WO2009026232A1 - Appareil pour effectuer une endoscopie confocale - Google Patents

Appareil pour effectuer une endoscopie confocale Download PDF

Info

Publication number
WO2009026232A1
WO2009026232A1 PCT/US2008/073486 US2008073486W WO2009026232A1 WO 2009026232 A1 WO2009026232 A1 WO 2009026232A1 US 2008073486 W US2008073486 W US 2008073486W WO 2009026232 A1 WO2009026232 A1 WO 2009026232A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon wafer
microscanner
soi
mirror
micro mirror
Prior art date
Application number
PCT/US2008/073486
Other languages
English (en)
Inventor
Karthik Kumar
Rebecca Richards-Kortum
Xiaojing Zhang
Original Assignee
Board Of Regents, The University Of Texas System
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Board Of Regents, The University Of Texas System filed Critical Board Of Regents, The University Of Texas System
Publication of WO2009026232A1 publication Critical patent/WO2009026232A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0841Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00436Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
    • B81C1/00555Achieving a desired geometry, i.e. controlling etch rates, anisotropy or selectivity
    • B81C1/00603Aligning features and geometries on both sides of a substrate, e.g. when double side etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/03Microengines and actuators
    • B81B2201/033Comb drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/04Optical MEMS
    • B81B2201/047Optical MEMS not provided for in B81B2201/042 - B81B2201/045
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0136Comb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0174Manufacture or treatment of microstructural devices or systems in or on a substrate for making multi-layered devices, film deposition or growing
    • B81C2201/019Bonding or gluing multiple substrate layers

Definitions

  • the present invention relates to microscanners in general, and, in particular, to a microscanner for performing confocal endoscopy.
  • Microscanners are essential components for the miniaturization of optical diagnostic equipments such as endoscopes.
  • silicon-based microscanners have been integrated into confocal and other instruments for providing images.
  • the reflectivity of silicon mirrors having imaging wavelengths of 600-1550 run is only about 30%. Such low reflectivity places limitations on minimal pinhole size and adversely affects depth resolution of confocal imaging equipments.
  • a two-axis self-aligned vertical comb-drive microscanner is fabricated from a bonded silicon- on-insulator (SOI) silicon wafer.
  • SOI silicon- on-insulator
  • a SOI silicon wafer can provide about 90% reflectivity at 633 nm.
  • a 2.5 ⁇ m misalignment tolerance can be achieved for the critical backside alignment step.
  • confocal images with 1 ⁇ m resolution can be achieved using a microscanner having SOI silicon wafer mirrors.
  • Figure 1 is an isomeric view of a microscanner, in accordance with a preferred embodiment of the present invention.
  • Figures 2a-2h graphically illustrates a method for making the microscanner from Figure 1, in accordance with a preferred embodiment of the present invention.
  • a microscanner 10 includes a micro mirror 11 controlled by a first bank of comb drive actuators 12a and a second bank of comb drive actuators 12b.
  • Comb drive actuators 12a provide rotations of micro mirror 11 about an x-axis
  • comb drive actuators 12b provide rotations of micro mirror 11 about a y-axis.
  • the decoupled two-axis rotation can be achieved by mounting micro mirror 11 via a set of torsion rods in a frame with gimbals in an orthogonal direction.
  • microscanner 10 having a micro mirror, in accordance with a preferred embodiment of the present invention.
  • the fabrication of microscanner 10 begins with the protection of the surface of a silicon-on-insulator (SOI) silicon wafer by thermal oxidation.
  • SOI silicon-on-insulator
  • a silicon dioxide layer 24 can be formed on a 30 ⁇ m SOI silicon wafer 20, which includes a silicon layer 21, an oxide layer 22 and a substrate layer 23, via wet oxidation at 1,100 °C, as shown in Figure 2a.
  • alignment marks 25 are dry etched into the backside of SOI silicon wafer 20, as depicted in Figure 2b.
  • Silicon dioxide layer 24 is then removed from the frontside of SOI silicon wafer 20 via buffer oxide etch, and coarse features 26 of mirror frame and outer stator combs, which are aligned to alignment marks 25 on the backside of SOI silicon wafer 20, are subsequently etched into silicon layer 21 via a Deep Reactive Ion Etching (DRIE) process.
  • DRIE Deep Reactive Ion Etching
  • a silicon wafer 30 having a -4800 A thick thermal oxide 31 is then fusion bonded on top of SOI silicon wafer 20, as depicted in Figure 2d.
  • the above-mentioned initial protection of SOI silicon wafer 20 by silicon dioxide layer 24 is important for achieving a high yield in the fusion bonding process.
  • silicon wafer 30 is ground to a thickness of approximately 20 ⁇ m and polished in order to yield a smooth surface to serve as an optical interface.
  • a micro mirror will be fabricated on a layer 32 of silicon wafer 30.
  • Low-temperature oxide (LTO) layers 33a, 33b of approximately 1 ⁇ m are deposited on silicon wafer 30 and SOI silicon wafer 20, respectively, via low-pressure chemical vapor deposition, as depicted in Figure 2d.
  • LTO Low-temperature oxide
  • DRIE is utilized to expose front alignment marks, oxide with bond pads and exact microscanner features, as shown in Figure 2e.
  • DRIE is again utilized to etch silicon layer 21. as depicted in Figure 2f.
  • the exact features of the stator and rotor combs of the microscanner are then defined by etching through oxide layer 22, as shown in Figure 2g.
  • the device wafer is bonded to a handle wafer by photoresist, and backside DRIE of the outline of the microscanner is performed using the alignment marks previously etched into the backside of the device wafer.
  • the device is soaked in acetone for approximately 12 hours to release device wafer from the handle wafer. Dry oxide etch is performed on the frontside and backside to remove exposed oxide from the mirror surfaces.
  • micro mirrors are fabricated with dimensions of 500 ⁇ m x 700 ⁇ m in order to facilitate illumination at 45° incidence by a 500 ⁇ m diameter laser beam, which allows for uncomplicated optical paths and easy integration into an imaging system.
  • the present invention provides a microscanner for performing single-fiber confocal endoscopy. While the invention has been particularly shown and described with reference to a preferred embodiment, it will be understood by those skilled in the art that various :hanges in form and detail may be made therein without departing from the spirit and scope Df the invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)

Abstract

L'invention concerne un procédé de fabrication d'un microscanner ayant un micromiroir. Initialement, un microscanner d'entraînement de peigne vertical auto-aligné à deux axes est fabriqué à partir d'une tranche de silicium de silicium-sur-isolant-silicium (SOI) liée. En déposant un film fin d'aluminium sur la surface, une tranche de silicium SOI peut assurer environ 90 % de réflectivité à 633 nm. Une tolérance de désalignement de 2,5 µm peut être atteinte pour l'étape d'alignement arrière critique. Par suite, des images confocales avec un réseau de 1 µm peuvent être acquises en utilisant un microscanner ayant des miroirs de tranche en silicium SOI.
PCT/US2008/073486 2007-08-20 2008-08-18 Appareil pour effectuer une endoscopie confocale WO2009026232A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US96541707P 2007-08-20 2007-08-20
US60/965,417 2007-08-20

Publications (1)

Publication Number Publication Date
WO2009026232A1 true WO2009026232A1 (fr) 2009-02-26

Family

ID=40378570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/073486 WO2009026232A1 (fr) 2007-08-20 2008-08-18 Appareil pour effectuer une endoscopie confocale

Country Status (1)

Country Link
WO (1) WO2009026232A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137009A1 (fr) * 2009-05-24 2010-12-02 Btendo Ltd Appareil moems comprenant un dispositif d'entraînement à peigne et son procédé de fabrication
CN103086316A (zh) * 2011-10-28 2013-05-08 中国科学院上海微系统与信息技术研究所 Mems垂直梳齿微镜面驱动器的制作方法
WO2021134688A1 (fr) * 2019-12-31 2021-07-08 瑞声声学科技(深圳)有限公司 Procédé de production de pilote mems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5511428A (en) * 1994-06-10 1996-04-30 Massachusetts Institute Of Technology Backside contact of sensor microstructures
US20010021058A1 (en) * 1997-08-27 2001-09-13 The Microoptical Corporation Method of fabrication of a torsional micro-mechanical mirror system
US20010048784A1 (en) * 2000-03-24 2001-12-06 Behrang Behin Two-dimensional gimbaled scanning actuator with vertical electrostatic comb-drive for actuation and/or sensing
US7177063B2 (en) * 2003-08-12 2007-02-13 Terraop Ltd. Bouncing mode operated scanning micro-mirror

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5511428A (en) * 1994-06-10 1996-04-30 Massachusetts Institute Of Technology Backside contact of sensor microstructures
US20010021058A1 (en) * 1997-08-27 2001-09-13 The Microoptical Corporation Method of fabrication of a torsional micro-mechanical mirror system
US20010048784A1 (en) * 2000-03-24 2001-12-06 Behrang Behin Two-dimensional gimbaled scanning actuator with vertical electrostatic comb-drive for actuation and/or sensing
US7177063B2 (en) * 2003-08-12 2007-02-13 Terraop Ltd. Bouncing mode operated scanning micro-mirror

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137009A1 (fr) * 2009-05-24 2010-12-02 Btendo Ltd Appareil moems comprenant un dispositif d'entraînement à peigne et son procédé de fabrication
US8305670B2 (en) 2009-05-24 2012-11-06 Stmicroelectronics International N.V. MOEMS apparatus and a method for manufacturing same
US8693074B2 (en) 2009-05-24 2014-04-08 Stmicroelectronics International N.V. MOEMS apparatus and a method for manufacturing same
US9459447B2 (en) 2009-05-24 2016-10-04 Stmicroelectronics International N.V. MOEMS apparatus and a method for manufacturing same
CN103086316A (zh) * 2011-10-28 2013-05-08 中国科学院上海微系统与信息技术研究所 Mems垂直梳齿微镜面驱动器的制作方法
WO2021134688A1 (fr) * 2019-12-31 2021-07-08 瑞声声学科技(深圳)有限公司 Procédé de production de pilote mems

Similar Documents

Publication Publication Date Title
US20100039687A1 (en) Apparatus for Performing Confocal Endoscopy
US6872319B2 (en) Process for high yield fabrication of MEMS devices
US6506620B1 (en) Process for manufacturing micromechanical and microoptomechanical structures with backside metalization
US10649202B2 (en) Micro-electro-mechanical device with a movable structure, in particular micromirror, and manufacturing process thereof
US7288464B2 (en) MEMS packaging structure and methods
US20040218877A1 (en) Vertical displacement device
EP1213259B1 (fr) Procédé de fabrication de structures micromécaniques et microoptomecaniques avec un étage d'exposition de silicium monocristallin
JP2004522997A (ja) 光マイクロミラーならびにマイクロミラーの製造方法、この方法により得られる複数マイクロミラーのアレイ
US20060261032A1 (en) Integrated optical MEMS devices
CN104003348B (zh) 用于具有双层面结构层和声学端口的mems结构的方法
WO2002101442A1 (fr) Miroir deformable a membrane continue unimorphe a base de pzt,
WO2009026232A1 (fr) Appareil pour effectuer une endoscopie confocale
EP1741669B1 (fr) Dispositif MEMS avec une charnière cachée
Jeong et al. Split-frame gimbaled two-dimensional MEMS scanner for miniature dual-axis confocal microendoscopes fabricated by front-side processing
US20110303638A1 (en) Method for Fabricating a Micromirror
Jung et al. 2-D MEMS scanner for handheld multispectral dual-axis confocal microscopes
WO2018227308A1 (fr) Dispositifs inertiels à intégration au niveau de la galette de masses étalons à densité supérieure et procédé de fabrication
CN113023661B (zh) 一种微镜及制作方法
Kumar et al. High-reflectivity two-axis vertical comb drive microscanners for confocal imaging applications
EP1213260B1 (fr) Procédé de fabrication de structures micromécaniques et microoptomecaniques avec un modéle pre-appliqué
US11731871B2 (en) Actuator layer patterning with polysilicon and etch stop layer
US11124412B2 (en) Manufacturing method for a micromechanical window structure and corresponding micromechanical window structure
JP2004223620A (ja) ミラー基板の製造方法及び光スイッチ装置の製造方法
Singh et al. Novel 3D micromirror for miniature optical bio-probe SiOB assembly
WO2024110940A1 (fr) Puce de support de silicium sur isolant (soi) et procédés de fabrication associés

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08798104

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08798104

Country of ref document: EP

Kind code of ref document: A1