WO2009026903A1 - Mini dosimètre pour rayons uv autoalimenté en énergie et émettant des signaux d'alarme - Google Patents

Mini dosimètre pour rayons uv autoalimenté en énergie et émettant des signaux d'alarme Download PDF

Info

Publication number
WO2009026903A1
WO2009026903A1 PCT/DE2008/001406 DE2008001406W WO2009026903A1 WO 2009026903 A1 WO2009026903 A1 WO 2009026903A1 DE 2008001406 W DE2008001406 W DE 2008001406W WO 2009026903 A1 WO2009026903 A1 WO 2009026903A1
Authority
WO
WIPO (PCT)
Prior art keywords
dosimeter
mini
radiation
radiation according
solar cell
Prior art date
Application number
PCT/DE2008/001406
Other languages
German (de)
English (en)
Inventor
Mario SCHRÖDNER
Hannes Schache
Original Assignee
Thüringisches Institut für Textil- und Kunststoff-Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. filed Critical Thüringisches Institut für Textil- und Kunststoff-Forschung e.V.
Priority to EP08801227A priority Critical patent/EP2183557A1/fr
Publication of WO2009026903A1 publication Critical patent/WO2009026903A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/429Photometry, e.g. photographic exposure meter using electric radiation detectors applied to measurement of ultraviolet light

Definitions

  • the invention relates to a flat, flexible and inexpensively producible UV dosimeter, which displays after reaching a certain dose depending on irradiation and irradiation either a measured value and / or emits a warning signal.
  • the dosimeter works without additional power source, e.g. a battery. It can be installed directly on the exposed surface to save space.
  • UV dosimeters are often based on photochromic layers that change color upon irradiation. Such dosimeters can be produced inexpensively as disposable articles in the form of small test strips. But they have no warning function or do not allow quantitative measurement. In the case of purely visual evaluation, practically only a qualitative statement is obtained by comparison with a reference color scale. Although you get by means of photometric evaluation and quantitative statements, but it requires an additional measurement process with a suitable meter. For dose determination in radiation-curing processes in the printing and coating industry, this system is offered by Hönle AG under the name UV Scan. However, this dosimeter is more of a hindrance in particular for portable applications in the leisure sector (eg outdoor activities) or in occupational safety in exposed environments (construction sites, agriculture).
  • Known electronic dosimeters are based on a UV-sensitive component, such as a photodiode. This is Part of an electronic circuit that integrates the charge generated by the UV sensor over the measurement time and finally displays the measured dose. Examples can be found in US 4428050, US 3710115, DE 4012984 and DE 4317405, wherein the information on the circuits are different in detail. Additionally or alternatively to the measured value display, the dosimeters can still be provided with an optical or audible warning function, which is activated when a specific nominal value is reached (US Pat. No. 4,402,850, US Pat. No. 3,710,115, DE 4317405). These circuits are constructed with discrete components and are therefore not arbitrarily compact and inexpensive to manufacture.
  • WO8603319 we describe an energy self-sufficient circuit for an electronic UV dosimeter with an electro-acoustic warning function.
  • the circuit includes an optical sensor, resistors, capacitors, a preamplifier, a comparator, switches, diodes, a piezo-transducer and a solar cell for power supply. For the production of the circuit no information is given.
  • the circuit is located in a housing with window and is therefore also not flat, flexible and not really cheap.
  • DE 69102804 describes another electronic dosimeter for gamma, UV, X-ray or particle beams, consisting of a detector, a calendar clock, a memory, a microprocessor, a power supply, a display and / or an alarm.
  • the circuit is constructed with discrete components and can be integrated eg in a check card. This is also this
  • Utility Model G9313246.8 discloses a UV dosimeter with a photodetector made of a semiconductor with a band gap greater than 2.25 eV, an input device, a signal Processing and an optical and / or acoustic output device claimed.
  • Other elements of the dosimeter can be: lentils, storage, solar cell for power supply ⁇ , filter.
  • This dosimeter can be miniaturized and used eg in check cards, watches, spectacles, cans or clothing. Due to the discrete structure, however, it is not sufficiently inexpensive, thin and flexible.
  • Another solution describes WO 0118510, in which the dosimeter is integrated into a wristwatch. The disadvantage here is that you would have to acquire a suitably equipped wristwatch for dose measurement.
  • the invention relates to a dosimeter for determining the dose of UV rays which act on a human or an object. This is e.g. of importance when sunbathing under natural or artificial sunlight, other leisure or work activities outdoors or in technical processes where UV-curing materials are processed.
  • the object of the invention is to provide a flat, flexible and inexpensive UV dosimeter of simple and small design for mobile use, which manages without additional power and displays the dose value or emits a warning signal when a certain value is exceeded.
  • the aim of the invention is ultimately to combine the advantages of a photochromic test strip, which is compact and flexible and at the same time inexpensive, with those of an electronic dosimeter with an integrated alarm function or display a measured value.
  • the UV test strip according to the invention can be attached to the body, clothing or articles in a space-saving manner. So it is, without being bothered there, advantageously directly on the exposed surface and can thus measure the dose striking there.
  • each of the surfaces can be equipped with a strip dosimeter.
  • Small means an area of the flexible strip dosimeter of less than 10 cm 2 , preferably less than 5 cm 2, and a total thickness of at most 200 ⁇ m, preferably less than 100 ⁇ m. Due to the low production costs, it is suitable for single use.
  • the dosimeter is present as a monolithic integrated circuit in thin-film technology on a flexible support member, such as a plastic film.
  • monolithically integrated circuit means in this case that all required electronic and optoelectronic components are deposited in the form of thin structured functional layers on the flexible carrier material.
  • the photosensitive element used is a thin-film solar cell which charges a capacitor which is likewise produced using thin-film technology.
  • Thin functional layers according to the invention have layer thicknesses of about 1 ⁇ m and below. The total layer thickness of an electronic component made up of several functional layers should not exceed 10 ⁇ m (without substrate and encapsulation).
  • the voltage across the capacitor increases with time as a function of the irradiation.
  • This value can be displayed with a small display, whereby the dose values from the voltage values are determined via a calibration.
  • the display can be, for example, an OLED (organic light-emitting diode), an electrochromic or an electrophoretic display, which likewise is integrated into the film substrate in thin-film technology.
  • a drive circuit for the display leaves be realized by means of thin film transistors (TFT).
  • TFT thin film transistors
  • An electroacoustic signal generator may be, for example, a thin piezoelectric oscillator, which is excited by an oscillator circuit consisting of thin-film transistors.
  • An electro-optical signal generator can be, for example, a single OLED.
  • a thin-film transistor should be inserted to drive the signal generator.
  • a second solar cell or a series connection of solar cells can be integrated, which in contrast to the UV-sensitive solar cell via a larger solar cell
  • Spectral range can be sensitive and advantageously also has a larger area.
  • the operational amplifier which can be realized with thin-film transistors, forms an integrator with the capacitor and a resistor.
  • the spectral sensitivity of the solar cell is preferably adjusted so that it absorbs UV light, but is insensitive in the visible spectral range. This can be achieved by suitable selection of the absorbing semiconductor material, which should have a large bandgap (greater than about 3 eV). Alternatively or in parallel, parts of the light spectrum which are not relevant by means of spectral filters can be masked out.
  • parts of the UV spectrum in particular from the UV-B range, in which the solar cell is not sufficiently sensitive, can be converted by fluorescent substances into longer-wave light.
  • suitable dimensioning of the components solar cell, capacitor, resistors
  • dosimeters for different measuring ranges or threshold dose values can be realized.
  • the functional materials (semiconductors, conductors, insulators) required for the production of the thin-film components can be of organic nature (eg conjugated polymers or oligomers, fullerenes) as well as of an inorganic nature (metals, transparent conductive oxides (eg ITO, ZnO)) and also composites. site of organic and inorganic materials.
  • the known thin film coating and structuring processes such as printing, doctor blading, free-fall coating, cast coating, dip coating, electrodeposition, spin coating, vapor deposition (PVD, CVD), sputtering, lithography, laser structuring and others can be used for the production.
  • This example shows a variant of the UV sensor, consisting of a UV-sensitive solar cell 1 and a plurality of solar cells 2 for power supply, a capacitor 4, a resistor 3, an enhancement field effect transistor 5 and an organic light emitting diode 6 ( Figure 1). All components are produced according to the invention in thin-film technology with organic and / or inorganic functional materials on a flexible base.
  • the first solar cell 1 charges the capacitor 4, which increases the voltage at the capacitor 4 and at the gate of the transistor 5 as the dose increases. As the transistor becomes conductive, the voltage drop across the initially non-conductive LED 6 increases. If this voltage drop exceeds the threshold voltage of the light-emitting diode, this also becomes conductive and starts to light up.
  • a second solar module consisting of a series connection of solar cells 2, which can also absorb in the visible and infrared spectral range, serves the power supply of the transistor and the OLED.
  • This example shows a variant of the UV sensor with a linearized characteristic, consisting of one or more UV-sensitive solar cells 11, one or more solar cells 12 for power supply, a capacitor 14, a resistor 13, an operational amplifier 15 and an organic light emitting diode 16 (FIG 2).
  • a second solar module 12 consisting of a plurality of solar cells connected in series. These solar cells, in contrast to the UV-sensitive solar cells 11 in one absorb larger spectral range and also have a larger area.
  • the operational amplifier 15 consists of thin-film transistors and passive thin-film components. Operational amplifier 15, resistor 13 and capacitor 14 form an integrator whose output voltage increases in proportion to the size and duration of the applied input signal. If the output voltage at the operational amplifier 15 exceeds the threshold voltage of the OLED 16, it will start to light up.
  • a solar module consisting of five series-connected polymeric thin-film solar cells with the photoactive layer poly-3-hexylthiophene / [6, 6] -phenyl-C 6 i-butyrate (layer thickness 100 nm), with a capacitor of the
  • the maximum sensitivity of this solar cell is at a wavelength of 500 nm.
  • the solar module was provided with a UV filter, which only lets wavelengths between 300 nm and 400 nm (maximum at 360 nm).
  • the irradiation was carried out with a standard light source AM 1.5 with an irradiation of 100 mW / cm 2 . Due to the filter, only about 4.5 mW / cm 2 strike the photoactive layer.
  • the voltage of the capacitor initially increases proportionally with time and finally reaches a saturation value (Figure 3).
  • Example 3 In the construction of Example 3, the capacitor was replaced by a 5 ⁇ F capacitor and in addition a 5 M ⁇ resistor was connected in series. The voltage-time curve is similar to Example 3, but the charging time is significantly reduced until saturation is reached (Figure 4). [List of numbers] 1 UV-sensitive solar cell 2 Solar cell for energy supply

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Measurement Of Radiation (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

L'invention concerne un dosimètre de petites dimensions destiné à des dosages dans la zone de rayonnement UV. Cet appareil de mesure est conçu comme un circuit intégré monolithique dont le système stratifié comprenant les couches fonctionnelles est disposé sur un élément support souple, par ex. une pellicule de plastique, et souvent proposé sous forme de bande test à usage unique.
PCT/DE2008/001406 2007-08-31 2008-08-24 Mini dosimètre pour rayons uv autoalimenté en énergie et émettant des signaux d'alarme WO2009026903A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08801227A EP2183557A1 (fr) 2007-08-31 2008-08-24 Mini dosimètre pour rayons uv autoalimenté en énergie et émettant des signaux d'alarme

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200710041395 DE102007041395A1 (de) 2007-08-31 2007-08-31 UV-Dosimeter mit Eigenspeisung und Warnsignal (Anzeige)
DE102007041395.7 2007-08-31

Publications (1)

Publication Number Publication Date
WO2009026903A1 true WO2009026903A1 (fr) 2009-03-05

Family

ID=40128321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2008/001406 WO2009026903A1 (fr) 2007-08-31 2008-08-24 Mini dosimètre pour rayons uv autoalimenté en énergie et émettant des signaux d'alarme

Country Status (3)

Country Link
EP (1) EP2183557A1 (fr)
DE (1) DE102007041395A1 (fr)
WO (1) WO2009026903A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9138172B2 (en) 2011-02-24 2015-09-22 Rochester Institute Of Technology Method for monitoring exposure to an event and device thereof
US9339224B2 (en) 2011-02-24 2016-05-17 Rochester Institute Of Technology Event dosimeter devices and methods thereof
US10292445B2 (en) 2011-02-24 2019-05-21 Rochester Institute Of Technology Event monitoring dosimetry apparatuses and methods thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013113445A1 (de) 2012-12-06 2014-06-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Gerätesystem zur Bereitstellung von Informationen über eine auf einen Benutzer eingestrahlte UV-Dosis
JP2019522366A (ja) * 2016-06-30 2019-08-08 テューリンギッシェス・インスティトゥート・フューア・テクスティル−ウント・クンストストッフ−フォルシュング・エー・ファウ 色の変化を伴うuv線量計
FR3120150B1 (fr) * 2021-02-19 2023-09-15 Oreal Capteur ultraviolet avec indicateur électrochromique

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2064104A (en) * 1979-11-26 1981-06-10 Elder Paul B Co Apparatus for monitoring ultraviolet light flux
EP0545887A1 (fr) * 1991-11-29 1993-06-09 Wilhelm Steiner Dispositif de mesure transportable pour enregistrer la dose de rayonnement ultra-violet conçu pour protéger la peau contre des dommages
WO2001018510A1 (fr) 1999-09-02 2001-03-15 Andreas Nuske Montre-bracelet dosimetre u.v. numerique
US6426503B1 (en) * 2000-06-09 2002-07-30 Southwest Research Institute Opto-electronic ultra-violet radiation dosimeter
NL1023984C2 (nl) 2003-07-23 2005-01-25 Medavinci Dev B V Zonnebrandalarmsysteem met huidtyperegelaar.

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3710115A (en) 1969-08-04 1973-01-09 J Jubb Sunburn warning device comprising detecting the ultra-violet component of solar radiation
US4428050A (en) 1981-04-02 1984-01-24 Frank Pellegrino Tanning aid
DE3587551D1 (de) 1984-11-26 1993-09-30 Healthtronics Ltd Überwachungsanordnung für ultraviolettstrahlung.
DE4012984A1 (de) 1990-04-24 1991-10-31 Edgar Hoehn Dosimeter
DE9321199U1 (de) 1993-05-26 1996-11-28 Rft E Electronic Gmbh Persönliches UV-Dosimeter
DE9313246U1 (de) * 1993-09-02 1993-11-11 Se Scient Electronics Muenchen Strahlungsmeßgerät zum Schutz vor hoher UV-Strahlungsbelastung
US7109859B2 (en) * 2002-12-23 2006-09-19 Gentag, Inc. Method and apparatus for wide area surveillance of a terrorist or personal threat
CN1839313B (zh) * 2003-06-20 2011-12-14 霍夫曼-拉罗奇有限公司 涉及电化学生物传感器的设备和方法
US7635525B2 (en) * 2003-09-30 2009-12-22 Fujifilm Corporation Gas barrier laminate film and method for producing the same
DE102004021568B4 (de) * 2004-05-03 2009-04-30 Hts - Hoch Technologie Systeme Gmbh Verfahren zur Herstellung flexibler Dünnschicht-Solarzellenanordnungen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2064104A (en) * 1979-11-26 1981-06-10 Elder Paul B Co Apparatus for monitoring ultraviolet light flux
EP0545887A1 (fr) * 1991-11-29 1993-06-09 Wilhelm Steiner Dispositif de mesure transportable pour enregistrer la dose de rayonnement ultra-violet conçu pour protéger la peau contre des dommages
WO2001018510A1 (fr) 1999-09-02 2001-03-15 Andreas Nuske Montre-bracelet dosimetre u.v. numerique
US6426503B1 (en) * 2000-06-09 2002-07-30 Southwest Research Institute Opto-electronic ultra-violet radiation dosimeter
NL1023984C2 (nl) 2003-07-23 2005-01-25 Medavinci Dev B V Zonnebrandalarmsysteem met huidtyperegelaar.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2183557A1 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9138172B2 (en) 2011-02-24 2015-09-22 Rochester Institute Of Technology Method for monitoring exposure to an event and device thereof
US9339224B2 (en) 2011-02-24 2016-05-17 Rochester Institute Of Technology Event dosimeter devices and methods thereof
US9668689B2 (en) 2011-02-24 2017-06-06 Rochester Institute Of Technology Event dosimeter device and methods thereof
US10292445B2 (en) 2011-02-24 2019-05-21 Rochester Institute Of Technology Event monitoring dosimetry apparatuses and methods thereof

Also Published As

Publication number Publication date
DE102007041395A1 (de) 2009-03-05
EP2183557A1 (fr) 2010-05-12
DE102007041395A8 (de) 2009-04-30

Similar Documents

Publication Publication Date Title
WO2009026903A1 (fr) Mini dosimètre pour rayons uv autoalimenté en énergie et émettant des signaux d'alarme
US10852188B2 (en) Ultra low power solid state spectral radiometer
US5500532A (en) Personal electronic dosimeter
EP3479082B1 (fr) Dosimètre pour uv à changement de couleur
JP3012364B2 (ja) 直読式線量計
WO2009086575A1 (fr) Dispositif de détection de signes vitaux
DE102007028467A1 (de) Messvorrichtung mit RFID-Transponder und Sensor
DE3832803A1 (de) Lichtdetektor
WO2010130425A1 (fr) Détecteur de détection de rayonnement ionisant
DE2300213B2 (de) Gerät zur Messung der Strahlungsdosis von ultravioletter Strahlung
EP0545887B1 (fr) Dispositif de mesure transportable pour enregistrer la dose de rayonnement ultra-violet conçu pour protéger la peau contre des dommages
DE19941994C1 (de) Digital-UV-Dosimeter-Armbanduhr
DE102013113445A1 (de) Verfahren und Gerätesystem zur Bereitstellung von Informationen über eine auf einen Benutzer eingestrahlte UV-Dosis
US20030230725A1 (en) Sensor arrangement having a capacitive light sensing circuit
DE102007038905A1 (de) Optischer Positionssensor auf organischer Basis
DE102004022071A1 (de) Dosismessfilm und Dosismessverfahren
CA2009178C (fr) Detecteur de rayonnement
DE102008049702A1 (de) Messgerät zur Messung der Strahlendosis und Verwendung davon
AT514102A1 (de) Verfahren zur Ermittlung der individuellen Belastung einer Person durch die momentane Sonnenstrahlung
WO2009006665A1 (fr) Composant électronique présentant une impédance dépendant de paramètres électriques et/ou d'un rayonnement électromagnétique
DE102010006024B4 (de) Sensormodul zur Messung objektschädigender Strahlung
WO1992012403A1 (fr) Dispositif de mesure de la puissance du rayonnement uv-b de la lumiere solaire
Castillo et al. Natural pigment sensor for solar ultraviolet radiation measurement
DD292342A5 (de) Biologische photozelle
DE4018053A1 (de) Biologisches schichtsystem

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08801227

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008801227

Country of ref document: EP