WO2009027196A1 - Dispositif de prevention de fuites urinaires - Google Patents
Dispositif de prevention de fuites urinaires Download PDFInfo
- Publication number
- WO2009027196A1 WO2009027196A1 PCT/EP2008/060404 EP2008060404W WO2009027196A1 WO 2009027196 A1 WO2009027196 A1 WO 2009027196A1 EP 2008060404 W EP2008060404 W EP 2008060404W WO 2009027196 A1 WO2009027196 A1 WO 2009027196A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- patient
- measuring
- activity
- compression
- urethra
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/0004—Closure means for urethra or rectum, i.e. anti-incontinence devices or support slings against pelvic prolapse
- A61F2/0031—Closure means for urethra or rectum, i.e. anti-incontinence devices or support slings against pelvic prolapse for constricting the lumen; Support slings for the urethra
- A61F2/0036—Closure means for urethra or rectum, i.e. anti-incontinence devices or support slings against pelvic prolapse for constricting the lumen; Support slings for the urethra implantable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/024—Detecting, measuring or recording pulse rate or heart rate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/08—Detecting, measuring or recording devices for evaluating the respiratory organs
- A61B5/0816—Measuring devices for examining respiratory frequency
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
- A61B5/1116—Determining posture transitions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/20—Measuring for diagnostic purposes; Identification of persons for measuring urological functions restricted to the evaluation of the urinary system
- A61B5/202—Assessing bladder functions, e.g. incontinence assessment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/20—Measuring for diagnostic purposes; Identification of persons for measuring urological functions restricted to the evaluation of the urinary system
- A61B5/202—Assessing bladder functions, e.g. incontinence assessment
- A61B5/205—Determining bladder or urethral pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/389—Electromyography [EMG]
- A61B5/391—Electromyography [EMG] of genito-urinary organs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4851—Prosthesis assessment or monitoring
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Detecting organic movements or changes, e.g. tumours, cysts, swellings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/12—Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/042—Urinary bladders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00743—Type of operation; Specification of treatment sites
- A61B2017/00805—Treatment of female stress urinary incontinence
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/02—Details of sensors specially adapted for in-vivo measurements
- A61B2562/0219—Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/0004—Closure means for urethra or rectum, i.e. anti-incontinence devices or support slings against pelvic prolapse
- A61F2/0022—Closure means for urethra or rectum, i.e. anti-incontinence devices or support slings against pelvic prolapse placed deep in the body opening
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0001—Means for transferring electromagnetic energy to implants
- A61F2250/0002—Means for transferring electromagnetic energy to implants for data transfer
Definitions
- the present invention relates to devices for artificially regulating fluid flow in humans, and more specifically devices for preventing urinary incontinence.
- Urinary incontinence is a handicap that affects both women and men. This handicap can be defined as an involuntary loss of urine through the urethra. In most cases, this is due to weakening of the pelvic support or bladder / sphincter block.
- the most common prosthesis consists of a silicone elastomer hydraulic system composed of three main parts. The first part consists of an occlusive cuff placed around the urethra exerting urethral circumferential pressure by means of a cushion filled with liquid thus ensuring continence of the patient.
- the second is a regulating balloon that allows, when filled with a certain volume of liquid (about 20 ml) to create a constant hydraulic pressure.
- the control pressure is chosen according to the patient during the operation, it can not be changed once the prosthesis in place.
- a pump is required to open the urethral part compressed by the cuff.
- This pump is composed of a pear, a resistor and two valves that ensure the flow of liquid to or from the occlusive cuff.
- the urine can then flow freely out of the bladder, making it a non-dysuhante method. A few minutes later, the liquid is transferred from the balloon to the cuff due to the pressure exerted on the resistor by the regulation balloon, the urethra is again occluded.
- the control pump is found in the man in the scrotum and in the woman in one of the labia majora.
- An object of the present invention is therefore to provide a device for preventing urinary leakage in a patient solving at least one of the aforementioned drawbacks.
- An object of the present invention is more particularly to provide a device for preventing urinary leakage whose operation reduces the average compression at the urethra to prevent its deterioration.
- Another object of the invention is to provide a device for preventing urinary leakage simple and reliable, thus being used regardless of the severity of the urinary incontinence to be treated.
- a device for preventing urinary leakage intended to be implanted in a patient comprising:
- electronic control means (2) for actuating the compression means characterized in that it further comprises measuring means (7) for the activity of the patient coupled to the control means (2), the means for control (2) operating according to a predictive model of urinary leakage based on the activity of the patient, so as to anticipate an eventual urinary leakage according to the measured activity of the patient.
- Preferred but non-limiting aspects of the device for preventing urinary leakage are the following:
- the measuring means comprise means for measuring the position and moving the patient, said means for measuring the position and displacement of the patient may comprise an accelerometer comprising one or more measurement axes;
- the measuring means comprise means for measuring the intra-abdominal pressure of the patient
- the measuring means comprise means for measuring the intra-vesical pressure; the measuring means comprise means for measuring the endo-urethral pressure of the patient;
- the measuring means comprise means for measuring the activity of a muscle
- the means for measuring the activity of a muscle comprise a MMG sensor (mechanomyograph) intended to be placed on said muscle to measure the movements generated during contractions of said muscle;
- the means for measuring the activity of a muscle comprise an EMG sensor (electromyograph) intended to be placed through said muscle to measure the electrical potential generated during contractions of said muscle;
- the means for measuring the activity of a muscle comprise means for measuring the activity of at least one portion of one of the upright muscles, the measurement of the activity of at least one of the muscles pelvic, and / or measurement of detrusor activity;
- the measuring means comprise means for measuring the patient's heart rate
- the measuring means comprise means for measuring the respiratory rate of the patient
- the device characterized in that it further comprises: detection means intended to be arranged in the patient for detection of urinary leakage, means for storing measurement and detection signals respectively coming from the measurement means and detection means, measurement and detection signal processing means stored for a determined time corresponding to a significant period of the patient's activity, for constructing the predictive model for urinary leakage of the patient, by correlating a combination all or part of the measurement signals to the presence or absence of a subsequent urinary leakage, so that the predictive model can anticipate an eventual urinary leakage as a function of the measured activity of the patient;
- the device further comprises means for measuring repletion of the bladder of the patient, the predictive model of urinary leakage being further based on the repletion of the bladder of the patient;
- the means for measuring the repletion of the bladder comprise an ultrasound sensor intended to be implanted in the patient to visualize the bladder;
- control means comprise means for actuating the compression means dynamically as a function of the measured activity of the patient;
- the compression means are adapted to exert on the urethra a compression of variable intensity, ranging from a total absence of compression to a total occlusion of the urethra;
- the device further comprises safety means adapted to actuate the compression means with a view to a total absence of compression of the urethra in response to an opening instruction, and, in response to a closing instruction, to actuating the compression means for compression of the urethra equal to the compression preceding the opening instruction of the patient;
- the security means are coupled to physiological sensors intended to be implanted in the patient, to enable the patient to transmit an opening or closing instruction to the security means;
- the physiological sensors are arranged for measuring the contraction of a muscle so that the opening or closing instruction is a function of the contraction frequency of said muscle;
- the security means are coupled to external control means adapted to allow a third party to transmit an opening or closing instruction to the security means. ;
- the security means are able to be activated by the external control means by radio waves. ;
- the security means are able to be activated by the external control means by magnetic waves;
- the security means are coupled to an internal clock, the internal clock making it possible to record the time intervals between the mictures of the patient, the security means being adapted to actuate the compression means with a view to a total absence of compression of the urethra when exceeding a maximum time interval between two urination;
- a method for controlling a device for preventing urinary leakage intended to be implanted in a patient comprising means for compressing the urethra of the patient, electronic control means for actuating the compression means, and means for measuring the patient's activity coupled to the control means, the method being characterized in that it comprises the steps of:
- the measuring means measure the patient's activity with the measuring means, compare the measured activity of the patient with a predictive model of urinary leakage based on the activity of the patient, - Control the compression means according to the measured activity and the predictive model to anticipate an eventual urinary leakage.
- the method further comprises the preliminary steps of: performing, for a determined time corresponding to a significant period of the patient's activity, a measurement of the patient's activity with the measuring means, and recording signals of corresponding measurements, o simultaneous detection of urine leakage with detection means arranged in the patient for detection of possible urinary leakage, and record corresponding detection signals, o determine the evolution of the measurement signals before each urine leak detected o to construct the predictive model of urinary leakage of the patient, by correlating a given measurement signal to the presence or absence of a subsequent urinary leakage, so that the predictive model makes it possible to anticipate an eventual urinary leakage as a function of the measured activity of the patient;
- the method further comprises a step of measuring the repletion of the bladder of the patient, the predictive model of urinary leakage being further determined according to the repletion of the bladder;
- the compression means in response to an opening instruction, the compression means no longer exert any compression on the urethra, and that, in response to a closing instruction, the compression means exert a compression of the urethra equal to the compression preceding the opening instruction of the patient, the patient being able to give an opening or closing instruction by a physiological signal.
- FIG. 1 is a schematic representation of the urinary leak prevention device according to the invention:
- FIG. 2 illustrates the use of an accelerometer in a patient for the device of FIG. 1;
- FIG. 3 illustrates the measurement of the inclination of the patient having an accelerometer as illustrated in FIG. 2;
- FIG. 4 illustrates the trigger thresholds of the accelerometer for the device of FIG. 1.
- Prostheses known to overcome urinary incontinence generally exert a constant pressure on the urethra except at the time of urination where the pressure is released to allow urination without constraint.
- the sphincter has a dynamic operation, that is to say it will exert more or less pressure on the urethra as needed.
- the solicitation of the sphincter is in fact more or less important according to the activity exerted by the patient, but also according to the repletion of the bladder (that is to say the volume of urine in the bladder).
- the device proposed here reproduces this dynamic operation of the sphincter, to vary the pressure on the urethra according to the patient's activity, so as to reduce the average pressure exerted on the patient. level of the urethra.
- the principle of operation of the urinary incontinence device presented is to monitor the patient's activity using different sensors to be able, from a predictive model to anticipate the possibility of urinary leakage related to the increase of the intra-vesical pressure with respect to the urethral pressure, to exert a pressure in the urethra when it is necessary to avoid these leaks.
- the device for preventing urinary leakage comprises an occlusive cuff 1 to be placed around the urethra of the patient to be treated.
- the device shown is electronically controlled and accordingly comprises an electronic control unit 2, comprising at least one microprocessor.
- This control box 2 allows to actuate the sleeve 1 so that it exerts a more or less significant pressure on the urethra.
- the actuation of the sleeve 1 can be of any type, both hydraulic and mechanical.
- the sleeve 1 is coupled to a hydraulic actuation circuit comprising a reservoir 3 and conduits 4 for circulating a fluid.
- This hydraulic circuit further comprises fluid circulation means 5 allowing the fluid to flow from the tank 3 to the sleeve 1 and vice versa.
- This circulation means 5 is adapted for fluid circulation at relatively high flow rates of several tens of milliliters per minute. It is indeed necessary to circulate the fluid quickly in the hydraulic circuit so that the sleeve can be brought to the desired pressure, in a relatively short time, of the order of 100 ms.
- a micropump as circulation means.
- a pressure relief chamber at the outlet of the pump with a proportional control microvalve at the inlet of the sleeve, which makes it possible to reach the required pressure. a shorter time.
- Another solution is to use as a circulation means 5 a piston system actuated by a micromotor, the piston for injecting liquid quickly into the sleeve and thus achieve the required pressures.
- the control device 2 further comprises means for communicating remotely with an external control device 6.
- This communication can be carried out by radio wave, with for example a Bluetooth ⁇ type technology. This will change the setting of the controller 2, or even take control to force the operation of the urinary incontinence device.
- the device comprises a plurality of sensors 7 for measuring the patient's activity.
- sensors 7 can be of any type; for example, an accelerometer can be used to measure the patient's movements, MMG (electromyograph) or EMG (electromyograph) sensors to measure the activity of certain muscles of the patient, or pressure sensors (abdominal, urethral or intra-vesical). where possible).
- sensors 7 The choice of the sensors 7 will be explained in more detail in the following description. Note however that the sensors used do not require surgery proper for their implementation. They can simply be placed in certain parts of the abdomen. These sensors 7 will be used in the calibration phase of the device, during which a predictive model of urinary leakage will be implemented. They will also be used during normal use of the urinary incontinence device to allow the pressure of the cuff 1 to be varied at the urethra whenever necessary.
- the predictive model of urinary leakage is designed to anticipate urinary leakage that the patient might experience, based on information about the patient's activity. Indeed, certain particular activities induce a change in the ratio between the intravesical pressure and the urethral pressure, which can lead to unwanted urinary leakage. This is the case for example when the patient makes an effort in relation to his normal activity. This is also the case when the patient is in the sleep phase, where the urethral pressure decreases relative to the intra-vesical pressure. A detection of these particular situations thus makes it possible to anticipate a possible leak and to modify consequently the pressure exerted on the urethra.
- urination phase where the sphincter does not exert or little pressure on the urethra so that a patient can urinate freely, without exerting any particular effort.
- this urination phase it is possible to exert a very weak pressure on the urethra, corresponding for example to a pressure P 0 in the cuff below 10 CmH 2 O (10 centimeters of water).
- sleep phase another important phase is the sleep phase, during which the body relaxes.
- the pressure P a ⁇ O ng corresponding may be relatively low may even be in some cases P 0 .
- This pressure depends on the patient and can be fixed case by case once the device installed.
- the most common phase corresponds to the moment when the patient has a normal activity, that is to say during which he does not exert any particular effort (standing posture, sitting, walking, etc.).
- a pressure P ac t must be exerted on the urethra. This pressure must be determined during calibration of the device so that it is just sufficient to prevent leakage.
- the last phase corresponds to the moment when the patient exerts an effort that involves high intra-vesical pressures (sport, cough, etc.).
- the pressure P eff O rt exerted on the urethra is in this case greater than the pressure P ac t Peffort actually allows to modulate P ac t, during a sudden increase of the pressure in the bladder of the patient who would be in normal activity; for example after a cough, the pressure in the cuff Password P ac t P ⁇ ffort briefly and then returns to P ac t if bladder pressure has decreased.
- the patient's activity and associated sphincter pressure could be divided into many other phases. The proposed device is described for a dynamic control of the pressure at the urethra according to these 4 phases, although it could be easily adapted for another division of the patient's activity.
- sensors 7 that can be used alone or in combination, to measure the patient's activity so as to be able to compare this information with the predictive model of urinary leakage and to vary the pressure of the cuff at the level of the urethra. Consequently.
- sensors that do not require special surgery for their implementation.
- sensors already implanted in the patient or which will be implanted later for other devices.
- pacemaker often referred to as "pacemaker”
- an accelerometer comprising one or more measurement axes.
- an accelerometer having three measurement axes will be used so as to be able to evaluate the patient's movements in the three directions of space.
- an accelerometer having a single measurement axis, this accelerometer being arranged in such a way that the measuring axis is oriented in the longitudinal axis of the patient, ie along the axis x such as shown in Figure 2.
- an accelerometer with a single measurement axis makes it possible to measure the inclination of the patient by virtue of the force of gravity on the ground and thus to detect the lying position of the patient. It also provides information about the patient's movements that leads to an increase in intravesical pressure, even if this information is not complete since only one direction of movement is detected.
- a simple measurement of the acceleration a x along this axis makes it possible to know if the patient is layer. Indeed, by estimating that the elongated position is considered when ⁇ ⁇ 10 ° (see FIG. 3), an amplitude
- the time during which the amplitude of the acceleration is less than 0.17 g is also significant because this amplitude can also be less than the determined threshold without the patient being lying down. This will be the case, for example, when the patient undergoes relative accelerations following the negative x (referential of FIG. 2) for a short time, for example when he is in an elevator or when he makes jumps.
- the accelerometer is also used as qu'actitec to measure accelerations along the x-axis which are based on patient motion.
- people with stress incontinence often experience leakage during activities that result in increased abdominal, bladder and urethral pressures associated with pressure forces exerted by the patient. the surrounding organs. These leaks again depend on several factors in relation to the movements of the patient.
- the measurement of patient movement provides additional information as to the estimated pressure cuff required, and allows in particular to determine the pressure transition P ac t P ⁇ ffort which occurs when the patient is in the process 'exerting an effort, such as a sports activity for example or even when it comes down the stairs.
- the one-axis accelerometer sensor was placed on the abdomen of a person walking, running and jumping and data was recorded during these activities.
- the table below describes the accelerations noted during the various Exercises performed, it will be noted that when the patient is standing without moving, with x-directioned accelerometer (according to the reference of Figure 2), the measurement is negative since the mobile flyweight used in the accelerometer undergoes the force of gravity.
- Another type of sensor that can be used are pressure sensors.
- Leaks are known to be dependent on intra-vesical pressure. The easiest way to build the predictive model and then change the pressure of the headline would be to measure this intra-vesical pressure. The establishment of intra-vesical sensors is however difficult which leads to use other types of sensors, in addition or substitution.
- an abdominal thrust force causes an increase in bladder pressure, which, beyond a certain threshold of abdominal pressure, could lead to urinary leakage. It is therefore interesting to use an abdominal pressure sensor to be able to anticipate a possible urinary leakage.
- the threshold value of the abdominal pressure corresponding to a urinary leak depends on the filling volume of the bladder.
- the calibration of the threshold value of the abdominal pressure corresponding to a urinary leakage can be performed by considering an average filling value of the bladder.
- the determination of the threshold value (s) of abdominal pressure for urinary leakage can be done in the following manner.
- the pressure of the cuff is fixed at P ac t and the patient is then asked to perform a closed glottis abdominal thrust force in a progressively increasing manner until a leak is observed (the pressure in the cuff remains at P ac t) - at this moment, the value of abdominal pressure is recorded and will be the abdominal pressure Pabdoseuii threshold (one margin will be subtracted from this value) that will trigger the transition from P ac t P ⁇ ffort the occlusive cuff.
- This exercise is performed for different filling volumes of the bladder which will obtain a Pabdoseuii threshold value in relation to the estimated volume.
- a urethral pressure sensor may also be provided.
- the goal will be essentially safe, to determine an abnormal increase in pressure in the urethra, for example during the introduction of an endo-urethral probe, so that the cuff is actuated to no longer constrain the urethra so as to allow a passage of the probe without constraint.
- MMG sensors can be used
- EMG electromyograph
- Continence in a healthy subject is satisfied by muscle synchronization, especially between the right muscles of the abdomen and the perineal floor. It has been shown that the time between an increase in intravesical pressure and an increase in intra-urethral pressure is evaluated at t p ⁇ 250ms ⁇ 100ms with urethral pressure exceeding the abdominal pressure. This means that there is an anticipation of the urinary sphincter contraction on the sudden increase in abdominal pressure to avoid leakage. During a cough, for example, the sphincter contracts when this cough is felt.
- the pelvic floor forms with the pelvic bones the bottom of the abdominal cavity, it partially contains the urethra and is formed by a complex group of muscles, ligaments and nerves.
- the reduction of urinary leakage in a person with mild incontinence, such as stress incontinence, is possible after pelvic floor rehabilitation.
- This reeducation is translated mainly by a muscular work aimed at strengthening the tone of the pelvic floor.
- the results after rehabilitation showed an increase in perineal muscle strength and a good improvement in incontinence in women with stress incontinence.
- the pelvic floor EMG can also be used to control the opening of the prosthesis (passage of the pressure of the cuff at Po) when the patient contracts x times every y seconds the perineal muscles.
- the sequence of contractions of the perineal muscles allowing the opening of the cuff must be sufficiently complex to avoid the risk of obtaining the same sequence which would be involuntary but simple enough to have a reproducibility of the sequence of the contractions.
- the knowledge of bladder filling can be an interesting parameter to take into account, in particular to increase the accuracy of the correlations between the sensor measurements with respect to the prediction of a leak.
- T moy is of short duration, it can be possibly estimated according to the patient. Then, as the recordings are made, T moy will correspond more and more to the average time between each urination of the patient. It is clear that depending on the patient's activity and its hydration, filling the bladder is more or less fast. However, the pressure on the urethra will always be sufficient due to the consideration of a higher margin of applied pressure and the adjustments previously made by the nursing staff on the necessary closing pressures. Assuming that the urination frequency follows a Gaussian law, we can, for example, increase the values of the pressure setpoint linearly until they reach their maximum at T moy - a, with the standard deviation of our function.
- An alternative for estimating the degree of filling of the bladder is to use a miniature ultrasound sensor, for example built on CMUT technology, ie using a micro-machined ultrasonic capacitive transducer.
- the bladder is indeed characterized by a weak echogenicity.
- the sensor is implanted so that it can observe the bladder.
- a two-dimensional (or even three-dimensional) observation is made, but it should be noted that a one-dimensional observation can provide sufficient information.
- the advantage of single-direction observation is that data processing (eg measuring the number of points whose echogenicity is below a certain threshold) is extremely simple and requires very little computing power. This number of points can be correlated with the degree of filling of the bladder.
- the correlation function can be estimated at the beginning, and then refined during the use of the device by the patient, thanks to the analysis by the patient and by the medical team of the evolution of the result of the treatment of the ultrasound data. function of clinical observations (urinary leakage, for example) or measurements of the degree of filling of the bladder by other means (external ultrasound performed by a doctor during a consultation, for example).
- the main function of the sensors described in detail above is to allow the construction of a predictive model of urinary leakage that will be used for the management of pressure changes on the urethra depending on the activity of the patient.
- these sensors can also be used to control the urinary incontinence device presented. Indeed, when the patient wants to urinate, it is necessary to control the device so that the sleeve reaches a pressure P 0 for urination without constraint. Rather than using a mechanical actuator, the sensors may be used to transmit a user-given urination signal to the controller 2.
- a third person can actuate the device for preventing urinary leakage in the case where the patient is no longer able to activate it alone or for any other reason.
- control device 2 is preferably adapted for wireless communication with an external control device 6.
- This external control device may for example be adapted to impose on the control device 2 actuate the sleeve 1 for a urinating pressure P 0 .
- Any type of communication can be envisaged such as radio frequency communication.
- An alternative or complementary solution is to use the sensors as an opening command of the device, in the same way as it is intended for the patient. For example, by using an abdominal pressure sensor and programming a particular opening sequence, a third party can control the opening of the artificial urinary sphincter by tapping the abdomen in the particular sequence.
- the system may also be provided with a magnetic field actuated safety valve, which will be adapted to put the sleeve under a pressure permitting urination when actuated by a particular external magnetization system.
- a magnetic field actuated safety valve which will be adapted to put the sleeve under a pressure permitting urination when actuated by a particular external magnetization system.
- the urinary incontinence device presented here has many advantages for the treatment of urinary incontinence, regardless of the degree of severity.
- Control facilities and operating safety are first and foremost important for the comfort of the user.
- automation of the prosthesis by the use of remotely adjustable electronic control means by an external device offers the possibility of adjusting the settings of the device without having to operate, which is particularly advantageous when it is known that the constraints pressure requirements at the urethra, or leakage pressure thresholds, may change over time.
- the most substantial advantage lies in the dynamic operation that allows the device described. Being able to exert pressure on the urethra depending on the actual needs of the patient, depending on the activity performed, allows less stress on the urethra, and thus reduces the risk of urethral atrophy.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- Urology & Nephrology (AREA)
- Physiology (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Vascular Medicine (AREA)
- Pulmonology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Dentistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Prostheses (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
L'invention concerne un dispositif de prévention de fuites urinaires destiné à être implanté chez un patient, comprenant : - des moyens de compression (1, 3, 4, 5) de l'urètre du patient, - des moyens de commande électronique (2) pour actionner les moyens de compression (1,3,4,5), caractérisé en ce qu'il comprend en outre des moyens de mesure (7) de l'activité du patient couplés aux moyens de commande (2), les moyens de commande (2) fonctionnant suivant un modèle prédictif des fuites urinaires basé sur l'activité du patient, de manière à anticiper une fuite urinaire éventuelle en fonction de l'activité mesurée du patient.
Description
Dispositif de prévention de fuites urinaires
DOMAINE DE L'INVENTION La présente invention concerne les dispositifs de régulation artificielle de l'écoulement de fluide chez l'humain, et plus précisément les dispositifs destinés à prévenir l'incontinence urinaire.
ETAT DE LA TECHNIQUE L'incontinence urinaire est un handicap qui touche aussi bien les femmes que les hommes. Ce handicap peut être défini comme une perte involontaire d'urine par l'urètre. Dans la plupart des cas, cela est dû à un affaiblissement du support pelvien ou du bloc vessie/sphincter.
Selon les symptômes, il existe des solutions ne nécessitant aucune intervention chirurgicale, telles que la rééducation ou des traitements médicamenteux. Lorsque ces méthodes ne suffisent pas, l'incontinence sévère nécessite alors la pose d'une prothèse pour permettre de rendre au patient une vie sociale normale. En cas d'incontinence sévère, la méthode la plus employée consiste à mettre en place un sphincter urinaire artificiel (SUA). La prothèse la plus répandue consiste en un système hydraulique en élastomère de silicone composé de trois parties principales. La première partie consiste en une manchette occlusive placée autour de l'urètre exerçant une pression circonférentielle urétrale grâce à un coussin rempli de liquide assurant ainsi la continence du patient. La deuxième est un ballon de régulation qui permet, lorsqu'il est rempli avec un certain volume de liquide (environ 20 ml) de créer une pression hydraulique constante. La pression de régulation est choisie en fonction du patient pendant l'opération, celle-ci ne pouvant plus être modifiée une fois la prothèse en place. Il faut enfin une pompe assurant l'ouverture de la partie urétrale comprimée par la manchette. Cette pompe est composée d'une poire, d'un résistor et de deux valves qui assurent la circulation du liquide vers ou depuis la manchette occlusive. Lorsque la personne ressent le besoin d'uriner, elle comprime la poire située sur la partie inférieure de la pompe, le fluide est transféré de la manchette vers le ballon de régulation : la pression exercée sur l'urètre devient alors négligeable devant la pression vésicale. L'urine peut alors s'écouler librement hors de la vessie, ce qui en fait une méthode non dysuhante. Quelques minutes après, le liquide est transféré du ballon vers la manchette grâce à la pression exercée sur le résistor par le ballon de régulation, l'urètre est de nouveau
occlus. La pompe de contrôle se trouve chez l'homme dans le scrotum et chez la femme dans l'une des grandes lèvres.
L'efficacité de cette prothèse en fait un produit de référence mais elle présente toutefois un certain nombre d'inconvénients. En premier lieu, comme on l'a déjà dit plus haut, la pression de régulation de la manchette ne peut être adaptée qu'au moment de la pose de la prothèse, ce qui pourra poser des problèmes si la pathologie évolue de sorte que la pression au niveau de l'urètre devrait être modifiée pour répondre aux besoins du patient. En outre, ce système n'offre pas un confort satisfaisant un patient qui doit actionner la pompe à chaque fois que cela est nécessaire, la commande n'étant de surcroit pas aisée puisqu'il convient de maintenir la pompe d'une part et de la presser avec force d'autre part. Enfin, le fonctionnement de cette prothèse passe par une compression importante de l'urètre en quasi continu, ce qui peut induire des atrophies urétrales. En effet, la prothèse ne fonctionnant qu'à une seule pression urétrale, celle-ci doit être assez importante pour éviter les fuites, ce qui à terme peut endommager l'urètre. Il existe enfin des problèmes de fiabilité des éléments constituant la prothèse, notamment de l'ensemble pompe et circuit hydraulique.
Des dispositifs alternatifs ont été développés pour tenter de remédier à certains de ces inconvénients, en proposant notamment des commandes électroniques de la prothèse, mais aucun de ne s'est révélé satisfaisant, notamment en ce qui concerne leur mise en œuvre, ou la sécurité du patient.
Les inconvénients mentionnés ci-dessus liés aux sphincters urinaires artificiels existants impliquent que ces prothèses ne sont utilisées que pour traiter les incontinences urinaires importantes. En conséquence, les sphincters urinaires artificiels ne sont pas utilisés pour les patients souffrant d'une faible incontinence, c'est à dire à dire généralement uniquement à l'effort. En effet ces derniers préfèrent subir la gêne occasionnée par leur pathologie, ou opter pour une prothèse dysuhante, c'est à dire une prothèse exerçant constamment une pression sur l'urètre. Pour que la miction soit possible, le patient doit contracter suffisamment sa vessie pour lutter contre la résistance créée au niveau de l'urètre par la prothèse. Outre l'inconvénient mentionné plus haut de compression quasi- continue de l'urètre pouvant créer des atrophies urétrales, l'effort requis pour la miction avec ce type de prothèse crée une sorte d'adénome de prostate artificiel qui peut avoir des conséquences pour le patient. Un but de la présente invention est donc de proposer un dispositif de prévention de fuites urinaires chez un patient résolvant au moins l'un des inconvénients précités.
Un but de la présente invention est plus particulièrement de proposer un dispositif de prévention de fuites urinaires dont le fonctionnement réduit la compression moyenne au niveau de l'urètre pour éviter sa détérioration.
Un autre but de l'invention est de proposer un dispositif de prévention de fuites urinaires simple et fiable, pouvant ainsi être utilisé quelque que soit la gravité de l'incontinence urinaire à traiter.
EXPOSE DE L'INVENTION
A cette fin on propose un dispositif de prévention de fuites urinaires destiné à être implanté chez un patient, comprenant :
- des moyens de compression (1 ) de l'urètre du patient,
- des moyens de commande électronique (2) pour actionner les moyens de compression, caractérisé en ce qu'il comprend en outre des moyens de mesure (7) de l'activité du patient couplés aux moyens de commande (2), les moyens de commande (2) fonctionnant suivant un modèle prédictif des fuites urinaires basé sur l'activité du patient, de manière à anticiper une fuite urinaire éventuelle en fonction de l'activité mesurée du patient.
Des aspects préférés mais non limitatifs du dispositif de prévention de fuites urinaires sont les suivants :
- les moyens de mesure comprennent des moyens de mesure de la position et le déplacement du patient, lesdits moyens de mesure de la position et du déplacement du patient pouvant comprendre un accéléromètre comprenant un ou de plusieurs axes de mesure ;
- les moyens de mesure comprennent des moyens de mesure de la pression intra-abdominale du patient ;
- les moyens de mesure comprennent des moyens de mesure de la pression intra-vésicale ; - les moyens de mesure comprennent des moyens de mesure de la pression endo-urétrale du patient ;
- les moyens de mesure comprennent des moyens de mesure de l'activité d'un muscle ;
- les moyens de mesure de l'activité d'un muscle comprennent un capteur MMG (mécanomyographe) destiné à être placé sur ledit muscle pour mesurer les mouvements généré lors de contractions dudit muscle ;
- les moyens de mesure de l'activité d'un muscle comprennent un capteur EMG (électromyographe) destiné à être placé à travers ledit muscle pour mesurer le potentiel électrique généré lors de contractions dudit muscle ; - les moyens de mesure de l'activité d'un muscle comprennent des moyens pour la mesure de l'activité d'au moins une portion d'un des muscles grands droits, la mesure de l'activité d'au moins un des muscles pelviens, et/ou la mesure de l'activité du détrusor ;
- les moyens de mesure comprennent des moyens de mesure de la fréquence cardiaque du patient ;
- les moyens de mesure comprennent des moyens de mesure de la fréquence respiratoire du patient ;
- le dispositif caractérisé en ce qu'il comprend en outre : o des moyens de détection destinés à être disposés chez le patient pour une détection de fuites urinaires, o des moyens de stockage de signaux de mesure et de détection issus respectivement des moyens de mesure et des moyens de détection, o des moyens de traitements des signaux de mesure et de détection stockés pendant un temps déterminé correspondant à une période significative de l'activité du patient, pour construire le modèle prédictif de fuites urinaires du patient, en corrélant une combinaison de tout ou d'une partie des signaux de mesure à la présence ou non d'une fuite urinaire ultérieure, de sorte que le modèle prédictif permette d'anticiper une fuite urinaire éventuelle en fonction de l'activité mesurée du patient ;
- Le dispositif comprend en outre des moyens de mesure de réplétion de la vessie du patient, le modèle prédictif des fuites urinaires étant en outre basé sur la réplétion de la vessie du patient ;
- les moyens de mesure de réplétion de la vessie comprennent un capteur échographique destiné à être implanté chez le patient pour visualiser la vessie ;
- les moyens de commande comprennent des moyens pour actionner les moyens de compression de façon dynamique en fonction de l'activité mesurée du patient ; - les moyens de compression son adaptés pour exercer sur l'urètre une compression d'intensité variable, allant d'une absence totale de compression jusqu'à une occlusion totale de l'urètre ;
- le dispositif comprend en outre des moyens de sécurité adaptés pour actionner les moyens de compression en vue d'une absence totale de compression de l'urètre en réponse à une instruction d'ouverture, et, en réponse à une instruction de fermeture, pour actionner les moyens de compression en vue d'une compression de l'urètre égale à la compression précédant l'instruction d'ouverture du patient ;
- les moyens de sécurité sont couplés à des capteurs physiologiques destinés à être implantés chez le patient, pour permettre au patient de transmettre une instruction d'ouverture ou de fermeture aux moyens de sécurité ;
- les capteurs physiologiques sont agencés pour la mesure de contraction d'un muscle de sorte que l'instruction d'ouverture ou de fermeture soit fonction de la fréquence de contraction dudit muscle ;
- les moyens de sécurité sont couplés à des moyens de commande externes adaptés pour permettre à une tierce personne de transmettre une instruction d'ouverture ou de fermeture aux moyens de sécurité. ;
- les moyens de sécurité sont aptes à être activés par les moyens de commandes externes par ondes radio. ;
- les moyens de sécurité sont aptes à être activés par les moyens de commandes externes par ondes magnétiques ;
- les moyens de sécurité son couplés à une horloge interne, l'horloge interne permettant d'enregistrer les intervalles de temps entre les mictions du patient, les moyens de sécurité étant adaptés pour actionner les moyens de compression en vue d'une absence totale de compression de l'urètre en cas de dépassement d'un intervalle de temps maximum entre deux mictions ;
On propose également un procédé de contrôle d'un dispositif de prévention de fuites urinaires destiné à être implanté chez un patient, ledit dispositif comprenant des moyens de compression de l'urètre du patient, des moyens de commande électronique pour actionner les moyens de compression, et des moyens de mesure de l'activité du patient couplés aux moyens de commande, le procédé étant caractérisé en ce qu'il comprend les étapes consistant à :
- mesurer l'activité du patient avec les moyens de mesure, - comparer l'activité mesurée du patient avec un modèle prédictif des fuites urinaires basé sur l'activité du patient,
- commander les moyens de compression en fonction de l'activité mesurée et du modèle prédictif pour anticiper une fuite urinaire éventuelle.
Des aspects préférés mais non limitatifs de ce procédé de contrôle sont les suivants :
- le procédé comprend en outre les étapes préalables consistant à : o réaliser, pendant un temps déterminé correspondant à une période significative de l'activité du patient, une mesure de l'activité du patient avec les moyens de mesure, et enregistrer des signaux de mesure correspondants, o réaliser simultanément une détection de fuites urinaires avec des moyens de détection disposés chez le patient pour une détection de fuites urinaires éventuelles, et enregistrer des signaux de détection correspondants, o déterminer l'évolution des signaux de mesures précédant chaque fuite urinaire détectée, o construire le modèle prédictif de fuites urinaires du patient, en corrélant un signal de mesure donné à la présence ou non d'une fuite urinaire ultérieure, de sorte que le modèle prédictif permette d'anticiper une fuite urinaire éventuelle en fonction de l'activité mesurée du patient ;
- le procédé comprend en outre une étape consistant à mesurer la réplétion de la vessie du patient, le modèle prédictif des fuites urinaires étant en outre déterminé en fonction de la réplétion de la vessie ;
- en réponse à une instruction d'ouverture, les moyens de compression n'exercent plus aucune compression sur l'urètre, et que, en réponse à une instruction de fermeture, les moyens de compression exercent une compression de l'urètre égale à la compression précédant l'instruction d'ouverture du patient, le patient pouvant donner une instruction d'ouverture ou de fermeture par un signal physiologique.
DESCRIPTION DES FIGURES
D'autres caractéristiques et avantages de l'invention ressortiront encore de la description qui suit, laquelle est purement illustrative et non limitative et doit être lue en regard des dessins annexés, sur lesquels :
- la figure 1 est une représentation schématique du dispositif de prévention de fuite urinaire selon l'invention :
- la figure 2 illustre l'utilisation d'un accéléromètre chez un patient pour le dispositif de la figure 1 ; - la figure 3 illustre la mesure de l'inclinaison du patient ayant un accéléromètre comme illustré à la figure 2 ;
- la figure 4 illustre les seuils de déclenchement de l'accéléromètre pour le dispositif de la figure 1.
DESCRIPTION DETAILLEE DE L'INVENTION
Les prothèses connues pour pallier l'incontinence urinaire exercent en général une pression constante sur l'urètre sauf au moment de la miction où la pression est relâchée pour permettre une miction sans contrainte.
Toutefois, pour un patient sain, le sphincter a un fonctionnement dynamique, c'est à dire qu'il va exercer une pression plus ou moins importante sur l'urètre en fonction des besoins. La sollicitation du sphincter est en effet plus ou moins importante en fonction de l'activité exercée par le patient, mais aussi en fonction de la réplétion de la vessie (c'est à dire du volume d'urine dans la vessie). Le dispositif proposé ici, qui va être décrit en détail ci-dessous, reproduit ce fonctionnement dynamique du sphincter, permettant de faire varier la pression sur l'urètre en fonction de l'activité du patient, de manière à réduire la pression moyenne exercée au niveau de l'urètre.
Le principe de fonctionnement du dispositif de prévention de fuites urinaires présenté est de suivre l'activité du patient à l'aide de différents capteurs pour être en mesure, à partir d'un modèle prédictif permettant d'anticiper la possibilité d'une fuite urinaire liée à l'augmentation de la pression intra-vésicale par rapport à la pression urétrale, d'exercer une pression au niveau de l'urètre lorsque cela est nécessaire pour éviter ces fuites.
Comme on le voit illustré à la figure 1 , le dispositif de prévention de fuites urinaires comprend une manchette occlusive 1 destiné à être placée autour de l'urètre du patient à traiter.
Le dispositif présenté est commandé électroniquement et comprend en conséquence un boitier de commande électronique 2, comprenant au moins un microprocesseur.
Ce boitier de commande 2 permet d'actionner la manchette 1 de sorte qu'elle exerce une pression plus au moins importante sur l'urètre. L'actionnement de la manchette 1 peut être de tout type, aussi bien hydraulique que mécanique.
Sur l'exemple illustré à la figure 1 , la manchette 1 est couplée à un circuit d'actionnement hydraulique comprenant un réservoir 3 et des conduits 4 de circulation d'un fluide. Ce circuit hydraulique comprend en outre des moyens de circulation du fluide 5 permettant au fluide de circuler du réservoir 3 vers la manchette 1 et inversement.
Ce moyen de circulation 5 est adapté pour une circulation de fluide à des débits relativement élevés de plusieurs dizaines de millilitres par minute. Il convient en effet de faire circuler le fluide rapidement dans le circuit hydraulique pour que la manchette puisse être amenée à la pression désirée, en un temps relativement court, de l'ordre de 100 ms.
On pourra par exemple utiliser comme moyen de circulation 5 une micro- pompe. Pour augmenter les performances de la micro-pompe si nécessaire, il est possible de placer une chambre de surpression en sortie de la pompe avec une microvalve à commande proportionnelle à l'entrée de la manchette, ce qui permet d'atteindre la pression requise en un temps plus court. Une autre solution est d'utiliser comme moyen de circulation 5 un système à piston actionné par un micromoteur, le piston permettant d'injecter rapidement du liquide dans la manchette et d'atteindre ainsi les pressions requises.
Le dispositif de commande 2 comprend en outre des moyens pour communiquer à distance avec un dispositif de commande externe 6. Cette communication peut être effectuée par onde radio, avec par exemple une technologie de type Bluetooth©. Cela permettra de modifier le paramétrage du dispositif de commande 2, voire d'en prendre le contrôle pour forcer le fonctionnement du dispositif de prévention de fuites urinaires.
Enfin, le dispositif comprend une pluralité de capteurs 7 permettant de mesurer l'activité du patient. Ces capteurs 7 pourront être de tout type ; on pourra par exemple utiliser un accéléromètre pour mesurer les mouvements du patient, des capteurs MMG (mécanomyographe) ou EMG (électromyographes) pour mesurer l'activité de certains muscles du patient, ou encore des capteurs de pression (abdominale, urétrale, voire intra vésicale lorsque cela est possible).
Le choix des capteurs 7 sera expliqué plus en détail dans la suite de la description. Notons toutefois que les capteurs utilisés ne nécessitent pas d'intervention chirurgicale proprement dite pour leur mise en place. Ils pourront en effet simplement être placés dans certaines parties de l'abdomen.
Ces capteurs 7 vont servir dans la phase de calibration du dispositif, au cours de laquelle un modèle prédictif des fuites urinaires va être implémenté. Ils serviront également lors de l'utilisation normale du dispositif de prévention de fuites urinaires pour permettre de faire varier la pression de la manchette 1 au niveau de l'urètre à chaque fois que cela sera nécessaire.
Le modèle prédictif des fuites urinaires est conçu pour anticiper une fuite urinaire que le patient pourrait subir, en se basant sur des informations concernant l'activité du patient. En effet, certaines activités particulières induisent une modification du rapport entre la pression intra-vésicale et la pression urétrale ce qui peut entrainer des fuites urinaires indésirées. C'est le cas par exemple lorsque le patient effectue un effort par rapport à son activité normale. C'est le cas également lorsque le patient est en phase de sommeil, où la pression urétrale diminue par rapport à la pression intra-vésicale. Une détection de ces situations particulières permet donc d'anticiper une fuite éventuelle et de modifier en conséquence la pression exercée sur l'urètre.
Pour éviter de faire varier en continu la pression exercée sur l'urètre, on s'attache à 4 phases principales au cours desquelles la pression sur l'urètre doit être modifiée. II y a tout d'abord la phase de miction, où le sphincter n'exerce pas ou peu de pression sur l'urètre de sorte qu'un patient peu uriner librement, sans exercer d'effort particulier. Au cours de cette phase de miction, on peut exercer une pression très faible sur l'urètre, correspondant par exemple à une pression P0 dans la manchette inférieure à 10 CmH2O (10 centimètres d'eau). Comme on l'a déjà indiqué, une autre phase important correspond à la phase de sommeil, au cours de laquelle l'organisme se relâche. La pression PaιιOng correspondante peut être relativement faible pouvant même avoisiner dans certains cas P0. Notons que cette pression dépend du patient et pourra être fixée au cas par cas une fois le dispositif installé. La phase la plus courante correspond au moment où le patient a une activité normale, c'est à dire au cours de laquelle il n'exerce pas d'effort particulier (posture debout, assise, en train de marcher, etc.). Dans ce cas une pression Pact doit être exercée sur l'urètre. Cette pression doit être déterminée au cours du calibrage du dispositif de manière à être tout juste suffisante pour éviter les fuites. La dernière phase correspond au moment où le patient exerce un effort qui implique des pressions intra-vésicales élevées (sport, toux, etc.). La pression PeffOrt exercée sur l'urètre est dans ce cas plus importante que la pression Pact- Peffort
permet en fait de moduler Pact, lors d'une augmentation brutale de la pression dans la vessie du patient qui serait en activité normale ; par exemple après une toux, la pression dans la manchette passe de Pact à PΘffort pendant un instant puis repasse à Pact si la pression vésicale a diminuée. Bien sûr, l'activité du patient et la pression du sphincter associée pourrait être découpée en bien d'autres phases. Le dispositif proposé est décrit pour un contrôle dynamique de la pression au niveau de l'urètre selon ces 4 phases, même s'il pourrait être aisément adapté pour un autre découpage de l'activité du patient.
Nous allons maintenant décrire les capteurs 7 pouvant être utilisés seuls ou en combinaison, pour mesurer l'activité du patient de manière à pouvoir comparer ces informations avec le modèle prédictif des fuites urinaires et faire varier la pression de la manchette au niveau de l'urètre en conséquence. Comme il a déjà été remarqué, il sera préférentiellement utilisé des capteurs ne nécessitant pas d'intervention chirurgicale particulière pour leur mise en place. Notons en outre qu'il est également possible d'utiliser des capteurs déjà implantés chez le patient, ou qui seront implantés plus tard pour d'autres dispositifs. Par exemple, dans le cas où un stimulateur cardiaque (souvent désigné par l'appellation anglo-saxonne « pacemaker ») est ou va être implanté, il sera possible de le faire communiquer avec le sphincter urinaire artificiel présenté pour utiliser en particulier les informations sur le rythme cardiaque du patient. Dans ce cas il conviendra d'utiliser un protocole standard de transfert d'information entre les appareils.
II peut d'abord être intéressant de mesurer la position et le déplacement du patient.
A cette fin, on peut par exemple utiliser un accéléromètre comprenant un ou plusieurs axes de mesures. Préférentiellement on utilisera un accéléromètre ayant trois axes de mesure de manière pouvoir évaluer les mouvements du patient dans les trois directions de l'espace.
On pourra se contenter d'un accéléromètre ayant un seul axe de mesure, cet accéléromètre étant agencé de manière à ce que l'axe de mesure soit orienté dans l'axe longitudinal du patient, c'est à dire suivant l'axe x tel qu'illustré à la figure 2.
En effet, un accéléromètre à un seul axe de mesure permet de mesurer l'inclinaison du patient grâce à la force de gravité terrestre et ainsi de détecter la
position allongée du patient. Il permet aussi d'avoir une information sur les mouvements du patient qui entraîne une augmentation de la pression intra- vésicale, même si cette information n'est pas complète puisqu'une seule direction de mouvement est détectée. En ce qui concerne la détection de la position allongée, en considérant que la force de gravité g est suivant l'axe x (voir figure 2), une simple mesure de l'accélération ax suivant cet axe permet de savoir si le patient est couché. En effet, en estimant que la position allongée est considérée lorsque α < 10° (voir figure 3), on obtient une amplitude |âx| = 9.81sin(10) = 1.7m/s22 soit environ 0.17g, que l'on prendra comme notre seuil de détection.
La prise en compte du temps pendant lequel l'amplitude de l'accélération est inférieure à 0.17g est aussi significative car cette amplitude peut être aussi inférieure au seuil déterminé sans pour autant que le patient soit allongé. Ce sera par exemple le cas lorsque le patient subit des accélérations relatives suivant les x négatifs (référentiel de la figure 2) pendant un court instant, comme par exemple lorsqu'il est dans un ascenseur ou qu'il fait des sauts. Ainsi, il convient de calculer le temps pendant lequel l'accélération est inférieure au seuil de 0.17g de manière à confirmer un état stable du patient allongé, et d'actionner alors le système pour que la pression dans la manchette passe à la pression Paιiong- L'accéléromètre est aussi utilisé en tant qu'actimètre pour mesurer les accélérations selon l'axe x qui sont fonction des mouvements du patient. Comme on l'a dit plus haut, des personnes souffrant d'incontinence d'effort (incontinence peu sévère) souffrent souvent de fuites au cours d'activités qui entraînent une augmentation des pressions abdominale, vésicale et urétrale liées aux forces de pressions exercées par les organes environnants. Ces fuites dépendent encore une fois de plusieurs facteurs en relation avec les mouvements du patient. La mesure du mouvement du patient donne une information supplémentaire quant à l'estimation de la pression de la manchette requise, et permet notamment de déterminer la transition de pression Pact à PΘffort qui s'effectue lorsque le patient est en train d'exercer un effort, telle qu'une activité sportive par exemple ou encore lorsque il descend des escaliers.
Des mesures ont été réalisées avec l'accéléromètre pendant diverses activités du patient, afin de déterminer le seuil sur la mesure accélérométrique permettant de différencier l'activité "normale" de l'activité à "l'effort". Le capteur accélérométrique à un axe a été placé sur l'abdomen d'une personne en train de marcher, de courir et de sauter et les données ont été enregistrées au cours de ces activités. Le tableau ci-dessous décrit les accélérations notées lors des divers
exercices réalisés, on notera que lorsque le patient est debout sans bouger, avec raccéléromètre dirigé dans le sens des x (selon le référentiel de la figure 2), la mesure est négative puisque la masselotte mobile utilisée dans raccéléromètre subit la force de gravité terrestre.
Ces différentes mesures ont permis de déterminer plusieurs seuils de déclenchement permettant de relier une accélération mesurée à un type d'activité, et donc à une pression de manchette associée.
Un autre type de capteurs pouvant être utilisé sont des capteurs de pression.
On sait que les fuites sont dépendantes de la pression intra-vésicale. Le moyen le plus simple de construire le modèle prédictif et de modifier ensuite la pression de la manchette serait de mesurer cette pression intra-vésicale. La mise en place de capteurs intra-vésicaux est toutefois difficile ce qui amène à utiliser d'autres types de capteurs, en complément ou en substitution.
L'installation d'un capteur de pression entre l'os du pubis et la paroi vésicale permet de mesurer indirectement la pression dans la vessie. Les mesures de ce capteur de pression enchâssé dans la paroi vésicale permettent une bonne corrélation avec la pression intra-vésicale réelle. Malgré les faibles amplitudes de mesure, il est donc possible d'obtenir les valeurs de pression intra-vésicale à partir de ce capteur particulier.
Il a en outre été mis en évidence qu'un effort de poussée abdominale entraînait une augmentation de la pression vésicale, ce qui, au-delà d'un certain seuil de pression abdominale, pouvait entraîner une fuite urinaire. Il est donc intéressant d'utiliser un capteur de pression abdominal pour pouvoir anticiper une
fuite urinaire éventuelle. Il est à noter que la valeur seuil de la pression abdominale correspondant à une fuite urinaire dépend du volume de remplissage de la vessie. Ainsi le calibrage de la valeur seuil de la pression abdominale correspondant à une fuite urinaire pourra être effectué en considérant une valeur moyenne de remplissage de la vessie. Comme on le verra plus loin, on pourra également prévoir un système permettant de mesurer ou estimer le taux de remplissage de la vessie, pour avoir ainsi des valeurs seuils de pression abdominale fonction da la réplétion de la vessie.
La détermination de la ou des valeurs seuils de pression abdominale pour la fuite urinaire peut être faite de la manière suivante. On fixe la pression de la manchette à Pact et on demande ensuite au patient d'effectuer un effort de poussée abdominale à glotte fermée de manière progressivement croissante jusqu'à observation d'une fuite (la pression dans la manchette reste à Pact)- A cet instant, la valeur de la pression abdominale est enregistrée et correspondra à la pression abdominale seuil Pabdoseuii (dont une marge sera soustraite à cette valeur) qui déclenchera le passage de Pact à PΘffort de la manchette occlusive. Cet exercice est réalisé pour différents volumes de remplissage de la vessie ce qui permettra d'obtenir une valeur de seuil Pabdoseuii en rapport avec le volume estimé.
Un capteur de pression urétrale pourra également être prévu. Le but sera essentiellement sécuritaire, pour déterminer une augmentation anormale de pression dans l'urètre, par exemple lors de l'introduction d'une sonde endo- urétrale, de sorte que la manchette soit actionnée pour ne plus contraindre l'urètre de manière à autoriser un passage de la sonde sans contrainte. A cette fin, on peut par exemple utiliser un capteur de pression situé sur la paroi de la manchette en contact avec l'urètre, de manière à pouvoir suivre les variations de pression au niveau de l'urètre. En effet, une augmentation importante de la pression serait le signe qu'un objet est probablement en train d'être introduit au travers de l'urètre.
La mesure de l'activité des muscles permet également de prévoir des fuites urinaires éventuelles. A cette fin, on peut utiliser des capteurs MMG
(mécanomyographe) destinés à être placés sur le muscle d'intérêt pour mesurer les mouvements générés lors de contractions dudit muscle. On peut également utiliser des capteurs EMG (électromyographe) destinés à être placés à travers le muscle pour mesurer le potentiel électrique généré lors de contractions dudit muscle.
La continence chez un sujet sain est satisfaite par une synchronisation musculaire, en particulier entre les muscles grand droit de l'abdomen et le
plancher périnéal. Il a été démontré que le temps entre une augmentation de la pression intra-vésicale et une augmentation de la pression intra-urétrale est évalué à tp ≈ 250ms ± 100ms avec une pression urétrale dépassant la pression abdominale. Cela signifie qu'il existe une anticipation de la contraction du sphincter urinaire sur l'augmentation brutale de la pression abdominale pour éviter la fuite. Lors d'une toux, par exemple, le sphincter se contracte au moment où cette toux se fait ressentir.
Si on utilise des capteurs implantés sur au moins une portion de l'un des muscles grand droit, par exemple le muscle grand droit de l'abdomen, et si on estime que le délai mécano-électrique (c'est à dire le délai entre le début d'une activité électrique du muscle et le début d'une activité mécanique) est du même ordre que tp, alors il est possible de prévoir des augmentations de pressions brutales dans la vessie.
Des mesures de l'activité du détrusor, qui est le muscle constituant la vessie, donnent également des informations directement exploitables pour l'anticipation d'une fuite urinaire.
Le plancher pelvien constitue avec les os du bassin le bas de la cavité abdominale, il contient en partie l'urètre et est formé par un groupe complexe de muscles, de ligaments et de nerfs. Lors d'efforts, c'est grâce à cet ensemble d'organes que la continence chez un sujet sain est satisfaite. La réduction des fuites urinaires chez une personne souffrant d'incontinence peu sévère, comme l'incontinence d'effort, est possible après une rééducation du plancher pelvien. Cette rééducation est traduite principalement par un travail musculaire visant à renforcer le tonus du plancher pelvien. Les résultats après une rééducation ont montré une augmentation de la force des muscles périnéaux et une bonne amélioration de l'incontinence chez des femmes souffrant d'incontinence d'effort. Dans la même optique que la rééducation du périnée, nous proposons d'implanter une sonde EMG, pour acquérir les contractions musculaires périnéales dont le temps et l'amplitude seront corrélés à la consigne de pression de la manchette. En effet, une rééducation spécifique du plancher pelvien permet au patient, à partir des contractions musculaires qu'il effectue, de commander le système pour que la pression dans la manchette passe à PΘffort lorsqu'il ressent une fuite. Il s'agit en fait de fournir un paramètre supplémentaire au système dans le cas particulier où il n'aurait pas réagi à la consigne pour éviter cette fuite. On peut imaginer à titre d'exemple que si le patient ressent une fuite urinaire, il contracte les muscles du périnée ce qui amène la pression dans la manchette à PΘffort et arrête ainsi la fuite. La contraction des muscles périnéaux est un réflexe naturel lorsque le besoin
mictionnel se fait de plus en plus ressentir. Par conséquent, la "commande" de la pression de la manchette en fonction de l'activité du plafond pelvien ne nécessite pas une rééducation compliquée et difficile à assimiler par le patient.
L'EMG du plancher pelvien peut aussi être utilisé pour la commande de l'ouverture de la prothèse (passage de la pression de la manchette à Po) lorsque le patient contracte x fois tout les y secondes les muscles du périnée. La séquence de contractions des muscles périnéaux permettant l'ouverture de la manchette se doit d'être suffisamment complexe pour éviter le risque d'obtenir une même séquence qui serait involontaire mais suffisamment simple pour avoir une reproductibilité de la séquence des contractions.
Comme il a été indiqué plus haut, la connaissance du remplissage de la vessie peut être un paramètre intéressant à prendre en compte, notamment pour augmenter la précision des corrélations entre les mesures de capteurs par rapport à la prédiction d'une fuite.
En effet, après la miction complète, la vessie est quasiment vide, il n'est donc pas nécessaire d'appliquer la même pression sur l'urètre que lorsque la vessie était pleine, que ce soit pour Pact ou bien pour PeffOrt- C'est pourquoi les deux valeurs de pression Pact et PΘffOrt augmentent dans le temps après la miction du patient jusqu'à atteindre les seuils déterminés préalablement (pour arriver à Pactmax et Peffortmax juste avant la miction suivante).
Une mesure réelle de la réplétion de la vessie peut difficilement être mise en œuvre. Il est toutefois possible d'estimer le remplissage de la vessie. En effet, la fréquence mictionnelle de la personne (évaluée à environ 4 à 5 fois par 24 h sans miction nocturne chez un sujet sain) est enregistrée, ce qui permet d'estimer le temps moyen de remplissage de la vessie, c'est à dire le temps pour passer d'une pression vésicale quasiment nulle à la pression Pactmax pour une activité dite "normale" du patient. On aura donc un temps moyen un temps moyen Tmoy tel que : T - V Tm ^
K avec Tm(i) le i ème temps enregistré entre deux mictions (i allant de 1 à k) et k le nombre de périodes mictionnelles enregistrées.
Au départ, c'est à dire après l'implantation, le temps Tmoy est de courte durée, il peut être éventuellement estimé en fonction du patient. Ensuite, au fur et à mesure des enregistrements, Tmoy correspondra de plus en plus au temps moyen entre chaque miction du patient. Il est clair que selon l'activité du patient et
son hydratation, le remplissage de la vessie est plus ou moins rapide. Toutefois, la pression exercée sur l'urètre sera toujours suffisante grâce à la prise en compte d'une marge supérieure de pression appliquée et des réglages effectués auparavant par le personnel soignant sur les pressions de clôture nécessaires. En supposant que la fréquence de miction suit une loi gaussienne, on peut par exemple faire croître les valeurs de la consigne de pression linéairement jusqu'à atteindre leur maximum à Tmoy - a , avec a l'écart type de notre fonction.
Une alternative pour estimer le degré de remplissage de la vessie consiste à utiliser un capteur échographique miniature, par exemple construit sur la technologie CMUT, c'est à dire utilisant un transducteur capacitif à ultrasons micro-usiné. La vessie est en effet caractérisée par une faible échogénéicité. Le capteur est implanté de manière à pouvoir observer la vessie. Dans l'idéal, une observation bidimensionnelle (voire tridimensionnelle) est réalisée, mais il faut noter qu'une observation unidimensionnelle peut apporter une information suffisante. L'avantage d'une observation selon une seule direction est que le traitement des données (qui consiste par exemple à mesurer le nombre de points dont l'échogénéicité est au-dessous d'un certain seuil) est extrêmement simple et nécessite très peu de puissance de calcul. Ce nombre de points peut être corrélé au degré de remplissage de la vessie. La fonction de corrélation peut être estimée au début, et ensuite affinée lors de l'utilisation du dispositif par le patient, grâce à l'analyse par le patient et par l'équipe médicale de l'évolution du résultat du traitement des données échographiques en fonction d'observations cliniques (fuites urinaires, par exemple) ou de mesures du degré de remplissage de la vessie par d'autres moyens (échographie externe réalisée par un médecin lors d'une consultation, par exemple).
On remarquera qu'en prenant en compte la vitesse de remplissage de la vessie, on réduit aussi la consommation énergétique du système étant donné que les actionneurs sont moins sollicités.
La fonction principale des capteurs décrits en détail ci-dessus est de permettre la construction d'un modèle prédictif de fuites urinaires qui sera utilisé pour la gestion des modifications de pression sur l'urètre en fonction de l'activité du patient.
Toutefois, ces capteurs peuvent également être utilisés pour commander le dispositif de prévention de fuites urinaires présenté. En effet, lorsque le patient veut uriner, il convient de commander le dispositif pour que la manchette atteigne une pression P0 permettant une miction sans contrainte. Plutôt que d'utiliser un
actionneur mécanique, les capteurs peuvent être utilisés pour transmettre un signal de miction donné par l'utilisateur au dispositif de commande 2.
Cette alternative a déjà été présentée plus haut dans le cas des capteurs d'activité des muscles pelviens. On peut en effet programmer le dispositif de commande 2 pour qu'il actionne le dispositif en vue d'une pression de miction P0 en réponse à une succession particulière de signaux issus du capteur EMG des muscles pelviens.
Ceci est réalisable avec la plupart des autres capteurs.
II convient en outre qu'une tierce personne puisse actionner le dispositif de prévention de fuites urinaires dans le cas ou le patient n'est plus apte à l'activer seul ou pour toute autre raison.
Comme on l'a dit plus haut, le dispositif de commande 2 est de préférence adapté pour une communication sans fil avec un dispositif de commande externe 6. Ce dispositif de commande externe pourra par exemple être adapté pour imposer au dispositif de commande 2 d'actionner la manchette 1 en vue d'une pression de miction P0.
Tout type de communication peut être envisagé tel qu'une communication radiofréquence. Une solution alternative ou complémentaire est d'utiliser les capteurs comme une commande d'ouverture du dispositif, de la même manière que cela est prévu pour le patient. Par exemple, en utilisant un capteur de la pression abdominale et en programmant une séquence d'ouverture particulière, une tierce personne pourra commander l'ouverture du sphincter urinaire artificiel en tapant sur l'abdomen selon la séquence particulière.
Le système pourra également être pourvu d'une valve de sécurité actionnable par un champ magnétique, et qui sera adaptée pour mettre la manchette sous une pression autorisant la miction en cas d'actionnement par un système à aimantation externe particulier. L'utilisation d'un système à aimantation présente l'avantage d'autoriser une ouverture sans nécessiter de consommation d'énergie.
Le dispositif de prévention de fuites urinaires présenté ici offre de nombreux avantages pour le traitement de l'incontinence urinaire, quel qu'en soit le degré de gravité.
Les facilités de commande et les sécurités de fonctionnement sont tout d'abord importantes pour le confort de l'utilisateur.
En outre l'automatisation de la prothèse par l'utilisation de moyens de commande électronique réglables à distance par un dispositif externe offre la possibilité d'ajuster les réglages du dispositif sans avoir à opérer, ce qui est particulièrement avantageux quand on sait que les contraintes de pression nécessaires au niveau de l'urètre, ou les valeurs seuils de pression de fuites, peuvent évoluer dans le temps.
Enfin, l'avantage le plus substantiel réside dans le fonctionnement dynamique que permet le dispositif décrit. Le fait de pouvoir exercer une pression sur l'urètre dépendant des besoins réels du patient, en fonction de l'activité exercée, permet une sollicitation moindre de l'urètre, et réduit ainsi les risques d'atrophie urétrale.
A titre illustratif, en considérant un sphincter urinaire artificiel de l'art antérieur exerçant une pression de l'ordre de 70 CmH2O lorsqu'il est activé, et en admettant que la fréquence de miction du patient est d'environ 4 fois par 24 heures et que chaque miction dure environ 3 minutes au cours desquelles l'ouverture de la manchette est quasi nulle, on obtient une pression moyenne exercée sur l'urètre d'environ 69.8 CmH2O. Si on considère les mêmes paramètres pour la prothèse présentée ici, avec des pressions réglées après l'implantation à Paiiong = 30 CmH2O pendant 30% du temps, Pact = 45 CmH2O 50% du temps et Peffort = 70 CmH2O pendant les 20% restant, on obtiendrait une pression moyenne dans la manchette d'approximativement 45.5 CmH2O soit une réduction de la pression appliquée sur l'urètre de près de 36%.
Le lecteur aura compris que de nombreuses modifications peuvent être apportées sans sortir matériellement des nouveaux enseignements et des avantages décrits ici. Par conséquent, toutes les modifications de ce type sont destinées à être incorporées à l'intérieur de la portée du dispositif de prévention de fuites urinaires décrit.
Claims
1. Dispositif de prévention de fuites urinaires destiné à être implanté chez un patient, comprenant :
- des moyens de compression (1 ,3,4,5) de l'urètre du patient, - des moyens de commande électronique (2) pour actionner les moyens de compression (1 ,3,4,5), caractérisé en ce qu'il comprend en outre des moyens de mesure (7) de l'activité du patient couplés aux moyens de commande (2), les moyens de commande (2) fonctionnant suivant un modèle prédictif des fuites urinaires basé sur l'activité du patient, de manière à anticiper une fuite urinaire éventuelle en fonction de l'activité mesurée du patient.
2. Dispositif selon la revendication 1 , caractérisé en ce que les moyens de mesure (7) comprennent des moyens de mesure de la position et le déplacement du patient.
3. Dispositif selon la revendication 2, caractérisé en ce que les moyens de mesure de la position et du déplacement du patient comprennent un accéléromètre comprenant un ou de plusieurs axes de mesure.
4. Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que les moyens de mesure (7) comprennent des moyens de mesure de la pression intra-abdominale du patient.
5. Dispositif selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les moyens de mesure (7) comprennent des moyens de mesure de la pression intra-vésicale.
6. Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce que les moyens de mesure (7) comprennent des moyens de mesure de la pression endo-urétrale du patient.
7. Dispositif selon l'une quelconque des revendications 1 à 6, caractérisé en ce que les moyens de mesure (7) comprennent des moyens de mesure de l'activité d'un muscle.
8. Dispositif selon la revendication 7, caractérisé en ce que les moyens de mesure de l'activité d'un muscle comprennent un capteur MMG (mécanomyographe) destiné à être placé sur ledit muscle pour mesurer les mouvements généré lors de contractions dudit muscle.
9. Dispositif selon l'une quelconque des revendications 7 ou 8, caractérisé en ce que les moyens de mesure de l'activité d'un muscle comprennent un capteur EMG (électromyographe) destiné à être placé à travers ledit muscle pour mesurer le potentiel électrique généré lors de contractions dudit muscle.
10. Dispositif l'une quelconque des revendications 7 à 9, caractérisé en ce que les moyens de mesure de l'activité d'un muscle comprennent des moyens pour la mesure de l'activité d'au moins une portion d'un des muscles grands droits.
11. Dispositif l'une quelconque des revendications 7 à 10, caractérisé en ce que les moyens de mesure de l'activité d'un muscle comprennent des moyens pour la mesure de l'activité d'au moins un des muscles pelviens.
12. Dispositif l'une quelconque des revendications 7 à 11 , caractérisé en ce que les moyens de mesure de l'activité d'un muscle comprennent des moyens pour la mesure de l'activité du détrusor.
13. Dispositif selon l'une quelconque des revendications 1 à 12, caractérisé en ce que les moyens de mesure comprennent des moyens de mesure de la fréquence cardiaque du patient.
14. Dispositif selon l'une quelconque des revendications 1 à 13, caractérisé en ce que les moyens de mesure comprennent des moyens de mesure de la fréquence respiratoire du patient.
15. Dispositif selon l'une quelconque des revendications 1 à 14, caractérisé en ce qu'il comprend en outre :
- des moyens de détection destinés à être disposés chez le patient pour une détection de fuites urinaires, - des moyens de stockage de signaux de mesure et de détection issus respectivement des moyens de mesure et des moyens de détection,
- des moyens de traitements des signaux de mesure et de détection stockés pendant un temps déterminé correspondant à une période significative de l'activité du patient, pour construire le modèle prédictif de fuites urinaires du patient, en corrélant une combinaison de tout ou d'une partie des signaux de mesure à la présence ou non d'une fuite urinaire ultérieure, de sorte que le modèle prédictif permette d'anticiper une fuite urinaire éventuelle en fonction de l'activité mesurée du patient.
16. Dispositif selon l'une quelconque des revendications 1 à 15, caractérisé en ce qu'il comprend en outre des moyens de mesure de réplétion de la vessie du patient, le modèle prédictif des fuites urinaires étant en outre basé sur la réplétion de la vessie du patient.
17. Dispositif selon la revendication 16, caractérisé en ce que les moyens de mesure de réplétion de la vessie comprennent un capteur échographique destiné à être implanté chez le patient pour visualiser la vessie.
18. Dispositif selon l'une quelconque des revendications 1 à 17, caractérisé en ce que les moyens de commande (2) comprennent des moyens pour actionner les moyens de compression (1 ,3,4,5) de façon dynamique en fonction de l'activité mesurée du patient.
19. Dispositif selon l'une quelconque des revendications 1 à 18, caractérisé en ce que les moyens de compression (1 ,3,4,5) comprennent des moyens pour exercer sur l'urètre une compression d'intensité variable, allant d'une absence totale de compression jusqu'à une occlusion totale de l'urètre.
20. Dispositif selon l'une quelconque des revendications 1 à 19, caractérisé en ce qu'il comprend en outre des moyens de sécurité adaptés pour actionner les moyens de compression (1 ,3,4,5) en vue d'une absence totale de compression de l'urètre en réponse à une instruction d'ouverture, et, en réponse à une instruction de fermeture, pour actionner les moyens de compression (1 ,3,4,5) en vue d'une compression de l'urètre égale à la compression précédant l'instruction d'ouverture du patient.
21. Dispositif selon la revendication 20, caractérisé en ce que les moyens de sécurité sont couplés à des capteurs physiologiques destinés à être implantés chez le patient, pour permettre au patient de transmettre une instruction d'ouverture ou de fermeture aux moyens de sécurité.
22. Dispositif selon la revendication 21 , caractérisé en ce que les capteurs physiologiques sont agencés pour la mesure de contraction d'un muscle de sorte que l'instruction d'ouverture ou de fermeture soit fonction de la fréquence de contraction dudit muscle.
23. Dispositif selon l'une quelconque des revendications 20 à 22, caractérisé en ce que les moyens de sécurité sont couplés à des moyens de commande externes (6) adaptés pour permettre à une tierce personne de transmettre une instruction d'ouverture ou de fermeture aux moyens de sécurité.
24. Dispositif selon la revendication 23, caractérisé en ce que les moyens de sécurité sont aptes à être activés par les moyens de commandes externes (6) par ondes radio.
25. Dispositif selon la revendication 23, caractérisé en ce que les moyens de sécurité sont aptes à être activés par les moyens de commandes externes (6) par ondes magnétiques.
26. Dispositif selon l'une quelconque des revendications 20 à 25, caractérisé en ce que les moyens de sécurité son couplés à une horloge interne, l'horloge interne permettant d'enregistrer les intervalles de temps entre les mictions du patient, les moyens de sécurité étant adaptés pour actionner les moyens de compression (1 ,3,4,5) en vue d'une absence totale de compression de l'urètre en cas de dépassement d'un intervalle de temps maximum entre deux mictions.
27. Procédé de contrôle d'un dispositif de prévention de fuites urinaires destiné à être implanté chez un patient, ledit dispositif comprenant des moyens de compression (1 ,3,4,5) de l'urètre du patient, des moyens de commande électronique (2) pour actionner les moyens de compression (1 ,3,4,5), et des moyens de mesure (7) de l'activité du patient couplés aux moyens de commande (2), le procédé étant caractérisé en ce qu'il comprend les étapes consistant à :
- mesurer l'activité du patient avec les moyens de mesure (7),
- comparer l'activité mesurée du patient avec un modèle prédictif des fuites urinaires basé sur l'activité du patient, - commander les moyens de compression (1 ,3,4,5) en fonction de l'activité mesurée et du modèle prédictif pour anticiper une fuite urinaire éventuelle.
28. Procédé selon la revendication 27, caractérisé en ce qu'il comprend en outre les étapes préalables consistant à :
- réaliser, pendant un temps déterminé correspondant à une période significative de l'activité du patient, une mesure de l'activité du patient avec les moyens de mesure (7), et enregistrer des signaux de mesure correspondants,
- réaliser simultanément une détection de fuites urinaires avec des moyens de détection disposés chez le patient pour une détection de fuites urinaires éventuelles, et enregistrer des signaux de détection correspondants,
- déterminer l'évolution des signaux de mesures précédant chaque fuite urinaire détectée,
- construire le modèle prédictif de fuites urinaires du patient, en corrélant un signal de mesure donné à la présence ou non d'une fuite urinaire ultérieure, de sorte que le modèle prédictif permette d'anticiper une fuite urinaire éventuelle en fonction de l'activité mesurée du patient.
29. Procédé selon la revendication 28, caractérisé en ce qu'il comprend en outre une étape consistant à mesurer la réplétion de la vessie du patient, le modèle prédictif des fuites urinaires étant en outre déterminé en fonction de la réplétion de la vessie.
30. Procédé selon l'une quelconque des revendications 27 à 29, caractérisé en ce que, en réponse à une instruction d'ouverture, les moyens de compression (1 ,3,4,5) n'exercent plus aucune compression sur l'urètre, et que, en réponse à une instruction de fermeture, les moyens de compression (1 ,3,4,5) exercent une compression de l'urètre égale à la compression précédant l'instruction d'ouverture du patient, le patient pouvant donner une instruction d'ouverture ou de fermeture par un signal physiologique.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08787000.2A EP2185102B1 (fr) | 2007-08-24 | 2008-08-07 | Dispositif de prevention de fuites urinaires |
US12/674,501 US10383714B2 (en) | 2007-08-24 | 2008-08-07 | Device to prevent urinary leakage |
ES08787000.2T ES2656137T3 (es) | 2007-08-24 | 2008-08-07 | Dispositivo de prevención de fugas urinarias |
US16/514,092 US11872107B2 (en) | 2007-08-24 | 2019-07-17 | Device to prevent urinary leakage |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0757159 | 2007-08-24 | ||
FR0757159A FR2920087B1 (fr) | 2007-08-24 | 2007-08-24 | Dispositif de prevention de fuites urinaires |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/674,501 A-371-Of-International US10383714B2 (en) | 2007-08-24 | 2008-08-07 | Device to prevent urinary leakage |
US16/514,092 Continuation US11872107B2 (en) | 2007-08-24 | 2019-07-17 | Device to prevent urinary leakage |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009027196A1 true WO2009027196A1 (fr) | 2009-03-05 |
Family
ID=39262501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2008/060404 WO2009027196A1 (fr) | 2007-08-24 | 2008-08-07 | Dispositif de prevention de fuites urinaires |
Country Status (6)
Country | Link |
---|---|
US (2) | US10383714B2 (fr) |
EP (1) | EP2185102B1 (fr) |
ES (1) | ES2656137T3 (fr) |
FR (1) | FR2920087B1 (fr) |
PT (1) | PT2185102T (fr) |
WO (1) | WO2009027196A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014118335A1 (fr) | 2013-02-01 | 2014-08-07 | Uromems | Systeme et procede de detection d'un dispositif endo-uretral pour un sphincter artificiel implantable dans le corps humain ou animal |
WO2014187871A1 (fr) | 2013-05-21 | 2014-11-27 | Uromems | Procede et dispositif de detection d'une fuite lente dans un systeme occlusif hydraulique implantable |
US9980807B2 (en) | 2013-05-21 | 2018-05-29 | Uromems | Implantable occlusion system comprising a device for detecting atrophy of a natural conduit |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8343079B2 (en) | 2007-10-18 | 2013-01-01 | Innovative Surgical Solutions, Llc | Neural monitoring sensor |
WO2012122267A1 (fr) * | 2011-03-07 | 2012-09-13 | Theranova, Llc | Sonde de foley pour détection |
BR112012025259A2 (pt) * | 2010-04-08 | 2019-09-24 | Koninl Philips Electronics Nv | "equipamento sensor, item de vestimenta, método e programa de computador" |
WO2012103108A1 (fr) * | 2011-01-28 | 2012-08-02 | Medtronic, Inc. | Détermination d'un état physiologique sur la base d'une onde de pression produite par un boîtier de dispositif médical implantable |
US8983593B2 (en) | 2011-11-10 | 2015-03-17 | Innovative Surgical Solutions, Llc | Method of assessing neural function |
US9301711B2 (en) | 2011-11-10 | 2016-04-05 | Innovative Surgical Solutions, Llc | System and method for assessing neural health |
US8855822B2 (en) | 2012-03-23 | 2014-10-07 | Innovative Surgical Solutions, Llc | Robotic surgical system with mechanomyography feedback |
US9039630B2 (en) | 2012-08-22 | 2015-05-26 | Innovative Surgical Solutions, Llc | Method of detecting a sacral nerve |
US8892259B2 (en) | 2012-09-26 | 2014-11-18 | Innovative Surgical Solutions, LLC. | Robotic surgical system with mechanomyography feedback |
US10478097B2 (en) | 2013-08-13 | 2019-11-19 | Innovative Surgical Solutions | Neural event detection |
US10478096B2 (en) | 2013-08-13 | 2019-11-19 | Innovative Surgical Solutions. | Neural event detection |
US9622684B2 (en) | 2013-09-20 | 2017-04-18 | Innovative Surgical Solutions, Llc | Neural locating system |
FR3028749B1 (fr) | 2014-11-25 | 2020-10-09 | Uromems | Systeme occlusif implantable |
GB201513208D0 (en) | 2015-07-27 | 2015-09-09 | Univ Central Lancashire | Methods and apparatuses for estimating bladder status |
US10321833B2 (en) | 2016-10-05 | 2019-06-18 | Innovative Surgical Solutions. | Neural locating method |
US10869616B2 (en) | 2018-06-01 | 2020-12-22 | DePuy Synthes Products, Inc. | Neural event detection |
US10870002B2 (en) | 2018-10-12 | 2020-12-22 | DePuy Synthes Products, Inc. | Neuromuscular sensing device with multi-sensor array |
US11399777B2 (en) | 2019-09-27 | 2022-08-02 | DePuy Synthes Products, Inc. | Intraoperative neural monitoring system and method |
RU2748428C1 (ru) * | 2020-02-05 | 2021-05-25 | Андрей Николаевич Брико | Комплекс для бионического управления техническими устройствами |
CN113440137B (zh) * | 2021-08-02 | 2024-01-26 | 天津市儿童医院 | 一种无创膀胱压力测定装置及其测定方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006026509A2 (fr) * | 2004-08-25 | 2006-03-09 | Pavad Medical, Inc. | Sphincter artificiel |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4571749A (en) * | 1982-09-21 | 1986-02-25 | The Johns Hopkins University | Manually actuated hydraulic sphincter |
GB8512069D0 (en) | 1985-05-13 | 1985-06-19 | Craggs M D | Prosthetic sphincter devices |
US6135945A (en) | 1997-08-04 | 2000-10-24 | Sultan; Hashem | Anti-incontinence device |
WO2000015140A1 (fr) | 1998-09-15 | 2000-03-23 | Infinite Biomedical Technologies, Incorporated | Prothese intra-uretrale de continence |
IL127481A (en) * | 1998-10-06 | 2004-05-12 | Bio Control Medical Ltd | Urine excretion prevention device |
CA2398326C (fr) | 2000-02-10 | 2008-12-16 | Surgical Development Ag | Appareil de traitement de l'incontinence anale avec alimentation d'energie sans fil |
CN101803965B (zh) * | 2000-02-10 | 2014-02-26 | 厄罗洛吉卡股份公司 | 控制小便失禁的治疗 |
AU2001232583A1 (en) | 2000-02-14 | 2001-07-24 | Potencia Medical Ag | Hydraulic urinary incontinence treatment apparatus |
US6682473B1 (en) * | 2000-04-14 | 2004-01-27 | Solace Therapeutics, Inc. | Devices and methods for attenuation of pressure waves in the body |
DE50213247D1 (fr) | 2001-11-20 | 2009-03-12 | Helmut Wassermann | |
US6862480B2 (en) * | 2001-11-29 | 2005-03-01 | Biocontrol Medical Ltd. | Pelvic disorder treatment device |
US7775966B2 (en) * | 2005-02-24 | 2010-08-17 | Ethicon Endo-Surgery, Inc. | Non-invasive pressure measurement in a fluid adjustable restrictive device |
US20090306460A1 (en) * | 2005-08-15 | 2009-12-10 | Continence Control Systems International Pty Ltd. | Method and Apparatus for Controlling a Bodily Function |
US8204597B2 (en) * | 2007-05-30 | 2012-06-19 | Medtronic, Inc. | Evaluating patient incontinence |
US8121691B2 (en) * | 2007-05-30 | 2012-02-21 | Medtronic, Inc. | Voiding event identification based on patient input |
US8805508B2 (en) * | 2007-05-30 | 2014-08-12 | Medtronic, Inc. | Collecting activity data for evaluation of patient incontinence |
-
2007
- 2007-08-24 FR FR0757159A patent/FR2920087B1/fr not_active Expired - Fee Related
-
2008
- 2008-08-07 US US12/674,501 patent/US10383714B2/en active Active
- 2008-08-07 PT PT87870002T patent/PT2185102T/pt unknown
- 2008-08-07 ES ES08787000.2T patent/ES2656137T3/es active Active
- 2008-08-07 EP EP08787000.2A patent/EP2185102B1/fr active Active
- 2008-08-07 WO PCT/EP2008/060404 patent/WO2009027196A1/fr active Application Filing
-
2019
- 2019-07-17 US US16/514,092 patent/US11872107B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006026509A2 (fr) * | 2004-08-25 | 2006-03-09 | Pavad Medical, Inc. | Sphincter artificiel |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014118335A1 (fr) | 2013-02-01 | 2014-08-07 | Uromems | Systeme et procede de detection d'un dispositif endo-uretral pour un sphincter artificiel implantable dans le corps humain ou animal |
FR3001631A1 (fr) * | 2013-02-01 | 2014-08-08 | Uromems | Systeme de controle d'un sphincter artificiel implantable dans le corps humain ou animal |
US10736563B2 (en) | 2013-02-01 | 2020-08-11 | Uromems | System and method for detecting an endo-urethral device for an artificial sphincter that is implantable in an animal or human body |
US11612354B2 (en) | 2013-02-01 | 2023-03-28 | Assistance Publique—Hopitaux de Paris | System and method for detecting an endo-urethral device for an artificial sphincter that is implantable in an animal or human body |
WO2014187871A1 (fr) | 2013-05-21 | 2014-11-27 | Uromems | Procede et dispositif de detection d'une fuite lente dans un systeme occlusif hydraulique implantable |
US9980807B2 (en) | 2013-05-21 | 2018-05-29 | Uromems | Implantable occlusion system comprising a device for detecting atrophy of a natural conduit |
US10139304B2 (en) | 2013-05-21 | 2018-11-27 | Uromems | Method and device for detecting a slow leak in an implantable hydraulic occlusion system |
Also Published As
Publication number | Publication date |
---|---|
US11872107B2 (en) | 2024-01-16 |
US20110124955A1 (en) | 2011-05-26 |
EP2185102A1 (fr) | 2010-05-19 |
PT2185102T (pt) | 2018-02-08 |
US20190358014A1 (en) | 2019-11-28 |
US10383714B2 (en) | 2019-08-20 |
FR2920087B1 (fr) | 2009-10-23 |
ES2656137T3 (es) | 2018-02-23 |
EP2185102B1 (fr) | 2017-11-08 |
FR2920087A1 (fr) | 2009-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2185102B1 (fr) | Dispositif de prevention de fuites urinaires | |
Fattorini et al. | Artificial muscle devices: innovations and prospects for fecal incontinence treatment | |
EP2285278B1 (fr) | Dispositif et procede de mesure des signaux physiologiques vaginaux et peri vaginaux et en particulier du debit sanguin et des muscles peri vaginaux | |
Yang et al. | Utilization of a lower extremity ambulatory feedback system to reduce gait asymmetry in transtibial amputation gait | |
US9180284B2 (en) | Device and method for measuring and treating the rigidity and erection of a penis and arterial-venous flows | |
Abelson et al. | Ambulatory urodynamic monitoring: state of the art and future directions | |
WO2010031950A1 (fr) | Dispositif de reeducation perineale | |
Lamraoui et al. | Development of a novel artificial urinary sphincter: a versatile automated device | |
WO2005115245A1 (fr) | Dispositif intravesiculaire | |
AU2015335914A1 (en) | Apparatus for testing distal colonic and anorectal function | |
JP2021506436A (ja) | 膀胱充満を感知するための装置及び方法 | |
Soebadi et al. | Novel implantable pressure and acceleration sensor for bladder monitoring | |
EP3297525B1 (fr) | Sonde de diagnostic pour mesurer la déformation d'une endocavité et la resistance d'au moins un muscle du périnée | |
Hached et al. | Novel, remotely controlled, artificial urinary sphincter: a retro-compatible device | |
EP2950746B1 (fr) | Systeme de detection d'un dispositif endo-uretral pour un sphincter artificiel implantable dans le corps humain ou animal | |
FR2861580A1 (fr) | Dispositifs et procedes de traitement de l'incontinence urinaire implantables | |
EP2999426A1 (fr) | Systeme occlusif implantable comprenant un dispositif de detection de l'atrophie d'un conduit naturel | |
EP4167902B1 (fr) | Dispositif medical et methode de detection d'un changement de position | |
Hached et al. | Novel electromechanic artificial urinary sphincter | |
Holmes-Martin et al. | Advances in assistive electronic device solutions for urology | |
Han et al. | Research on perception reconstruction of implantable device based on sensor system | |
Attari | Design and Testing Novel Wearable Instrumentation for Assessing Pelvic Floor Function and Exploring Continence Mechanisms | |
Fletcher et al. | A computer simulation of micturition | |
Rink et al. | Constitutively reduced sensory capacity promotes better recovery after spinal cord-injury (SCI) in blind rats of the dystrophic RCS strain | |
Gallistl et al. | Abdominal pressure transmission devices for urethral sphincters: In vitro effects and clinical outcomes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08787000 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12674501 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2008787000 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008787000 Country of ref document: EP |