WO2009016120A1 - Accelerometre simplifie d'unite de mesure inertielle a cout reduit ou securite amelioree - Google Patents

Accelerometre simplifie d'unite de mesure inertielle a cout reduit ou securite amelioree Download PDF

Info

Publication number
WO2009016120A1
WO2009016120A1 PCT/EP2008/059808 EP2008059808W WO2009016120A1 WO 2009016120 A1 WO2009016120 A1 WO 2009016120A1 EP 2008059808 W EP2008059808 W EP 2008059808W WO 2009016120 A1 WO2009016120 A1 WO 2009016120A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
accelerometer
devices
sensitive
axial
Prior art date
Application number
PCT/EP2008/059808
Other languages
English (en)
Inventor
Jacques Leclerc
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Publication of WO2009016120A1 publication Critical patent/WO2009016120A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/097Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions

Definitions

  • the present invention relates to a simplified accelerometer of an inertial measurement unit and to an inertial measurement unit based on such an accelerometer.
  • a micro-machined uni-axial accelerometer is known in a plate, made of silicon, for example.
  • This accelerometer is composed of one or two seismic masses suspended in a plane and guided along a common preferred axis of displacement.
  • a force amplification system associated with each seismic mass makes it possible to amplify the force it produces, when it is subjected to acceleration, and to apply it to the corresponding resonator, maintained in vibration by a dedicated electronic circuit.
  • the detection chip comprising the aforementioned elements is a vacuum cavity to obtain a large quality factor for the resonators.
  • Such an accelerometer has been shown diagrammatically in FIG. 1, for example, in a dual-mass configuration.
  • the uni-axial accelerometer of FIG. 1 essentially comprises two plane seismic masses 1, 2 movable in translation under the action of an acceleration ⁇ applied along the sensitive axis of the accelerometer (axis parallel to the arrows 3, 4 representing the forces of acceleration M ⁇ applied to the respective centers of gravity of these masses M), these masses being suspended in the same plane by arms B to a rigid frame 5 forming part of the substrate on which the accelerometer is formed.
  • Each of these two masses 1, 2 is connected by a jack 6, 7 in the form of a pantograph to a resonator 8, 9 respectively.
  • These jacks are connected by one of their vertices to the corresponding ground and their apex opposite a fixed portion 10, it of the substrate, located between the two masses.
  • the resonators 8, 9 are fixed between the two other tops of the pantographs.
  • an acceleration ⁇ or an acceleration component
  • the mass 1 compresses the pantograph 6 and therefore stretches the resonator 8, while the mass 2 stretches the pantograph 7 by compressing the resonator 9, which changes their respective resonant frequencies.
  • Such an accelerometer is in the form of a "chip” (monolithic element “MEMS", “Micro ElectroMechanical System”) which is mounted in a cell-housing for its mechanical positioning, and the electrical connections to the resonators. It is also possible to create the vacuum in the cell when it was not possible to make it in the chip, the chip being provided with evacuation vents.
  • This known accelerometer is equipped with a temperature measurement system for making the appropriate compensations and two-way proximity electronic circuits for maintaining the two resonators in vibration at resonance.
  • the signals of the two frequency measuring channels are converted and addressed to digital electronic circuits providing the servocontrols, the restoration of the acceleration by difference of the two frequencies or by more sophisticated processing, compensation and digital output format.
  • An inertial measurement unit (IMU) of the prior art consists in particular of three uni-axial accelerometers arranged in two-by-two orthogonal planes, ie three cells each containing a chip, three temperature measuring circuits, six channels of measurement. frequency measurement and a digital processing circuit.
  • the present invention relates to an accelerometer unit of inertial measurement to reduce the cost and / or improve the safety of this unit of inertial measurement.
  • the accelerometer according to the invention is a resonator-type inertial measurement unit accelerometer whose resonance frequency is modified by a mobile mass device as a function of the accelerations experienced by this mobile mass, and is characterized in that it is biaxial and comprises a single moving plane mass sensitive to accelerations occurring along any axis in a plane parallel to that of the mass, this mass being associated with at least two devices for converting the force applied to the a mass sensitive to acceleration in electrical signals, the sensitive axes of these force conversion devices being mutually arranged so as to allow the determination of their components in said plane.
  • the sensitive axes of these devices are between them an angle other than 0 or 90 °.
  • the sensitive axes of these devices compete at a common point and advantageously make an angle between them of about 120 °.
  • an inertial measurement unit is constituted using two such accelerometers.
  • an inertial measurement unit is constituted using a bi-axial accelerometer and a uniaxial accelerometer.
  • bi-axial accelerometer means that this accelerometer is capable of measuring any acceleration of direction in a plane.
  • FIG. 1 already described above, is a simplified diagram of a cell of the prior art detecting accelerations along a single axis
  • FIG. 2 is a simplified block diagram of a first embodiment of FIG. a cell according to the present invention for sensing accelerations in any direction in a plane, and having a moving mass surrounded by three force conversion devices
  • FIG. 1 already described above, is a simplified diagram of a cell of the prior art detecting accelerations along a single axis
  • FIG. 2 is a simplified block diagram of a first embodiment of FIG. a cell according to the present invention for sensing accelerations in any direction in a plane, and having a moving mass surrounded by three force conversion devices
  • FIG. 3 is a simplified diagram of a preferred embodiment of a cell according to the invention, more compact than that of FIG. 2.
  • the accelerometer of FIG. 2 comprises a single seismic mass 12 held by guide arms conferring on it two degrees of freedom in the plane and three force conversion devices 13, 14 and 15. These devices essentially each comprise a resonator 16, 17 and 18 respectively, integral with a pantograph 19, 20 and 21 respectively, each resonator being connected to an excitation circuit, frequency conversion and signal processing (not shown).
  • the pantographs are anchored to fixed zones, respectively 22 to 24, of the substrate on which the seismic masses are formed.
  • the mass 12 and the force conversion devices are made for example according to the method described in the aforementioned French patent and adapted to the invention.
  • the sensitive axes of the force conversion devices 13 to 15 are oriented at 120 ° relative to each other and contribute to the center of gravity of the mass 12.
  • the mass 12 has, in the example shown, an equilateral triangle shape. but it may have another shape, provided that it has a symmetry of revolution with respect to its center and at equal or submultiple angles angles formed by the sensitive axes of the devices 13 to 15. This may, for example, to be a hex in those where the accelerometer has three resonators.
  • this acceleration ⁇ component directed along the sensitive axis of the device 14
  • this device 14 which has the effect of stretching the pantograph 20 and compressing the resonator 17.
  • the frequency changes of resonance of the three resonators 16 to 18 are then measured and converted into acceleration values, as described in the aforementioned French patent
  • By a simple calculation of vector composition by combining in a manner known per se the three acceleration components thus measured (by projection according to the guiding cosines of the sensitive axes of the resonators), it is possible to determine the direction and the intensity of the acceleration ⁇ .
  • the biaxial chip containing the accelerometer such as that of FIG.
  • FIG. 3 shows an exemplary embodiment of a bi-axial chip according to the invention.
  • the single moving mass 25 is in the shape of an equilateral triangle.
  • the vertices of this triangle are cut to leave room for flat damping electrodes 26 to 28, for example in the form of lozenges, which are arranged at the three vertices of this triangle, in the plane of the moving mass.
  • the mobile mass 25 is associated with three sets jack + resonator referenced 29 to 31 as a whole, respectively. Each of these sets is disposed in a recess (not shown) of the corresponding moving mass.
  • the sensitive axes of the three sets 29 to 31 contribute to the center of the mass 25 and form, in pairs, angles of approximately 120 °, each being substantially parallel to one side of the triangle formed by the mass 25.
  • Excitation electrodes E placed under the mass 25, close to the corresponding resonators, excite them to resonance.
  • Detection electrodes D are also arranged under the mass, close to the corresponding resonators, and collect the resonant frequency variations of the corresponding resonators, these variations occurring when the mass is subjected to accelerations and stretches or compresses these resonators.
  • An UMI according to the invention is therefore composed of two bi-axial accelerometers whose planes are mutually orthogonal. All therefore comprises, in the case of three resonators, two cells each containing a chip, two temperature measuring devices, six frequency processing channels of the resonators and a digital processing device.
  • this architecture has a safer operation because it has a redundant measurement axis, which gives it four sensitive axes, allowing it to resist a failure of a frequency processing channel.
  • the UMI is without redundancy and consists of a bi-axial accelerometer XY and a uni-axial accelerometer Z.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Pressure Sensors (AREA)

Abstract

La présente invention a pour objet un accéléromètre d'unité de mesure inertielle permettant de réduire Ie coût et d'améliorer Ia sécurité de cette unité de mesure inertielle. L' accéléromètre conforme à l' invention est un accéléromètre d'unité de mesure inertielle du type à résonateur dont Ia fréquence de résonance est modifiée par un dispositif à masse mobile en fonction des accélérations subies par cette masse mobile, et il est caractérisé en ce qu'il est bi-axial et comprend une seule masse plane mobile sensible aux accélérations se produisant selon un axe quelconque dans un plan parallèle ä celui de Ia masse, cette masse etant associée à au moins deux dispositifs de conversion de Ia force appliquée à Ia masse sensible aux accélérations en signaux électriques, les axes sensibles de ces dispositifs de conversion de force étant mutuellement disposés de façon à permettre Ia détermination de leurs composantes dans ledit plan.

Description

ACCELEROMETRE SIMPLIFIE D'UNITE DE MESURE INERTIELLE A COUT REDUIT OU SECURITE AMELIOREE
La présente invention se rapporte à un accéléromètre simplifié d'unité de mesure inertielle ainsi qu'à une unité de mesure inertielle basée sur un tel accéléromètre.
On connaît, par exemple, d'après Ie brevet français 2 848 298 du Demandeur un accéléromètre uni-axial micro-usiné dans une plaque, en silicium par exemple. Cet accéléromètre est composé d'une ou de deux masses sismiques suspendues dans un plan et guidées selon un axe préférentiel commun de déplacement. Un système d'amplification de force associé à chaque masse sismique permet d'amplifier la force qu'elle produit, lorsqu'elle est soumise à une accélération, et de l'appliquer au résonateur correspondant, entretenu en vibration par un circuit électronique dédié. La puce de détection comportant les éléments précités constitue une cavité sous vide permettant d'obtenir un grand facteur de qualité pour les résonateurs. Un tel accéléromètre a été schématisé en figure 1 par exemple en configuration bi- masses.
L'accéléromètre uni-axial de la figure 1 comporte essentiellement deux masses sismiques planes 1, 2 mobiles en translation sous l'action d'une accélération γ appliquée selon l'axe sensible de l'accéléromètre (axe parallèle aux flèches 3, 4 représentant les forces d'accélération Mγ appliquées aux centres de gravité respectifs de ces masses M), ces masses étant suspendues dans un même plan par des bras B à un cadre rigide 5 faisant partie du substrat sur lequel est formé T accéléromètre. Chacune de ces deux masses 1, 2 est reliée par un cric 6, 7 en forme de pantographe à un résonateur 8, 9 respectivement. Ces crics sont reliés par un de leurs sommets à la masse correspondante et par leur sommet opposé à une partie fixe 10, il du substrat, située entre les deux masses. Les résonateurs 8, 9 sont fixés entre les deux autres sommets des pantographes. Ainsi, lorsqu'une accélération γ (ou une composante d'accélération) est appliquée (horizontalement et vers la droite sur le dessin), la masse 1 comprime le pantographe 6 et étire donc le résonateur 8, tandis que la masse 2 étire le pantographe 7 en comprimant le résonateur 9, ce qui modifie leurs fréquences de résonance respectives. Un tel accéléromètre se présente sous forme d'une « puce » (élément monolithique « MEMS », « Micro ElectroMechanical System ») qui est montée dans un boîtier-cellule permettant son positionnement mécanique, et les connexions électriques aux résonateurs. Il est par ailleurs possible de créer le vide dans la cellule lorsqu'il n'a pas été possible de le réaliser dans la puce, la puce étant dotée d'évents de mise au vide.
Cet accéléromètre connu est doté d'un système de mesure de température pour effectuer les compensations appropriées et de circuits électroniques de proximité à deux voies permettant d'entretenir les deux résonateurs en vibration à la résonance. Les signaux des deux voies de mesure de fréquence sont convertis et adressés à des circuits électroniques numériques réalisant les asservissements, la restitution de l'accélération par différence des deux fréquences ou par des traitements plus sophistiqués, les compensations et la mise au format de sortie numérique
Une unité de mesure inertielle (UMI ) de l'art antérieur est constituée en particulier de trois accéléromètres uni-axiaux disposés dans des plans orthogonaux deux à deux, soit trois cellules contenant chacune une puce, trois circuits de mesure de température, six voies de mesure de fréquence et un circuit de traitement numérique.
La présente invention a pour objet un accéléromètre d'unité de mesure inertielle permettant de réduire le coût et/ou d'améliorer la sécurité de cette unité de mesure inertielle.
L 'accéléromètre conforme à l'invention est un accéléromètre d'unité de mesure inertielle du type à résonateur dont la fréquence de résonance est modifiée par un dispositif à masse mobile en fonction des accélérations subies par cette masse mobile, et il est caractérisé en ce qu'il est bi-axial et comprend une seule masse plane mobile sensible aux accélérations se produisant selon un axe quelconque dans un plan parallèle à celui de la niasse, cette masse étant associée à au moins deux dispositifs de conversion de la force appliquée à la masse sensible aux accélérations en signaux électriques, les axes sensibles de ces dispositifs de conversion de force étant mutuellement disposés de façon à permettre la détermination de leurs composantes dans ledit plan. Dans le cas où la masse mobile est associée à deux dispositifs de conversion de force, les axes sensibles de ces dispositifs font entre eux un angle différent de 0 ou 90°.
Dans le cas où la masse mobile est associée à trois dispositifs de conversion de force, les axes sensibles de ces dispositifs concourent en un point commun et font avantageusement entre eux un angle d'environ 120°.
Dans le cas où la masse mobile est associée à N (N>3) dispositifs de conversion de force, les axes sensibles de ces dispositifs concourent en un point commun et font avantageusement entre eux des angles égaux à 2π/N. Selon une autre caractéristique de l'invention, on constitue une unité de mesure inertielle à l'aide de deux tels accéléromètres.
Selon une autre caractéristique de l'invention, on constitue une unité de mesure inertielle à l'aide d'un tel accéléromètre bi-axial et d'un accéléromètre uni- axial. Dans toute la présente description, «accéléromètre bi-axial » signifie que cet accéléromètre est capable de mesurer une accélération de direction quelconque dans un plan.
La présente invention sera mieux comprise à la lecture de la description détaillée d'un mode de réalisation, pris à titre d'exemple non limitatif et illustré par le dessin annexé, sur lequel :
- la figure 1, déjà décrite ci-dessus, est un schéma simplifié d'une cellule de l'art antérieur captant des accélérations selon un seul axe, la figure 2 est un schéma de principe simplifié d'un premier mode de réalisation d'une cellule conforme à Ia présente invention destinée à capter des accélérations selon une direction quelconque dans un plan, et comportant une masse mobile entourée de trois dispositifs de conversion de force, et
- la figure 3 est un schéma simplifié d'un mode de réalisation préféré d'une cellule conforme à l'invention, plus compacte que celle de la figure 2. L'accéléromètre de la figure 2 comporte une seule masse sismique 12 maintenue par des bras de guidage lui conférant deux degrés de liberté dans le plan et trois dispositifs de conversion de force 13, 14 et 15. Ces dispositifs comprennent essentiellement chacun un résonateur 16, 17 et 18 respectivement, solidaire d'un pantographe 19, 20 et 21 respectivement, chaque résonateur étant relié à un circuit d'excitation, de conversion de fréquence et de traitement du signal (non représentés). Les pantographes sont ancrés à des zones fixes, respectivement 22 à 24, du substrat sur lequel sont formées les masses sismiques. La masse 12 et les dispositifs de conversion de force sont réalisés par exemple selon le procédé décrit dans le brevet français précité et adapté à l'invention. Les axes sensibles des dispositifs de conversion de force 13 à 15 sont orientés à 120° les uns par rapport aux autres et concourent au centre de gravité de la masse 12. La masse 12 a, dans l'exemple représenté, une forme de triangle équilatéral, mais elle peut avoir une autre forme, à condition de présenter une symétrie de révolution par rapport à son centre et selon des angles égaux ou sous-multiples des angles formés par les axes sensibles des dispositifs 13 à 15. Ce peut, par exemple, être un hexagone dans le ces où l'accéléromètre comporte trois résonateurs.
Dans le cas, représenté en figure 2, où une accélération γ est appliquée à l'accéléromètre selon un axe sensiblement parallèle à l'axe sensible du dispositif 15 et dirigée du sommet opposé vers ce dispositif, une composante de cette accélération (parallèle à l'axe sensible du dispositif 15, donc pratiquement égale et parallèle à cette accélération ) est appliquée à ce dispositif 15, ce qui a pour effet de comprimer le pantographe 21 et d'étirer le résonateur 18. D'autre part, une composante de cette accélération γ (composante dirigée selon l'axe sensible du dispositif 13), est appliquée à ce dispositif 13, ce qui a pour effet d'étirer le pantographe 19 et de comprimer le résonateur 16. Enfin, une autre composante de cette accélération γ (composante dirigée selon l'axe sensible du dispositif 14) est appliquée à ce dispositif 14, ce qui a pour effet d'étirer le pantographe 20 et de comprimer le résonateur 17. Les modifications de fréquence de résonance des trois résonateurs 16 à 18 sont alors mesurées et converties en valeurs d'accélérations, comme décrit dans le susdit brevet français Par un calcul simple de composition vectorielle, en combinant de façon connue en soi les trois composantes d'accélération ainsi mesurées (par projection selon les cosinus directeurs des axes sensibles des résonateurs), on arrive à déterminer la direction et l'intensité de l'accélération γ. La puce bi-axiale renfermant l'accéléromètre tel que celui de la figure 2 est sensiblement plus grande que dans le cas d'un uni-axial (surface multipliée par 1,5 à 2), et elle nécessite 1,5 fois plus de connections électriques que cette dernière ( voire un peu moins si des points communs sont possibles). Elle est reportée dans un boîtier-cellule. Un seul système de compensation thermique est nécessaire pour l'accéléromètre bi-axial et les voies de traitement de fréquence des résonateurs sont identiques au cas uni-axial.
On a représenté en figure 3 un exemple de réalisation d'une puce bi-axiale conforme à l'invention. Dans ce mode de réalisation, la masse mobile unique 25 est en forme de triangle équilatéral. Les sommets de ce triangle sont découpés pour laisser la place à des électrodes planes d'amortissement 26 à 28, par exemple en forme de losanges, qui sont disposées aux trois sommets de ce triangle, dans le plan de la masse mobile.
La masse mobile 25 est associée à trois ensembles cric + résonateur référencés 29 à 31 dans leur ensemble, respectivement. Chacun de ces ensembles est disposé dans un évidement (non représenté) de la masse mobile correspondante. Les axes sensibles des trois ensembles 29 à 31 concourent au centre de la masse 25 et forment, deux à deux, des angles d'environ 120°, en étant chacun sensiblement parallèle à un côté du triangle formé par la masse 25.
Des électrodes d'excitation E, disposées sous la masse 25, à proximité des résonateurs correspondants, les excitent à la résonance. Des électrodes de détection D, sont également disposées sous la masse, à proximité des résonateurs correspondants, et recueillent les variations de fréquence de résonance des résonateurs correspondants, ces variations apparaissant lorsque la masse 25 est soumise à des accélérations et étire ou comprime ces résonateurs. Une UMI conforme à l'invention est dès lors constituée de deux accéléromètres bi-axiaux dont les plans sont mutuellement orthogonaux. L'ensemble comporte donc, dans le cas de trois résonateurs, deux cellules contenant chacune une puce, deux dispositifs de mesure de température, six voies de traitement de fréquences des résonateurs et un dispositif de traitement numérique. Ainsi cette architecture, a un fonctionnement plus sûr, car elle dispose d'un axe de mesure redondant, ce qui lui confère quatre axes sensibles, lui permettant ainsi de résister à une panne d'une voie de traitement de fréquence.
Selon une variante de l'invention, l'UMI est sans redondance et est constituée d'un accéléromètre bi-axial XY et d'un accéléromètre uni-axial Z.
On a résumé dans le tableau ci-dessous les avantages et inconvénients des différentes possibilités de réalisation d'une UMI, à savoir la solution de l'art antérieur à trois accéléromètres (ou capteurs) uni-axiaux et les solutions de l'invention à deux accéléromètres M-axiaux et à un accéléromètre uni-axial et un accéléromètre bi-axial.
Figure imgf000008_0001

Claims

REVENDICATIONS
L Accéléromètre d'unité de mesure inertielle du type à résonateur dont la fréquence de résonance est modifiée par un dispositif à masse mobile en
S fonction des accélérations subies par cette niasse mobile, caractérisé en ce qu'il est bi-axial et comprend une seule masse plane mobile sensible aux accélérations se produisant selon un axe quelconque dans un plan parallèle à celui de la masse, cette masse étant associée à au moins deux dispositifs de conversion de la force appliquée à la masse sensible aux accélérations en0 signaux électriques, les axes sensibles de ces dispositifs de conversion de force étant mutuellement disposés de façon à permettre la détermination de leurs composantes dans ledit plan.
2. Accéléromètre selon la revendication 1 , caractérisé en ce que la masse mobile est associée à deux dispositifs de conversion de force, et que les axes S sensibles de ces dispositifs font entre eux un angle différent de 0 ou 90°.
3, Accéléromètre selon la revendication 1 , caractérisé en ce que la masse mobile est associée à trois dispositifs de conversion de force, et que les axes sensibles de ces dispositifs concourent en un point commun et font entre eux un angle d'environ 120°. 0 4, Accéléromètre selon la revendication 1, caractérisé en ce que la masse mobile est associée à N (N>3) dispositifs de conversion de force, et que les axes sensibles de ces dispositifs concourent en un point commun et font avantageusement entre eux des angles égaux à 2π/N.
5. Unité de mesure inertielle, caractérisée en ce qu'elle comporte deux accéléromètres bi-axiaux selon l'une des revendications 1 à 4.
6. Unité de mesure inertielîe, caractérisée en ce qu'elle comporte un accéléromètre bi-axial selon Tune des revendications 1 à 4 et un accéléromètre uni-axial
PCT/EP2008/059808 2007-07-27 2008-07-25 Accelerometre simplifie d'unite de mesure inertielle a cout reduit ou securite amelioree WO2009016120A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0705526 2007-07-27
FR0705526A FR2919393A1 (fr) 2007-07-27 2007-07-27 Accelerometre simplifie d'unite de mesure inertielle a cout reduit ou securite amelioree.

Publications (1)

Publication Number Publication Date
WO2009016120A1 true WO2009016120A1 (fr) 2009-02-05

Family

ID=39361293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/059808 WO2009016120A1 (fr) 2007-07-27 2008-07-25 Accelerometre simplifie d'unite de mesure inertielle a cout reduit ou securite amelioree

Country Status (2)

Country Link
FR (1) FR2919393A1 (fr)
WO (1) WO2009016120A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0318152A2 (fr) * 1987-10-22 1989-05-31 Richard A. Hanson Dispositif de mesure de force à cristal vibrant
JP2000206141A (ja) * 1999-01-20 2000-07-28 Miyota Kk 運動量センサ
US20010042405A1 (en) * 1991-02-08 2001-11-22 Hulsing Rand H. Triaxial angular rate and acceleration sensor
US20040025590A1 (en) * 2002-08-07 2004-02-12 Schaad Theo P. Triaxial acceleration sensor
FR2848298A1 (fr) * 2002-12-10 2004-06-11 Thales Sa Accelerometre a poutre vibrante
US20060230829A1 (en) * 2005-04-14 2006-10-19 General Electric Company Three axis accelerometer with variable axis sensitivity

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0318152A2 (fr) * 1987-10-22 1989-05-31 Richard A. Hanson Dispositif de mesure de force à cristal vibrant
US20010042405A1 (en) * 1991-02-08 2001-11-22 Hulsing Rand H. Triaxial angular rate and acceleration sensor
JP2000206141A (ja) * 1999-01-20 2000-07-28 Miyota Kk 運動量センサ
US20040025590A1 (en) * 2002-08-07 2004-02-12 Schaad Theo P. Triaxial acceleration sensor
FR2848298A1 (fr) * 2002-12-10 2004-06-11 Thales Sa Accelerometre a poutre vibrante
US20060230829A1 (en) * 2005-04-14 2006-10-19 General Electric Company Three axis accelerometer with variable axis sensitivity

Also Published As

Publication number Publication date
FR2919393A1 (fr) 2009-01-30

Similar Documents

Publication Publication Date Title
EP0331557B1 (fr) Accéléromètre pendulaire non asservi à poutre résonante
EP2410767B1 (fr) Capteur de pression dynamique mems, en particulier pour des applications à la réalisation de microphones
EP1835294B1 (fr) Accelerometre triaxal a membrane
EP2367015B1 (fr) Capteur de force a bruit reduit
EP0198724B1 (fr) Accéléromètre micro-usine à rappel électrostatique
EP2211185B1 (fr) Capteur inertiel ou résonnant en technologie de surface, à détection hors plan par jauge de contrainte
FR2894953A1 (fr) Systeme micro-electromecanique comprenant une partie deformable et un detecteur de contrainte
EP2921836A1 (fr) Capteur de mesure de pression différentielle microélectromécanique et/ou nanoélectromécanique
EP0373040A1 (fr) Transducteur force-fréquence à poutres vibrantes et accéléromètre pendulaire en comportant application
EP2520900B1 (fr) Gyromètre a capacités parasites reduites
CH642460A5 (fr) Ensemble de captage pour un transducteur.
FR2964651A1 (fr) Dispositif a poutre suspendue et moyens de detection piezoresistive du deplacement de celle-ci, et procede de fabrication du dispositif
EP3766829B1 (fr) Liaison mecanique pour dispositif mems et nems de mesure d'une variation de pression et dispositif comprenant une telle liaison mecanique
FR2986865A1 (fr) Dispositif de detection compact d'au moins une acceleration et une vitesse de rotation
EP1680796A1 (fr) Detecteur de mouvement a six degres de liberte avec trois capteurs de position et procede de fabrication d'un capteur
EP3234536A2 (fr) Capteur de pression dynamique a fonctionnement ameliore
WO2009016114A1 (fr) Accelerometre d'unite de mesure inertielle a cout reduit et securite amelioree
EP2949621A1 (fr) Dispositif microelectronique et/ou nanoelectronique capacitif a compacite augmentee
WO2009016120A1 (fr) Accelerometre simplifie d'unite de mesure inertielle a cout reduit ou securite amelioree
FR2887628A1 (fr) Element de capteur de pression micromecanique et procede d'utilisation
EP0886146B1 (fr) Accéléromètre miniaturisé du type à compensation par ressort de l'effet de la pesanteur et son procédé de fabrication.
EP1235074B1 (fr) Accéléromètre miniature à deux cellules
EP3071932B1 (fr) Capteur inertiel a masses sismiques imbriquées et procédé de fabrication d'un tel capteur
EP1245960A2 (fr) Accéléromètre à lames vibrantes.
FR2689642A1 (fr) Capteur d'accélération du type capacitif omnidirectionnel dans un plan principal.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08775349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08775349

Country of ref document: EP

Kind code of ref document: A1