycle gasoline engine lubricant, and leakage of the two-cycle gasoline engine lubricant out through the exhaust port.
  • the majority of two-cycle gasoline engine lubricants are formulated with low- boiling hydrocarbon solvent and SAE 40 mineral base oils. Others have used ester base oils with no low-boiling solvent to reduce the hazard potential and minimize smoky emissions, however these lubricants do not have very good oxidation stability. Others have used polyalphaolefin base oils having improved low temperature properties. Polyalphaolefin and ester base oils are limited in supply and very expensive. Improved two-cycle gasoline engine lubricant compositions, comprising less expensive base oils, and meeting the requirements set by standard setting organizations are desired. It is also desired that these lubricant compositions have reduced levels of hydrocarbon solvent, reduced engine wear, and reduced pollution.
  • two-cycle gasoline engine lubricant compositions have good low temperature performance, good gasoline miscibility, and high oxidation stability. It is also desired that two-cycle gasoline engine lubricant compositions have higher flash points and reduced flammability. It is also desired that two-cycle gasoline engine lubricant compositions can be made using polyethylene plastic, to reduce waste plastic environmental pollution.
  • the present invention provides a lubricating oil, comprising: a. a base oil fraction having: i. consecutive numbers of carbon atoms; ii. a kinematic viscosity at 100 0 C between about 1.5 and about 3.5 mm 2 /s; iii. between about 90 wt% and about 97 wt% paraffinic carbon; iv. between about 3 wt% and about 10 wt% naphthenic carbon; v. less than 0.01 wt% aromatic carbon; b. less than about 5 wt% based on the total lubricating oil of a hydrocarbon solvent having a maximum boiling point less than 250 degrees C; and c.
  • a base oil fraction having: i. consecutive numbers of carbon atoms; ii. a kinematic viscosity at 100 0 C between about 1.5 and about 3.5 mm 2 /s; iii. between about 90 wt% and about 97 wt% paraffinic carbon;
  • the lubricating oil has a blend kinematic viscosity at 100 0 C of 6.5 mm 2 /s or greater, good low temperature fluidity at -25°C, and an exhaust smoke index of greater than 65.
  • the present invention also provides a lubricating oil, comprising: a. a base oil made from a waxy feed; and b. less than about 5 wt% based on the total lubricating oil of a hydrocarbon solvent having a maximum boiling point less than 250 degrees C; wherein the lubricating oil has a blend kinematic viscosity of 6.5 mm 2 /s or greater, good low temperature fluidity at -25°C, and an exhaust smoke index of greater than 65.
  • the present invention also provides a lubricating oil, comprising: a. a base oil fraction having: i. a pour point of less than -8 0 C; ii. a kinematic viscosity at 100 0 C of at least 1.5 mm 2 /s; and iii. a viscosity index greater than an amount calculated by the equation: 22 x Ln (Kinematic Viscosity at 100 0 C.) + 132; b. less than about 5 wt% based on the total lubricating oil of a hydrocarbon solvent having a maximum boiling point less than 250 degrees C; c.
  • a base oil fraction having: i. a pour point of less than -8 0 C; ii. a kinematic viscosity at 100 0 C of at least 1.5 mm 2 /s; and iii. a viscosity index greater than an amount calculated by the equation: 22 x Ln (Kinematic Viscosity at 100 0
  • the lubricating oil has a blend kinematic viscosity at 100 0 C of 6.5 mm 2 /s or greater, good low temperature fluidity at -25°C, and an exhaust smoke index of greater than 65.
  • the present invention also provides a lubricating oil, comprising: a. a Fischer-T ⁇ opsch derived base oil; b. less than about 5 wt% based on the total lubricating oil of a hydrocarbon solvent having a maximum boiling point less than 250 degrees C; and c. a detergent/dispersant additive package; wherein the lubricating oil meets the requirements for lubricating oil used in two-cycle gasoline engines according to Japanese Automobile Standard JASO M345:2003, Classifications C or D.
  • the present invention also provides a lubricating oil, comprising a pour point reducing blend component; wherein the lubricating oil meets the requirements for lubricating oil used in two-cycle gasoline engines according to Japanese Automobile Standard JASO M345:2003.
  • the present invention also provides a lubricating oil, consisting essentially of: a. between 20 and 70 wt% based on the total lubricating oil of one or more base oil fractions having: i. consecutive numbers of carbon atoms; ii. a kinematic viscosity at 100 0 C between about 1.5 and about 3.5 mm 2 /s; iii. between about 90 wt% and about 97 wt% paraffinic carbon; iv.
  • the lubricating oil has a blend kinematic viscosity at 100 0 C of 6.5 mm 2 /s or greater, good low temperature fluidity at -25°C, and an exhaust smoke index of greater than 65.
  • FIGURE 1 illustrates the plots of Kinematic Viscosity at 100 0 C vs. Noack Volatility, in weight percent, providing the equations for calculation of the upper limits of wt% Noack Volatility of:
  • crankcase To operate a two-cycle gasoline engine the crankcase holds a mixture of two- cycle gasoline engine lubricant and fuel. In a two-cycle engine the crankcase is serving as a pressurization chamber to force air/fuel into the cylinder, so it can't hold high viscosity oil like what may be used in a four-cycle engine. Instead, specialized two-cycle gasoline engine lubricant is mixed in with the fuel to lubricate the crankshaft, connecting rod and cylinder walls.
  • the recommended mix ratio of two-cycle gasoline engine lubricant and fuel are specified by the engine manufacturer.
  • the fuels useful in two-cycle gasoline engines are well known to those skilled in the art and usually contain a major portion of a normally liquid fuel such as a hydrocarbonaceous petroleum distillate fuel, e.g., spark ignition engine fuel as defined by ASTM D4814-07, or motor gasoline as defined by ASTM D439-89.
  • a normally liquid fuel such as a hydrocarbonaceous petroleum distillate fuel, e.g., spark ignition engine fuel as defined by ASTM D4814-07, or motor gasoline as defined by ASTM D439-89.
  • Such fuels can also contain non-hydrocarbonaceous materials such as alcohols, ethers, organo nitro compounds and the like.
  • methanol, ethanol, diethyl ether, methylethyl ether, nitro methane and such fuels are within the scope of this invention as are liquid fuels derived from vegetable and mineral sources such as corn, switch grass, alpha shale and coal.
  • liquid fuels derived from vegetable and mineral sources such as corn, switch grass, alpha shale and coal.
  • fuel mixtures are combinations of gasoline and ethanol, diesel fuel and ether, gasoline and nitro methane, etc.
  • the fuel is lead-free gasoline.
  • Two-cycle gasoline engine lubricants are used in admixture with fuels in amounts of about 20 to 250 parts by weight of fuel per 1 part by weight of lubricating oil, more typically about 30-100 parts by weight of fuel per 1 part by weight of lubricant.
  • indexes in the table of requirements above are determined by taking JATRE-1 oil as having a value of 100.
  • Classification C applies to what is called low-smoke type oil that has superior exhaust smoke performance and exhaust system blocking tendency.
  • Classification D is applied to oils with better detergency than Classification C oils when the engine is hot.
  • Classification B, C and D oils in the ISO standard all have a sulfated ash content of 0.18 wt% maximum. Sulfated ash may be measured according to ISO 3987 or ASTM D874-00.
  • these lubricants have good low temperature fluidity when they are to be used in conditions where low temperatures are encountered.
  • Low temperature fluidity is measured by determining the Brookfield Viscosity measured by ASTM D2983-04a at defined temperatures of -1O 0 C, -25 0 C, and -40 0 C.
  • "Good low temperature fluidity" at one of the temperatures measured is defined in this disclosure as when the oil being tested has a Brookfield Viscosity of about 7500 mPa.s or less.
  • good low temperature fluidity at -1O 0 C means that the oil has a Brookfield Viscosity at -1O 0 C of about 7500 mPa.s or less; good low temperature fluidity at -25 0 C means that the oil has a Brookfield Viscosity at -25°C of about 7500 mPa.s or less; and good low temperature fluidity at -40 0 C means that the oil has a Brookfield Viscosity at -4O 0 C of about 7500 mPa.s or less.
  • the two-cycle gasoline engine lubricant compositions are particularly suited as injector oils or at up to a 150:1 fuel to lubricant mix ratio with an appropriate fuel such as gasoline in carbureted, electronic fuel injected and direct fuel injected two-cycle engines, including: outboard motors, snowmobiles, motorcycles, mopeds, ATVs, golf carts, lawn mowers, chain saws, string trimmers and the like.
  • the lubricant base oils used in the two-cycle gasoline engine lubricant compositions are derived from substantially paraffinic waxy feeds.
  • substantially paraffinic means containing a high level of n-paraffins, generally greater than 40 wt%. Some substantially paraffinic waxy feeds may have for example greater than 50 wt%, or greater than 75 wt% n-paraffins.
  • a substantially paraffinic waxy feed is wax produced in a Fischer-Tropsch process. Another example is highly refined slack wax.
  • Fischer-Tropsch waxes can be obtained by well-known processes such as, for example, the commercial SASOL® Slurry Phase Fischer-Tropsch technology, the commercial SHELL® Middle Distillate Synthesis (SMDS) Process, or by the non-commercial EXXON® Advanced Gas Conversion (AGC-21) process. Details of these processes and others are described in, for example, EP-A- 776959, EP-A-668342; U.S. Patent Nos. 4,943,672, 5,059,299, 5,733,839, and RE39073 ; and US Published Application No. 2005/0227866, WO-A-9934917, WO-A-9920720 and WO-A-05107935.
  • the Fischer-Tropsch synthesis product usually comprises hydrocarbons having 1 to 100, or even more than 100 carbon atoms, and typically includes paraffins, olefins and oxygenated products. Fischer Tropsch is a viable process to generate clean alternative hydrocarbon products, including Fischer-Tropsch waxes.
  • Slack wax can be obtained from conventional petroleum derived feedstocks by either hydrocracking or by solvent refining of the lube oil fraction. Typically, slack wax is recovered from solvent dewaxing feedstocks prepared by one of these processes. Hydrocracking is usually preferred because hydrocracking will also reduce the nitrogen content to a low value. With slack wax derived from solvent refined oils, deoiling may be used to reduce the nitrogen content and raise the viscosity index. Hydrotreating of the slack wax can be used to lower the nitrogen and sulfur content. Slack waxes posses a very high viscosity index, normally in the range of from about 140 to 200, depending on the oil content and the starting material from which the slack wax was prepared. Therefore, slack waxes are suitable for the preparation of base oils used in two-cycle gasoline engine lubricants.
  • the waxy feed has less than 25 ppm total combined nitrogen and sulfur.
  • Nitrogen is measured by melting the waxy feed prior to oxidative combustion and chemiluminescence detection by ASTM D 4629-02. The test method is further described in US 6,503,956, incorporated herein.
  • Sulfur is measured by melting the waxy feed prior to ultraviolet fluorescence by ASTM D 5453-00. The test method is further described in US 6,503,956, incorporated herein.
  • Determination of normal paraffins (n-paraffins) in wax-containing samples should use a method that can determine the content of individual C7 to C110 n-paraffins with a limit of detection of 0.1 wt%. The method used is described later in this disclosure.
  • Fischer-Tropsch derived base oils made from these waxy feeds, and thus the two-cycle gasoline engine lubricants comprising them, will be less expensive than lubricants made with other synthetic oils such as polyalphaolefins or esters.
  • Fischer-Tropsch derived or "FT derived” means that the product, fraction, or feed originates from or is produced at some stage by a Fischer-Tropsch process.
  • the feedstock for a Fischer-Tropsch process may come from a wide variety of hydrocarbonaceous resources, including biomass, natural gas, coal, shale oil, petroleum, municipal waste, derivatives of these, and combinations thereof.
  • Syncrude prepared from the Fischer-Tropsch process comprises a mixture of various solid, liquid, and gaseous hydrocarbons.
  • Those Fischer-Tropsch products which boil within the range of lubricating base oil contain a high proportion of wax which makes them ideal candidates for processing into base oil. Accordingly, Fischer-Tropsch wax represents an excellent feed for preparing high quality base oils.
  • Fischer-Tropsch wax is normally solid at room temperature and, consequently, displays poor low temperature properties, such as pour point and cloud point.
  • Fischer-Tropsch derived base oils having excellent low temperature properties may be prepared.
  • a general description of examples of suitable hydroisomerization dewaxing processes may be found in US Patent Nos. 5, 135,638 and 5,282,958; and US Patent Application 20050133409, incorporated herein.
  • the hydroisomerization is achieved by contacting the waxy feed with a hydroisomerization catalyst in an isomerization zone under hydroisomerizing conditions.
  • the hydroisomerization catalyst preferably comprises a shape selective intermediate pore size molecular sieve, a noble metal hydrogenation component, and a refractory oxide support.
  • the shape selective intermediate pore size molecular sieve is preferably selected from the group consisting of SAPO-11 , SAPO-31 , SAPO-41 , SM-3, ZSM-22, ZSM-23, ZSM-35, ZSM-48, ZSM-57, SSZ-32, offretite, ferrierite, and combinations thereof.
  • SAPO- 11 , SM-3, SSZ-32, ZSM-23, ZSM-48, and combinations thereof are used in one embodiment.
  • the noble metal hydrogenation component is platinum, palladium, or combinations thereof.
  • the hyclroisomerizing conditions depend on the waxy feed used, the hydroisomerization catalyst used, whether or not the catalyst is sulfided, the desired yield, and the desired properties of the base oil.
  • hydroisomerizing conditions of one embodiment include temperatures of 260 degrees C to about 413 degrees C (500 to about 775 degrees F); a total pressure of 15 to 3000 psig, or 50 to 1000 psig; and a hydrogen to feed ratio from about 2 to 30 MSCF/bbl, about 4 to 20 MSCF/bbl (about 712.4 to about 3562 liter H 2 /liter oil), about 4.5 or 5 to about 10 MSCF/bbl, or about 5 to about 8 MSCF/bbl.
  • hydrogen will be separated from the product and recycled to the isomerization zone.
  • a feed rate of 10 MSCF/bbl is equivalent to 1781 liter H2 / liter feed.
  • hydrogen will be separated from the product and recycled to the isomerization zone.
  • the base oil produced by hydroisomerization dewaxing may be hydrofinished.
  • the hydrofinishing may occur in one or more steps, either before or after fractionating of the base oil into one or more fractions.
  • the hydrofinishing is intended to improve the oxidation stability, UV stability, and appearance of the product by removing aromatics, olefins, color bodies, and solvents.
  • a general description of hydrofinishing may be found in US Patent Nos. 3,852,207 and 4,673,487, incorporated herein.
  • the hydrofinishing step may be needed to reduce the weight percent olefins in the base oil to less than 10, less than 5 or 2, less than 1 , less than 0.5, and less than 0.05 or 0.01.
  • the hydrofinishing step may also be needed to reduce the weight percent aromatics to less than 0.3 or 0.1 , less than 0.05, less than 0.02, and in some embodiments even less than 0.01.
  • the base oil produced by hydroisomerization dewaxing may be treated with an adsorbent such as bauxite or clay to remove impurities and improve the color and biodegradability.
  • an adsorbent such as bauxite or clay to remove impurities and improve the color and biodegradability.
  • the base oil has consecutive numbers of carbon atoms.
  • consecutive numbers of carbon atoms we mean that the hydrocarbon molecules of the base oil differ from each other by consecutive numbers of carbon atoms, as a consequence of the waxy feed also having sequential numbers of carbon atoms. For example, in the
  • the source of carbon atoms is CO and the hydrocarbon molecules are built up one carbon atom at a time.
  • Petroleum-derived waxy feeds also have sequential numbers of carbon numbers.
  • the molecules of the base oil have a more linear structure, comprising a relatively long backbone with short branches.
  • the classic textbook description of a PAO is a star-shaped molecule, and in particular tridecane, which is illustrated as three decane molecules attached at a central point. While a star-shaped molecule is theoretical, nevertheless PAO molecules have fewer and longer branches that the hydrocarbon molecules that make up the base oil used in this disclosure.
  • the base oil having consecutive numbers of carbon atoms also has less than 10 wt% naphthenic carbon by n-d-M.
  • the lubricating base oil is separated into fractions, whereby one or more of the fractions will have a pour point less than O 0 C, less than -9°C, less than -15 0 C, less than -2O 0 C, less than -3O 0 C, or less than - 35 0 C.
  • Pour point is measured by ASTM D 5950-02.
  • the base oil is optionally fractionated into different viscosity grades of base oil.
  • “different viscosity grades of base oil” is defined as two or more base oils differing in kinematic viscosity at 100 degrees C from each other by at least 0.5 mm 2 /s. Kinematic viscosity is measured using ASTM D445-06.
  • the base oil fractions have less than 0.01 wt% aromatic carbon and greater than about 90 wt% paraffinic carbon.
  • the balance of the wt% carbon is naphthenic carbon. Wt% aromatic, wt% paraffinic and wt% naphthenic carbon are determined by n-d-M analysis according to ASTM D3238-95(2005).
  • the wt% paraffinic carbon is between about 90 wt% and about 97 wt% and the wt% naphthenic carbon is between about 3 wt% and about 10 wt%.
  • the viscosity indexes of the lubricating base oil fractions will be high. They will often have viscosity indexes greater than 28 x
  • Ln(Kinematic Viscosity at 100 0 C) +80 will have viscosity indexes greater than 28 x Ln(Kinematic Viscosity at 100 0 C) +95.
  • a 2.5 mm 2 /s oil will have a viscosity index greater than 106, optionally greater than 121 ; and a 12 mm 2 /s oil will have a viscosity index greater than 150, optionally greater than 165.
  • the base oil has a pour point of less than -8 0 C; a kinematic viscosity at 100 0 C of at least 1.5 mm 2 /s; and a viscosity index greater than an amount calculated by the equation: 22 x Ln (Kinematic Viscosity at 100 0 C.) + 132.
  • an oil with a kinematic viscosity of 2.5 mm 2 /s at 100°C will have a viscosity index greater than 152.
  • Base oils with these properties are described in US Patent Publication US20050077208.
  • the term "Ln" in the context of equations in this disclosure refers to the natural logarithm with base 'e'.
  • the test method used to measure viscosity index is ASTM D 2270-04.
  • the base oil fractions have a kinematic viscosity at 100 0 C between about 1.3 and 25 mm 2 /s. In one embodiment the base oil fractions have a kinematic viscosity at 100 0 C between about 1.5 and about 3.5 mm 2 /s. In another embodiment the base oil fractions have a kinematic viscosity between about
  • the base oil fractions provide excellent oxidation stability, low Noack volatility, as well as desired additive solubility and elastomer compatibility.
  • the base oil fractions have a weight percent olefins less than 10, less than 5, less than 1 , less than 0.5, or less than 0.05 or 0.01.
  • the base oil fractions have a weight percent aromatics less than 0.1 , less than 0.05, or less than 0.02.
  • Traction coefficient is an indicator of intrinsic lubricant properties, expressed as the dimension less ratio of the friction force F and the normal force N, where friction is the mechanical force which resists movement or hinders movement between sliding or rolling surfaces. Traction coefficient can be measured with an MTM Traction Measurement System from PCS
  • SAE AISI 52100 steel configured with a polished 19 mm diameter ball (SAE AISI 52100 steel) angled at 220 to a flat 46 mm diameter polished disk (SAE AISI 52100 steel).
  • the steel ball and disk are independently measured at an average rolling speed of 3 meters per second, a slide to roll ratio of 40 percent, and a load of 20 Newtons.
  • the roll ratio is defined as the difference in sliding speed between the ball and disk divided by the mean speed of the ball and disk, i.e.
  • the base oil fractions have a traction coefficient less than 0.023, less than or equal to 0.021 , or less than or equal to 0.019, when measured at a kinematic viscosity of 15 mm 2 /s and at a slide to roll ratio of 40 percent.
  • traction coefficient 0.009 x Ln(Kinematic Viscosity) - 0.001 , wherein the Kinematic Viscosity during the traction coefficient measurement is between 2 and 50 mm 2 /s; and wherein the traction coefficient is measured at an average rolling speed of 3 meters per second, a slide to roll ratio of 40 percent, and a load of 20 Newtons.
  • the base oil fractions have a traction coefficient less than 0.015 or less than 0.011 , when measured at a kinematic viscosity of 15 mm 2 /s and at a slide to roll ratio of 40 percent. Examples of these base oil fractions with low traction coefficients are taught in U.S. Patent Number 7,045,055 and U.S. Patent Applications 11/400570 and 11/399773 both filed April 7, 2006.
  • the base oil has a traction coefficient less than 0.015, and a 50 wt% boiling point greater than 565 0 C (1050 0 F).
  • the base oil has a traction coefficient less than 0.011 and a 50 wt% boiling point by ASTM D 6352-04 greater than 582 0 C. (1080°F).
  • the isomerized base oil having a low traction coefficient also displays unique branching properties by NMR, including a branching index less than or equal to 23.4, a branching proximity greater than or equal to 22.0, and a Free Carbon Index between 9 and 30.
  • the base oil has at least 4 wt% naphthenic carbon, in another embodiment, at least 5 wt% naphthenic carbon by n-d-M analysis by ASTM D 3238-95 (Reapproved 2005). Two-cycle gasoline engine lubricants made comprising base oil fractions having low traction coefficients provide reduced engine wear.
  • the Oxidator BN of the selected base oil fraction will be greater than 25 hours, such as greater than 35 hours or even greater than 40 hours.
  • the Oxidator BN of the selected base oil fraction will typically be less than 70 hours.
  • Oxidator BN is a convenient way to measure the oxidation stability of base oils.
  • the Oxidator BN test is described by Stangeland et al. in U.S. Patent 3,852,207.
  • the Oxidator BN test measures the resistance to oxidation by means of a Dornte-type oxygen absorption apparatus. See R. W. Dornte "Oxidation of White Oils," Industrial and Engineering Chemistry, Vol. 28, page 26, 1936. Normally, the conditions are one atmosphere of pure oxygen at 34O 0 F. The results are reported in hours to absorb 1000 ml of O2 by 100 g. of oil. In the Oxidator BN test, 0.8 ml of catalyst is used per 100 grams of oil and an additive package is included in the oil.
  • the catalyst is a mixture of soluble metal naphthenates in kerosene.
  • the mixture of soluble metal naphthenates simulates the average metal analysis of used crankcase oil.
  • the additive package is 80 millimoles of zinc bispolypropylenephenyldithio- phosphate per 100 grams of oil, or approximately 1.1 grams of OLOATM 260.
  • the Oxidator BN test measures the response of a lubricating base oil in a simulated application. High values, or long times to absorb one liter of oxygen, indicate good oxidation stability. Two-cycle gasoline engine lubricants comprising base oil fractions having good oxidation stability will also have improved oxidation stability.
  • OLOATM is an acronym for Oronite Lubricating Oil Additive, which is a registered trademark of Chevron Oronite.
  • the one or more lubricating base oil fractions will have excellent biodegradability. With suitable hydro-processing and/or adsorbent treatment they are readily biodegradable by the OECD 301 B Shake Flask Test (Modified Sturm Test). When the readily biodegradable base oil fractions are blended with suitable biodegradable additives, such as selected low-ash or ashless additives, the lubricants will provide rapid biodegradation of spills in sensitive areas with minimal non-biodegradable residue and will prevent costly environmental clean-up. In some embodiments the one or more lubricating base oil fractions will have a low Noack volatility. Noack volatility is usually tested according to ASTM D5800-05 Procedure B.
  • the one or more lubricating base oil fractions have a Noack volatility of less than 100 weight %.
  • Noack volatility of base oils generally increases as the kinematic viscosity decreases. The lower the Noack volatility, the lower the tendency of base oil and formulated oils to volatilize in service.
  • the "Noack Volatility Factor" of base oil is an empirical number derived from the kinematic viscosity of the base oil.
  • the Noack volatility of the base oil derived from highly paraffinic wax is very low, and in an embodiment, is less than an amount calculated by the equation:
  • Noack Volatility Factor (1) 160 - 40(Kinematic Viscosity at 100 0 C). Equation (1), as provided in U.S. Patent Application Publication No. 2006/0201852 A1 , provides Noack Volatility Factors between 0 and 100 for kinematic viscosities between 1.5 and 4.0 mm 2 /s.
  • FIG. 1 is a graph of the Noack Volatility Factor according to Equation (1).
  • Patent Application Serial No. 11/613,936 provides Noack Volatility Factors between 0 and 100 for kinematic viscosities between 2.09 and 4.3 mm 2 /s.
  • FIG. 1 also includes the Noack Volatility Factor according to Equation (2). For kinematic viscosities in the range of 2.4 to 3.8 mm 2 /s, Equation (2) provides a lower Noack Volatility Factor than does
  • Equation (1) Lower Noack Volatility Factors in the range of base oils having kinematic viscosities from 2.4 to 3.8 mm 2 /s are desired, especially if the base oils are to be blended with other oils that may have higher Noack volatilities.
  • Additional base oils may be incorporated in the lubricant composition in an amount from about 1.0 wt% to about 20 wt%. Examples of these additional base oils include esters, mixtures of esters, and complex esters as described in U.S. Patent No.
  • polyalphaolefins polyalphaolefins, polyinternalolefins, polyisobutenes, alkylated aromatics such as alkylated naphthalenes, and conventional petroleum derived API Group Il and Group III mineral oils.
  • the two-cycle gasoline engine lubricant may comprise a pour point reducing blend component.
  • pour point reducing blend component refers to an isomerized waxy product with relatively high molecular weight and a specified degree of alkyl branching in the molecules, such that it reduces the pour point of lubricating base oil blends containing it. Examples of a pour point reducing blend component are disclosed in U.S. Patent Nos. 6,150,577 and 7,053,254, and Patent Publication No. US 20050247600 A1.
  • a pour point reducing blend component can be: 1) an isomerized Fischer-Tropsch derived bottoms product; 2) a bottoms product prepared from an isomerized highly waxy mineral oil, or 3) an isomerized oil having a kinematic viscosity at 100°C of at least about 8 mm 2 /s made from polyethylene plastic.
  • the pour point reducing blend component is an isomerized Fischer-Tropsch derived vacuum distillation bottoms product having an average molecular weight between 600 and 1100 and an average degree of branching in the molecules between 6.5 and 10 alkyl branches per 100 carbon atoms.
  • the higher molecular weight hydrocarbons are more effective as pour point reducing blend components than the lower molecular weight hydrocarbons.
  • a higher cut point in a vacuum distillation unit which results in a higher boiling bottoms material is used to prepare the pour point reducing blend component. The higher cut point also has the advantage of resulting in a higher yield of the distillate base oil fractions.
  • the pour point reducing blend component is an isomerized Fischer-Tropsch derived vacuum distillation bottoms product having a pour point that is at least 3°C higher than the pour point of the distillate base oil it is blended with.
  • the 10 percent point of the boiling range of the pour point reducing blend component that is a vacuum distillation bottoms product is between about 850 0 F - 1050 0 F (454 - 565 0 C).
  • the pour point reducing blend component is derived from either Fischer-Tropsch or petroleum products, having a boiling range above 95O 0 F (510 0 C), and contains at least 50 percent by weight of paraffins.
  • the pour point reducing blend component has a boiling range above 1050 0 F (565 0 C).
  • the pour point reducing blend component is an isomerized petroleum derived base oil containing material having a boiling range above about 1050 0 F.
  • the isomerized bottoms material is solvent dewaxed prior to being used as a pour point reducing blend component. The waxy products further separated during solvent dewaxing from the pour point reducing blend component were found to display excellent improved pour point depressing properties compared to the oily product recovered after the solvent dewaxing.
  • the pour point reducing blend component is an isomerized oil having a kinematic viscosity at 100 0 C of at least about 8 mm2/s made from polyethylene plastic.
  • the pour point reducing blend component is made from waste plastic.
  • the pour point reducing blend component is made from steps comprising pyrolysis of polyethylene plastic, separating out a heavy fraction, hydrotreating the heavy fraction, catalytic isomerizing the hydrotreated heavy fraction, and collecting the pour point reducing blend component having a kinematic viscosity at 100 0 C of at least about 8 mm2/s.
  • the pour point reducing blend component derived from polyethylene plastic and has a boiling range above 1050 0 F (565 0 C), or even has a boiling range above 1200T (649°C).
  • the pour point reducing blend component has an average degree of branching in the molecules within the range of from 6.5 to 10 alkyl branches per 100 carbon atoms. In another embodiment, the pour point reducing blend component has an average molecular weight between 600 - 1100. In a third embodiment it has an average molecular weight between 700 - 1000.
  • the pour point reducing blend component has a kinematic viscosity at 100 0 C of 8 - 30 mm 2 /s, with the 10% point of the boiling range falling between about 850 - 1050 0 F
  • the pour point reducing blend component has a kinematic viscosity at 100 0 C of 15- 20 mnVVs and a pour point of -8 to -12°C.
  • the pour point reducing blend component is an isomerized oil having a kinematic viscosity at 100 0 C of at least about 8 mm 2 /s made from polyethylene plastic.
  • the pour point reducing blend component is made from waste plastic.
  • the pour point reducing blend component is made from steps comprising pyrolysis of polyethylene plastic, separating out a heavy fraction, hydrotreating the heavy fraction, catalytic isomerizing the hydrotreated heavy fraction, and collecting the pour point reducing blend component having a kinematic viscosity at 100 0 C of at least about 8 mm 2 /s.
  • the pour point reducing blend component derived from polyethylene plastic has a boiling range above 1050 0 F (565°C), or even a boiling range above 1200°F (649°C).
  • Various detergent/dispersant additive packages may be combined with base oil in formulating two-cycle oil gasoline engine lubricants. Ashless, low-ash, or ash-containing additives may be used for this purpose.
  • Suitable ashless additives include polyamide, alkenylsuccinimides, boric acid- modified alkenylsuccinimides, phenolic amines and succinate derivatives or combinations of any two or more of such additives.
  • Examples of a low ash additive package comprise (i) polyisobutenyl (Mn 400- 2500) succinimide or another oil soluble, acylated, nitrogen containing lubricating oil dtspersant present in the amount of 0.2-5 wt,% in the lubricating oil and (ii) a metal phenate, sulfonate or salicylate oil soluble detergent additive.
  • the oil soluble detergent additive is a neutral metal detergent or overbased metal detergent of Total Base Number 200 or less, present in the amount of 0.1-2 wt% in the lubricating oil.
  • the metal is calcium, barium or magnesium.
  • Neutral calcium salicylates are one example, and may be present in amounts of about 0.5 to 1.5 wt% in the lubricating oil.
  • Polyamide detergent/dispersant additives such as the commonly used tetraethylenepentamine isostearate, may be prepared by the reaction of fatty acid and polyalkylene polyamines, as described in U.S. Pat. No. 3,169,980, the entire disclosure of which is incorporated by reference in this specification, as if set forth herein in full. These polyamides may contain measurable amounts of cyclic imidazolines formed by internal condensation of the linear polyamides upon continued heating at elevated temperature.
  • Another useful class of polyamide additives is prepared from polyalkylene polyamines and C19 -C25 Koch acids, according to the procedure of R. Hartle et al., JAOCS, 57 (5): 156-59 (1980).
  • Alkenylsuccinimides are formed by a step-wise procedure in which an olefin, such as polybutene (MV 1200) is reacted with maleic anhydride to yield a polybutenyl succinic anhydride adduct, which is then reacted with an amine, e.g., an alkylamine or a poly- amine, to form the desired product.
  • an olefin such as polybutene (MV 1200)
  • maleic anhydride to yield a polybutenyl succinic anhydride adduct
  • an amine e.g., an alkylamine or a poly- amine
  • Phenolic amines are prepared by the well-known Mannich reaction (C. Mannich and W. Krosche, Arch. Pharm., 250: 674 (1912)), involving a polyalkylene-substituted phenol, formaldehyde and a polyalkylene polyamine.
  • Succinate derivatives are prepared by the reaction of an olefin (e.g., polybutene (eg., polybutene) and maleic anhydride to yield a polybutenyl succinic anhydride adduct, which undergoes further reaction with a polyol, e.g., pentaerythritol, to give the desired product.
  • an olefin e.g., polybutene (eg., polybutene) and maleic anhydride
  • a polybutenyl succinic anhydride adduct which undergoes further reaction with a polyol, e.g., pentaerythritol, to give the desired product.
  • Suitable ash-containing detergent/dispersant additives include alkaline earth metal (e.g., magnesium, calcium, barium), sulfonates, phosphonates or phenates or combinations of any two or more of such additives.
  • the foregoing detergent/dispersant additives may be incorporated in the lubricant compositions described herein in an amount from about 1 to about 25 wt%, and more preferably from about 3 to about 20 wt% based on the total weight of the composition.
  • two-cycle lubricant detergent/dispersant additive packages may be used in combination with the base oil to produce the two- cycle gasoline engine lubricant, for example, LUBRIZOL 400, LUBRIZOL 6827, LUBRIZOL 6830, LUBRIZOL 600, LUBRIZOL 606, ORONITE OLOA® 9333, ORONITE OLOA® 340A, ORONITE OLOA® 6721 and ORONITE OLOA® 9357.
  • Various other additives may be incorporated in the two-cycle gasoline engine lubricant, as desired.
  • smoke-suppression agents such as polybutene or polyisobutylene (PIB)
  • extreme pressure additives such as dialkyldithiophosphohc acid salts or esters
  • anti-foaming agents such as silicone oil
  • pour point depressants such as rust or corrosion prevention agents
  • oxidation inhibitors such as substituted diarylamines, phenothiazines, hindered phenols, or the like.
  • pour point depressants when used, are used in an amount between 0.005 to 0.1 wt% based on the total lubricating oil.
  • pour point depressants are polymethacrylates (PMA); polyacrylates; polyacrylamides; condensation products of haloparaffin waxes and aromatic compounds; vinyl carboxylate polymers; terpolymers of dialkylfumarates, vinyl esters of fatty acids, and alkyl vinyl ethers; and mixtures thereof.
  • the smoke-suppression agent is an olefinically unsaturated polymer selected from the group consisting of polybutene, polyisobutylene or a mixture of polybutene and polyisobutylene, which has a number average molecular weight of 400 to 2200 and a terminal vinylidene content of at least 60 mol %, based on the total number of double bonds in the polymer.
  • olefinically unsaturated polymer selected from the group consisting of polybutene, polyisobutylene or a mixture of polybutene and polyisobutylene, which has a number average molecular weight of 400 to 2200 and a terminal vinylidene content of at least 60 mol %, based on the total number of double bonds in the polymer.
  • Exxsol D80 is a dearomatized aliphatic high flash solvent with an initial boiling point of at least 200 0 C, a Kauri-Butanol Value of about 28 (between 20 and 40), and an aniline point of 73.9 to 79.4 0 C.
  • Volatile, combustible high flash hydrocarbon solvents may be added to the two-cycle engine lubricant in an amount less than 5 wt% of the total lubricating oil in order to bring the smoke index to a value of at least 75 in the JASO M 342-92 test and/or to improve the compatibility and/or solubility of other additives and to improve the low temperature characteristics such as viscosity and gasoline miscibility.
  • the two-cycle gasoline engine lubricant comprises low levels of solvent, such as less than about 5 wt%, less than about 2 wt%, or even essentially none of the total lubricating oil is a hydrocarbon solvent having a maximum boiling point less than 250 degrees C.
  • Lower levels of solvent in the two-cycle gasoline engine lubricant provides for reduced pollution by evaporation of volatile organic contents, improved compatibility with elastomers used in packaging and transport, and reduced flammability hazards for enhanced transportation and storage safety.
  • additives may be incorporated in the lubricant composition in an amount from about 0.005% to about 15%, or from about 0.005% to about 6%, based on the total weight of the lubricant composition.
  • the amount may vary from 1 % to 50%.
  • the amount of each additive or additive package selected within the specified range should be such as not to adversely effect the desirable performance properties of the lubricant. The effects produced by such additives can be readily determined by routine testing.
  • the lubricating oil is one consisting of, or consisting essentially of: a. between 20 and 70 wt% based on the total lubricating oil of one or more base oil fractions having: i. consecutive numbers of carbon atoms; ii. a kinematic viscosity at 100 0 C between about 1.5 and about 3.5 mm 2 /s; iii. between about 90 wt% and about 97 wt% paraffinic carbon; iv. between about 3 wt% and about 10 wt% naphthenic carbon; v. less than 0.01 wt% aromatic carbon; b.
  • the lubricating oil has a blend kinematic viscosity at 100 0 C of 6.5 mm 2 /s or greater, good low temperature fluidity at -25 0 C, and an exhaust smoke index of greater than 65.
  • the two-cycle gasoline engine lubricants have high flash points due to the low level of solvent they contain. Their flash points are in some embodiments greater than 120°C, or greater than 15O 0 C.
  • GC gas chromatography
  • the waxy feed is melted to obtain a 0.1 g homogeneous sample.
  • the sample is immediately dissolved in carbon disulfide to give a 2 wt% solution. If necessary, the solution is heated until visually clear and free of solids, and then injected into the GC.
  • the methyl silicone column is heated using the following temperature program:
  • the column then effectively separates, in the order of rising carbon number, the normal paraffins from the non-normal paraffins.
  • a known reference standard is analyzed in the same manner to establish elution times of the specific normal-paraffin peaks.
  • the standard is ASTM D2887 n-paraffin standard, purchased from a vendor (Agilent or Supelco), spiked with 5 wt% Polywax 500 polyethylene (purchased from Petrolite Corporation in Oklahoma). The standard is melted prior to injection. Historical data collected from the analysis of the reference standard also guarantees the resolving efficiency of the capillary column.
  • normal paraffin peaks are well separated and easily identifiable from other hydrocarbon types present in the sample. Those peaks eluting outside the retention time of the normal paraffins are called non-normal paraffins.
  • the total sample is integrated using baseline hold from start to end of run. N-paraffins are skimmed from the total area and are integrated from valley to valley. All peaks detected are normalized to 100%. EZChrom is used for the peak identification and calculation of results.
  • the Wt% Olefins in the base oils is determined by proton-NMR by the following steps, A-D:
  • the wt% olefins by proton NMR 100 times the number of double bonds times the number of hydrogens in a typical olefin molecule divided by the number of hydrogens in a typical test substance molecule.
  • the wt% olefins by proton NMR calculation procedure, D works best when the % olefins result is low, less than about 15 weight percent.
  • the olefins must be "conventional" olefins; i.e. a distributed mixture of those olefin types having hydrogens attached to the double bond carbons such as: alpha, vinylidene, cis, trans, and trisubstituted. These olefin types will have a detectable allylic to olefin integral ratio between 1 and about 2.5. When this ratio exceeds about 3, it indicates a higher percentage of tri or tetra substituted olefins are present and that different assumptions must be made to calculate the number of double bonds in the sample.
  • the method used to measure low levels of molecules with at least one aromatic function in the lubricant base oils uses a Hewlett Packard 1050 Series Quaternary Gradient High Performance Liquid Chromatography (HPLC) system coupled with a HP 1050 Diode-Array UV- Vis detector interfaced to an HP Chem-station. Identification of the individual aromatic classes in the highly saturated Base oils was made on the basis of their UV spectral pattern and their elution time. The amino column used for this analysis differentiates aromatic molecules largely on the basis of their ring- number (or more correctly, double-bond number). Thus, the single ring aromatic containing molecules elute first, followed by the polycyclic aromatics in order of increasing double bond number per molecule. For aromatics with similar double bond character, those with only alkyl substitution on the ring elute sooner than those with naphthenic substitution.
  • HPLC Hewlett Packard 1050 Series Quaternary Gradient High Performance Liquid Chromatography
  • HPLC-UV is used for identifying these classes of aromatic compounds even at very low levels.
  • Multi-ring aromatics typically absorb 10 to 200 times more strongly than single-ring aromatics.
  • Alkyl-substitution also affected absorption by about 20%. Therefore, it is important to use HPLC to separate and identify the various species of aromatics and know how efficiently they absorb.
  • alkyl-cyclohexylbenzene molecules in base oils exhibit a distinct peak absorbance at 272nm that corresponds to the same (forbidden) transition that unsubstituted tetralin model compounds do at 268nm.
  • concentration of alkyl-1-ring aromatic naphthenes in base oil samples was calculated by assuming that its molar absorptivity response factor at 272nm was approximately equal to tetralin's molar absorptivity at 268nm, calculated from Beer's law plots. Weight percent concentrations of aromatics were calculated by assuming that the average molecular weight for each aromatic class was approximately equal to the average molecular weight for the whole base oil sample.
  • This calibration method was further improved by isolating the 1-ring aromatics directly from the lubricant base oils via exhaustive HPLC chromatography. Calibrating directly with these aromatics eliminated the assumptions and uncertainties associated with the model compounds. As expected, the isolated aromatic sample had a lower response factor than the model compound because it was more highly substituted.
  • the substituted benzene aromatics were separated from the bulk of the lubricant base oil using a Waters semi-preparative HPLC unit. 10 grams of sample was diluted 1 :1 in n-hexane and injected onto an amino-bonded silica column, a 5cm x 22.4mm ID guard, followed by two 25cm x 22.4mm ID columns of 8- 12 micron amino-bonded silica particles, manufactured by Rainin Instruments, Emeryville, California, with n-hexane as the mobile phase at a flow rate of I8mls/min.
  • the standard D 5292-99 method was modified to give a minimum carbon sensitivity of 500:1 (by ASTM standard practice E 386).
  • A15-hour duration run on a 400-500 MHz NMR with a 10-12 mm Nalorac probe was used.
  • Acorn PC integration software was used to define the shape of the baseline and consistently integrate.
  • the carrier frequency was changed once during the run to avoid artifacts from imaging the aliphatic peak into the aromatic region. By taking spectra on either side of the carrier spectra, the resolution was improved significantly.
  • the Co-based Fischer-Tropsch wax was hydroisomerized over a Pt/SAPO-11 catalyst with an alumina binder. Operating conditions included temperatures between 635 0 F and 675 0 F (335 0 C and 358 0 C), LHSV of 1.0 hr "1 , reactor pressure of about 500 psig, and once-through hydrogen rates of between 5 and 6 MSCF/bbl.
  • the reactor effluent passed directly to a second reactor containing a Pd on silica-alumina hydrofinishing catalyst also operated at 500 psig. Conditions in the second reactor included a temperature of about 350 0 F (177 0 C) and an LHSV of 2.0 hr "1 .
  • HFTBO is an example of a pour point reducing blend component with a low traction coefficient.
  • XLFTBO is an example of a fraction of a lubricating base oil having a Noack volatility less than a Noack Volatility Factor by Equation (1).
  • XXLFTBO is an example of a fraction of a lubricating base oil having a Noack volatility less than a Noack Volatility Factor less than both a Noack Volatility Factor by Equation (1) and a Noack Volatility Factor by Equation (2).
  • Chevron MOTEX 2T-X is a two-cycle outboard engine oil formulated with high quality mineral base oil, polyisobutylene, a high performance low ash detergent/dispersant additive package, and a high flash solvent.
  • Three different blends of two-cycle gasoline engine lubricant using the same high performance low ash detergent/dispersant additive package and polyisobutylene synthetic base oil used in Chevron Motex 2T-X were prepared (BlendB, BlendC, and BlendF) using the Fischer-Tropsch derived base oils described earlier.
  • a comparison blend (COMP BlendA) using conventional mineral base oil and high flash solvent was also prepared. The formulations of these blends are summarized in Table IV.
  • Flash Points were measured by the Cleveland Open Cup Tester, using ASTM D92-05a. Aniline Points were measured by ASTM D611-04.
  • BlendB, BlendC, and BlendF had essentially no hydrocarbon solvent having a maximum boiling point less than 250 degrees C, yet they all had low exhaust smoke index values, lower pour points, and improved miscibiiity compared to COMP BlendA made with conventional mineral oil base oil and high flash solvent.
  • BlendF, comprising the highest level of HFTBO gave an especially high lubricity index, yet still had excellent miscibility and a good exhaust smoke index.
  • BlendE also comprised the pour point reducing blend component having a low traction coefficient, HFTBO. Note that this blend had had an especially low pour point and good low temperature fluidity at -25 0 C. BlendE had better low temperature fluidity, lower pour point, better gasoline miscibility, better detergency, and a better piston skirt deposit index than COMP BlendD made with conventional mineral oil base oil and greater than 5 wt% hydrocarbon solvent having a maximum boiling point less than 250 degrees C. BlendE, with the addition of less than 5 wt% hydrocarbon solvent having a maximum boiling point less than 250 degrees C, would easily pass the requirements of both JASO M345:2003 and ISO 13738:2000 ⁇ E), classifications C and D.
  • HFTBO low traction coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

A lubricating oil comprising a base oil of specified carbon types, less than 5 wt% hydrocarbon solvent, and a detergent/dispersant additive package, wherein the lubricating oil has a blend kinematic viscosity at 100°C of 6.5 mm2/s or greater, good low temperature fluidity, and a high exhaust smoke index. Also, similar lubricating oils made using a base oil made from a waxy feed, or comprising a base oil with a low Noack volatility and a pour point reducing blend component, or a base oil with a high viscosity index. Additionally, lubricating base oils meeting the requirements for two-cycle gasoline engine lubricants.

Description

TWO-CYCLE GASOLINE ENGINE LUBRICANT
FIELD OF THE INVENTION
This invention is directed to an improved two-cycle gasoline engine lubricant composition requiring reduced amounts of hydrocarbon solvent.
BACKGROUND OF THE INVENTION
Two-cycle engines have three important advantages over four-cycle engines:
• Two-cycle engines do not have valves, which simplifies their construction and lowers their weight.
• Two-cycle engines fire once every revolution, while four-cycle engines fire once every other revolution. This gives two-cycle engines a significant power boost.
• Two-cycle engines can work in any orientation, which can be important in something like a chainsaw. A standard four-cycle engine may have problems with oil flow unless it is upright, and solving this problem can add complexity to the engine.
There are at least three potential disadvantages of two-cycle engines, including:
• Two-cycle engines don't last nearly as long as four-cycle engines. The lack of a dedicated lubrication system means that the parts of a two- cycle engine wear a lot faster.
• Two-cycle gasoline engine lubricant is expensive, and you need about 4 ounces of it per gallon of gasoline. About a gallon of lubricant would be consumed every 1 ,000 miles if you used a two-cycle engine in an automobile. • Two-cycle engines produce a lot of pollution, including smoke from the combustion of the two-cycle gasoline engine lubricant, and leakage of the two-cycle gasoline engine lubricant out through the exhaust port.
The majority of two-cycle gasoline engine lubricants are formulated with low- boiling hydrocarbon solvent and SAE 40 mineral base oils. Others have used ester base oils with no low-boiling solvent to reduce the hazard potential and minimize smoky emissions, however these lubricants do not have very good oxidation stability. Others have used polyalphaolefin base oils having improved low temperature properties. Polyalphaolefin and ester base oils are limited in supply and very expensive. Improved two-cycle gasoline engine lubricant compositions, comprising less expensive base oils, and meeting the requirements set by standard setting organizations are desired. It is also desired that these lubricant compositions have reduced levels of hydrocarbon solvent, reduced engine wear, and reduced pollution. It is also desired that two-cycle gasoline engine lubricant compositions have good low temperature performance, good gasoline miscibility, and high oxidation stability. It is also desired that two-cycle gasoline engine lubricant compositions have higher flash points and reduced flammability. It is also desired that two-cycle gasoline engine lubricant compositions can be made using polyethylene plastic, to reduce waste plastic environmental pollution.
SUMMARY OF THE INVENTION
The present invention provides a lubricating oil, comprising: a. a base oil fraction having: i. consecutive numbers of carbon atoms; ii. a kinematic viscosity at 1000C between about 1.5 and about 3.5 mm2/s; iii. between about 90 wt% and about 97 wt% paraffinic carbon; iv. between about 3 wt% and about 10 wt% naphthenic carbon; v. less than 0.01 wt% aromatic carbon; b. less than about 5 wt% based on the total lubricating oil of a hydrocarbon solvent having a maximum boiling point less than 250 degrees C; and c. from about 1 wt% to about 25 wt% based on the total lubricating oil of a detergent/dispersant additive package; wherein the lubricating oil has a blend kinematic viscosity at 1000C of 6.5 mm2/s or greater, good low temperature fluidity at -25°C, and an exhaust smoke index of greater than 65.
The present invention also provides a lubricating oil, comprising: a. a base oil made from a waxy feed; and b. less than about 5 wt% based on the total lubricating oil of a hydrocarbon solvent having a maximum boiling point less than 250 degrees C; wherein the lubricating oil has a blend kinematic viscosity of 6.5 mm2/s or greater, good low temperature fluidity at -25°C, and an exhaust smoke index of greater than 65.
The present invention also provides a lubricating oil, comprising: a. a base oil with a kinematic viscosity between 1.5 and 4.0 mm2/s and a Noack volatility less than a Noack Volatility Factor (1) = 160 - (40 x kinematic viscosity at 1000C) ; and b. a pour point reducing blend component; wherein the lubricating oil has a blend kinematic viscosity at 1000C of 6.5 mm2/s or greater, good low temperature fluidity at -25°C, and an exhaust smoke index of greater than 65.
The present invention also provides a lubricating oil, comprising: a. a base oil fraction having: i. a pour point of less than -80C; ii. a kinematic viscosity at 1000C of at least 1.5 mm2/s; and iii. a viscosity index greater than an amount calculated by the equation: 22 x Ln (Kinematic Viscosity at 1000C.) + 132; b. less than about 5 wt% based on the total lubricating oil of a hydrocarbon solvent having a maximum boiling point less than 250 degrees C; c. from about 1 wt% to about 25 wt% based on the total lubricating oil composition of a detergent/dispersant additive package; wherein the lubricating oil has a blend kinematic viscosity at 1000C of 6.5 mm2/s or greater, good low temperature fluidity at -25°C, and an exhaust smoke index of greater than 65.
The present invention also provides a lubricating oil, comprising: a. a Fischer-Tϊopsch derived base oil; b. less than about 5 wt% based on the total lubricating oil of a hydrocarbon solvent having a maximum boiling point less than 250 degrees C; and c. a detergent/dispersant additive package; wherein the lubricating oil meets the requirements for lubricating oil used in two-cycle gasoline engines according to Japanese Automobile Standard JASO M345:2003, Classifications C or D.
The present invention also provides a lubricating oil, comprising a pour point reducing blend component; wherein the lubricating oil meets the requirements for lubricating oil used in two-cycle gasoline engines according to Japanese Automobile Standard JASO M345:2003. The present invention also provides a lubricating oil, consisting essentially of: a. between 20 and 70 wt% based on the total lubricating oil of one or more base oil fractions having: i. consecutive numbers of carbon atoms; ii. a kinematic viscosity at 1000C between about 1.5 and about 3.5 mm2/s; iii. between about 90 wt% and about 97 wt% paraffinic carbon; iv. between about 3 wt% and about 10 wt% naphthenic carbon; v. less than 0.01 wt% aromatic carbon; b. between 0.5 and 25 wt% based on the total lubricating oil of a pour point reducing blend component; c. less than about 5 wt% based on the total lubricating oil of a hydrocarbon solvent having a maximum boiling point less than 250 degrees C; d. from about 1 wt% to about 25 wt% based on the total lubricating oil of a detergent/dispersant additive package; e. from about 1 wt% to about 50 wt% based on the total lubricating oil of a smoke-suppression agent; and f. less than 0.1 wt% based on the total lubricating oil of a pour point depressant; and wherein the lubricating oil has a blend kinematic viscosity at 1000C of 6.5 mm2/s or greater, good low temperature fluidity at -25°C, and an exhaust smoke index of greater than 65.
BRIEF DESCRIPTION OF THE DRAWING
FIGURE 1 illustrates the plots of Kinematic Viscosity at 1000C vs. Noack Volatility, in weight percent, providing the equations for calculation of the upper limits of wt% Noack Volatility of:
Noack Volatility Factor (1) = 160-40(Kinematic Viscosity at 1000C), and Noack Volatility Factor (2) = 900 x (Kinematic Viscosity at 1000C)'2 8- 15, wherein the Kinematic Viscosity at 100 0C is raised to the power of -2.8 in the second equation.
DETAILED DESCRIPTION OF THE INVENTION
To operate a two-cycle gasoline engine the crankcase holds a mixture of two- cycle gasoline engine lubricant and fuel. In a two-cycle engine the crankcase is serving as a pressurization chamber to force air/fuel into the cylinder, so it can't hold high viscosity oil like what may be used in a four-cycle engine. Instead, specialized two-cycle gasoline engine lubricant is mixed in with the fuel to lubricate the crankshaft, connecting rod and cylinder walls.
The recommended mix ratio of two-cycle gasoline engine lubricant and fuel are specified by the engine manufacturer. The fuels useful in two-cycle gasoline engines are well known to those skilled in the art and usually contain a major portion of a normally liquid fuel such as a hydrocarbonaceous petroleum distillate fuel, e.g., spark ignition engine fuel as defined by ASTM D4814-07, or motor gasoline as defined by ASTM D439-89. Such fuels can also contain non-hydrocarbonaceous materials such as alcohols, ethers, organo nitro compounds and the like. For example, methanol, ethanol, diethyl ether, methylethyl ether, nitro methane and such fuels are within the scope of this invention as are liquid fuels derived from vegetable and mineral sources such as corn, switch grass, alpha shale and coal. Examples of such fuel mixtures are combinations of gasoline and ethanol, diesel fuel and ether, gasoline and nitro methane, etc. In one embodiment the fuel is lead-free gasoline.
Two-cycle gasoline engine lubricants are used in admixture with fuels in amounts of about 20 to 250 parts by weight of fuel per 1 part by weight of lubricating oil, more typically about 30-100 parts by weight of fuel per 1 part by weight of lubricant.
Two-cycle gasoline engine lubricants must meet requirements set by standards setting organizations, including Japanese Automobile Standard JASO M345:2003 and International Standard ISO 13738:2000(E). The requirements of these two standards are summarized in the table below.
Table I
Figure imgf000009_0001
The indexes in the table of requirements above are determined by taking JATRE-1 oil as having a value of 100. Classification C applies to what is called low-smoke type oil that has superior exhaust smoke performance and exhaust system blocking tendency. Classification D is applied to oils with better detergency than Classification C oils when the engine is hot.
Classification B, C and D oils in the ISO standard all have a sulfated ash content of 0.18 wt% maximum. Sulfated ash may be measured according to ISO 3987 or ASTM D874-00.
Additionally, it is desired that these lubricants have good low temperature fluidity when they are to be used in conditions where low temperatures are encountered. Low temperature fluidity is measured by determining the Brookfield Viscosity measured by ASTM D2983-04a at defined temperatures of -1O0C, -250C, and -400C. "Good low temperature fluidity" at one of the temperatures measured is defined in this disclosure as when the oil being tested has a Brookfield Viscosity of about 7500 mPa.s or less. For example, good low temperature fluidity at -1O0C means that the oil has a Brookfield Viscosity at -1O0C of about 7500 mPa.s or less; good low temperature fluidity at -250C means that the oil has a Brookfield Viscosity at -25°C of about 7500 mPa.s or less; and good low temperature fluidity at -400C means that the oil has a Brookfield Viscosity at -4O0C of about 7500 mPa.s or less.
Additionally, it is desired that these lubricants have passing results in the miscibility test by ASTM D4682-87(Reapproved 2002) at temperatures of - 1O0C and/or -250C.
The two-cycle gasoline engine lubricant compositions are particularly suited as injector oils or at up to a 150:1 fuel to lubricant mix ratio with an appropriate fuel such as gasoline in carbureted, electronic fuel injected and direct fuel injected two-cycle engines, including: outboard motors, snowmobiles, motorcycles, mopeds, ATVs, golf carts, lawn mowers, chain saws, string trimmers and the like.
Base Oil: The lubricant base oils used in the two-cycle gasoline engine lubricant compositions are derived from substantially paraffinic waxy feeds. The term "substantially paraffinic" means containing a high level of n-paraffins, generally greater than 40 wt%. Some substantially paraffinic waxy feeds may have for example greater than 50 wt%, or greater than 75 wt% n-paraffins. One example of a substantially paraffinic waxy feed is wax produced in a Fischer-Tropsch process. Another example is highly refined slack wax.
Fischer-Tropsch waxes can be obtained by well-known processes such as, for example, the commercial SASOL® Slurry Phase Fischer-Tropsch technology, the commercial SHELL® Middle Distillate Synthesis (SMDS) Process, or by the non-commercial EXXON® Advanced Gas Conversion (AGC-21) process. Details of these processes and others are described in, for example, EP-A- 776959, EP-A-668342; U.S. Patent Nos. 4,943,672, 5,059,299, 5,733,839, and RE39073 ; and US Published Application No. 2005/0227866, WO-A-9934917, WO-A-9920720 and WO-A-05107935. The Fischer-Tropsch synthesis product usually comprises hydrocarbons having 1 to 100, or even more than 100 carbon atoms, and typically includes paraffins, olefins and oxygenated products. Fischer Tropsch is a viable process to generate clean alternative hydrocarbon products, including Fischer-Tropsch waxes.
Slack wax can be obtained from conventional petroleum derived feedstocks by either hydrocracking or by solvent refining of the lube oil fraction. Typically, slack wax is recovered from solvent dewaxing feedstocks prepared by one of these processes. Hydrocracking is usually preferred because hydrocracking will also reduce the nitrogen content to a low value. With slack wax derived from solvent refined oils, deoiling may be used to reduce the nitrogen content and raise the viscosity index. Hydrotreating of the slack wax can be used to lower the nitrogen and sulfur content. Slack waxes posses a very high viscosity index, normally in the range of from about 140 to 200, depending on the oil content and the starting material from which the slack wax was prepared. Therefore, slack waxes are suitable for the preparation of base oils used in two-cycle gasoline engine lubricants.
In one embodiment the waxy feed has less than 25 ppm total combined nitrogen and sulfur. Nitrogen is measured by melting the waxy feed prior to oxidative combustion and chemiluminescence detection by ASTM D 4629-02. The test method is further described in US 6,503,956, incorporated herein. Sulfur is measured by melting the waxy feed prior to ultraviolet fluorescence by ASTM D 5453-00. The test method is further described in US 6,503,956, incorporated herein.
Determination of normal paraffins (n-paraffins) in wax-containing samples should use a method that can determine the content of individual C7 to C110 n-paraffins with a limit of detection of 0.1 wt%. The method used is described later in this disclosure.
Waxy feeds are expected to be plentiful and relatively cost competitive in the near future as large-scale Fischer-Tropsch synthesis processes come into production. Fischer-Tropsch derived base oils made from these waxy feeds, and thus the two-cycle gasoline engine lubricants comprising them, will be less expensive than lubricants made with other synthetic oils such as polyalphaolefins or esters. The terms "Fischer-Tropsch derived" or "FT derived" means that the product, fraction, or feed originates from or is produced at some stage by a Fischer-Tropsch process. The feedstock for a Fischer-Tropsch process may come from a wide variety of hydrocarbonaceous resources, including biomass, natural gas, coal, shale oil, petroleum, municipal waste, derivatives of these, and combinations thereof. Syncrude prepared from the Fischer-Tropsch process comprises a mixture of various solid, liquid, and gaseous hydrocarbons. Those Fischer-Tropsch products which boil within the range of lubricating base oil contain a high proportion of wax which makes them ideal candidates for processing into base oil. Accordingly, Fischer-Tropsch wax represents an excellent feed for preparing high quality base oils. Fischer-Tropsch wax is normally solid at room temperature and, consequently, displays poor low temperature properties, such as pour point and cloud point. However, following hydroisomerization of the wax, Fischer-Tropsch derived base oils having excellent low temperature properties may be prepared. A general description of examples of suitable hydroisomerization dewaxing processes may be found in US Patent Nos. 5, 135,638 and 5,282,958; and US Patent Application 20050133409, incorporated herein.
The hydroisomerization is achieved by contacting the waxy feed with a hydroisomerization catalyst in an isomerization zone under hydroisomerizing conditions. The hydroisomerization catalyst preferably comprises a shape selective intermediate pore size molecular sieve, a noble metal hydrogenation component, and a refractory oxide support. The shape selective intermediate pore size molecular sieve is preferably selected from the group consisting of SAPO-11 , SAPO-31 , SAPO-41 , SM-3, ZSM-22, ZSM-23, ZSM-35, ZSM-48, ZSM-57, SSZ-32, offretite, ferrierite, and combinations thereof. SAPO- 11 , SM-3, SSZ-32, ZSM-23, ZSM-48, and combinations thereof are used in one embodiment. In one embodiment the noble metal hydrogenation component is platinum, palladium, or combinations thereof. The hyclroisomerizing conditions depend on the waxy feed used, the hydroisomerization catalyst used, whether or not the catalyst is sulfided, the desired yield, and the desired properties of the base oil. Examples of hydroisomerizing conditions of one embodiment include temperatures of 260 degrees C to about 413 degrees C (500 to about 775 degrees F); a total pressure of 15 to 3000 psig, or 50 to 1000 psig; and a hydrogen to feed ratio from about 2 to 30 MSCF/bbl, about 4 to 20 MSCF/bbl (about 712.4 to about 3562 liter H2/liter oil), about 4.5 or 5 to about 10 MSCF/bbl, or about 5 to about 8 MSCF/bbl. Generally, hydrogen will be separated from the product and recycled to the isomerization zone. Note that a feed rate of 10 MSCF/bbl is equivalent to 1781 liter H2 / liter feed. Generally, hydrogen will be separated from the product and recycled to the isomerization zone.
Optionally, the base oil produced by hydroisomerization dewaxing may be hydrofinished. The hydrofinishing may occur in one or more steps, either before or after fractionating of the base oil into one or more fractions. The hydrofinishing is intended to improve the oxidation stability, UV stability, and appearance of the product by removing aromatics, olefins, color bodies, and solvents. A general description of hydrofinishing may be found in US Patent Nos. 3,852,207 and 4,673,487, incorporated herein. The hydrofinishing step may be needed to reduce the weight percent olefins in the base oil to less than 10, less than 5 or 2, less than 1 , less than 0.5, and less than 0.05 or 0.01. The hydrofinishing step may also be needed to reduce the weight percent aromatics to less than 0.3 or 0.1 , less than 0.05, less than 0.02, and in some embodiments even less than 0.01.
Optionally, the base oil produced by hydroisomerization dewaxing may be treated with an adsorbent such as bauxite or clay to remove impurities and improve the color and biodegradability. Because it is made from a waxy feed, the base oil has consecutive numbers of carbon atoms. By "consecutive numbers of carbon atoms" we mean that the hydrocarbon molecules of the base oil differ from each other by consecutive numbers of carbon atoms, as a consequence of the waxy feed also having sequential numbers of carbon atoms. For example, in the
Fischer-Tropsch hydrocarbon synthesis reaction the source of carbon atoms is CO and the hydrocarbon molecules are built up one carbon atom at a time. Petroleum-derived waxy feeds also have sequential numbers of carbon numbers. In contrast to an oil based on PAO, the molecules of the base oil have a more linear structure, comprising a relatively long backbone with short branches. The classic textbook description of a PAO is a star-shaped molecule, and in particular tridecane, which is illustrated as three decane molecules attached at a central point. While a star-shaped molecule is theoretical, nevertheless PAO molecules have fewer and longer branches that the hydrocarbon molecules that make up the base oil used in this disclosure. In another embodiment the base oil having consecutive numbers of carbon atoms also has less than 10 wt% naphthenic carbon by n-d-M.
In one embodiment the lubricating base oil is separated into fractions, whereby one or more of the fractions will have a pour point less than O0C, less than -9°C, less than -150C, less than -2O0C, less than -3O0C, or less than - 350C. Pour point is measured by ASTM D 5950-02. The base oil is optionally fractionated into different viscosity grades of base oil. In the context of this disclosure "different viscosity grades of base oil" is defined as two or more base oils differing in kinematic viscosity at 100 degrees C from each other by at least 0.5 mm2/s. Kinematic viscosity is measured using ASTM D445-06. Fractionating is done using a vacuum distillation unit to yield cuts with pre selected boiling ranges. One of the fractions may be a distillation bottoms product. In one embodiment the base oil fractions have less than 0.01 wt% aromatic carbon and greater than about 90 wt% paraffinic carbon. The balance of the wt% carbon is naphthenic carbon. Wt% aromatic, wt% paraffinic and wt% naphthenic carbon are determined by n-d-M analysis according to ASTM D3238-95(2005). In one embodiment the wt% paraffinic carbon is between about 90 wt% and about 97 wt% and the wt% naphthenic carbon is between about 3 wt% and about 10 wt%.
In one embodiment, the viscosity indexes of the lubricating base oil fractions will be high. They will often have viscosity indexes greater than 28 x
Ln(Kinematic Viscosity at 1000C) +80. In one embodiment they will have viscosity indexes greater than 28 x Ln(Kinematic Viscosity at 1000C) +95. For example a 2.5 mm2/s oil will have a viscosity index greater than 106, optionally greater than 121 ; and a 12 mm2/s oil will have a viscosity index greater than 150, optionally greater than 165.
In another embodiment the base oil has a pour point of less than -80C; a kinematic viscosity at 1000C of at least 1.5 mm2/s; and a viscosity index greater than an amount calculated by the equation: 22 x Ln (Kinematic Viscosity at 1000C.) + 132. In this embodiment, for example, an oil with a kinematic viscosity of 2.5 mm2/s at 100°C will have a viscosity index greater than 152. Base oils with these properties are described in US Patent Publication US20050077208.The term "Ln" in the context of equations in this disclosure refers to the natural logarithm with base 'e'. The test method used to measure viscosity index is ASTM D 2270-04.
The base oil fractions have a kinematic viscosity at 1000C between about 1.3 and 25 mm2/s. In one embodiment the base oil fractions have a kinematic viscosity at 1000C between about 1.5 and about 3.5 mm2/s. In another embodiment the base oil fractions have a kinematic viscosity between about
1.8 and about 3.2 mm2/s.
In one embodiment the base oil fractions provide excellent oxidation stability, low Noack volatility, as well as desired additive solubility and elastomer compatibility. The base oil fractions have a weight percent olefins less than 10, less than 5, less than 1 , less than 0.5, or less than 0.05 or 0.01. The base oil fractions have a weight percent aromatics less than 0.1 , less than 0.05, or less than 0.02.
"Traction coefficient" is an indicator of intrinsic lubricant properties, expressed as the dimension less ratio of the friction force F and the normal force N, where friction is the mechanical force which resists movement or hinders movement between sliding or rolling surfaces. Traction coefficient can be measured with an MTM Traction Measurement System from PCS
Instruments, Ltd. , configured with a polished 19 mm diameter ball (SAE AISI 52100 steel) angled at 220 to a flat 46 mm diameter polished disk (SAE AISI 52100 steel). The steel ball and disk are independently measured at an average rolling speed of 3 meters per second, a slide to roll ratio of 40 percent, and a load of 20 Newtons. The roll ratio is defined as the difference in sliding speed between the ball and disk divided by the mean speed of the ball and disk, i.e. roll ratio = (Speed 1-Speed2)/((Speed1+Speed2)- /2).ln some embodiments, the base oil fractions have a traction coefficient less than 0.023, less than or equal to 0.021 , or less than or equal to 0.019, when measured at a kinematic viscosity of 15 mm2/s and at a slide to roll ratio of 40 percent. In one embodiment they have a traction coefficient less than an amount defined by the equation: traction coefficient = 0.009 x Ln(Kinematic Viscosity) - 0.001 , wherein the Kinematic Viscosity during the traction coefficient measurement is between 2 and 50 mm2/s; and wherein the traction coefficient is measured at an average rolling speed of 3 meters per second, a slide to roll ratio of 40 percent, and a load of 20 Newtons.
in one embodiment the base oil fractions have a traction coefficient less than 0.015 or less than 0.011 , when measured at a kinematic viscosity of 15 mm2/s and at a slide to roll ratio of 40 percent. Examples of these base oil fractions with low traction coefficients are taught in U.S. Patent Number 7,045,055 and U.S. Patent Applications 11/400570 and 11/399773 both filed April 7, 2006. In one embodiment, the base oil has a traction coefficient less than 0.015, and a 50 wt% boiling point greater than 5650C (10500F). In another embodiment, the base oil has a traction coefficient less than 0.011 and a 50 wt% boiling point by ASTM D 6352-04 greater than 5820C. (1080°F).
In some embodiments, the isomerized base oil having a low traction coefficient also displays unique branching properties by NMR, including a branching index less than or equal to 23.4, a branching proximity greater than or equal to 22.0, and a Free Carbon Index between 9 and 30. In one embodiment, the base oil has at least 4 wt% naphthenic carbon, in another embodiment, at least 5 wt% naphthenic carbon by n-d-M analysis by ASTM D 3238-95 (Reapproved 2005). Two-cycle gasoline engine lubricants made comprising base oil fractions having low traction coefficients provide reduced engine wear.
In some embodiments, where the olefin and aromatics contents are significantly low in the lubricant base oil fraction of the lubricating oil, the Oxidator BN of the selected base oil fraction will be greater than 25 hours, such as greater than 35 hours or even greater than 40 hours. The Oxidator BN of the selected base oil fraction will typically be less than 70 hours.
Oxidator BN is a convenient way to measure the oxidation stability of base oils. The Oxidator BN test is described by Stangeland et al. in U.S. Patent 3,852,207. The Oxidator BN test measures the resistance to oxidation by means of a Dornte-type oxygen absorption apparatus. See R. W. Dornte "Oxidation of White Oils," Industrial and Engineering Chemistry, Vol. 28, page 26, 1936. Normally, the conditions are one atmosphere of pure oxygen at 34O0F. The results are reported in hours to absorb 1000 ml of O2 by 100 g. of oil. In the Oxidator BN test, 0.8 ml of catalyst is used per 100 grams of oil and an additive package is included in the oil. The catalyst is a mixture of soluble metal naphthenates in kerosene. The mixture of soluble metal naphthenates simulates the average metal analysis of used crankcase oil. The level of metals in the catalyst is as follows: Copper = 6,927 ppm ; Iron = 4,083 ppm ; Lead = 80,208 ppm ; Manganese= 350ppm ; Tin= 3565 ppm. The additive package is 80 millimoles of zinc bispolypropylenephenyldithio- phosphate per 100 grams of oil, or approximately 1.1 grams of OLOA™ 260. The Oxidator BN test measures the response of a lubricating base oil in a simulated application. High values, or long times to absorb one liter of oxygen, indicate good oxidation stability. Two-cycle gasoline engine lubricants comprising base oil fractions having good oxidation stability will also have improved oxidation stability.
OLOA™ is an acronym for Oronite Lubricating Oil Additive, which is a registered trademark of Chevron Oronite.
In some embodiments the one or more lubricating base oil fractions will have excellent biodegradability. With suitable hydro-processing and/or adsorbent treatment they are readily biodegradable by the OECD 301 B Shake Flask Test (Modified Sturm Test). When the readily biodegradable base oil fractions are blended with suitable biodegradable additives, such as selected low-ash or ashless additives, the lubricants will provide rapid biodegradation of spills in sensitive areas with minimal non-biodegradable residue and will prevent costly environmental clean-up. In some embodiments the one or more lubricating base oil fractions will have a low Noack volatility. Noack volatility is usually tested according to ASTM D5800-05 Procedure B. In an embodiment, the one or more lubricating base oil fractions have a Noack volatility of less than 100 weight %. Noack volatility of base oils generally increases as the kinematic viscosity decreases. The lower the Noack volatility, the lower the tendency of base oil and formulated oils to volatilize in service.
The "Noack Volatility Factor" of base oil is an empirical number derived from the kinematic viscosity of the base oil. The Noack volatility of the base oil derived from highly paraffinic wax is very low, and in an embodiment, is less than an amount calculated by the equation:
Noack Volatility Factor (1) = 160 - 40(Kinematic Viscosity at 1000C). Equation (1), as provided in U.S. Patent Application Publication No. 2006/0201852 A1 , provides Noack Volatility Factors between 0 and 100 for kinematic viscosities between 1.5 and 4.0 mm2/s. FIG. 1 is a graph of the Noack Volatility Factor according to Equation (1). In a second embodiment, the Noack volatility of the one or more lubricant base oil fractions is less than an amount calculated by the equation: Noack Volatility Factor (2) = (900 x (Kinematic Viscosity at 1000C)'2 8) - 15. Equation (2), as provided in U.S. Patent Application Serial No. 11/613,936, provides Noack Volatility Factors between 0 and 100 for kinematic viscosities between 2.09 and 4.3 mm2/s. FIG. 1 also includes the Noack Volatility Factor according to Equation (2). For kinematic viscosities in the range of 2.4 to 3.8 mm2/s, Equation (2) provides a lower Noack Volatility Factor than does
Equation (1). Lower Noack Volatility Factors in the range of base oils having kinematic viscosities from 2.4 to 3.8 mm2/s are desired, especially if the base oils are to be blended with other oils that may have higher Noack volatilities. Additional base oils may be incorporated in the lubricant composition in an amount from about 1.0 wt% to about 20 wt%. Examples of these additional base oils include esters, mixtures of esters, and complex esters as described in U.S. Patent No. 6,197,731 ; polyalphaolefins, polyinternalolefins, polyisobutenes, alkylated aromatics such as alkylated naphthalenes, and conventional petroleum derived API Group Il and Group III mineral oils.
Pour Point Reducing Blend Component:
The two-cycle gasoline engine lubricant may comprise a pour point reducing blend component. As used herein, "pour point reducing blend component" refers to an isomerized waxy product with relatively high molecular weight and a specified degree of alkyl branching in the molecules, such that it reduces the pour point of lubricating base oil blends containing it. Examples of a pour point reducing blend component are disclosed in U.S. Patent Nos. 6,150,577 and 7,053,254, and Patent Publication No. US 20050247600 A1. A pour point reducing blend component can be: 1) an isomerized Fischer-Tropsch derived bottoms product; 2) a bottoms product prepared from an isomerized highly waxy mineral oil, or 3) an isomerized oil having a kinematic viscosity at 100°C of at least about 8 mm2/s made from polyethylene plastic.
In one embodiment, the pour point reducing blend component is an isomerized Fischer-Tropsch derived vacuum distillation bottoms product having an average molecular weight between 600 and 1100 and an average degree of branching in the molecules between 6.5 and 10 alkyl branches per 100 carbon atoms. Generally, the higher molecular weight hydrocarbons are more effective as pour point reducing blend components than the lower molecular weight hydrocarbons. In one embodiment, a higher cut point in a vacuum distillation unit which results in a higher boiling bottoms material is used to prepare the pour point reducing blend component. The higher cut point also has the advantage of resulting in a higher yield of the distillate base oil fractions. In one embodiment, the pour point reducing blend component is an isomerized Fischer-Tropsch derived vacuum distillation bottoms product having a pour point that is at least 3°C higher than the pour point of the distillate base oil it is blended with.
In one embodiment, the 10 percent point of the boiling range of the pour point reducing blend component that is a vacuum distillation bottoms product is between about 850 0F - 10500F (454 - 565 0C). In another embodiment, the pour point reducing blend component is derived from either Fischer-Tropsch or petroleum products, having a boiling range above 95O0F (5100C), and contains at least 50 percent by weight of paraffins. In yet another embodiment the pour point reducing blend component has a boiling range above 10500F (5650C).
In another embodiment, the pour point reducing blend component is an isomerized petroleum derived base oil containing material having a boiling range above about 10500F. In one embodiment, the isomerized bottoms material is solvent dewaxed prior to being used as a pour point reducing blend component. The waxy products further separated during solvent dewaxing from the pour point reducing blend component were found to display excellent improved pour point depressing properties compared to the oily product recovered after the solvent dewaxing.
In another embodiment, the pour point reducing blend component is an isomerized oil having a kinematic viscosity at 1000C of at least about 8 mm2/s made from polyethylene plastic. In one embodiment the pour point reducing blend component is made from waste plastic. In another embodiment the pour point reducing blend component is made from steps comprising pyrolysis of polyethylene plastic, separating out a heavy fraction, hydrotreating the heavy fraction, catalytic isomerizing the hydrotreated heavy fraction, and collecting the pour point reducing blend component having a kinematic viscosity at 1000C of at least about 8 mm2/s. In a third embodiment, the pour point reducing blend component derived from polyethylene plastic and has a boiling range above 10500F (5650C), or even has a boiling range above 1200T (649°C).
In one embodiment, the pour point reducing blend component has an average degree of branching in the molecules within the range of from 6.5 to 10 alkyl branches per 100 carbon atoms. In another embodiment, the pour point reducing blend component has an average molecular weight between 600 - 1100. In a third embodiment it has an average molecular weight between 700 - 1000. In one embodiment, the pour point reducing blend component has a kinematic viscosity at 1000C of 8 - 30 mm2/s, with the 10% point of the boiling range falling between about 850 - 10500F In yet another embodiment, the pour point reducing blend component has a kinematic viscosity at 1000C of 15- 20 mnVVs and a pour point of -8 to -12°C.
In one embodiment, the pour point reducing blend component is an isomerized oil having a kinematic viscosity at 1000C of at least about 8 mm2/s made from polyethylene plastic. In one embodiment the pour point reducing blend component is made from waste plastic. In another embodiment the pour point reducing blend component is made from steps comprising pyrolysis of polyethylene plastic, separating out a heavy fraction, hydrotreating the heavy fraction, catalytic isomerizing the hydrotreated heavy fraction, and collecting the pour point reducing blend component having a kinematic viscosity at 1000C of at least about 8 mm2/s. In a third embodiment, the pour point reducing blend component derived from polyethylene plastic has a boiling range above 10500F (565°C), or even a boiling range above 1200°F (649°C). Additives & Additive Packages:
Various detergent/dispersant additive packages may be combined with base oil in formulating two-cycle oil gasoline engine lubricants. Ashless, low-ash, or ash-containing additives may be used for this purpose.
Suitable ashless additives include polyamide, alkenylsuccinimides, boric acid- modified alkenylsuccinimides, phenolic amines and succinate derivatives or combinations of any two or more of such additives.
Examples of a low ash additive package comprise (i) polyisobutenyl (Mn 400- 2500) succinimide or another oil soluble, acylated, nitrogen containing lubricating oil dtspersant present in the amount of 0.2-5 wt,% in the lubricating oil and (ii) a metal phenate, sulfonate or salicylate oil soluble detergent additive. In one embodiment, the oil soluble detergent additive is a neutral metal detergent or overbased metal detergent of Total Base Number 200 or less, present in the amount of 0.1-2 wt% in the lubricating oil. In this embodiment the metal is calcium, barium or magnesium. Neutral calcium salicylates are one example, and may be present in amounts of about 0.5 to 1.5 wt% in the lubricating oil.
Polyamide detergent/dispersant additives, such as the commonly used tetraethylenepentamine isostearate, may be prepared by the reaction of fatty acid and polyalkylene polyamines, as described in U.S. Pat. No. 3,169,980, the entire disclosure of which is incorporated by reference in this specification, as if set forth herein in full. These polyamides may contain measurable amounts of cyclic imidazolines formed by internal condensation of the linear polyamides upon continued heating at elevated temperature. Another useful class of polyamide additives is prepared from polyalkylene polyamines and C19 -C25 Koch acids, according to the procedure of R. Hartle et al., JAOCS, 57 (5): 156-59 (1980).
Alkenylsuccinimides are formed by a step-wise procedure in which an olefin, such as polybutene (MV 1200) is reacted with maleic anhydride to yield a polybutenyl succinic anhydride adduct, which is then reacted with an amine, e.g., an alkylamine or a poly- amine, to form the desired product.
Phenolic amines are prepared by the well-known Mannich reaction (C. Mannich and W. Krosche, Arch. Pharm., 250: 674 (1912)), involving a polyalkylene-substituted phenol, formaldehyde and a polyalkylene polyamine.
Succinate derivatives are prepared by the reaction of an olefin (e.g., polybutene (eg., polybutene) and maleic anhydride to yield a polybutenyl succinic anhydride adduct, which undergoes further reaction with a polyol, e.g., pentaerythritol, to give the desired product.
Suitable ash-containing detergent/dispersant additives include alkaline earth metal (e.g., magnesium, calcium, barium), sulfonates, phosphonates or phenates or combinations of any two or more of such additives.
The foregoing detergent/dispersant additives may be incorporated in the lubricant compositions described herein in an amount from about 1 to about 25 wt%, and more preferably from about 3 to about 20 wt% based on the total weight of the composition.
Commercially available two-cycle lubricant detergent/dispersant additive packages may be used in combination with the base oil to produce the two- cycle gasoline engine lubricant, for example, LUBRIZOL 400, LUBRIZOL 6827, LUBRIZOL 6830, LUBRIZOL 600, LUBRIZOL 606, ORONITE OLOA® 9333, ORONITE OLOA® 340A, ORONITE OLOA® 6721 and ORONITE OLOA® 9357.
Various other additives may be incorporated in the two-cycle gasoline engine lubricant, as desired. These include smoke-suppression agents, such as polybutene or polyisobutylene (PIB), extreme pressure additives, such as dialkyldithiophosphohc acid salts or esters, anti-foaming agents, such as silicone oil, pour point depressants, rust or corrosion prevention agents, such as triazole derivatives, propyl gallate or alkali metal phenolates or sulfonates, oxidation inhibitors, such as substituted diarylamines, phenothiazines, hindered phenols, or the like. Certain of these additives may be multifunctional, such as polymethacrylate, which may serve as an anti- foaming agent, as well as a pour point depressant. Pour point depressants, when used, are used in an amount between 0.005 to 0.1 wt% based on the total lubricating oil. Examples of pour point depressants are polymethacrylates (PMA); polyacrylates; polyacrylamides; condensation products of haloparaffin waxes and aromatic compounds; vinyl carboxylate polymers; terpolymers of dialkylfumarates, vinyl esters of fatty acids, and alkyl vinyl ethers; and mixtures thereof.
In one embodiment, the smoke-suppression agent is an olefinically unsaturated polymer selected from the group consisting of polybutene, polyisobutylene or a mixture of polybutene and polyisobutylene, which has a number average molecular weight of 400 to 2200 and a terminal vinylidene content of at least 60 mol %, based on the total number of double bonds in the polymer. These types of smoke-suppression agents are taught in EP1743932A2. A commercial example of these smoke-suppression agents is BASF Corporation's GLISSOPAL® 1000. Volatile, combustible high flash hydrocarbon solvent such as kerosene, Exxsol D80, or Stocldard solvent can also be used as additives. Exxsol D80 is a dearomatized aliphatic high flash solvent with an initial boiling point of at least 2000C, a Kauri-Butanol Value of about 28 (between 20 and 40), and an aniline point of 73.9 to 79.40C. Volatile, combustible high flash hydrocarbon solvents may be added to the two-cycle engine lubricant in an amount less than 5 wt% of the total lubricating oil in order to bring the smoke index to a value of at least 75 in the JASO M 342-92 test and/or to improve the compatibility and/or solubility of other additives and to improve the low temperature characteristics such as viscosity and gasoline miscibility. In one embodiment, the two-cycle gasoline engine lubricant comprises low levels of solvent, such as less than about 5 wt%, less than about 2 wt%, or even essentially none of the total lubricating oil is a hydrocarbon solvent having a maximum boiling point less than 250 degrees C. Lower levels of solvent in the two-cycle gasoline engine lubricant provides for reduced pollution by evaporation of volatile organic contents, improved compatibility with elastomers used in packaging and transport, and reduced flammability hazards for enhanced transportation and storage safety.
Most of the above-described additives may be incorporated in the lubricant composition in an amount from about 0.005% to about 15%, or from about 0.005% to about 6%, based on the total weight of the lubricant composition. In the case of polybutene or polyisobutylene, the amount may vary from 1 % to 50%. The amount of each additive or additive package selected within the specified range should be such as not to adversely effect the desirable performance properties of the lubricant. The effects produced by such additives can be readily determined by routine testing.
Alternatively, the lubricating oil is one consisting of, or consisting essentially of: a. between 20 and 70 wt% based on the total lubricating oil of one or more base oil fractions having: i. consecutive numbers of carbon atoms; ii. a kinematic viscosity at 1000C between about 1.5 and about 3.5 mm2/s; iii. between about 90 wt% and about 97 wt% paraffinic carbon; iv. between about 3 wt% and about 10 wt% naphthenic carbon; v. less than 0.01 wt% aromatic carbon; b. between 0.5 and 25 wt% based on the total lubricating oil of a pour point reducing blend component; c. less than about 5 wt% based on the total lubricating oil of a hydrocarbon solvent having a maximum boiling point less than 250 degrees C; d. from about 1 wt% to about 25 wt% based on the total lubricating oil of a detergent/dispersant additive package; e. from about 1 wt% to about 50 wt% based on the total lubricating oil of a smoke-suppression agent; and f. less than 0.1 wt% based on the total lubricating oil of a pour point depressant; wherein the lubricating oil has a blend kinematic viscosity at 1000C of 6.5 mm2/s or greater, good low temperature fluidity at -250C, and an exhaust smoke index of greater than 65.
The two-cycle gasoline engine lubricants have high flash points due to the low level of solvent they contain. Their flash points are in some embodiments greater than 120°C, or greater than 15O0C.
Specific Analytical Test Methods:
Wt% Normal Paraffins in Wax-Containing Samples: Quantitative analysis of normal paraffins in wax-containing samples is determined by gas chromatography (GC). The GC (Agilent 6890 or 5890 with capillary split/splitless inlet and flame ionization detector) is equipped with a flame ionization detector, which is highly sensitive to hydrocarbons. The method utilizes a methyl silicone capillary column, routinely used to separate hydrocarbon mixtures by boiling point. The column is fused silica, 100% methyl silicone, 30 meters length, 0.25 mm ID, 0.1 micron film thickness supplied by Agilent. Helium is the carrier gas (2 ml/min) and hydrogen and air are used as the fuel to the flame.
The waxy feed is melted to obtain a 0.1 g homogeneous sample. The sample is immediately dissolved in carbon disulfide to give a 2 wt% solution. If necessary, the solution is heated until visually clear and free of solids, and then injected into the GC. The methyl silicone column is heated using the following temperature program:
Initial temp: 15O0C (If C7 to C15 hydrocarbons are present, the initial temperature is 5O0C) Ramp: 60C per minute ■ Final Temp: 4000C
Final hold: 5 minutes or until peaks no longer eiute
The column then effectively separates, in the order of rising carbon number, the normal paraffins from the non-normal paraffins. A known reference standard is analyzed in the same manner to establish elution times of the specific normal-paraffin peaks. The standard is ASTM D2887 n-paraffin standard, purchased from a vendor (Agilent or Supelco), spiked with 5 wt% Polywax 500 polyethylene (purchased from Petrolite Corporation in Oklahoma). The standard is melted prior to injection. Historical data collected from the analysis of the reference standard also guarantees the resolving efficiency of the capillary column.
If present in the sample, normal paraffin peaks are well separated and easily identifiable from other hydrocarbon types present in the sample. Those peaks eluting outside the retention time of the normal paraffins are called non-normal paraffins. The total sample is integrated using baseline hold from start to end of run. N-paraffins are skimmed from the total area and are integrated from valley to valley. All peaks detected are normalized to 100%. EZChrom is used for the peak identification and calculation of results.
Wt% Olefins:
The Wt% Olefins in the base oils is determined by proton-NMR by the following steps, A-D:
A. Prepare a solution of 5-10% of the test hydrocarbon in deuterochloroform.
B. Acquire a normal proton spectrum of at least I2 ppm spectral width and accurately reference the chemical shift (ppm) axis. The instrument must have sufficient gain range to acquire a signal without overloading the receiver/ADC. When a 30 degree pulse is applied, the instrument must have a minimum signal digitization dynamic range of 65,000. Preferably the dynamic range will be 260,000 or more.
C. Measure the integral intensities between: 6.0-4.5 ppm (olefin)
2.2-1.9 ppm (allylic) 1.9-0.5 ppm (saturate) D. Using the molecular weight of the test substance determined by ASTM D 2503, calculate:
1. The average molecular formula of the saturated hydrocarbons 2. The average molecular formula of the olefins
3. The total integral intensity (=sum of all integral intensities)
4. The integral intensity per sample hydrogen (=total integral/number of hydrogens in formula)
5. The number of olefin hydrogens (=olefin integral/integral per hydrogen)
6. The number of double bonds (=olefin hydrogen times hydrogens in olefin formula/2)
7. The wt% olefins by proton NMR = 100 times the number of double bonds times the number of hydrogens in a typical olefin molecule divided by the number of hydrogens in a typical test substance molecule.
The wt% olefins by proton NMR calculation procedure, D, works best when the % olefins result is low, less than about 15 weight percent. The olefins must be "conventional" olefins; i.e. a distributed mixture of those olefin types having hydrogens attached to the double bond carbons such as: alpha, vinylidene, cis, trans, and trisubstituted. These olefin types will have a detectable allylic to olefin integral ratio between 1 and about 2.5. When this ratio exceeds about 3, it indicates a higher percentage of tri or tetra substituted olefins are present and that different assumptions must be made to calculate the number of double bonds in the sample.
Aromatics Measurement by HPLC-UV:
The method used to measure low levels of molecules with at least one aromatic function in the lubricant base oils uses a Hewlett Packard 1050 Series Quaternary Gradient High Performance Liquid Chromatography (HPLC) system coupled with a HP 1050 Diode-Array UV- Vis detector interfaced to an HP Chem-station. Identification of the individual aromatic classes in the highly saturated Base oils was made on the basis of their UV spectral pattern and their elution time. The amino column used for this analysis differentiates aromatic molecules largely on the basis of their ring- number (or more correctly, double-bond number). Thus, the single ring aromatic containing molecules elute first, followed by the polycyclic aromatics in order of increasing double bond number per molecule. For aromatics with similar double bond character, those with only alkyl substitution on the ring elute sooner than those with naphthenic substitution.
Unequivocal identification of the various base oil aromatic hydrocarbons from their UV absorbance spectra was accomplished recognizing that their peak electronic transitions were all red-shifted relative to the pure model compound analogs to a degree dependent on the amount of alkyl and naphthenic substitution on the ring system. These bathochromic shifts are well known to be caused by alkyl-group delocalization of the π -electrons in the aromatic ring. Since few unsubstituted aromatic compounds boil in the lubricant range, some degree of red-shift was expected and observed for all of the principle aromatic groups identified.
Quantitation of the eluting aromatic compounds was made by integrating chromatograms made from wavelengths optimized for each general class of compounds over the appropriate retention time window for that aromatic. Retention time window limits for each aromatic class were determined by manually evaluating the individual absorbance spectra of eluting compounds at different times and assigning them to the appropriate aromatic class based on their qualitative similarity to model compound absorption spectra. With few exceptions, only five classes of aromatic compounds were observed in highly saturated API Group Il and III lubricant base oils. HPLC-UV Calibration:
HPLC-UV is used for identifying these classes of aromatic compounds even at very low levels. Multi-ring aromatics typically absorb 10 to 200 times more strongly than single-ring aromatics. Alkyl-substitution also affected absorption by about 20%. Therefore, it is important to use HPLC to separate and identify the various species of aromatics and know how efficiently they absorb.
Five classes of aromatic compounds were identified. With the exception of a small overlap between the most highly retained alkyl-1-ring aromatic naphthenes and the least highly retained alkyl naphthalenes, all of the aromatic compound classes were baseline resolved. Integration limits for the co-eluting 1-ring and 2-ring aromatics at 272nm were made by the perpendicular drop method. Wavelength dependent response factors for each general aromatic class were first determined by constructing Beer's Law plots from pure model compound mixtures based on the nearest spectral peak absorbances to the substituted aromatic analogs.
For example, alkyl-cyclohexylbenzene molecules in base oils exhibit a distinct peak absorbance at 272nm that corresponds to the same (forbidden) transition that unsubstituted tetralin model compounds do at 268nm. The concentration of alkyl-1-ring aromatic naphthenes in base oil samples was calculated by assuming that its molar absorptivity response factor at 272nm was approximately equal to tetralin's molar absorptivity at 268nm, calculated from Beer's law plots. Weight percent concentrations of aromatics were calculated by assuming that the average molecular weight for each aromatic class was approximately equal to the average molecular weight for the whole base oil sample.
This calibration method was further improved by isolating the 1-ring aromatics directly from the lubricant base oils via exhaustive HPLC chromatography. Calibrating directly with these aromatics eliminated the assumptions and uncertainties associated with the model compounds. As expected, the isolated aromatic sample had a lower response factor than the model compound because it was more highly substituted.
More specifically, to accurately calibrate the HPLC-UV method, the substituted benzene aromatics were separated from the bulk of the lubricant base oil using a Waters semi-preparative HPLC unit. 10 grams of sample was diluted 1 :1 in n-hexane and injected onto an amino-bonded silica column, a 5cm x 22.4mm ID guard, followed by two 25cm x 22.4mm ID columns of 8- 12 micron amino-bonded silica particles, manufactured by Rainin Instruments, Emeryville, California, with n-hexane as the mobile phase at a flow rate of I8mls/min. Column eluent was fractionated based on the detector response from a dual wavelength UV detector set at 265nm and 295nm. Saturate fractions were collected until the 265nm absorbance showed a change of 0.01 absorbance units, which signaled the onset of single ring aromatic elution. A single ring aromatic fraction was collected until the absorbance ratio between 265nm and 295nm decreased to 2.0, indicating the onset of two ring aromatic elution. Purification and separation of the single ring aromatic fraction was made by re-chromatographing the monoaromatic fraction away from the "tailing" saturates fraction which resulted from overloading the HPLC column. This purified aromatic "standard" showed that alkyl substitution decreased the molar absorptivity response factor by about 20% relative to unsubstituted tetralin.
Confirmation of Aromatics by NMR: The weight percent of all molecules with at least one aromatic function in the purified mono-aromatic standard was confirmed via long-duration carbon 13 NMR analysis. NMR was easier to calibrate than HPLC UV because it simply measured aromatic carbon so the response did not depend on the class of aromatics being analyzed. The NMR results were translated from % aromatic carbon to % aromatic molecules (to be consistent with HPLC-UV and D 2007) by knowing that 95-99% of the aromatics in highly saturated lubricant base oils were single-ring aromatics.
High power, long duration, and good baseline analysis were needed to accurately measure aromatics down to 0.2% aromatic molecules.
More specifically, to accurately measure low levels of all molecules with at least one aromatic function by NMR, the standard D 5292-99 method was modified to give a minimum carbon sensitivity of 500:1 (by ASTM standard practice E 386). A15-hour duration run on a 400-500 MHz NMR with a 10-12 mm Nalorac probe was used. Acorn PC integration software was used to define the shape of the baseline and consistently integrate. The carrier frequency was changed once during the run to avoid artifacts from imaging the aliphatic peak into the aromatic region. By taking spectra on either side of the carrier spectra, the resolution was improved significantly. EXAMPLES
Example 1 :
A wax sample composed of several different batches of hydrotreated Fischer- Tropsch wax, all made using a Co-based Fischer-Tropsch catalyst, was prepared. The different batches of wax composing the wax sample were analyzed and all found to have the properties as shown in Table Il
Table II: Fischer-Tropsch Wax
Figure imgf000036_0001
The Co-based Fischer-Tropsch wax was hydroisomerized over a Pt/SAPO-11 catalyst with an alumina binder. Operating conditions included temperatures between 635 0F and 675 0F (3350C and 3580C), LHSV of 1.0 hr"1, reactor pressure of about 500 psig, and once-through hydrogen rates of between 5 and 6 MSCF/bbl. The reactor effluent passed directly to a second reactor containing a Pd on silica-alumina hydrofinishing catalyst also operated at 500 psig. Conditions in the second reactor included a temperature of about 350 0F (177 0C) and an LHSV of 2.0 hr"1.
The products boiling above 650 °F were fractionated by vacuum distillation to produce distillate fractions of different viscosity grades. Three Fischer- Tropsch derived lubricant base oils were obtained. Two were distillate side- cut fractions (XLFTBO and XXLFTBO) and one was a distillate bottoms fraction (HFTBO). Test data on the three Fischer-Tropsch derived lubricant base oils are shown in Table III, below. Table
Figure imgf000037_0001
HFTBO is an example of a pour point reducing blend component with a low traction coefficient. XLFTBO is an example of a fraction of a lubricating base oil having a Noack volatility less than a Noack Volatility Factor by Equation (1). XXLFTBO is an example of a fraction of a lubricating base oil having a Noack volatility less than a Noack Volatility Factor less than both a Noack Volatility Factor by Equation (1) and a Noack Volatility Factor by Equation (2).
Example 2:
Chevron MOTEX 2T-X is a two-cycle outboard engine oil formulated with high quality mineral base oil, polyisobutylene, a high performance low ash detergent/dispersant additive package, and a high flash solvent. Three different blends of two-cycle gasoline engine lubricant using the same high performance low ash detergent/dispersant additive package and polyisobutylene synthetic base oil used in Chevron Motex 2T-X were prepared (BlendB, BlendC, and BlendF) using the Fischer-Tropsch derived base oils described earlier. A comparison blend (COMP BlendA) using conventional mineral base oil and high flash solvent was also prepared. The formulations of these blends are summarized in Table IV.
Table IV
Figure imgf000039_0001
The performance properties of three of these two-cycle gasoline engine lubricant blends are shown in Table V.
Table V
Figure imgf000040_0001
Flash Points were measured by the Cleveland Open Cup Tester, using ASTM D92-05a. Aniline Points were measured by ASTM D611-04. BlendB, BlendC, and BlendF had essentially no hydrocarbon solvent having a maximum boiling point less than 250 degrees C, yet they all had low exhaust smoke index values, lower pour points, and improved miscibiiity compared to COMP BlendA made with conventional mineral oil base oil and high flash solvent. BlendF, comprising the highest level of HFTBO, gave an especially high lubricity index, yet still had excellent miscibility and a good exhaust smoke index.
Example 3:
A blend of two-cycle gasoline engine lubricant using a detergent/dispersant additive package designed to meet the specifications for Thailand Domestic (TIS 1040-2541 [1998]) was prepared using the Fischer-Tropsch derived base oils described earlier. A comparison blend using conventional petroleum-derived base oil and high flash solvent was also prepared. The formulations of these blends are summarized in Table Vl
Table Vl
Figure imgf000041_0001
The performance properties of these two-cycle gasoline engine lubricant blends are shown in Table VII. Table VII
Figure imgf000042_0001
BlendE also comprised the pour point reducing blend component having a low traction coefficient, HFTBO. Note that this blend had had an especially low pour point and good low temperature fluidity at -250C. BlendE had better low temperature fluidity, lower pour point, better gasoline miscibility, better detergency, and a better piston skirt deposit index than COMP BlendD made with conventional mineral oil base oil and greater than 5 wt% hydrocarbon solvent having a maximum boiling point less than 250 degrees C. BlendE, with the addition of less than 5 wt% hydrocarbon solvent having a maximum boiling point less than 250 degrees C, would easily pass the requirements of both JASO M345:2003 and ISO 13738:2000{E), classifications C and D.
For the purposes of this specification and appended claims, unless otherwise indicated, all numbers expressing quantities, percentages or proportions, and other numerical values used in the specification and claims, are to be understood as being modified in all instances by the term "about." Furthermore, all ranges disclosed herein are inclusive of the endpoints and are independently combinable.
All of the publications, patents and patent applications cited in this application are herein incorporated by reference in their entirety to the same extent as if the disclosure of each individual publication, patent application or patent was specifically and individually indicated to be incorporated by reference in its entirety.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to make and use the invention. Many modifications of the exemplary embodiments of the invention disclosed above will readily occur to those skilled in the art.
Accordingly, the invention is to be construed as including all structure and methods that fall within the scope of the appended claims.

Claims

WHAT IS CLAIMED IS:
1. A lubricating oil, comprising: a. a base oil fraction having: i. consecutive numbers of carbon atoms; ii. a kinematic viscosity at 1000C between about 1.5 and about 3.5 mm2/s; iii. between about 90 wt% and about 97 wt% paraffinic carbon; iv. between about 3 wt% and about 10 wt% naphthenic carbon; v. less than 0.01 wt% aromatic carbon; b. less than about 5 wt% based on the total lubricating oil of a hydrocarbon solvent having a maximum boiling point less than 250 degrees C; and c. from about 1 wt% to about 25 wt% based on the total lubricating oil of a detergent/dispersant additive package; wherein the lubricating oil has a blend kinematic viscosity at 1000C of 6.5 mm2/s or greater, good low temperature fluidity at -250C, and an exhaust smoke index of greater than 65.
2. A lubricating oil, comprising: a. a base oil made from a waxy feed; and b. less than about 5 wt% based on the total lubricating oil of a hydrocarbon solvent having a maximum boiling point less than 250 degrees C; wherein the lubricating oil has a blend kinematic viscosity of 6.5 mm2/s or greater, good low temperature fluidity at -250C, and an exhaust smoke index of greater than 65.
3. A lubricating oil, comprising: a. a base oil with a kinematic viscosity between 1.5 and 4.0 mm2/s and a Noack volatility less than a Noack Volatility Factor (1) = 160 - (40 x kinematic viscosity at 100°C) ; and b. a pour point reducing blend component; wherein the lubricating oil has a blend kinematic viscosity at 1000C of 6.5 mm2/s or greater, good low temperature fluidity at -25°C, and an exhaust smoke index of greater than 65.
4. A lubricating oil, comprising: a. a base oil fraction having: i. a pour point of less than -8°C; ii. a kinematic viscosity at 1000C of at least 1.5 mm2/s; and iii. a viscosity index greater than an amount calculated by the equation: 22 x Ln (Kinematic Viscosity at 1000C.) + 132; b. less than about 5 wt% based on the total lubricating oil of a hydrocarbon solvent having a maximum boiling point less than 250 degrees C; c. from about 1 wt% to about 25 wt% based on the total lubricating oil composition of a detergent/dispersant additive package; wherein the lubricating oil has a blend kinematic viscosity at 1000C of 6.5 mm2/s or greater, good low temperature fluidity at -25°C, and an exhaust smoke index of greater than 65.
5. The lubricating oil of claim 1 , 2, 3, or 4 meeting the requirements for lubricating oil used in two-cycle gasoline engines according to Japanese
Automobile Standard JASO M345:2003.
6. The lubricating oil of claim 1 , 2, 3, or 4 meeting the requirements of JASO M345:2003, Classification C or Classification D.
7. The lubricating oil of claim 1 , 2, 3, or 4 having less than about 2 wt% based on the total lubricating oil of the hydrocarbon solvent.
8. The lubricating oil of claim 1 , 2, 3, or 4 having essentially no hydrocarbon solvent.
9. The lubricating oil of claim 1 , 2, 3, or 4 wherein the base oil has a kinematic viscosity at 1000C between about 1.8 and about 3.2 mm2/s.
10. The lubricating oil of claim 1, 2, or 4 wherein the base oil has a Noack volatility of less than 90 wt%.
11. The lubricating oil of claim 1 , 2, 3, or 4 wherein the base oil has an Oxidator BN greater than 35 hours.
12. The lubricating oil of claim 2 or 4 wherein the base oil has greater than 90 wt% paraffinic carbon and less than 0.01 wt% aromatic carbon by ASTM D3238-95{2005).
13. The lubricating oil of claim 1 , 2, or 4 wherein the base oil has a Noack volatility less than a Noack Volatility Factor (1) = 160 - (40 x kinematic viscosity at 1000C).
14. The lubricating oil of claim 1 , 2, 3, or 4 wherein the base oil has a kinematic viscosity at 1000C between 2.4 and 3.5 mm2/s and a Noack Volatility less than a Noack Volatility Factor (2) = (900 x (kinematic viscosity at 1000C)"2 8) -15.
15. The lubricating oil of claim 2, wherein the waxy feed is substantially paraffinic.
16. The lubricating oil of claim 2, wherein the waxy feed is Fischer-Tropsch derived.
17. The lubricating oil of claim 1 , 2, 3, or 4 having a pour point less than or equal to about -350C.
18. The lubricating oil of claim 1 , 2, 3, or 4 wherein the exhaust smoke index is greater than 75.
19. The lubricating oil of claim 1 , 2, 3, or 4 wherein the exhaust smoke index is greater than 84.
20. The lubricating oil of claim 1 , 2, 3, or 4 wherein the exhaust smoke index is greater than 90.
21. The lubricating oil of claim 1 , 2, 3, or 4 having a passing result in the miscibility test by ASTM D4682-87(Reapproved 2002) at a temperature of -100C.
22. The lubricating oil of claim 1 , 2, 3, or 4 having a passing result in the miscibility test by ASTM D4682-87(Reapproved 2002) at -250C.
23. The lubricating oil of claim 1 , 2, 3, or 4 having a flash point greater than 120°C by ASTM D92-05a.
24. The lubricating oil of claim 1 , 2, 3, or 4 having a flash point greater than 150°C by ASTM D92-05a.
25. The lubricating oil of claim 1 , 2, or 4 additionally comprising a pour point reducing blend component.
26. The lubricating oil of claim 1 , 2, or 4 additionally comprising a pour point reducing blend component selected from the group consisting of: a. an isomerized Fischer-Tropsch derived bottoms product; b. a bottoms product prepared from an isomerized highly waxy mineral oil; or c. an isomerized oil having a kinematic viscosity at 1000C of at least about 8 mm2/s made from polyethylene plastic.
27. The lubricating oil of claim 1 , 2, or 4 comprising from about 3 and about 20 wt% based on the total lubricating oil of a detergent/dispersant additive package.
28. The lubricating oil of claim 1 , 2, or 4 wherein the solvent is a dearomatized aliphatic high flash solvent with a Kauri-Butanol Value between 20 and 40 by ASTM D1133-04.
29. The lubricating oil of claim 3, wherein the pour point reducing blend component is selected from the group consisting of: a. an isomerized Fischer-Tropsch derived bottoms product; b. a bottoms product prepared from an isomerized highly waxy mineral oil; or c. an isomerized oil having a kinematic viscosity at 1000C of at least about 8 mm2/s made from polyethylene plastic.
30. The lubricating oil of claim 3, additionally comprising less than about 5 wt% based on the total lubricating oil composition of a hydrocarbon solvent having a maximum boiling point less than 250 degrees C.
31. The lubricating oil of claim 1 , 2, 3, or 4, additionally comprising from 1 to 50 wt% based on the total lubricating oil composition of a smoke- suppression agent.
32. A lubricating oil, comprising: a. a Fischer-Tropsch derived base oil; b. less than about 5 wt% based on the total lubricating oil of a hydrocarbon solvent having a maximum boiling point less than 250 degrees C; and c. a detergent/dispersant additive package; wherein the lubricating oil meets the requirements for lubricating oil used in two-cycle gasoline engines according to Japanese Automobile Standard JASO M345:2003, Classifications C or D.
33. The lubricating oil of claim 32, wherein the solvent is a dearomatized aliphatic high flash solvent with a Kauri-Butanol Value between 20 and 40 by ASTM D1133-04.
34. The lubricating oil of claim 32, wherein the lubricating oil has a pour point less than or equal to about -350C.
35. The lubricating oil of claim 32, wherein the lubricating oil has good low temperature fluidity at -250C or -4O0C.
36. The lubricating oil of claim 32, wherein the lubricating oil has a passing result in the miscibility test by ASTM D4682-87(Reapproved 2002) at a temperature of -250C.
37. The lubricating oil of claim 32, wherein the Fischer-Tropsch derived base oil has: i. between about 90 wt% and about 97 wt% paraffinic carbon; ii. between about 3 wt% and about 10 wt% naphthenic carbon; and iii. less than 0.01 wt% aromatic carbon.
38.A lubricating oil, comprising a pour point reducing blend component; wherein the lubricating oil meets the requirements for lubricating oil used in two-cycle gasoline engines according to Japanese Automobile Standard
JASO M345:2003.
39. The lubricating oil of claim 38, wherein the lubricating oil meets the requirements for lubricating oil used in two-cycle gasoline engines according to Japanese Automobile Standard JASO M345:2003,
Classifications C or D.
40. The lubricating oil of claim 38, additionally comprising less than about 5 wt% based on the total lubricating oil of a hydrocarbon solvent having a maximum boiiing point less than 250 degrees C.
41. The lubricating oil of claim 38, wherein the lubricating oil has a pour point than or equal to about -350C.
42. The lubricating oil of claim 38, wherein the lubricating oil has good low temperature fluidity at -250C or -4O0C.
43. The lubricating oil of claim 38, wherein the lubricating oil has a passing result in the miscibility test by ASTM D4682-87(Reapproved 2002) at a temperature of -250C.
44. The lubricating oil of claim 38, wherein the pour point reducing blend component has a traction coefficient less than 0.015 when measured at a kinematic viscosity of 15 mm2/s and at a slide to roll ratio of 40%.
45. The lubricating oil of claim 38, wherein the pour point reducing blend component has greater than 90 wt% paraffinic carbon, greater than 5 wt% naphthenic carbon, and less than 0.01 wt% aromatic carbon by ASTM D3238-95(2005).
46. The lubricating oil of claim 38, wherein the lubricating oil has a wt% sulfated ash of 0.18 wt% or less.
47. The lubricating oil of claim 38, wherein the pour point reducing blend component is selected from the group consisting of: a. an isomerized Fischer-Tropsch derived bottoms product; b. a bottoms product prepared from an isomerized highly waxy mineral oil; or c. an isomerized oil having a kinematic viscosity at 1000C of at least about 8 mm2/s made from polyethylene plastic.
48. A lubricating oil, consisting essentially of: a. between 20 and 70 wt% based on the total lubricating oil of one or more base oil fractions having: i. consecutive numbers of carbon atoms; ii. a kinematic viscosity at 1000C between about 1.5 and about 3.5 mm2/s; iii. between about 90 wt% and about 97 wt% paraffinic carbon; iv. between about 3 wt% and about 10 wt% naphthenic carbon; v. less than 0.01 wt% aromatic carbon; b. between 0.5 and 25 wt% based on the total lubricating oil of a pour point reducing blend component; c. less than about 5 wt% based on the total lubricating oil of a hydrocarbon solvent having a maximum boiling point less than 250 degrees C; d. from about 1 wt% to about 25 wt% based on the total lubricating oil of a detergent/dispersant additive package; e. from about 1 wt% to about 50 wt% based on the total lubricating oil of a smoke-suppression agent; and f. less than 0.1 wt% based on the total lubricating oil of a pour point depressant; and wherein the lubricating oil has a blend kinematic viscosity at 100°C of 6.5 mm2/s or greater, good low temperature fluidity at -250C, and an exhaust smoke index of greater than 65.
PCT/US2008/073102 2007-08-27 2008-08-14 Two-cycle gasoline engine lubricant WO2009029421A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2008293794A AU2008293794A1 (en) 2007-08-27 2008-08-14 Two-cycle gasoline engine lubricant
GB1003142A GB2464883A (en) 2007-08-27 2008-08-14 Two-cycle gasoline engine lubricant
CN200880109625A CN101809130A (en) 2007-08-27 2008-08-14 Two-cycle gasoline engine lubricant
JP2010523028A JP2010538115A (en) 2007-08-27 2008-08-14 2-cycle gasoline engine lubricant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/845,600 2007-08-27
US11/845,600 US20090062161A1 (en) 2007-08-27 2007-08-27 Two-cycle gasoline engine lubricant

Publications (1)

Publication Number Publication Date
WO2009029421A1 true WO2009029421A1 (en) 2009-03-05

Family

ID=40387703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/073102 WO2009029421A1 (en) 2007-08-27 2008-08-14 Two-cycle gasoline engine lubricant

Country Status (6)

Country Link
US (2) US20090062161A1 (en)
JP (1) JP2010538115A (en)
CN (1) CN101809130A (en)
AU (1) AU2008293794A1 (en)
GB (1) GB2464883A (en)
WO (1) WO2009029421A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2491288A (en) * 2007-08-27 2012-11-28 Chevron Usa Inc Process for making a two-cycle gasoline engine lubricant
JP2013528678A (en) * 2010-05-03 2013-07-11 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Used lubricating composition
CN103710076A (en) * 2012-09-29 2014-04-09 中国石油化工股份有限公司 Four-stroke outboard engine oil lubricating oil capable of satisfying NMMA FC-W specification

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8784643B2 (en) * 2008-10-01 2014-07-22 Chevron U.S.A. Inc. 170 neutral base oil with improved properties
US20120157359A1 (en) * 2010-12-21 2012-06-21 Chevron U.S.A. Inc. Lubricating oil with improved wear properties
US8480880B2 (en) * 2011-01-18 2013-07-09 Chevron U.S.A. Inc. Process for making high viscosity index lubricating base oils
WO2012150283A1 (en) * 2011-05-05 2012-11-08 Shell Internationale Research Maatschappij B.V. Lubricating oil compositions comprising fischer-tropsch derived base oils
WO2013093080A1 (en) * 2011-12-22 2013-06-27 Shell Internationale Research Maatschappij B.V. Improvements relating to high pressure compressor lubrication
CN102559340B (en) * 2011-12-30 2013-05-22 大连海事大学 Novel FC (fan-cooled) two-stroke engine oil composition as well as preparation method and application thereof
JP6502149B2 (en) * 2015-04-06 2019-04-17 Emgルブリカンツ合同会社 Lubricating oil composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7141157B2 (en) * 2003-03-11 2006-11-28 Chevron U.S.A. Inc. Blending of low viscosity Fischer-Tropsch base oils and Fischer-Tropsch derived bottoms or bright stock
US20060287202A1 (en) * 2005-06-15 2006-12-21 Malcolm Waddoups Low ash or ashless two-cycle lubricating oil with reduced smoke generation
US20070093398A1 (en) * 2005-10-21 2007-04-26 Habeeb Jacob J Two-stroke lubricating oils
US20070135318A1 (en) * 2005-12-09 2007-06-14 Council Of Scientific And Industrial Research Composition of lubricating oil for two stroke gasoline engine and process for the preparation thereof

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3269153B2 (en) * 1993-01-06 2002-03-25 三菱自動車工業株式会社 Arousal level determination device
US5498353A (en) * 1994-11-22 1996-03-12 Chinese Petroleum Corp. Semi-synthetic two-stroke engine oil formulation
EP0846152A4 (en) * 1995-08-22 2000-05-03 Henkel Corp Smokeless two-cycle engine lubricants
GB9708628D0 (en) * 1997-04-29 1997-06-18 Castrol Ltd A two-stroke motorcycle lubricant
US6150577A (en) * 1998-12-30 2000-11-21 Chevron U.S.A., Inc. Method for conversion of waste plastics to lube oil
US6300290B1 (en) * 2000-06-02 2001-10-09 Infineum International Ltd Two-cycle lubricating oil
AU2002249198B2 (en) * 2001-02-13 2006-10-12 Shell Internationale Research Maatschappij B.V. Lubricant composition
US6774272B2 (en) * 2002-04-18 2004-08-10 Chevron U.S.A. Inc. Process for converting heavy Fischer Tropsch waxy feeds blended with a waste plastic feedstream into high VI lube oils
WO2003089555A1 (en) * 2002-04-19 2003-10-30 The Lubrizol Corporation Lubricant composition suitable for direct fuel injected, crankcase-scavenged two-stroke engines
US7053254B2 (en) * 2003-11-07 2006-05-30 Chevron U.S.A, Inc. Process for improving the lubricating properties of base oils using a Fischer-Tropsch derived bottoms
US7045055B2 (en) * 2004-04-29 2006-05-16 Chevron U.S.A. Inc. Method of operating a wormgear drive at high energy efficiency
US7655132B2 (en) * 2004-05-04 2010-02-02 Chevron U.S.A. Inc. Process for improving the lubricating properties of base oils using isomerized petroleum product
US7572361B2 (en) * 2004-05-19 2009-08-11 Chevron U.S.A. Inc. Lubricant blends with low brookfield viscosities
US7981270B2 (en) * 2005-03-11 2011-07-19 Chevron U.S.A. Inc. Extra light hydrocarbon liquids
US7547666B2 (en) * 2005-12-21 2009-06-16 Chevron U.S.A. Inc. Ashless lubricating oil with high oxidation stability
US7582591B2 (en) * 2006-04-07 2009-09-01 Chevron U.S.A. Inc. Gear lubricant with low Brookfield ratio
US7425524B2 (en) * 2006-04-07 2008-09-16 Chevron U.S.A. Inc. Gear lubricant with a base oil having a low traction coefficient
US8658018B2 (en) * 2006-12-20 2014-02-25 Chevron U.S.A. Inc. Lubricant base oil blend having low wt% noack volatility
US7846880B2 (en) * 2006-12-20 2010-12-07 Chevron U.S.A. Inc. Light base oil fraction and lubricant having low wt% noack volatility

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7141157B2 (en) * 2003-03-11 2006-11-28 Chevron U.S.A. Inc. Blending of low viscosity Fischer-Tropsch base oils and Fischer-Tropsch derived bottoms or bright stock
US20060287202A1 (en) * 2005-06-15 2006-12-21 Malcolm Waddoups Low ash or ashless two-cycle lubricating oil with reduced smoke generation
US20070093398A1 (en) * 2005-10-21 2007-04-26 Habeeb Jacob J Two-stroke lubricating oils
US20070135318A1 (en) * 2005-12-09 2007-06-14 Council Of Scientific And Industrial Research Composition of lubricating oil for two stroke gasoline engine and process for the preparation thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2491288A (en) * 2007-08-27 2012-11-28 Chevron Usa Inc Process for making a two-cycle gasoline engine lubricant
GB2491288B (en) * 2007-08-27 2013-03-13 Chevron Usa Inc Process for making a two-cycle gasoline engine lubricant
JP2013528678A (en) * 2010-05-03 2013-07-11 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Used lubricating composition
CN103710076A (en) * 2012-09-29 2014-04-09 中国石油化工股份有限公司 Four-stroke outboard engine oil lubricating oil capable of satisfying NMMA FC-W specification

Also Published As

Publication number Publication date
AU2008293794A1 (en) 2009-03-05
JP2010538115A (en) 2010-12-09
US20100270206A1 (en) 2010-10-28
CN101809130A (en) 2010-08-18
GB201003142D0 (en) 2010-04-14
GB2464883A (en) 2010-05-05
US20090062161A1 (en) 2009-03-05

Similar Documents

Publication Publication Date Title
US20090062168A1 (en) Process for making a two-cycle gasoline engine lubricant
US20100270206A1 (en) Two-cycle gasoline engine lubricant with a base oil having a low traction coefficient
AU2006242580B2 (en) Medium-speed diesel engine oil
US7994104B2 (en) Process to make a light base oil fraction having low Noack volatility
US8658018B2 (en) Lubricant base oil blend having low wt% noack volatility
AU2005322299B2 (en) Hydraulic oil with excellent air release and low foaming tendency
US8058214B2 (en) Process for making shock absorber fluid
AU2006331724B2 (en) Ashless lubricating oil with high oxidation stability
JP2009533496A (en) Gear lubricant with base oil having low traction coefficient
JP2009533497A (en) Gear lubricant with low Brookfield ratio
WO2009006283A2 (en) Functional fluid compositions
WO2008039788A2 (en) Heat transfer oil with high auto ignition temperature
EP2240557A1 (en) Lubricant composition
US7732391B1 (en) Manual transmission fluid made with lubricating base oil having high monocycloparaffins and low multicycloparaffins

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880109625.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08797852

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008293794

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 1003142

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20080814

WWE Wipo information: entry into national phase

Ref document number: 1003142.5

Country of ref document: GB

Ref document number: 12010500452

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 2010523028

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1377/DELNP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2008293794

Country of ref document: AU

Date of ref document: 20080814

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PI 2010000842

Country of ref document: MY

122 Ep: pct application non-entry in european phase

Ref document number: 08797852

Country of ref document: EP

Kind code of ref document: A1