WO2009022320A2 - Sistema móvil de monitoreo. vigilancia y soporte vital para la atención de pacientes en cuidado intensivo - Google Patents

Sistema móvil de monitoreo. vigilancia y soporte vital para la atención de pacientes en cuidado intensivo Download PDF

Info

Publication number
WO2009022320A2
WO2009022320A2 PCT/IB2008/053292 IB2008053292W WO2009022320A2 WO 2009022320 A2 WO2009022320 A2 WO 2009022320A2 IB 2008053292 W IB2008053292 W IB 2008053292W WO 2009022320 A2 WO2009022320 A2 WO 2009022320A2
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring
patient
patients
vital signs
care
Prior art date
Application number
PCT/IB2008/053292
Other languages
English (en)
French (fr)
Other versions
WO2009022320A3 (es
Inventor
Oscar Alberto Mantilla Prada
Jairo Ivan Florez Barrera
Jorge Humberto Rodriguez Pacheco
Catalina Lucia Ruiz Arias
Original Assignee
Fundacion Cardiovascular De Colombia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundacion Cardiovascular De Colombia filed Critical Fundacion Cardiovascular De Colombia
Publication of WO2009022320A2 publication Critical patent/WO2009022320A2/es
Publication of WO2009022320A3 publication Critical patent/WO2009022320A3/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0051Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes with alarm devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0431Portable apparatus, e.g. comprising a handle or case
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/02Gases
    • A61M2202/0208Oxygen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/16General characteristics of the apparatus with back-up system in case of failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3546Range
    • A61M2205/3561Range local, e.g. within room or hospital
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3576Communication with non implanted data transmission devices, e.g. using external transmitter or receiver
    • A61M2205/3584Communication with non implanted data transmission devices, e.g. using external transmitter or receiver using modem, internet or bluetooth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/82Internal energy supply devices
    • A61M2205/8206Internal energy supply devices battery-operated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2209/00Ancillary equipment
    • A61M2209/08Supports for equipment
    • A61M2209/084Supporting bases, stands for equipment

Definitions

  • MOBILE MONITORING SYSTEM SURVEILLANCE AND VITAL SUPPORT FOR CARE OF PATIENTS IN CARE
  • the mobile monitoring, surveillance and vital support system for the care of patients in intensive care was designed for the integration of the basic monitoring equipment necessary in the field of intensive care medicine for the care of critically ill patients. , allowing the adaptation of any place in an internal or external service area;
  • the system has the following characteristics: continuous, face-to-face and remote monitoring of vital signs, electronic servo-ventilation, infusion pumps, continuous supply of medical gases.
  • the Intensive Care system constitutes a hospital area that is characterized by high technology and consequently requires technically trained personnel with particular human characteristics.
  • U.S. Pat. No. 5,687,717 describes a patient monitoring system, which includes one or more furniture, whereby several patients are supervised by independent associated modules and a laptop for communication and control.
  • the vital signs, indicators of the physiological state of the vital organs immediately express the functional changes that occur in the organism, changes that otherwise could not be qualified or quantified.
  • the six main vital signs are:
  • Heart rate measured by the pulse or in beats / minute.
  • the physiological parameters monitors are autonomous units intended to provide the necessary basic information, at the required time, in order to guide appropriate therapeutic actions in medical personnel.
  • Vital signs monitors also called patient or bedside monitors, measure, collect and provide information on the vital signs of a patient undergoing continuous surveillance [2].
  • These electronic devices have been specially designed for intensive care rooms, operating rooms or other areas with similar purposes and needs [I].
  • the tendency Current in the header monitors is that each measured parameter is contained in a module, so that if a function fails, the defective module is replaced by a simple mechanical operation.
  • the performance of this equipment includes software control, arrhythmia monitoring, hemodynamic monitoring and increased facilities in the relationship with the user [3].
  • Biomedical instruments are all those equipment used to measure, record and / or control the value of any physiological parameter under observation.
  • a biomedical instrumentation system has a structure very similar to the one presented below.
  • Transducers Conditioning - Electrical Insulation - Digitization - Control and Processing (Visualization - Communication Interface - Storage System)
  • Biological signals are acquired through transducers, which produce impedances, voltages or currents that vary according to the behavior of the measured parameter.
  • sensors of different types such as temperature, blood pressure, electrodes for electrocardiographic signals and electroencephalographic signals. Some of these sensors have a linear behavior and others a non-linear behavior.
  • the instrument may contain a recording system to store extended sequences of these parameters for considerable and useful time intervals for subsequent clinical studies. These records can be recorded on special paper or stored in digital format in a disk file.
  • SPO2 pulse oximetry
  • CO2 capnography
  • PNI non-invasive pressure
  • SPO2 pulse oximetry
  • CO2 capnography
  • PNI non-invasive pressure
  • oximetry for example, infrared light source transducers are used that censor changes in the absorption of that type of light caused by variations in blood flow. They also use advanced acquisition and processing systems that integrate advanced miniaturization technology to control pumps and compressors such as CO2 and PNI. Additionally, they allow communication via serial protocols to a PC and some include their own visualization and control software.
  • MiniMediCO2 for Oridion CO2 measurement can be cited. Both are complex modular systems as described above.
  • the application of this technology opens the doors to development of new biomedical equipment capable of decoding - optimizing the information obtained by monitors such as vital signs and generating protocols for the transfer of biomedical data through information networks, which in general enables a whole field of research on biomedical signals.
  • the concept of 'virtual instrumentation' involves the proper processing, analysis, storage, distribution - deployment of data and information related to the measurement of one or several specific signals, in addition to allowing communication with other equipment.
  • This instrument is then defined as a layer of software and hardware that is added to a PC in a way that allows users to interact with the computer as if they were using their own electronic instrument.
  • the system key is the software, unlike the traditional instrument where the key is the hardware.
  • the purpose of this system is to to take into account the activities of the medical assessment process of blood pressure, body temperature and heart rate and show in a single integration a real and reliable response of these three vital signs, providing a more reliable diagnosis of the patient's real situation.
  • the system displays the data of systolic pressure (high blood pressure) and diastolic blood pressure (low blood pressure) on the PC monitor, a graph with the data obtained from blood pressure and its diagnosis (normal, hypertension or hypotension) . It also shows the values of the body temperature and its corresponding diagnosis (normal, fever or hypothermia) as well as the heart rate data, which are obtained by means of an algorithm made with the blood pressure data through Lab VIEW.
  • a virtual instrument can easily export and share its data and information with other software that usually resides on the same computer [6].
  • Remote monitoring involves observing a process from another location in a network. This observation is made by a client while the process is running on a server. In a pure remote monitoring system, the client cannot provide feedback or provide any input to the process made by the server [6].
  • Internet is the abbreviation for Interconnected Data Network, which means
  • the Internet consists of hundreds of interconnected data networks, which is defined as WEB.
  • WEB is a client-server system
  • the WEB search engine is the client
  • any site or page is the server.
  • the server usually waits for the client to initiate the connection. In many cases a server can serve multiple clients at the same time.
  • Communication protocols are a series of rules or languages that allow two computers to communicate with each other.
  • the architectures of the networks have a series of overlapping layers, one on top of the other, with high-level protocols (eg HTTP) built on lower level protocols (HTTP over TCP / IP), mounted on even lower protocols (TCP / IP needs a physical layer like Ethernet), as a string.
  • HTTP HyperText Transfer Protocol
  • TCP / IP Low-power protocol
  • FIG. 8 front view Vital signs monitor, description of the front panel connections.
  • FOR THE CARE OF PATIENTS IN INTENSIVE CARE is a multifunctional device that has vital signs monitoring, servo-ventilation, infusion pumps and medicinal gas system composed of two air intakes of O 2 , one air and two vacuum also has an O 2 backup system for patient ventilation during transfers.
  • the mobile critical care unit is made up of: electrocardiography, invasive pressure, non-invasive pressure, temperature, oximetry and capnography;
  • the therapeutic block consists of infusion pumps and assisted mechanical ventilation.
  • the mobile critical care unit consists of five functional blocks:
  • the vital signs monitor is a biomedical device designed to monitor the basic vital signs of critically ill patients. Your employment is therefore destined to intensive care units (ICU) and surgery rooms in clinics and hospitals. It is able to monitor the following vital signs: electrocardiography, invasive pressure (PI), temperature (T), oxygen saturation (SPO2), non-invasive blood pressure (PANI) and Capnography (CO2).
  • the mechanical servo-fan is responsible for providing ventilatory support to adult, infant and neonatal patients in intensive care, including non-invasive ventilation. It has a built-in graphic ventilation monitor that shows numerical values, curves and loops.
  • Infusion pumps are responsible for administering or providing liquid solutions using syringes of different capacities administered intravenously. It has speeds, level of occlusion and quantity of liquid to infuse configurable, as well as alarm indicators and protection against failures and errors.
  • the mobile critical care unit has an electrical system, consisting of three electrical outlets (one regulated two unregulated) and a UPS as backup in case of transfer but never as the main electrical source. It also has safety systems against short circuits capable of clearing the fault (switches).
  • the mobile critical care unit has a medical gas system composed of air, oxygen and vacuum, provided by the hospital's or clinic's channeled distribution system, guaranteeing a constant supply and pressure for proper performance.
  • the mobile critical care unit has a manually operated backup (O 2 , air) system which must always be connected to the gas cylinder where the valve is located.
  • the mobile monitoring, surveillance and vital support system for the care of patients in intensive care can be adapted according to the specific needs for intermediate or intensive care.
  • the system consists of an apparatus consisting of an upper column (1) and a lower column (2), which has four rubber wheels with independent brake (42) that allow it Mobility.
  • the upper column (1) houses the vital signs monitor (MSV), which is composed of the patient output module (3), the 15-inch LCD screen (4) and the CPU (5).
  • MSV vital signs monitor
  • this column there is also the ventilator for assisted breathing (6), and an optional infusion pump module.
  • the support for the UPS (7), and as external accessories has a music stand to attach the auxiliary pumps and hold the liquids (8) and a flexible music stand to hold the pipes and hoses of the fan. (9).
  • Figure 2 shows the front and top views of the apparatus that makes up the system
  • Figure 3 shows a side view of the remote parts of the assembled system.
  • FIG. 4 shows in detail the upper column (1).
  • the upper column (1) consists of a STRUCTURE (10) to which the other components are coupled; It includes the space for holding the 15-inch LCD screen, the on / off switch, and the computer system led. Depending on the requirements of the physical space where the equipment is going to be used, this can be right or left, so we can find the module of patient exits of the MSV, the coolers and the ventilation grilles of the PC in the LEFT SIDE PANEL (11) or on the RIGHT SIDE PANEL (12), in the latter we will always find the fan power button.
  • the REAR PANEL (13) is the quick access panel to the upper column and there are indications of the voltage levels and precautions to be taken with the equipment.
  • the FRONT PANEL OF THE FAN (14) in turn serves as a support for fastening the fan.
  • the FRONT PANEL OF THE FAN For the assembly of the components of the CPU that is part of the MSV, it has the LOWER TRAY (15) on which the Board is supported, and the TOP TRAY (16) on which the power supply of the PC, hard disk, relay card and the medical source with which the MSV is energized.
  • SUPPORT FOR THE PATIENT OUTPUT MODULE OF THE MSV (17) a metal base through which the module can be moved and fixed to the structure; the FAN SUPPORT (18) also works, which positions it for assembly and allows it to be efficiently secured.
  • FIG. 5 shows in detail the composition of the lower column (2).
  • the lower column (2) consists of a BASE STRUCTURE (19), which supports the upper structure, the drawer module, the electrical panel and the gas panel.
  • the MODULE CAJONERAS (20) is composed of 4 drawers with central hardware, in one of which the keyboard and mouse of the PC are stored, the others are used to store the patient's personal items and some medications.
  • In the upper part it has a TERMOLAMINATED TRAY (21), this tray is made of MDF and coated with a polymer film on the entire surface that is in contact with liquids.
  • On the back side it has an ELECTRICAL PANEL (22) for the internal power supply to each equipment, additionally it has three GFCI electrical outlets and a network point.
  • the electrical system is regulated by two switches, one for the protection of two of the auxiliary sockets and the other for the MSV and the fan.
  • this panel has medical gas outlets, it is composed of Chemetron type air intakes, two of O 2 , one of air and two of vacuum.
  • HANDLE On the back of the furniture to facilitate its movement and prevent damage to the equipment installed on it when moving it, a STAND SUPPORT (25) for mounting the lectern of the pumps, a FLEXIBLE STAND SUPPORT ( 26) on each side of the lower column and a SUPPORT FOR O 2 BULLET (27), as it has an O 2 backup system for the ventilation of the patient during transfers within the hospital facilities.
  • the entire structural part of the equipment is made of 12 to 18 gauge CR steel sheet and tubing, finished in micro-corrugated micro electrostatic paint, gray and white.
  • Figure 6, Figure 7 and Figure 8 show the differentiating component of the vital signs monitor, that is, the patient exit module (3), which consists of a front panel (28) made of polyethylene injected, with microinjection of colored resins and a 16 gauge CR steel housing with a matte black electrostatic paint finish (29).
  • the patient exit module (3) which consists of a front panel (28) made of polyethylene injected, with microinjection of colored resins and a 16 gauge CR steel housing with a matte black electrostatic paint finish (29).
  • Figure 7 shows in detail with its views the output module (3)
  • FIG. 8 shows the output components of the module (3) composed of the following elements: an electrocardiography connection (30), an oximetry connection (31), four invasive pressure connectors (32, 33, 34 and 35), a capnography connection (optional) (36), a non-invasive pressure connection (37), two temperature connectors (38 and 39), an identification plate (40) and a power indicator LED (41) .
  • the system works in a mobile or static way, allowing the patient to control it from a distant point without conditioning their posture.
  • the system has as inputs the registration of the patient's vital signs, medical gases, electrical connection or the use of electricity emitted by a UPS to allow mobility.
  • the internal process of the system on its mobile platform, operates with a Vital Signs Monitor, a fan, a lectern for infusion pumps, a panel of medicinal gases, an electrical panel for the connection of other medical equipment and an oxygen bullet that guarantees the operation of the ventilator during patient transfer.
  • the system delivers to the patient gases, ventilation and fluids within the medical means that provide vital support to a critically ill patient.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Accommodation For Nursing Or Treatment Tables (AREA)

Abstract

El sistema movil de monitoreo, vigilancia y soporte vital para la atencion de pacientes en cuidado intensivo es un equipo multifuncional que cuenta con monitoria de signos vitales, servo-ventilación, bombas de infusión y sistema de gases medicinales compuesto por dos tomas aéreas de O2, una de aire y dos de vacío además posee un sistema de respaldo de O2 para la ventilación del paciente durante los traslados. Cuenta con un panel eléctrico para la alimentación de cada uno de los módulos, tres tomas eléctricas externas una regulada y dos no reguladas, conexión de Ethernet y una UPS como respaldo en caso de traslado pero nunca como fuente eléctrica principal, un servoventilador para respiración artificial asistida la cuál es opcional.

Description

Description
SISTEMA MÓVIL DE MONITOREO. VIGILANCIA Y SOPORTE VITAL PARA LA ATENCIÓN DE PACIENTES EN CUIDADO
INTENSIVO
Objeto y Finalidad
[1] El sistema móvil de monitoreo, vigilancia y soporte vital para la atención de pacientes en cuidado intensivo fue diseñado para la integración de los equipos básicos de monitoria necesarios en el campo de la medicina en cuidados intensivos para la atención de pacientes en estado crítico, permitiendo la adecuación de cualquier lugar en un área de servicio interno o externo; el sistema tiene las siguientes características: monitoreo continuo, presencial y remoto de signos vitales, servo- ventilación electrónica, bombas de infusión, suministro continuo de gases medicinales.
[2] Además posee un sistema eléctrico de respaldo que permite el monitoreo y control constante del paciente durante traslados, que sumado a la variedad de sistemas integrados en un mismo equipo da como resultado un producto versátil y de alta tecnología. Estado de la Técnica
[3] El sistema de Cuidados Intensivos constituyen un área hospitalaria que se caracteriza por contar con una alta tecnología y en consecuencia requieren de un personal técnicamente capacitado y con unas características humanas particulares.
[4] Es por esto, que el traslado de pacientes con enfermedades graves a unidades de atención especializada ha sido, durante años, una actividad realizada y coordinada tanto por los servicios médicos municipales, unidades hospitalarias públicas, y grupos de transporte del medio privado.
[5] En la actualidad existen dos modalidades de transporte: por vía aérea y por vía terrestre. En el traslado de pacientes, existen dos posibilidades: aquellos pacientes que requieren ser trasladados del sitio de la presentación de la enfermedad (accidente vial, domicilio, etc.) y los pacientes que ya se encuentran hospitalizados y es necesario su traslado a otra unidad. Un ejemplo de este sistema , se describe en la U.S. Pat. No 4,783,109 la cual esta directamente relacionada con el proceso antes mencionado y propone un sistema para el transporte en ambulancia de pacientes en estado crítico.
[6] En este mismo sentido U.S. Pat. No 5,687,717 describe un sistema de monitoreo de pacientes, que incluye uno o más muebles, mediante el cual varios pacientes son supervisados por módulos asociados independientes y una computadora portátil para su comunicación y control.
[7] Es bajo estas modalidades que El SISTEMA MÓVIL DE MONITOREO, VIGILANCIA Y SOPORTE VITAL PARA LA ATENCIÓN DE PACIENTES EN CUIDADO INTENSIVO aparece como una novedosa solución que minimiza los riegos en el traslado de los pacientes asi como permite un adecuado tratamiento de aquellos cuadros clínicos que amenazan la vida de la persona y demandan una asistencia inmediata debido a su gravedad, pues actualmente existen ambulancias, así como otros vehículos para el transporte de enfermos y material sanitario, provistos de equipo de monitoreo y terapia, los cuales son usados para traslados de grandes distancias, pero que no cuentan con la posibilidad de realizar un monitoreo en tiempo real de los signos vitales y el estado fisiológico del paciente. Es así como con El sistema MÓVIL DE MONITOREO, VIGILANCIA Y SOPORTE VITAL PARA LA ATENCIÓN DE PACIENTES EN CUIDADO INTENSIVO se da la posibilidad de brindar al paciente un atención de cuidados intensivos desde el momento de su salida de una intervención quirúrquica de alta complejidad hasta la unidad de cuidado intensivo o la habitación (la cuál se convierte en una unidad de cuidados intensivos provisional) minimizando el riesgo de trauma en el paciente, evitando que quede sin monitoreo y ayuda respiratoria durante el traslado. De igual forma, por su diseño móvil difiere de los demás equipos de una unidad de cuidados intensivos, los cuales permanecen inamovibles. De esta forma permite adecuar en cuestión de minutos un habitación hospitalaria en un cubiculo de cuidados intensivos.
[8] Los signos vitales, indicadores del estado fisiológico de los órganos vitales (cerebro, corazón, pulmones) expresan de manera inmediata los cambios funcionales que suceden en el organismo, cambios que de otra manera no podrían ser cualificados ni cuantificados. Los seis principales signos vitales son:
[9] 1. Frecuencia cardiaca: se mide por el pulso o en latidos/minuto.
[10] 2. Frecuencia respiratoria.
[11] 3. Presión arterial.
[12] 4. Temperatura [8].
[13] 5. Cantidad de oxigeno en la sangre
[14] 6. Cantidad de CO2 en la sangre.
[15] Los monitores de parámetros fisiológicos son unidades autónomas destinadas al aporte de información básica necesaria, en el momento requerido, con el fin de orientar acciones terapéuticas oportunas en el personal médico. Los monitores de signos vitales, también denominados monitores de pacientes o de cabecera, miden, recogen y proveen información sobre los signos vitales de un paciente sometido a vigilancia continua [2]. Estos equipos electrónicos han sido especialmente diseñados para salas de cuidados intensivos, quirófanos u otras áreas con propósitos y necesidades similares [I]. Dentro de sus usos más frecuentes se pueden citar la recolección de parámetros fisiológicos, el almacenamiento tendencias y de eventos de arritmias. La tendencia actual en los monitores de cabecera es que cada parámetro medido esté contenido en un módulo, de manera que si una función falla, el modulo defectuoso sea reemplazado por una simple operación mecánica. Las prestaciones de estos equipos incluyen el control por software, el monitoreo de arritmias, el monitoreo hemodinámico y el incremento de facilidades en la relación con el usuario [3].
[16] Los requerimientos básicos de un monitor son los siguientes:
[17] - Suministro de energía permanente a fin de registrar los parámetros de interés de manera continua.
[18] - Conexiones seguras al paciente, limitando las corrientes de fuga a menos de 1OuA.
[19] - Amplificación y control con calidad de las bioseñales objeto de monitoreo.
[20] - Preproces amiento de la información primaria de interés.
[21] - Visualización rápida de los cambios en las funciones vitales objeto de monitoreo en la pantalla, (Ej. ECG, presión sanguínea, pulso, frecuencia respiratoria, etc.).
[22] - Derivación de parámetros secundarios a partir de bioseñales. Ej. Frecuencia cardiaca a partir del ECG.
[23] - Visualización en pantalla de parámetros en forma análoga y/o digital.
[24] - Monitoreo ajustable de los límites mínimos y máximos de los parámetros requeridos, indicando mediante una alarma cuando los márgenes prefijados sean sobrepasados [I].
[25] INSTRUMENTACIÓN BIOMÉDICA
[26] Los instrumentos biomédicos son todos aquellos equipos empleados para medir, registrar y/o controlar el valor de cualquier parámetro fisiológico en observación. Un sistema de instrumentación biomédica presenta una estructura muy similar al que se presenta a continuación.
[27] Transductores: Acondicionamiento - Aislamiento Eléctrico - Digitalización - Control y Procesamiento (Visualización - Interfaz de Comunicación - Sistema de Almacenamiento)
[28] Las señales biológicas son adquiridas a través de transductores, los cuales producen impedancias, voltajes o corrientes que varían de acuerdo con el comportamiento del parámetro medido. Existen sensores de diferentes tipos tales como los de temperatura, presión sanguínea, electrodos para señales electrocardiográficas y señales electroencefalográficas. Algunos de estos sensores tienen un comportamiento lineal y otros un comportamiento no lineal.
[29] Todas las medidas que provienen de estos sensores son transferidas a una etapa de acondicionamiento. Dentro de la etapa de acondicionamiento es necesaria la implementación de un filtro, un circuito electrónico que tiene la capacidad de alterar el espectro de una señal eliminando aquellas componentes en frecuencia indeseadas. Los filtros pueden ser de distintas clases, pero según su función se pueden dividir en: pasa - altos, pasa - bajos, pasa - banda y rechaza - banda [9]. Luego los datos analógicos deben ser convertidos a valores digitales para poder ser interpretados por un micro- procesador, cuya función principal consiste en procesarlos y enviarlos de forma inmediata a la etapa de visualización o a la de comunicación que es la encargada de transferir estas medidas a otros sistemas.
[30] Antes de esta conversión es necesario aislar eléctricamente los circuitos que están conectados al paciente de los circuitos que conforman realmente el equipo, ya que existe la posibilidad que se produzcan corrientes de fuga capaces de dañar el tejido sobre el cual están colocados los sensores. De manera opcional, el instrumento puede contener un sistema de registro para guardar secuencias prolongadas de estos parámetros durante intervalos de tiempo considerables y útiles para estudios clínicos posteriores. Estos registros pueden ser grabados en un papel especial o almacenados en formato digital en un archivo de disco. [4]
[31] Hace algunos años, la instrumentación médica basada en equipos sofisticados para la medición de señales biológicas, sólo podía ser empleada en laboratorios de investigación. Hoy en día existe un gran número de sistemas de instrumentación biomédica basados en computadores personales (PC), partiendo de pequeños sistemas modulares de medición de parámetros fisiológicos que permiten la conexión directa a un PC o la integración a equipos de monitoreo previa adecuación técnica hasta grandes sistemas de monitoreo en unidades de cuidado crítico. Estos últimos proporcionan una gran variedad de módulos para la medición parámetros, opciones de pantalla y montaje, sistemas de control remoto e interfaces de usuario fáciles de aprender y de usar, pudiendo conectarse a una red de datos y a estaciones centrales con el fin de que la información de monitorización este disponible en todo el centro asistencial.
[32] Dentro de los módulos de monitorización más complejos se encuentran: pulso oximetría (SPO2), capnografía (CO2) y presión no invasiva (PNI). Estos módulos poseen transductores de difícil caracterización. En oximetría, por ejemplo, se utilizan transductores con fuente de luz infrarroja que censan cambios en la absorción de ese tipo de luz causados por variaciones en el flujo de la sangre. También utilizan sistemas de adquisición y procesamiento avanzado que integran tecnología de avanzada miniaturización para el control de bombas y compresores como en CO2 y PNI. Adi- cionalmente permiten la comunicación mediante protocolos seriales a un PC y algunos incluyen su propio software de visualización y control. Como ejemplo se pueden citar el micro power oximeter board de BCI.Inc para medición de oximetría, el MiniMediCO2 para medición de CO2 de Oridion. Ambos son sistema modulares complejos como los descritos anteriormente.
[33] La existencia de módulos de monitorización [Electrocardiografía, Temperatura y
Presión Invasiva] más sencillos y con requerimientos menos sofisticados en cuanto a transductores, acondicionamiento y control que los descritos anteriormente, ha estimulado el desarrollo de tecnología electrónica en países como el nuestro, en donde aprovechando la integración de tecnologías dispares o la creación de sistemas híbridos (tecnología propia junto con tecnología importada), se ha intentado el diseño y construcción de nuevas estructuras con el objetivo de permitir su interconexión y trabajo acoplado. Este desarrollo representa un adelanto significativo en el conocimiento de los actuales protocolos de comunicación de módulos medidores de CO2, SPO2, PNI, entre otros, utilizados por el monitor de signos vitales OMNI 800. Adicionalmente, la aplicación de esta tecnología abre las puertas al desarrollo de nuevos equipos biomédicos capaces de decodificar - optimizar la información obtenida por monitores como el de signos vitales y generar protocolos para la transferencia de datos biomédicos por redes de información, lo que en general posibilita todo un campo de investigación sobre las señales biomédicas.
[34] INSTRUMENTACIÓN VIRTUAL
[35] Para que el hardware funcione de manera apropiada, el software con el cual se desarrollan las rutinas de adquisición y presentación de las señales también desempeña un papel fundamental. En algunos casos ciertas rutinas se deben implementar en lenguajes de bajo nivel para poder acceder a los componentes del hardware de la forma más rápida posible aunque esto implique más trabajo y conocimientos por parte del programador. Por otra parte, el surgimiento de los lenguajes orientados a objetos y los ambientes de desarrollo visuales, ha facilitado la programación de las pantallas de presentación de los datos y el manejo de los archivos de almacenamiento. Teniendo en cuenta lo anterior, una aplicación médica implantada en un equipo basado en computador, debe estar conformada por rutinas de bajo y alto nivel para poder gozar de una velocidad de adquisición y procesamiento aceptable, sin dejar atrás la necesidad de una interfaz gráfica con el usuario sencilla y agradable. Algunos de los lenguajes utilizados para la programación de estas aplicaciones son: MASM32, TASM32, BORLAND C/C++, BUILDER C++, VISUAL C++, LABVIEW. [4]
[36] El concepto de 'instrumentación virtual' involucra el adecuado procesamiento, análisis, almacenamiento, distribución - despliegue de datos y de información relacionados con la medición de una o varias señales específicas además que permite la comunicación con otros equipos. Este instrumento se define entonces como una capa de software y hardware que se le agrega a un PC de tal forma que permite a los usuarios interactuar con la computadora como si estuviesen utilizando su propio instrumento electrónico. En el instrumento virtual, la clave del sistema es el software, a diferencia del instrumento tradicional donde la clave es el hardware.
[37] Como ejemplo se puede citar el desarrollo 'Sistemas de monitoreo y diagnostico clínico de signos vitales con Lab VIEW [10]. La finalidad de este sistema es au- tomatizar las actividades del proceso de valoración médica de presión arterial, temperatura corporal y frecuencia cardiaca y mostrar en una sola integración una respuesta real y confiable de estos tres signos vitales, proporcionando un diagnóstico más fidedigno a la situación real del paciente. El sistema despliega en el monitor de la PC los datos de la presión sistólica (presión alta) y la presión diastólica (presión baja), una gráfica con los datos que se obtuvieron de la presión arterial y su diagnóstico (normal, hipertensión o hipotensión). También muestra los valores de la temperatura corporal y su diagnóstico correspondiente (normal, fiebre o hipotermia) así como los datos de frecuencia cardiaca, los cuales se obtienen mediante un algoritmo realizado con los datos de la presión arterial a través de Lab VIEW.
[38] Un instrumento virtual puede fácilmente exportar y compartir sus datos e información con otro software que usualmente reside en el mismo computador [6].
[39] MONITOREO REMOTO
[40] El monitoreo remoto implica la observación de un proceso desde otra localización en una red. Dicha observación es hecha por un cliente mientras el proceso corre en un servidor. En un sistema puro de monitoreo remoto, el cliente no puede dar realimentación o proveer de ninguna entrada al proceso hecho por el servidor [6].
[41] En muchas ocasiones no resulta práctico que dos dispositivos de comunicaciones se conecten directamente mediante un enlace punto a punto. La solución a este problema consiste en conectar cada dispositivo a una red de comunicación [H].
[42] El término Internet es la abreviatura de Red de Datos Interconectada, lo cual significa
'dos o más dispositivos electrónicos conectados de alguna forma que permita el intercambio de información'. La Internet consiste de cientos de redes de datos inter- conectadas, a lo que se define como WEB. La WEB es un sistema cliente - servidor, el buscador WEB es el cliente y cualquier sitio o página es el servidor. En el modelo cliente - servidor, el servidor usualmente espera a que el cliente inicie la conexión. En muchos casos un servidor puede atender múltiples clientes al mismo tiempo.
[43] Los protocolos de comunicación son una serie de reglas o lenguajes que permiten a dos computadores comunicarse uno con otro. Las arquitecturas de las redes tienen una serie de capas superpuestas, una encima de otra, con protocolos de alto nivel (ej. HTTP) construidos sobre protocolos de más bajo nivel (HTTP sobre TCP/IP), montados sobre protocolos más bajos aún (TCP/IP necesita una capa física como Ethernet), a manera de una cadena. [7] Para transferir información de un servidor a un cliente, ésta debe ser accesada, repartida en bloques más pequeños, enviada electrónicamente a través de varias rutas, reordenada y reemsamblada para que el cliente pueda tenerla. Algunos de los protocolos que trabajan con redes de datos son TCP/IP, UDP, HTTP, DSTP (DataSocket Transfer Protocol), y WAP [6].
[44] HISTORIA CLÍNICA ELECTRÓNICA [45] Con los avances de la tecnología y la informática se ha estimulado el diseño y desarrollo de herramientas como las historias clínicas electrónicas (HCE), constituyendo éstas el pilar fundamental de la información de las instituciones de salud. Hoy en día se cuenta con softwares que ofrecen consulta permanente y en línea de la historia clínica de los pacientes, registro oportuno y confiable de todos los eventos involucrados en la atención (asistencial y administrativo), disponibilidad de indicadores y facilidad para la obtención de estadísticas para la toma de decisiones. Igualmente éstos incluyen programas completos para servicios complejos como las unidades de cuidado crítico en donde la información sobre el comportamiento y las tendencias de ciertas variables resultan necesarias. En Colombia existen productos como Hipócrates de Servinte S. A, DGH de Sistemas y Asesorías de Colombia, LaVid Hospital Solutions Consult Soft S. A., SAHI de FCV.Soft Software Factory entre muchas otras. Disclosure of Invention Solución Técnica
[46] La calidad y la eficiencia de la labor del personal médico de servicios como las unidades de cuidado crítico dependen en su gran mayoría del control del error humano, de la toma oportuna de decisiones y de la optimización del tiempo en que se actúa. Así, la Medicina ha estimulado el desarrollo de nuevos instrumentos y herramientas tecnológicas que a través de la integración de los logros científico - técnicos de distintas ramas, entre las que se pueden destacar la Matemática, la Física, la Electrónica y la Computación, permiten unificar múltiples fuentes de información, facilitando una rápida legibilidad e interpretación de la misma y favoreciendo la potencialización de equipos biomédicos.
[47] EL SISTEMA MÓVIL DE MONITOREO, VIGILANCIA Y SOPORTE VITAL
PARA LA ATENCIÓN DE PACIENTES EN CUIDADO INTENSIVO con tecnología hibrida permite adquirir señales de los signos vitales (electrocardiografía, presión invasiva/no invasiva, temperatura, pulsoximetría, capnografía, ventilación y perfusión) de una manera rápida, precisa, en tiempo real, con la facilidad de monitoreo remoto y de integración a una historia clínica digital aportando una solución práctica a estos problemas.
[48] El monitoreo de signos vitales es un ejemplo típico de los datos necesarios en la práctica diaria de una unidad de cuidado crítico y como su nombre lo indica constituye una información 'vital' dentro de la valoración de todo paciente. Este proceso de medición es por lo general dispendioso ya que las señales biológicas son generalmente aportadas por diferentes equipos, que además de ocupar un espacio físico importante, suelen obstruir el movimiento libre del personal. De lo anterior se podría deducir que tanto la recolección de estos datos, como el manejo de los equipos y la visualización dispersa de la información ocasionan una pérdida de tiempo y una incomodidad que podrían ser evitadas. Si a esto se suma el tiempo que tarda el personal en revisar la información registrada en las historias clínicas tradicionales, la cual suele ser voluminosa, todo favorece una inoportuna evolución médica. Breve descripción de las Figuras
[49] Fig. 1 vista isométrica del Sistema
[50] Fig. 2 vistas frontal y superior del Sistema
[51] Fig. 3 vista lateral del Sistema
[52] Fig. 4 vista en explosión de la columna superior del Sistema
[53] Fig. 5 vista en explosión del modulo inferior del Sistema
[54] Fig. 6 vista isométrica del Monitor de signos Vitales
[55] Fig. 7 vistas lateral, frontal y superior del Monitor de signos Vitales
[56] Fig. 8 vista frontal Monitor de signos Vitales, descripción de las conexiones del panel frontal. Descripción técnica del Invento
[57] EL SISTEMA MÓVIL DE MONITOREO, VIGILANCIA Y SOPORTE VITAL
PARA LA ATENCIÓN DE PACIENTES EN CUIDADO INTENSIVO es un equipo multifuncional que cuenta con monitoria de signos vitales, servo-ventilación, bombas de infusión y sistema de gases medicinales compuesto por dos tomas aéreas de O2 , una de aire y dos de vacío además posee un sistema de respaldo de O2 para la ventilación del paciente durante los traslados.
[58] Cuenta con un panel eléctrico para la alimentación de cada uno de los módulos, tres tomas eléctricas externas una regulada y dos no reguladas , conexión de Ethernet y una UPS como respaldo en caso de traslado pero nunca como fuente eléctrica principal, un servoventilador para respiración artificial asistida la cuál es opcional.
[59] Posee una manija en la parte posterior del mueble para facilitar su movimiento y evitar daños a los equipos instalados en ella al tratar de movilizarla, por seguridad las ruedas tiene un sistema de seguro que se activa manualmente a través de una palanca localizada en ellas, el equipo cuenta con un sistema de cajonería con herraje central para almacenamiento, atril porta líquidos, atril porta cables y bala de respaldo.
[60] La unidad móvil de cuidado crítico esta conformada por: electrocardiografía, presión invasiva, presión no invasiva, temperatura, oximetría y capnografía; a su vez el bloque terapéutico está compuesto por bombas de infusión y ventilación mecánica asistida.
[61] La unidad móvil de cuidado crítico consta de cinco bloques funcionales:
[62] MONITOR
[63] El monitor de signos vitales es un equipo biomédico diseñado para monitorizar los signos vitales básicos de pacientes en estado crítico. Su empleo por lo tanto esta destinado a unidades de cuidado intensivo (UCI) y salas de cirugía en clínicas y hospitales. Esta en capacidad de monitorizar los siguientes signos vitales: electrocardiografía, presión invasiva (PI), temperatura (T), saturación de oxigeno (SPO2), presión arterial no invasiva (PANI) y Capnografía (CO2).
[64] SERVO-VENTILADOR MECÁNICO
[65] El servo-ventilador mecánico es el encargado de suministrar soporte ventilatorio a pacientes adultos, infantiles y neonatos en terapia intensiva, inclusive con ventilación no invasiva. Posee un monitor gráfico de ventilación incorporado que muestra valores numéricos, curvas y loops.
[66] BOMBAS DE INFUSIÓN
[67] Las bombas de infusión son las encargadas de administrar o proporcionar soluciones líquidas utilizando jeringas de diferentes capacidades administradas por vía intravenosa. Posee velocidades, nivel de oclusión y cantidad de líquido a infundir con- figurables, al igual que indicadores de alarma y protección contra fallos y errores.
[68] SISTEMA ELÉCTRICO
[69] La unidad móvil de cuidado crítico, posee un sistema eléctrico, compuesto por tres tomas eléctricas (una regulada dos no reguladas) y una UPS como respaldo en caso de traslado pero nunca como fuente eléctrica principal. Además posee sistemas de seguridad contra cortos circuitos capaces de despejar la falla (interruptores).
[70] SISTEMA DE GASES MEDICINALES
[71] La unidad móvil de cuidado crítico cuenta con un sistema de gases medicinales compuesto por aire, oxigeno y vacío, proveídos por el sistema de distribución canalizado del hospital o clínica garantizando un suministro y presión constante para su correcto desempeño.
[72] Además la unidad móvil de cuidado crítico tiene un sistema de respaldo ( O2 , aire) de accionamiento manual el cual debe estar siempre conectado al cilindro de gas en donde se encuentra la válvula. Descripción y Figuras
[73] El sistema móvil de monitoreo, vigilancia y soporte vital para la atención de pacientes en cuidado intensivo puede adaptarse según las necesidades específicas para cuidado intermedio o intensivo.
[74] Como se muestra en la Figura 1 el sistema esta conformado por un aparato compuesto por una columna superior (1) y una columna inferior (2), la cual cuenta con cuatro ruedas de goma con freno independiente (42) que le permiten la movilidad. La columna superior (1) aloja el monitor de signos vitales (MSV), el cual esta compuesto por el modulo de salidas a paciente (3), la pantalla LCD de 15 pulgadas (4) y la CPU (5). En esta columna también se encuentra el ventilador para respiración asistida (6), y un modulo opcional de bombas de infusión. Debajo del módulo inferior encontramos el soporte para la UPS (7), y como accesorios externos cuenta con un atril para acoplar las bombas auxiliares y sostener los líquidos (8) y un atril flexible para sostener los tubos y mangueras del ventilador. (9).
[75] La Figura 2 muestra las vistas frontal y superior del aparato que conforma el sistema
[76] La Figura 3 muestra una vista lateral de las partes aparto del sistema ensamblado.
[77] En la Figura 4 se observa en detalle la columna superior (1). La columna superior (1) consta de una ESTRUCTURA (10) a la cual se acoplan los demás componentes; incluye el espacio para la sujeción de la pantalla LCD de 15 pulgadas, el interruptor de encendido y apagado, y el led del sistema de computo. Dependiendo de los requerimientos del espacio físico donde se va a utilizar el equipo, este puede ser derecho o izquierdo, por lo cual podemos encontrar el modulo de salidas a paciente del MSV, los cooler y las rejillas de ventilación del PC en el PANEL LATERAL IZQUIERDO (11) o en el PANEL LATERAL DERECHO (12), en este último siempre encontraremos el botón de encendido del ventilador. El PANEL POSTERIOR (13) es el panel de acceso rápido a la columna superior y en el se encuentran las indicaciones de los niveles de tensión y precauciones que se deben tener con el equipo. El PANEL FRONTAL DEL VENTILADOR (14) sirve a su vez de soporte para la sujeción del ventilador. Para el montaje de los componentes de la CPU que hace parte del MSV, se cuenta con la BANDEJA INFERIOR (15) en la cual se soporta la Board, y con la BANDEJA SUPERIOR (16) en la cual se soporta la fuente de alimentación del PC, el disco duro, la tarjeta relé y la fuente medica con la que se energiza el MSV. Adicionalmente se cuenta con un SOPORTE PARA EL MODULO DE SALIDAS A PACIENTE DEL MSV (17), una base metálica por la cual se puede desplazar el modulo y fijarlo a la estructura; igualmente funciona el SOPORTE DEL VENTILADOR (18), que lo posiciona para su montaje y permite asegurarlo eficientemente.
[78] La Figura 5 muestra en detalle la composición de la columna inferior (2). La columna inferior (2) consta de una ESTRUCTURA BASE (19), la cual soporta la estructura superior, el modulo de las cajoneras, el panel eléctrico y el panel de gases. El MODULO CAJONERAS (20) se compone de 4 cajoneras con herraje central, en una de las cuales se guarda el teclado y el mouse del PC, las demás son utilizadas para guardar los elementos personales del paciente y algunos medicamentos. En la parte superior tiene una BANDEJA TERMOLAMINADA (21), esta bandeja esta fabricada en MDF y recubierta con una película de polímero en toda la superficie que esta en contacto con los líquidos. En el costado posterior cuenta con un PANEL ELÉCTRICO (22) para la alimentación interna de energía a cada equipo, adicionalmente cuenta con tres tomas eléctricas GFCI y un punto de red. El sistema eléctrico es regulado por dos interruptores, uno para la protección de dos de las tomas auxiliares y otro para el MSV y el ventilador. Dependiendo de si el equipo es izquierdo o derecho, uno de sus laterales inferiores es el PANEL DE GASES (23), este panel cuenta con salidas de gases medicinales, esta compuesto por tomas aéreas tipo Chemetron, dos de O2 , una de aire y dos de vacío. Posee una MANIJA (24) en la parte posterior del mueble para facilitar su movimiento y evitar daños a los equipos instalados en ella al movilizarla, un SOPORTE PARA ATRIL (25) para el montaje del atril de las bombas, un SOPORTE PARA ATRIL FLEXIBLE (26) a cada costado de la columna inferior y un SOPORTE PARA BALA DE O2 (27), pues posee un sistema de respaldo de O2 para la ventilación del paciente durante los traslados dentro de las instalaciones hospitalarias.
[79] Toda la parte estructural del equipo esta elaborada en lámina y tubería de acero CR calibre 12 a 18 con acabado en pintura electrostática micro corrugada color gris nube y blanco.
[80] Las figura 6, la figura 7 y la figura 8 muestra el componente diferenciador del monitor de signos vitales, es decir, el modulo de salidas (3) al paciente, el cual consta de un panel frontal (28) elaborado en polietileno inyectado, con microinyección de resinas de colores y una carcasa en acero CR calibre 16 con acabado en pintura electrostática de color negro mate (29).
[81] La figura 7 muestra en detalle con sus vistas el modulo de salida (3)
[82] La figura 8 muestra los componentes de salida del modulo (3) compuesto por lo siguientes elementos: un conectar de electrocardiografía (30), un conectar de oximetría (31), cuatro conectares de presión invasiva (32, 33, 34 y 35), un conectar de capnografía (opcional) (36), un conectar de presión no invasiva (37), dos conectares de temperatura (38 y 39), una placa de identificación (40) y un led indicador de encendido (41).
[83] El sistema funciona de manera móvil o estática, permitiendo al paciente su control desde un punto lejano sin condicionar su postura.
[84] El sistema tiene como entradas el registro de los signos vitales del paciente, los gases medicinales, la conexión eléctrica o el uso de electricidad emitida por una UPS para permitir la movilidad. El proceso interno del sistema, en su plataforma móvil opera con un Monitor de signos vitales, un ventilador, un atril para bombas de infusión, un panel de gases medicinales, un panel eléctrico para la conexión de otros equipos médicos y una bala de oxigeno que garantiza el funcionamiento del ventilador durante el traslado del paciente. El sistema entrega al paciente gases, ventilación y fluidos dentro de los medios médicos que brinden soporte vital a un paciente en estado critico. Como novedad en relación con otros modelos o estructuras existentes esta la posibilidad de conexión a una red de datos y específicamente a Internet, lo cual posibilita el monitoreo constante y en tiempo real de los datos suministrados por el monitor de signos vitales, el traslado de los datos a la historia clínica electrónica y la supervisión desde una central de enfermería o desde cualquier punto de red que tenga acceso a la información de los monitores de una sala de cuidados intensivos. Las características anteriores potencializan al sistema como una herramienta informática para trabajo en red y específicamente en el área de la TELEMEDICINA.
Novedad [85] La disponibilidad de un sistema que permite adquirir señales biológicas como los signos vitales de una manera rápida, precisa, en tiempo real, con la facilidad de monitoreo remoto y de integración a una historia clínica digital aporta una solución práctica a los problemas de dispersión de información. [86] Con la posibilidad de innovación en sistemas expertos de soporte diagnóstico y generación de alarmas. [87] La flexibilidad, el bajo costo de mantenimiento, la reusabilidad, la personalización de cada instrumento, la rápida incorporación de nuevas tecnologías, el bajo costos por función y por canal, entre otros, son algunos de los beneficios que ofrece la Unidad
Móvil de Cuidado Crítico[5].
Referencias Bibliográficas
[88] [1] Rodríguez E. Electrónica Médica. Programa de Ingeniería de Mantenimiento Industrial y Hospitalario. Colombia. 1999. [89] [2] Jorge IN, Hernández AC. Evaluación de un monitor de paciente. Revista Cubana de Investigaciones Biomedicas 2001 ;20: 128-35.
[90] [3] Kohn B. Patient monitors. Med Electron 1997;167:124-31.
[91] [4] Ramirez CA., Hernández MA. Procesamiento en tiempo real de variable fisiológicas. Universidad Nacional Experimental del Táchira 2004;l:[l]. http://www.galenonet.com/CYTED/cyted/ponenciasTaller2001/ponenciac_ramirez.ht mi [92] [5]Lazaro AM. Lab VIEW 6i Programación Gráfica para el control de instrumentación. Madrid Paraninfo 2001. [93] [6] Olansen J, Rosow E. Virtual Bio-Instrumentation Biomedical, Clinical and
Healthcare Applications in Lab VIEW. Prenice Hall PTR. United States of America.
2002. [94] [7] Horak R. Communications Systems and Networks. Wiley Publishing Inc. United
States of America. 2002. [95] [8] Penagos SP, Salazar LD, Vera FE. Control de signos vitales. Guías para el
Manejo de Urgencias: Enfermería 2004. http://www.fepafem.org.ve/Guias_de_Urgencias/Enfermeria/Control_de_signos_vital es.pdf
[96] [9] Millman J. Electrónica Integrada. 3 ed. España: Hispano Europea; 1986.
[97] [10] Aguilar C, Aguilar LE, Moriel G. Sistema de Monitoreo y Diagnóstico Clínico de Signos Vitales con Lab VIEW 2004;l;[l]. http://digital.ni.com/worldwide/latam.nsf/web/all/22E2BC852054E4C586256B5F007
B057B [98] [11] Stallings W. Comunicaciones y Redes de Computadores. 6a Edición, Prentice
Hall, 2000. [99] [12] López- Jaramillo P, Gamboa W, Rueda-Clausen C, Jaimes A, Ruiz SA, Diseño y
Construcción de un prototipo de tarjeta interfaz para monitores de signos vitales.
Informe técnico de avance. Fundación Cardiovascular de Colombia. Instituto de Investigaciones. Cod Colciencias 65661412745. [100] [13] Chavez AM, López- Jaramillo P, Pinto M, Rueda-Clausen C, Ruiz SA, Diseño y
Construccioón de un prototipo Holter de ECG. Informe técnico de avance. Fundación
Cardiovascular de Colombia. Instituto de Investigaciones. Cod Colciencias
65661412751.

Claims

Claims
[1] 1. Sistema móvil de monitoreo, vigilancia y soporte vital para la atención de pacientes en cuidado intensivo, que suministra al paciente atención desde su salida de una intervención quirúrgica a la habitación hospitalaria en monitoreo y ayuda respiratoria durante el traslado, convirtiendo dicha habitación hospitalaria en un cubículo de cuidados intensivos, con capacidad para recibir señales de los signos vitales en forma rápida para un monitoreo remoto y de integración a una historia clínica digital, con acople a un computador, que se caracteriza por un equipo transportable que comprende los siguientes bloques funcionales soportados en una sola estructura:
• un bloque de monitoreo de signos vitales
• un bloque de servo ventilación mecánica con monitoreo
• un bloque de bombas de infusión para soluciones líquidas
• un bloque eléctrico de alimentación y seguridad del sistema
• un bloque de gases medicinales para oxígeno, aire y vacío.
[2] 2. Sistema móvil de monitoreo conforme a la reivindicación 1, caracterizado además porque dichos bloques mencionados van soportados por una estructura o cuerpo del sistema móvil que comprende:
• una columna superior que aloja el monitor de signos vitales un respirador de ventilación y un módulo de bombas de infusión, y
• una columna inferior con rodachinas de trasporte para el sistema que aloja una UPS,
• atriles para sostener mangueras del ventilador y acoples para bombas auxiliares.
[3] 3. Sistema móvil para monitoreo conforme a la reivindicación 2, caracterizado además porque en dicha columna superior se aloja también un módulo de salidas incluido en el módulo de signos vitales.
[4] 4. Sistema móvil de monitoreo conforme a la reivindicación 3 caracterizado porque dicho módulo de salida a pacientes comprende exteriormente: conectar de electrocardiografía
• conectar de oximetría
• conectares de presión invasiva
• conectar de presión no invasiva
• conectar de capnografía
• conectares de temperatura
• Led indicador de encendido
[5] 5. Sistema móvil de monitoreo conforme a la reivindicación 1 que se caracteriza además por una forma de instrumentación virtual con base en el procesamiento de señales que incluye una capa de software y hardware al que se agrega a un computador para visualización oportuna del estado del paciente.
PCT/IB2008/053292 2007-08-16 2008-08-15 Sistema móvil de monitoreo. vigilancia y soporte vital para la atención de pacientes en cuidado intensivo WO2009022320A2 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CO07-84233 2007-08-16
CO07084233A CO6030034A1 (es) 2007-08-16 2007-08-16 Sistema movil de monitoreo, vigilancia y soporte vital para la atencion de pacientes en cuidado intensivo

Publications (2)

Publication Number Publication Date
WO2009022320A2 true WO2009022320A2 (es) 2009-02-19
WO2009022320A3 WO2009022320A3 (es) 2009-07-09

Family

ID=40351252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2008/053292 WO2009022320A2 (es) 2007-08-16 2008-08-15 Sistema móvil de monitoreo. vigilancia y soporte vital para la atención de pacientes en cuidado intensivo

Country Status (2)

Country Link
CO (1) CO6030034A1 (es)
WO (1) WO2009022320A2 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106200522A (zh) * 2016-06-27 2016-12-07 宁波奉天海供氧净化成套设备有限公司 一种医用气体监控方法及其装置
CN108525096A (zh) * 2018-04-18 2018-09-14 马敏 一种多功能内科临床用呼吸装置
US11915570B2 (en) 2020-07-16 2024-02-27 Ventec Life Systems, Inc. System and method for concentrating gas
US11931689B2 (en) 2020-07-16 2024-03-19 Ventec Life Systems, Inc. System and method for concentrating gas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5687717A (en) * 1996-08-06 1997-11-18 Tremont Medical, Inc. Patient monitoring system with chassis mounted or remotely operable modules and portable computer
US20030014817A1 (en) * 2001-05-25 2003-01-23 Gallant Dennis J. Architectural system adaptable to patient acuity level
RU2197281C2 (ru) * 1997-05-07 2003-01-27 Компьюмедикс Слип Пти. Лтд. Регулирование подачи газа или лекарственного препарата пациенту
US20050177212A1 (en) * 2004-02-09 2005-08-11 Njemanze Philip C. Apparatus and method for hypothermia and rewarming by altering the temperature of the cerebrospinal fluid in the brain

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5687717A (en) * 1996-08-06 1997-11-18 Tremont Medical, Inc. Patient monitoring system with chassis mounted or remotely operable modules and portable computer
RU2197281C2 (ru) * 1997-05-07 2003-01-27 Компьюмедикс Слип Пти. Лтд. Регулирование подачи газа или лекарственного препарата пациенту
US20030014817A1 (en) * 2001-05-25 2003-01-23 Gallant Dennis J. Architectural system adaptable to patient acuity level
US20050177212A1 (en) * 2004-02-09 2005-08-11 Njemanze Philip C. Apparatus and method for hypothermia and rewarming by altering the temperature of the cerebrospinal fluid in the brain

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106200522A (zh) * 2016-06-27 2016-12-07 宁波奉天海供氧净化成套设备有限公司 一种医用气体监控方法及其装置
CN108525096A (zh) * 2018-04-18 2018-09-14 马敏 一种多功能内科临床用呼吸装置
US11915570B2 (en) 2020-07-16 2024-02-27 Ventec Life Systems, Inc. System and method for concentrating gas
US11931689B2 (en) 2020-07-16 2024-03-19 Ventec Life Systems, Inc. System and method for concentrating gas

Also Published As

Publication number Publication date
WO2009022320A3 (es) 2009-07-09
CO6030034A1 (es) 2009-04-30

Similar Documents

Publication Publication Date Title
AU765677B2 (en) Control and display configuration layout
Alamanou et al. Intrahospital transport policies: The contribution of the nurse
JP2007510504A (ja) 保健医療処理装置および表示システム
JP2007521849A (ja) モジュール式医療ケアシステム
JP2007519431A (ja) 処理装置および表示システム
CN104203138A (zh) 模块化医用仪器
US20170181694A1 (en) System and method for providing transitional monitoring along sedation continuum
US11776697B2 (en) System for administering a qualitative assessment using an automated verbal interface
WO2009022320A2 (es) Sistema móvil de monitoreo. vigilancia y soporte vital para la atención de pacientes en cuidado intensivo
Ristagno et al. History of critical care medicine: the past, the present and the future
CN208837928U (zh) 一种便携式跨平台医疗救护单元
US20170182277A1 (en) System and method for addressing hypoxemia
US20210298991A1 (en) Medical device system and hardware for sensor data acquisition
WO2013190157A1 (es) Terminal multimedia con medida de parámetros vitales
CN208591038U (zh) 一种跨平台医疗救护单元
Aisenberg Endoscopic sedation: equipment and personnel
AU2021104799A4 (en) Medical and therapeutic care facilitating apparatus, systems and devices thereof
Mohite et al. E-ventilator (Emergency ventilator) for Emergency Situations
WO2017099571A1 (es) Sistema de monitoreo fisiológico modular inalámbrico con interfaz de usuario
SIAARTI Recommendations for anesthesia and sedation in nonoperating room locations
Yaron et al. Equipment organization in the emergency department adult resuscitation area
Galla Monitoring
Selvi et al. Wearable Smart Device That Can Monitor Multiple Vital Parameters
ES2362085T3 (es) Aparato para proporcionar alivio del dolor y de la ansiedad asociados con procedimientos médicos o quirúrgicos.
Babu Procedural Sedation in Children–What is Recommended?

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08827499

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08827499

Country of ref document: EP

Kind code of ref document: A2