WO2009009293A1 - Lubricant compositions stabilized with styrenated phenolic antioxidant - Google Patents

Lubricant compositions stabilized with styrenated phenolic antioxidant Download PDF

Info

Publication number
WO2009009293A1
WO2009009293A1 PCT/US2008/068105 US2008068105W WO2009009293A1 WO 2009009293 A1 WO2009009293 A1 WO 2009009293A1 US 2008068105 W US2008068105 W US 2008068105W WO 2009009293 A1 WO2009009293 A1 WO 2009009293A1
Authority
WO
WIPO (PCT)
Prior art keywords
antioxidant
group
independent
hydrogen
oils
Prior art date
Application number
PCT/US2008/068105
Other languages
French (fr)
Inventor
Jun Dong
Cyril A. Migdal
Gerard Mulqueen
Original Assignee
Chemtura Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemtura Corporation filed Critical Chemtura Corporation
Priority to JP2010515051A priority Critical patent/JP2010532414A/en
Priority to CN200880021556A priority patent/CN101688142A/en
Priority to EP08771877A priority patent/EP2162518A1/en
Publication of WO2009009293A1 publication Critical patent/WO2009009293A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/04Hydroxy compounds
    • C10M129/10Hydroxy compounds having hydroxy groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/04Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M133/12Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/06Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic nitrogen-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/10Compounds containing silicon
    • C10M2201/1006Compounds containing silicon used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • C10M2205/0285Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/024Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings having at least two phenol groups but no condensed ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • C10M2207/042Epoxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/049Phosphite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/065Saturated Compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy

Definitions

  • This disclosure relates to an improvement in oxidation stability of lubricating oils by using a styrenated phenolic antioxidant and an optional synergistic secondary diarytemine.
  • ZDDP zinc dialkyldithiophosphates
  • a class of styrenated phenolic antioxidants offers superior antioxidancy and their mixtures with a secondary diarylamine exhibit synergistic effects and therefore are more effective than using either of the materials afone in inhibiting oxidation of lubricating oii compositions, in particular, the styrenated phenolics act synergistlcally with alkylated diarylamines to provide significant improvements in oxidation control.
  • the present disclosure is directed to a lubricating oii composition comprising: (A) one or more base oils comprising API (American Petroleum Institute) Group I, Group M, Group ill, Group iV and synthetic lubricating base stocks of varying viscosity grades;
  • R 1 and R 2 are independent and comprise hydrogen or styryl groups represented by the following formula (IA):
  • n is an integer of from 0 to 5 and the ⁇ -position on the styryl group is optionally substituted with a hydrocarbyl group having from 1 to about 8 carbon atoms, and R 3 is a hydrogen or hydrocarbyl group having from 1 to about 100 carbon atoms;
  • At least one second antioxidant comprising one or more secondary diary Ia mines having the following general formula:
  • Ar 1 and Ar 2 are independent and comprise aromatic hydrocarbons
  • R 4 and Rs are independent and comprise hydrogen and hydrocarbyl groups
  • a and b are independent and 0 to 3, with the proviso that (a+b) is not greater than 4.
  • the present disclosure is directed to a method of increasing the oxidation stability of a lubricating oil, the method comprising: adding to a lubricating oil at least a first antioxidant comprising one or more hindered phenolic antioxidants represented by the general formula (I) and optionally, a second antioxidant comprising one or more secondary diarylamines represented by the general formula (II).
  • hydrocarbyl as used herein includes hydrocarbon as well as substantially hydrocarbon groups.
  • substantially hydrocarbon describes groups that contain heteroatom substituents that do not alter the predominantly hydrocarbon nature of the group.
  • hydrocarbyl groups can include, but are not limited to, hydrocarbon substituents, substituted hydrocarbon substituents, and heteroatom substituents.
  • Hydrocarbyl groups that may be utilized may contain from 1 to about 100 carbon atoms, preferably from about 6 to about 30 carbon atoms.
  • Hydrocarbon substituents can include, but are not limited to aliphatic, such as a Iky I or alkenyl; alicyclic, such as cycioalkyl and cycioaikenyl; aromatic substituents; aromatic-, aliphatic-, and alicyclic-substituted aromatic substituents, and the like; as well as cyclic substituents wherein the ring is completed through another portion of the molecule (that is, for example, any two indicated substituents may together form an alicyclic radical).
  • Substituted hydrocarbon substituents comprising those substituents containing non-hydrocarbon portions which, in the context of this disclosure, do not alter the predominantly hydrocarbon nature of the substituent, those skilled in the art will be aware of such groups that can include, halo, hydroxy, mercapto, nitro, nitroso, sulfoxy, and cyano, for example.
  • Heteroatom substituents for exampie, substituents that will, while having a predominantly hydrocarbon character within the context of this disclosure, contain at least one atom other than carbon present in a ring or chain otherwise composed of carbon atoms, such as alkoxy or alkylthio, for example.
  • heteroatoms will be apparent to those of ordinary skill in the art and can include, for exampie, sulfur, oxygen, nitrogen, in addition to heteroatoms, substituents containing heteroatoms can be included, such as, pyridyl, furyl, thienyl, and imidazoiyl, for example.
  • substituents containing heteroatoms can be included, such as, pyridyl, furyl, thienyl, and imidazoiyl, for example.
  • no more than about 2, more preferably no more than one, s ⁇ bstit ⁇ ent containing a heteroatom will be present for every ten carbon atoms in the hydrocarbyl group. Most preferably, there will be no such heteroatom substituents in the hydrocarbyl group.
  • the hindered phenolic for use as the first antioxidant in the practice of this disclosure can be represented by the following formula (I):
  • Ri and Rz are independent and hydrogen or styryl groups represented by the following formula (IA):
  • n an integer of from 0 to 5 and the exposition on the styryl group is optionally substituted with a hydrocarbyl group having from 1 to about 8 carbon atoms; and R3 Is a hydrogen or hydrocarbyl group having from one to about 100 carbon atoms, preferably from one to about 40 carbon atoms.
  • the optional second antioxidant comprising one or more secondary diarylamlnes can be represented as having the following general formula:
  • the preferred aryl moieties suitable for the secondary diaryfamine as represented by the general formula (H) are phenyl or naphthyl.
  • the hydrocarbyl moieties are alkyl, alkenyl, cycloalkyl, cycloalkenyl, aryl, arylalkyl, arylalkenyl, naphthyl, and naphthyl moieties that can be optionally substituted with alkyl, alkenyl , hydroxy!, and/or carboxyl groups, for example.
  • hydrocarbyls suitable for the practice of this disclosure: (a) straight chain branched chain alkyl or aikenyl groups containing one to 40 carbon atoms, even more preferably straight chain or branched chain aikyl groups containing one to 20 carbon atoms such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, 2-ethyl hexyl, nonyl, decyt, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, oleyl, nonadecyl, eicosyl, isomers and mixtures thereof and the like; (b) cyclic aikyl and alkenyl groups such as cyclopentyl,
  • the hindered phenolic antioxidants represented by the formula (I) that are useful in the practice of this disclosure may include 2,6-bis(alpha- methylbenzyl)-4-methylphenol, 2,6-bis(alpha-methylbenzyl)-4-ethylphenol, 2,6-bis(alpha-methylbenzyl)-4-isobutylphenol,and the like; 2-alpha- methylbenzyl-4-methylphenol, 2-alpha-methylbenzyl-4-ethylphenol, 2-alpha- methylbenzyl-4-isobutylphenol, and the like; 2,6-bis(alpha-methylstyryl)-4- methylphenol, 2,6-bis(alpha-methylstyryl)-4-ethylphenol, 2,6-bis(alpha ⁇ methylstyryl)-4- ⁇ sobutylphenol, and the like; 2-aipha-methylstyryl-4- methylphenol, 2-alpha
  • the secondary diary Ia mines represented by the general formulae ( II) that are useful in the practice of the present disclosure can include diphenylamine, monaikylated diphenylamine, dialkylated diphenylamine, trialkylated diphenylamine, and/or mixtures thereof, 3-hydroxydiphenylamine, 4-hydroxydiphenylamine, mono- and/or di- butyldiphenylamine, mono- and/or di-octyldiphenylamine, mono- and/or di- nonyldiphenylamlne, phenyJ- ⁇ -naphthylamine, phenyl- ⁇ -naphthylamine, diheptyldiphenylamine, mono- and/or di-( ⁇ -methylstyryl)diphenylamine, mono- and/or distyryidiphenylamine, 4-(p ⁇ toluenesulfonamido)diphenylamine,
  • the antioxidants can be blended in the compositions in a range of about 0.01 to about 10 weight percent each, and preferably from about 0.1 to about 5 weight percent.
  • the content ratio of the hindered phenolic antioxidant to the secondary diarylamine employed in the lubricating oil compositions of the present disclosure can be ⁇ n practically all proportions. In illustrative embodiments, the ratio will be in the range of 1 :99 to 99:1 parts by weight and more preferably, 90:10 to 10:90 parts by weight.
  • the components (B) and (C) of the present disclosure can be pre-mixed according to the content ratio just defined then added to, or can be separately added to the lubricating oil (A) with the aid of mild heating (up to about 50°C) and mechanical agitation as needed.
  • the antioxidants and the antioxidant mixtures of the present disciosure can be used in combination with other additives typically found in lubricating oils, as well as other antioxidants.
  • the additives typically found in lubricating oils are, for example, dispersants, detergents, antiwear agents, antioxidants, friction modifiers, seal swell agents, demulsifiers, Vl (viscosity index) improvers, pour point depressants, antifoamants, corrosion inhibitors, and metal deactivators.
  • Vl viscosity index
  • pour point depressants antifoamants
  • corrosion inhibitors and metal deactivators.
  • Examples of dispersants can include polyisobutylene succ ⁇ nimldes, polyisobutylene succinate esters, and Mannich Base ashless dispersants.
  • Examples of detergents can include metallic and ashless aikyl phenates, metallic and ashless s ⁇ lfu ⁇ zed alkyl phenates, metallic and ashless aikyl sulfonates, metallic and ashless alkyl salicylates, metallic and ashless saiigenin derivatives.
  • antioxidants that can be used in combination with the antioxidant mixtures of the present disclosure can include dimethyl quinolines, trimethyfdihydroquinolines and oligomeric compositions derived therefrom, thiopropionates, metaiiic dithiocarbamates, oii soluble copper compounds, and para-phenylenediamines.
  • An example of a more preferred substituted para- phenylenediamine is Naugalube ® 403 which is commercially available from Chemtura Corporation. ,
  • anti-wear additives that can be used in combination with the additives of the present disclosure can include organoborates, organophosphites, organophosphates, organic sulfur-containing compounds, suifurized olefins, sulfurized fatty acid derivatives (esters), chlorinated paraffins, zinc dialkyldithiophosphates, zinc diaryldithiophosphates, dialkyldithiophosphate esters, diary I dithiophosphate esters, and phosphosulfurized hydrocarbons.
  • Lubrizol® 677A Lubrizol 1095, Lubrizol 1097, Lubrizol 1360, L ⁇ brizol 1395, Lubrizol 5139, and Lubrizof 5604, among others; and from the Ciba Corporation: irgaiube® 62, irgai ⁇ be 211 , irgaiube 232, Irgai ⁇ be 349, Irgaiube 353, Irgaiube TPPT, Irgafos® OPH, among others; and from the Chemt ⁇ ra Corporation: Durad ® 40, Durad 48, D ⁇ rad 60, Durad 125, D ⁇ rad 220X, D ⁇ rad 110, O ⁇ rad 150, Durad 220, Durad 300, D ⁇ rad 150B, D ⁇ rad 220B, D ⁇ rad 620B, Durad 310M, Weston® 600, Weston DLP, and Nauga
  • Examples of friction modifiers can include fatty acid esters and amides, organo moiybdenum compounds, molybdenum dialkyldithiocarbamates, molybdenum diafkyl dithiophosphates, molybdenum disulfide, tri-molybdenum cluster dialkyldithiocarbamates, and non-suifur molybdenum compounds, for example.
  • molybdenum additives are commercially available from the R. T. Vanderbilt Company, Inc.: Molyvan® A, MoIy van L, Molyvan 807, Molyvan 856B, Molyvan 822, and Molyvan 855, among others.
  • friction modifiers In addition to the aforementioned friction modifiers, the following are also examples of such additives and are commercially available from the Asahi Denka Kogyo K. K.: SAKURA-LUBE® 100, SAKURA-LUBE 165, SAKURA-LUBE 300, SAKURA- LUBE 310G, SAKURA-LUBE 321 , SAKURA-LUBE 474, SAKURA-LUBE 600, and SAKURA-LUBE 700, among others.
  • the following are also examples of friction modifiers and are commercially available from Akzo Nobel Chemicals GmbH: Ketjen-Ox® 77M and Ketjen-Ox 77TS, among others. Naugalube® MoIyFM is also an example and is commercially available from the Chemtura Corporation.
  • Vl Improvers can include olefin copolymers and dlsp ⁇ rsant olefin copolymers, for example.
  • poiymethacrylate and equivalents thereof are examples of pour point depressants.
  • polysiloxane and equivalents thereof can be employed as antifoamants.
  • rust inhibitors can include polyoxyalkylene polyols, benzotriazole derivatives, and equivalents thereof.
  • metal deactivators can include triazole, benzotriazole, 2- mercaptobenzothiazole, 2,5-dimercaptothiadiazole, tolyltrfazole derivatives, and N,N' ⁇ disa!icylidene ⁇ 1 ,2-dlaminopropane,
  • compositions when they contain the aforementioned additives, are typically blended into at least one base oil in amounts effective to provide their normal attendant functions. Representative effective amounts of such additives are illustrated in Table 1. TABLE 1. Lubricant Composition
  • Additive concentrates can comprise concentrated solutions or dispersions of the subject additives of this disclosure in amounts described above. These concentrates can comprise more than one additive and as such can be referred to as an additive-package. As an additive-package, several additives can be added simultaneously to the base oil to form the lubricating oil composition. Oissoiution of the additive concentrate into the lubricating oii can be facilitated by solvents and/or by mixing accompanied by mild heating. The concentrate or additive-package can be formutated to contain the additives in proper amounts to provide the desired concentration in the final formulation when the additive-package is combined with a predetermined amount of base oil.
  • the subject additives of the present disclosure can be added to small amounts of base oil and/or compatible solvents along with other desirable additives to form additive-packages.
  • These additive packages can contain active ingredients in collective amounts of from about 2.5 to about 90 percent, preferably from about 15 to about 75 percent, and more preferably from about 25 percent to about 60 percent by weight additives in the appropriate proportions with the remainder being base oil.
  • the final formulations can employ from about 1 to 20 weight percent of the additive- package with the remainder comprising base oil.
  • the total phosphorus content in the final formulations wili be less than about 600ppm.
  • the additives of the present disclosure are useful in a variety of lubricating oil base stocks.
  • the lubricating oil base stock is any natural or synthetic lubricating oil base stock fraction having a kinematic viscosity at 100 °C of about 2 to about 200 cSt, more preferably about 3 to about 150 cSt, and most preferably about 3 to about 100 cSt.
  • the lubricating oil base stock can be derived from natural lubricating oils, synthetic lubricating oils, or mixtures thereof.
  • Suitable lubricating oil base stocks include base stocks obtained by isomerization of synthetic wax and wax, as well as hydrocracked base stocks produced by hydrocracking (rather than solvent extracting) the aromatic and polar components of the crude oil.
  • Natural lubricating oils include animal oils, such as lard oil, tallow oil, vegetable oils including canoia oils, castor oils, and sunflower oils, for example, petroleum oils, mineral oils, and oils derived from coal or shale.
  • Synthetic oils include hydrocarbon oils and halo-substituted hydrocarbon oils, such as polymerized and interpoiymerized olefins, gas-to- liquids prepared by Fischer-Tropsch technology, alkylbenzenes, polyphenyls, alkylated dipheny! ethers, alkylated diphenyl sulfides, as well as their derivatives, analogs, homologs, and the like.
  • Synthetic lubricating oils also include aikylene oxide polymers, interpolymers, copolymers, and derivatives thereof, wherein the terminal hydroxyl groups have been modified by esterification, and etherification, for example.
  • esters useful as synthetic oils comprises the esters of dicarboxytic acids with a variety of alcohols.
  • Esters useful as synthetic oils also include those made from C 5 to C 18 monocarboxylic acids and polyols and polyoi ethers.
  • Other esters useful as synthetic oils include those made from copolymers of ⁇ -olefins and dicarboxylic acids which are esterified with short or medium chain length alcohols.
  • Silicon-based oils such as the polyalkyl-, polyarynl-, polyalkoxy-, or polyaryloxy-siloxane oils and silicate oils, comprise another useful class of synthetic lubricating oils.
  • Other synthetic lubricating oils include liquid esters of phosphorus-containing acids, polymeric tetrahydrofurans, poly ⁇ -olefins, and the fike.
  • the lubricating oil may be derived from unrefined, refined, re-refined oils, or mixtures thereof.
  • Unrefined oils are obtained directly from a natural source or synthetic source (e.g., coal, shale, or tar and bitumen) without further purification or treatment.
  • Examples of unrefined oils include a shale oil obtained directly from a retorting operation, a petroleum oil obtained directly from distillation, or an ester oil obtained directly from an esterification process, each of which is then used without further treatment.
  • Refined oils are similar to unrefined oils, except that refined oils have been treated in one or more purification steps to Improve one or more properties.
  • Suitable purification techniques can include distillation, hydrotreating, dewaxing, solvent extraction, acid or base extraction, filtration, percolation, and the like, aii of which are well-known to those skilled in the art.
  • Re-refined oils are obtained by treating refined oils in processes similar to those used to obtain the refined oils. These re-refined oils are also known as reclaimed or reprocessed oils and often are additionally processed by techniques for removal of spent additives and oil breakdown products.
  • Lubricating oil base stocks derived from the hydroisomerization of wax may also be used, either alone or in combination with the aforesaid natural and/or synthetic base stocks.
  • Such wax isomerate oil is produced by the hydroisomerization of natural or synthetic waxes or mixtures thereof over a hydroisomerization catalyst.
  • Natural waxes are typically the slack waxes recovered by the solvent dewaxing of mineral oils; synthetic waxes are typically the wax produced by the Fischer-Tropsch process.
  • the resulting Isomerate product is typically subjected to solvent dewaxing and fractionation to recover various fractions having a specific viscosity range.
  • Wax isomerate is also characterized by possessing very high viscosity indices, generally having a Vl of at least 130, preferably at least 135 or higher and, following dewaxing, a pour point of about -20 °C or lower.
  • the lubricating oil used in the practice of the present disclosure can be selected from any of the base oils in Groups i-V as broadly specified in the American Petroleum Institute (API) Base OH lnterchangeabllity Guidelines.
  • the five base oil groups are described in Table 2. TABLE 2.
  • the additives of the present disclosure are especially useful as components in many different lubricating oil compositions.
  • the additives can be included in a variety of oils with lubricating viscosity, including natural and synthetic lubricating oils and mixtures thereof.
  • the additives can be included in crankcase lubricating oils for spark-ignited and compression-ignited internal combustion engines.
  • the compositions can also be used in gas engine lubricants, steam and gas turbine lubricants, automatic transmission fluids, gear lubricants, compressor lubricants, metal-working lubricants, hydraulic fluids, and other lubricating oil and grease compositions.
  • the low-phosphorous 5W2Q engine formulation was pre-blended using the following commercially available compositions. There is no particular restriction on the type and exact composition of the materials in the context of the present disclosure.
  • the Mid-High Temperature Thermo-oxidative Engine Oil Simulation Test was performed according to the ASTM D7097 standard procedure to determine the deposit forming tendencies of the engine oil.
  • TEOST determines the mass of deposit formed on a specially constructed steel rod by continuously stressing a repetitive passage of 8.5 ml of test oil under thermai-oxidative and catalytic conditions for 24 hours. The less the amount of deposits obtained, the better the oxidation stability of the oil. Throughout the 24 hour test duration, volatile compounds of the test oil that are there originally or formed because of the oxidation of the oil are also collected in a small vial by means of condensation. Table 6 summarizes the test conditions.
  • Rotating Pressure Vessel Oxidation Test was conducted according to the standard test method specified by ASTM D 2272.
  • the RPVOT utilizes an oxygen-pressured vessel to evaluate the oxidation stability of new and in service turbine oils, having the same composition (base stock and additives), in the presence of water and a copper catalyst coil at 150°C.
  • the test oil, water, and a copper catalyst coil which are separately contained in a covered glass container, are placed.
  • the vessel is charged with oxygen to a pressure of 90 psi and placed in a constant temperature oil bath set at 150°C, and rotated axially at 100 rpm at an angle of 30 degrees from the horizontal.
  • the number of minutes required to reach a specific drop 25 psi in gage pressure indicates the oxidation stability of the test sample. The longer the duration to reachth ⁇ required pressure drop, the better oxidative stability of the test sample.
  • Table 10 lists the RPVOT test conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Lubricants (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Anti-Oxidant Or Stabilizer Compositions (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Compositions are disclosed that comprise a lubricant, at least a first antioxidant and an optional second antioxidant, the first antioxidant being a styrenated phenolic antioxidant and the optional second antioxidant a secondary diarylamine for synergistic antioxidant action. Also disclosed is a method of increasing the oxidation stability of lubricating oils comprising: adding thereto at least a first antioxidant and, optionally, a second antioxidant, the first antioxidant being a styrenated phenolic antioxidant and the optional second antioxidant a secondary diarylamine.

Description

LUBRICANT COMPOSITIONS STABILIZED WITH STYRENATED PHENOLIC ANTIOXIDANT
TECHNICAL FIELD
[0001] This disclosure relates to an improvement in oxidation stability of lubricating oils by using a styrenated phenolic antioxidant and an optional synergistic secondary diarytemine.
BACKGROUND OF THE DISCLOSURE
[0002] Hydrocarbon based lubricants, when exposed to heat and oxygen (air) that are ubiquitously present during their manufacture, transport, storage, or use, will oxidize over time. Uncontrolled oil oxidation produces harmful species, which eventually compromises the designated functions of the lubricant, decreases the service life, and, to a greater extent, damages the machinery it lubricates. One practical approach to the prevention of lubricant oxidation is the employment of a suitable antioxidant system comprising one or more active components.
[0003] Driven by escalating performance and environmental requirements for many classes of lubricant products, the industry is continuously looking for high performance antioxidants to work with modem lubricant formulations to achieve, among other things, increased oxidative stability and drain intervals, improved tow temperature properties, and greater fuel economy. One notable change from the lubricant formulation point of view is the reduction in the use of zinc dialkyldithiophosphates (ZDDP). Over the past decades, ZDDP's have been an important class of lubricant additive for many types of lubricants owing to their superior cost-effectiveness in wear protection and oxidation inhibition, particularly through a synergistic action with primary antioxidants. However, the presence of zinc contributes to the formation of ash particulates and volatile phosphors, that after entering the exhaust stream, poison the NOx catalysis, thus shortening the useful iife of a catalytic converter.
[0004] In view of the aforementioned shortcomings of the known zinc and phosphorus-comprising additives, efforts have been made to provide lubricating oil additives that contain neither zinc nor phosphorus or, at least, contain them in substantially reduced amounts. It would therefore be desirable to provide improved additives for stabilizing and/or inhibiting lubricating oils from oxidative, thermal, and/or light-induced degradation while reducing the content of zinc and phosphorous employed In the lubricating oils.
[0005] According to the present disclosure, we have discovered an effective phenolic antioxidant that offers superior antioxidancy on its own and possesses unique antioxidant synergy when properiy used in combination with a secondary diary Ia mine antioxidant for lubricant base stocks and/or lubricant formulations, particularly in those containing a low level of ZDDP. SUMMARY OF THE DISCLOSURE
[0006] it has now been discovered that a class of styrenated phenolic antioxidants offers superior antioxidancy and their mixtures with a secondary diarylamine exhibit synergistic effects and therefore are more effective than using either of the materials afone in inhibiting oxidation of lubricating oii compositions, in particular, the styrenated phenolics act synergistlcally with alkylated diarylamines to provide significant improvements in oxidation control. More particularly, the present disclosure is directed to a lubricating oii composition comprising: (A) one or more base oils comprising API (American Petroleum Institute) Group I, Group M, Group ill, Group iV and synthetic lubricating base stocks of varying viscosity grades;
(B) at least a first antioxidant selected from one or more hindered phenolics or an isomer or isomeric mixture thereof having the following general formula:
Figure imgf000005_0001
wherein R1 and R2 are independent and comprise hydrogen or styryl groups represented by the following formula (IA):
Figure imgf000006_0001
wherein n is an integer of from 0 to 5 and the α-position on the styryl group is optionally substituted with a hydrocarbyl group having from 1 to about 8 carbon atoms, and R3 is a hydrogen or hydrocarbyl group having from 1 to about 100 carbon atoms; and
(C) optionally, at least one second antioxidant comprising one or more secondary diary Ia mines having the following general formula:
(R4)a-Ar1-NH-Ar2-(R5)b (II)
wherein Ar1 and Ar2 are independent and comprise aromatic hydrocarbons, R4 and Rs are independent and comprise hydrogen and hydrocarbyl groups and a and b are independent and 0 to 3, with the proviso that (a+b) is not greater than 4.
[0007] In another aspect, the present disclosure is directed to a method of increasing the oxidation stability of a lubricating oil, the method comprising: adding to a lubricating oil at least a first antioxidant comprising one or more hindered phenolic antioxidants represented by the general formula (I) and optionally, a second antioxidant comprising one or more secondary diarylamines represented by the general formula (II).
DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0008] The term "hydrocarbyl" as used herein includes hydrocarbon as well as substantially hydrocarbon groups. "Substantially hydrocarbon" describes groups that contain heteroatom substituents that do not alter the predominantly hydrocarbon nature of the group. Examples of hydrocarbyl groups can include, but are not limited to, hydrocarbon substituents, substituted hydrocarbon substituents, and heteroatom substituents. Hydrocarbyl groups that may be utilized may contain from 1 to about 100 carbon atoms, preferably from about 6 to about 30 carbon atoms. [0009] Hydrocarbon substituents can include, but are not limited to aliphatic, such as a Iky I or alkenyl; alicyclic, such as cycioalkyl and cycioaikenyl; aromatic substituents; aromatic-, aliphatic-, and alicyclic-substituted aromatic substituents, and the like; as well as cyclic substituents wherein the ring is completed through another portion of the molecule (that is, for example, any two indicated substituents may together form an alicyclic radical). [0010] Substituted hydrocarbon substituents, comprising those substituents containing non-hydrocarbon portions which, in the context of this disclosure, do not alter the predominantly hydrocarbon nature of the substituent, those skilled in the art will be aware of such groups that can include, halo, hydroxy, mercapto, nitro, nitroso, sulfoxy, and cyano, for example. [0011] Heteroatom substituents, for exampie, substituents that will, while having a predominantly hydrocarbon character within the context of this disclosure, contain at least one atom other than carbon present in a ring or chain otherwise composed of carbon atoms, such as alkoxy or alkylthio, for example. Suitable heteroatoms will be apparent to those of ordinary skill in the art and can include, for exampie, sulfur, oxygen, nitrogen, in addition to heteroatoms, substituents containing heteroatoms can be included, such as, pyridyl, furyl, thienyl, and imidazoiyl, for example. Preferably, no more than about 2, more preferably no more than one, sυbstitυent containing a heteroatom will be present for every ten carbon atoms in the hydrocarbyl group. Most preferably, there will be no such heteroatom substituents in the hydrocarbyl group.
[0012] As stated above, the hindered phenolic for use as the first antioxidant in the practice of this disclosure can be represented by the following formula (I):
Figure imgf000009_0001
wherein Ri and Rz are independent and hydrogen or styryl groups represented by the following formula (IA):
Figure imgf000009_0002
wherein n Is an integer of from 0 to 5 and the exposition on the styryl group is optionally substituted with a hydrocarbyl group having from 1 to about 8 carbon atoms; and R3 Is a hydrogen or hydrocarbyl group having from one to about 100 carbon atoms, preferably from one to about 40 carbon atoms. The optional second antioxidant comprising one or more secondary diarylamlnes can be represented as having the following general formula:
(R4)a-Ar1-NH-Ar2-(R5)b (II) wherein Ari and Ar2 are independent and comprise aromatic hydrocarbons, and R4 and R5 are independent and comprise hydrogen and hydrocarbyl groups, and a and b are independent and 0 to 3, with the proviso that (a+b) is not greater than 4. The preferred aryl moieties suitable for the secondary diaryfamine as represented by the general formula (H) are phenyl or naphthyl. There is no particular restriction on the type and total number of carbon atoms In the hydrocarbyl group, R3 to R5, of the hindered phenolics and the substituted secondary diarylamines as represented by the general formulae (I) - (II), respectively, with the proviso that the total number of carbon atoms render sufficient thermal stabilities and solubility of the additives in the base oil (A). Preferably, the hydrocarbyl moieties are alkyl, alkenyl, cycloalkyl, cycloalkenyl, aryl, arylalkyl, arylalkenyl, naphthyl, and naphthyl moieties that can be optionally substituted with alkyl, alkenyl , hydroxy!, and/or carboxyl groups, for example. The following are examples of preferred hydrocarbyls suitable for the practice of this disclosure: (a) straight chain branched chain alkyl or aikenyl groups containing one to 40 carbon atoms, even more preferably straight chain or branched chain aikyl groups containing one to 20 carbon atoms such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, 2-ethyl hexyl, nonyl, decyt, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, oleyl, nonadecyl, eicosyl, isomers and mixtures thereof and the like; (b) cyclic aikyl and alkenyl groups such as cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclododecyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl, cyclododecenyl, cyclopentadienyl, cydohexadienyl, cycloheptadienyl, cyclooctadienyl, and the like wrth optionally substituted with one or more alkyl or alkenyl radicals having one to 40 carbon atoms, and more preferably one to 16 carbon atoms suGh as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, isomers and mixtures of the foregoing, and the like; (c) phenyl, phenyl substituted with one or more alkyl or alkenyl radicals having one to 40 carbon atoms, and even more preferably one to 16 carbon atoms such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadeyl, hexadecyl, Isomers of the foregoing, and the like; (d) naphthyl and naphthyl substituted with one or more aikyl or alkenyl radicals having one to 40 carbon atoms, and even more preferably one to 16 carbon atoms such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadeyl, hexadecyl, isomers and mixtures thereofof the foregoing, and the like; (e) heteroatom substituents, particularly alkoxyaikyl, alkoxyary! groups having from one to 40 carbon atoms, and more preferably from one to 20 carbon atoms such as methoxymethyl, ethoxymethyl, ethoxyethyl, pro poxym ethyl, propoxyethyl, propoxypropyl, and the like; and phenyl substituted with one or more alkoxy groups having one to 16 carbon atoms, such as methoxy, ethoxy, propoxy, butoxy, pentoxy, hexoxy, heptoxy, octoxy, nonoxy, decoxy, tridecyl, tetradecyl, pentadeyl, hexadecyl isomers and mixtures of the foregoing, and the like; (f) substituted hydrocarbon substituents, particularly hydroxyl, carboxyl, nitro, or cyano, for example,
[0013] With wide variation in the composition of the hydrocarbyl moieties, the hindered phenolic antioxidants represented by the formula (I) that are useful in the practice of this disclosure may include 2,6-bis(alpha- methylbenzyl)-4-methylphenol, 2,6-bis(alpha-methylbenzyl)-4-ethylphenol, 2,6-bis(alpha-methylbenzyl)-4-isobutylphenol,and the like; 2-alpha- methylbenzyl-4-methylphenol, 2-alpha-methylbenzyl-4-ethylphenol, 2-alpha- methylbenzyl-4-isobutylphenol, and the like; 2,6-bis(alpha-methylstyryl)-4- methylphenol, 2,6-bis(alpha-methylstyryl)-4-ethylphenol, 2,6-bis(alpha~ methylstyryl)-4-ϊsobutylphenol, and the like; 2-aipha-methylstyryl-4- methylphenol, 2-alpha«methylstyryf-4-ethylphenof, 2~alpha-methylstyryl-4- isobυtylphenol, and the like; 2,2'-thiobis(6-alpha-methylbenzyl-4- methylphenol), 4,4'-thiobis(2,6-di-alpha-methylbenzyl-4-methylphenol), and the like; 2,2'-thiobis(6-aJpha-methylstyryl-4-methylphenol), 4,4'-thiobis(2,6-di- aipha-methylstyryl-4-methylphenoi), and the iike; 2,2'-methylenebis(6~alpha- methylbenzyl-4-methylphenol), 4,4'-methyIenebis(2,6-di-alpha-methylbenzyl-4- methyfphenol), and the like; 2,2"-methylenebis(6-alpha-methylstyryl-4- methylphenol), and 4,4'-methylenebis(2,e-di-alpha-methylstyryl-4- methylphenoi), for example.
[0014] According to an embodiment, the secondary diary Ia mines represented by the general formulae ( II) that are useful in the practice of the present disclosure can include diphenylamine, monaikylated diphenylamine, dialkylated diphenylamine, trialkylated diphenylamine, and/or mixtures thereof, 3-hydroxydiphenylamine, 4-hydroxydiphenylamine, mono- and/or di- butyldiphenylamine, mono- and/or di-octyldiphenylamine, mono- and/or di- nonyldiphenylamlne, phenyJ-α-naphthylamine, phenyl-β-naphthylamine, diheptyldiphenylamine, mono- and/or di-(α-methylstyryl)diphenylamine, mono- and/or distyryidiphenylamine, 4-(p~toluenesulfonamido)diphenylamine, 4- isopropoxydiphenylamine, f-octylated N-phenyl-1-πaphthylamine, mixtures of mono- and dialkylated t-butyl-t-octyldiphenylamines. The following are examples of preferred secondary diarylamines that are commercially available from the Ciba Coφoration: Irganox® L67, Irganox L57, and Irganox L06. The following are examples of more preferred secondary diarylamines and are commercially available from the Chemtura Corporation: Naugalube® 438, Naugaiube 438L, Naυgalube 690, Naugalυbe 640, Naugalube 635, Naυgalube 680, Naugaiube AMS, Naugalube APAN, and Naugard PANA.
[0015] in the preparation of the lubricating oil compositions comprising component (B), the hindered phenolic antioxidant of the above general formulae (I), and the component (C), the secondary diarylamine with the above general formula (II), the antioxidants can be blended in the compositions in a range of about 0.01 to about 10 weight percent each, and preferably from about 0.1 to about 5 weight percent. The content ratio of the hindered phenolic antioxidant to the secondary diarylamine employed in the lubricating oil compositions of the present disclosure can be \n practically all proportions. In illustrative embodiments, the ratio will be in the range of 1 :99 to 99:1 parts by weight and more preferably, 90:10 to 10:90 parts by weight. The components (B) and (C) of the present disclosure can be pre-mixed according to the content ratio just defined then added to, or can be separately added to the lubricating oil (A) with the aid of mild heating (up to about 50°C) and mechanical agitation as needed.
[0016] The antioxidants and the antioxidant mixtures of the present disciosure can be used in combination with other additives typically found in lubricating oils, as well as other antioxidants. The additives typically found in lubricating oils are, for example, dispersants, detergents, antiwear agents, antioxidants, friction modifiers, seal swell agents, demulsifiers, Vl (viscosity index) improvers, pour point depressants, antifoamants, corrosion inhibitors, and metal deactivators. Such additives are well known to those skilled in the art and there is no particular restriction on the type of these additives for this disclosure. U.S. Pat. No. 5,498,809, incorporated herein by reference in its entirety, discloses useful lubricating oil composition additives.
[0017] Examples of dispersants can include polyisobutylene succϊnimldes, polyisobutylene succinate esters, and Mannich Base ashless dispersants. Examples of detergents can include metallic and ashless aikyl phenates, metallic and ashless sυlfuπzed alkyl phenates, metallic and ashless aikyl sulfonates, metallic and ashless alkyl salicylates, metallic and ashless saiigenin derivatives. [0018] Examples of antioxidants that can be used in combination with the antioxidant mixtures of the present disclosure can include dimethyl quinolines, trimethyfdihydroquinolines and oligomeric compositions derived therefrom, thiopropionates, metaiiic dithiocarbamates, oii soluble copper compounds, and para-phenylenediamines. The following are examples of preferred substituted para-phenylenediamines that are commercially available from the Flβxsys Corporation: Santoflex® IPPD1 Santoflex 6PPD, Santoflex 44PD, Santoflex 77PD, Santoflex 134PD, Santofiex 1350PD, Santoflex 715PD, and Santoflex 434PD. An example of a more preferred substituted para- phenylenediamine is Naugalube® 403 which is commercially available from Chemtura Corporation. ,
[0019] Examples of anti-wear additives that can be used in combination with the additives of the present disclosure can include organoborates, organophosphites, organophosphates, organic sulfur-containing compounds, suifurized olefins, sulfurized fatty acid derivatives (esters), chlorinated paraffins, zinc dialkyldithiophosphates, zinc diaryldithiophosphates, dialkyldithiophosphate esters, diary I dithiophosphate esters, and phosphosulfurized hydrocarbons. The following are examples of the aforementioned additives and are commercially available from the Lubrizol Corporation: Lubrizol® 677A, Lubrizol 1095, Lubrizol 1097, Lubrizol 1360, Lυbrizol 1395, Lubrizol 5139, and Lubrizof 5604, among others; and from the Ciba Corporation: irgaiube® 62, irgaiυbe 211 , irgaiube 232, Irgaiυbe 349, Irgaiube 353, Irgaiube TPPT, Irgafos® OPH, among others; and from the Chemtυra Corporation: Durad® 40, Durad 48, Dυrad 60, Durad 125, Dυrad 220X, Dυrad 110, Oυrad 150, Durad 220, Durad 300, Dυrad 150B, Dυrad 220B, Dυrad 620B, Durad 310M, Weston® 600, Weston DLP, and Naugatube® TPP.
[0020] Examples of friction modifiers can include fatty acid esters and amides, organo moiybdenum compounds, molybdenum dialkyldithiocarbamates, molybdenum diafkyl dithiophosphates, molybdenum disulfide, tri-molybdenum cluster dialkyldithiocarbamates, and non-suifur molybdenum compounds, for example. The following are examples of molybdenum additives and are commercially available from the R. T. Vanderbilt Company, Inc.: Molyvan® A, MoIy van L, Molyvan 807, Molyvan 856B, Molyvan 822, and Molyvan 855, among others. In addition to the aforementioned friction modifiers, the following are also examples of such additives and are commercially available from the Asahi Denka Kogyo K. K.: SAKURA-LUBE® 100, SAKURA-LUBE 165, SAKURA-LUBE 300, SAKURA- LUBE 310G, SAKURA-LUBE 321 , SAKURA-LUBE 474, SAKURA-LUBE 600, and SAKURA-LUBE 700, among others. The following are also examples of friction modifiers and are commercially available from Akzo Nobel Chemicals GmbH: Ketjen-Ox® 77M and Ketjen-Ox 77TS, among others. Naugalube® MoIyFM is also an example and is commercially available from the Chemtura Corporation.
[0021] Examples of Vl Improvers can include olefin copolymers and dlspβrsant olefin copolymers, for example. In certain embodiments, poiymethacrylate and equivalents thereof are examples of pour point depressants. In another embodiment, polysiloxane and equivalents thereof can be employed as antifoamants. Examples of rust inhibitors can include polyoxyalkylene polyols, benzotriazole derivatives, and equivalents thereof. Examples of metal deactivators can include triazole, benzotriazole, 2- mercaptobenzothiazole, 2,5-dimercaptothiadiazole, tolyltrfazole derivatives, and N,N'~disa!icylidene~1 ,2-dlaminopropane, The following are examples of metal deactivators and are commercially available from Ciba Corporation: Irgamet® 30, lrgamet 39 and irgamet 42.
Lubricant Compositions
[0022] Compositions, when they contain the aforementioned additives, are typically blended into at least one base oil in amounts effective to provide their normal attendant functions. Representative effective amounts of such additives are illustrated in Table 1. TABLE 1. Lubricant Composition
Figure imgf000018_0001
[0023] Additional additives can be employed and in such cases it may be desirable, although not necessary, to prepare additive concentrates. Additive concentrates can comprise concentrated solutions or dispersions of the subject additives of this disclosure in amounts described above. These concentrates can comprise more than one additive and as such can be referred to as an additive-package. As an additive-package, several additives can be added simultaneously to the base oil to form the lubricating oil composition. Oissoiution of the additive concentrate into the lubricating oii can be facilitated by solvents and/or by mixing accompanied by mild heating. The concentrate or additive-package can be formutated to contain the additives in proper amounts to provide the desired concentration in the final formulation when the additive-package is combined with a predetermined amount of base oil. Thus, the subject additives of the present disclosure can be added to small amounts of base oil and/or compatible solvents along with other desirable additives to form additive-packages. These additive packages can contain active ingredients in collective amounts of from about 2.5 to about 90 percent, preferably from about 15 to about 75 percent, and more preferably from about 25 percent to about 60 percent by weight additives in the appropriate proportions with the remainder being base oil. The final formulations can employ from about 1 to 20 weight percent of the additive- package with the remainder comprising base oil. Preferably, the total phosphorus content in the final formulations wili be less than about 600ppm.
[0024] All of the weight percentages expressed herein (unless otherwise indicated) are based on the active ingredient (Al) content of the additive, and/or upon the total weight of any additive-package, or formulation, which will be the sum of the Al weight of each additive plus the weight of total oil or diluent.
[0025] In general, the additives of the present disclosure are useful in a variety of lubricating oil base stocks. The lubricating oil base stock is any natural or synthetic lubricating oil base stock fraction having a kinematic viscosity at 100 °C of about 2 to about 200 cSt, more preferably about 3 to about 150 cSt, and most preferably about 3 to about 100 cSt. The lubricating oil base stock can be derived from natural lubricating oils, synthetic lubricating oils, or mixtures thereof. Suitable lubricating oil base stocks include base stocks obtained by isomerization of synthetic wax and wax, as well as hydrocracked base stocks produced by hydrocracking (rather than solvent extracting) the aromatic and polar components of the crude oil. Natural lubricating oils include animal oils, such as lard oil, tallow oil, vegetable oils including canoia oils, castor oils, and sunflower oils, for example, petroleum oils, mineral oils, and oils derived from coal or shale.
[0026] Synthetic oils include hydrocarbon oils and halo-substituted hydrocarbon oils, such as polymerized and interpoiymerized olefins, gas-to- liquids prepared by Fischer-Tropsch technology, alkylbenzenes, polyphenyls, alkylated dipheny! ethers, alkylated diphenyl sulfides, as well as their derivatives, analogs, homologs, and the like. Synthetic lubricating oils also include aikylene oxide polymers, interpolymers, copolymers, and derivatives thereof, wherein the terminal hydroxyl groups have been modified by esterification, and etherification, for example.
[0027] Another suitable class of synthetic lubricating oils comprises the esters of dicarboxytic acids with a variety of alcohols. Esters useful as synthetic oils also include those made from C5 to C18 monocarboxylic acids and polyols and polyoi ethers. Other esters useful as synthetic oils include those made from copolymers of α-olefins and dicarboxylic acids which are esterified with short or medium chain length alcohols.
[0028] Silicon-based oils, such as the polyalkyl-, polyarynl-, polyalkoxy-, or polyaryloxy-siloxane oils and silicate oils, comprise another useful class of synthetic lubricating oils. Other synthetic lubricating oils include liquid esters of phosphorus-containing acids, polymeric tetrahydrofurans, poly α-olefins, and the fike.
[0029] The lubricating oil may be derived from unrefined, refined, re-refined oils, or mixtures thereof. Unrefined oils are obtained directly from a natural source or synthetic source (e.g., coal, shale, or tar and bitumen) without further purification or treatment. Examples of unrefined oils include a shale oil obtained directly from a retorting operation, a petroleum oil obtained directly from distillation, or an ester oil obtained directly from an esterification process, each of which is then used without further treatment. Refined oils are similar to unrefined oils, except that refined oils have been treated in one or more purification steps to Improve one or more properties. Suitable purification techniques can include distillation, hydrotreating, dewaxing, solvent extraction, acid or base extraction, filtration, percolation, and the like, aii of which are well-known to those skilled in the art. Re-refined oils are obtained by treating refined oils in processes similar to those used to obtain the refined oils. These re-refined oils are also known as reclaimed or reprocessed oils and often are additionally processed by techniques for removal of spent additives and oil breakdown products.
[0030] Lubricating oil base stocks derived from the hydroisomerization of wax may also be used, either alone or in combination with the aforesaid natural and/or synthetic base stocks. Such wax isomerate oil is produced by the hydroisomerization of natural or synthetic waxes or mixtures thereof over a hydroisomerization catalyst. Natural waxes are typically the slack waxes recovered by the solvent dewaxing of mineral oils; synthetic waxes are typically the wax produced by the Fischer-Tropsch process. The resulting Isomerate product is typically subjected to solvent dewaxing and fractionation to recover various fractions having a specific viscosity range. Wax isomerate is also characterized by possessing very high viscosity indices, generally having a Vl of at least 130, preferably at least 135 or higher and, following dewaxing, a pour point of about -20 °C or lower.
[0031] The lubricating oil used in the practice of the present disclosure can be selected from any of the base oils in Groups i-V as broadly specified in the American Petroleum Institute (API) Base OH lnterchangeabllity Guidelines. The five base oil groups are described in Table 2. TABLE 2. API Base OH Category
Figure imgf000023_0001
[0032] The additives of the present disclosure are especially useful as components in many different lubricating oil compositions. The additives can be included in a variety of oils with lubricating viscosity, including natural and synthetic lubricating oils and mixtures thereof. The additives can be included in crankcase lubricating oils for spark-ignited and compression-ignited internal combustion engines. The compositions can also be used in gas engine lubricants, steam and gas turbine lubricants, automatic transmission fluids, gear lubricants, compressor lubricants, metal-working lubricants, hydraulic fluids, and other lubricating oil and grease compositions.
[0033] The advantages and the important features of the present disclosure will be demonstrated in the following examples. EXAMPLE 1
[0034] The antioxidant efficacy of the hindered phenolic and the synergistic effects; from a combined usage of the hindered phenoiic and the secondary diarylamine, have been demonstrated in a iow-phosphorus 5W20 engine oil formulation by using the pressurized differential scanning calorimetry (PDSC) test and the Mid-High Temperature Thermo-oxidation Engine Oil Simulation Test (TEOST, MHT).
[0035] Preparation of a Low-Phosphorus 5W20 Engine Oil Formulation
The low-phosphorous 5W2Q engine formulation was pre-blended using the following commercially available compositions. There is no particular restriction on the type and exact composition of the materials in the context of the present disclosure.
TABLE 3. Low- hos horus 5W20 En ine Oil Pre-blend
Figure imgf000024_0001
[0036] To the 5W20 engine oil pre-blend set forth in Table 3 was added antioxidants, as depicted in Tables 5 and 7 below, in preparation of 5W20 engine oils. The finished engine oils contain approximately 450 ppm of phosphorus derived from (ZDDP). Pressurized Differential Scanning Calorimetrv Results [0037] The Pressurized Differential Scanning Calorimetry (PDSC) measures the oxidation induction time (OtT) of oil. The instrument used is a Mettler® DSC27HP manufactured by Mettler-Toledo, lnc (Switzerland). The instrument has a typical repeatability of ±2.5 minutes with 95 percent confidence over an OIT of 100 minutes. The PDSC test conditions are given in Table 4. For every 50 grams of test biend prepared, 40 μi of oii soluble ferric naphthenate (6 weight percent in mineral oil) was added, prior to PDSC testing, to facilitate 50 ppm of iron in oil. At the beginning of a PDSC run, the steel cell is pressurized with oxygen and heated at a rate of 40°C per minute to the prescribed isothermal temperature. The induction time is measured from the time the sample reaches its isothermal temperature until the enthalpy change is observed. The longer the oxidation induction time, the better the oxidation stability of the oil
TABLE 4. PDSC Test Conditions
Figure imgf000025_0001
[0038] The finished 5W20 engine oils were tested in the PDSC using the conditions set forth in Table 4. The test results in terms of average OiT and standard deviation of each duplicate run are given in Table 5 below. The exceedingly long OiT results of blends 1 and 3 in the data table as compared to the respective comparatives demonstrate that the engine oil compositions containing the hindered phenolic antioxidant of the present disclosure have superior oxidative stabilities.
TABLE 5. PDSC Results of the 5W20 Engine Oil Blends Containing a Single Antioxidant.
Figure imgf000026_0001
Mid-High Temperature Thermo-oxidative Engine Oil Simulation Test [0039] The Mid-High Temperature Thermo-oxidative Engine Oil Simulation Test (MHT TEOST) was performed according to the ASTM D7097 standard procedure to determine the deposit forming tendencies of the engine oil. TEOST determines the mass of deposit formed on a specially constructed steel rod by continuously stressing a repetitive passage of 8.5 ml of test oil under thermai-oxidative and catalytic conditions for 24 hours. The less the amount of deposits obtained, the better the oxidation stability of the oil. Throughout the 24 hour test duration, volatile compounds of the test oil that are there originally or formed because of the oxidation of the oil are also collected in a small vial by means of condensation. Table 6 summarizes the test conditions.
TABLE 6, TEOST MHT Test Conditions ASTM D 7097
Figure imgf000027_0001
[0040] The results obtained from the TEOST testing of the finished 5W20 engine oils are given in Table 7. Based on the data, the improved deposit control efficacy of the additives of this disclosure has been clearly demonstrated. The significantly lower amounts of deposits obtained for blends 6 and 7 as compared to that of the blend 5, the pre-blend, and compared to the comparative blends 8 and 9 respectively containing an equal level of a commercial hindered phenolic ester antioxidant demonstrate that the lubricating oil compositions containing the antioxidant of this disclosure have superior oxidative stability to better control deposit formation in the TEOST. TABLE 7. TEOST Results of the 5W20 Engine Oil Blends Containing a Single Antioxidant
Figure imgf000028_0001
[0041] In the TEOST, the synergistic antioxidant effect from a proper mixing of the styrenated phenolics and a secondary diarylamine according to the practice of this disclosure in stabilizing the 5W20 engine oil formulation is more clearly seen. As indicated by the data tabulated in Table 8, the lower amounts of deposits obtained for blends 10 and 11 demonstrate that the lubricating oils containing appropriate mixtures of the antioxidant mixtures according to the present disclosure have superior oxidative stability to better control deposit formation in the TEOST.
TABLE 8. TEOST Results of the 5W20 Engine Oil Blends Containing Multiple Antioxidants
Figure imgf000029_0001
EXAMPLE 2
[0042] The antioxidant efficacy of the hindered phenolic and the synergistic effects from a combined usage of the hindered phenolic and the secondary diarylamine according to the practice of this disclosure have been demonstrated in an industrial turbine oil formulation, tested by using the Rotating Pressure Vessel Oxidation Test (RPVOT) method.
Preparation of an Industrial Turbine Formulation
[0043] An industrial turbine oil pre-btend was first prepared with the following commercially available components. There is no particular restriction on the type and exact composition of the materials in the context of the present disclosure. TABLE 9. Turbine Oil Pre-blend
Figure imgf000030_0001
[0044] To the turbine oii pre-blend as set forth in Table 9 was added an antioxidant as depicted in Table 11 in preparation of a variety of fully formulated industrial turbine oils each containing 1.0 percent by weight of antioxidants in total.
Rotating Pressure Vessel Oxidation Test (RPVOT) [0045] The Rotating Pressure Vessel Oxidation Test (RPVOT) was conducted according to the standard test method specified by ASTM D 2272. The RPVOT utilizes an oxygen-pressured vessel to evaluate the oxidation stability of new and in service turbine oils, having the same composition (base stock and additives), in the presence of water and a copper catalyst coil at 150°C. In a vessel equipped with a pressure gauge, the test oil, water, and a copper catalyst coil, which are separately contained in a covered glass container, are placed. The vessel is charged with oxygen to a pressure of 90 psi and placed in a constant temperature oil bath set at 150°C, and rotated axially at 100 rpm at an angle of 30 degrees from the horizontal. The number of minutes required to reach a specific drop 25 psi in gage pressure indicates the oxidation stability of the test sample. The longer the duration to reachthβ required pressure drop, the better oxidative stability of the test sample. Table 10 lists the RPVOT test conditions.
TABLE 10, RPVOT Test Conditions
Figure imgf000031_0001
[0046] The RPVOT test results of the turbine oHs are set forth in Table 11. It can be seen from the above data that the turbine oil formulation containing the styrenated phenolic antioxidant (btend 17) of the present disclosure possessed better oxidative stability than the turbine oii pre-blend (blend 15) and the comparative biend 20 containing an equal amount of hindered phenolic ester. It can also be seen from the above data that the turbine oil formulation containing a proper mixture of the styrenated phenolic antioxidant and the secondary diarylamine (biend 19) according to the practice of the presentation disclosure exhibited a synergy that better stabilized the turbine oii.
TABLE 11. RPVOT Results of the Turbine Oils
Figure imgf000032_0001
[0047] in view of the many changes and modifications that can be made without departing from principles underlying the present disclosure, reference should be made to the appended claims for an understanding of the scope of the protection to be afforded the disclosure.

Claims

What is claimed is:
1. A composition comprising: (a) at least one lubricating oil comprising one or more Group I, Group H, Group IiI, Group IV or synthetic lubricating base stocks of varying viscosity grades; (b) at least a first antioxidant comprising one or more hindered phenolics having the general formula:
Figure imgf000033_0001
or an Isomer or isomeric mixture thereof wherein Ri and R2 are independent and hydrogen or styryl groups represented by formula (IA):
Figure imgf000033_0002
wherein n is an integer of from 0 to 5 and the α-position on the styryl group is optionally substituted with a hydrocarbyl group having from 1 to about 8 carbon atoms; and R3 is hydrogen or a hydrocarbyl group; and (c) an optional second antioxidant comprising one or more secondary dlarylamines having the general formula: (R4)a-Ar1-NH-Ar2-(R5)b wherein Ar1 and Ar2 are independent and comprise one or more aromatic hydrocarbons, and R4 and R5 are independent and comprise one or more hydrogen or hydrocarbyl groups, , and a and b are independent and integers from 0 to 3, with the proviso that (a+b) is not greater than 4.
2. A composition of claim 1 further comprising at least one additional additive comprising one or more dispersants, detergents, rust inhibitors, metal deactivators, antiwear agents, antifoamants, friction modifiers, seal swell agents, demulsifiers, viscosity index Improvers, and pour point depressants.
3. A composition of claim 1 wherein the lubricant is suitable for use in a high temperature and iron cataiyzed environment,
4. A composition of claim 3 wherein the lubricant is a grease.
5. A method of increasing the oxidation stability of a lubricating oil comprising one or more Group I, Group II, Group III, Group IV or synthetic lubricating base stocks of varying viscosity grades comprising adding thereto a composition comprising from about 0.01 to about 10 weight percent of a first antioxidant and from about 0.01 to about 10 weight percent of a second antioxidant, the first antioxidant comprising one or more hindered phenoitcs having the general formula:
Figure imgf000035_0001
or an isomer or isomeric mixture thereof wherein Ri and R2 are independent and hydrogen or styryl groups represented by formula (IA):
Figure imgf000035_0002
wherein n Is an integer of from 0 to 5 and the α-position on the styryl group is optionally substituted with a hydrocarbyl group having from 1 to about 8 carbon atoms; and R3 is hydrogen or a hydrocarbyl group and the second antioxidant comprising one or more secondary diarylamines having the general formula: (R4)s-Arr NH-Ar2-(R5)b wherein Ari and Ar2 are independent and comprise one or more aromatic hydrocarbons, and R4 and R5 are Independent and comprise one or more hydrogen or hydrocarbyl groups , and a and b are independent and integers from 0 to 3, with the proviso that (a+b) is not greater than 4.
6. The method of claim 5 wherein the content ratio of the first antioxidant to the second antioxidant is from 1 :99 to 99:1.
7. The method of claim 5 further comprising one or more dispersants, detergents, rust inhibitors, metal deactivators, antiwear agents, antifoamants, friction modifiers, sea! swell agents, demulsifters, viscosity index improvers, and pour point depressants.
8. A method of claim 5 wherein the composition comprises about 600 ppm or less of phosphorus.
PCT/US2008/068105 2007-07-06 2008-06-25 Lubricant compositions stabilized with styrenated phenolic antioxidant WO2009009293A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010515051A JP2010532414A (en) 2007-07-06 2008-06-25 Lubricant composition stabilized by styrenated phenolic antioxidant
CN200880021556A CN101688142A (en) 2007-07-06 2008-06-25 With the stable lubricant compositions of the phenolic antioxidant of vinylbenzeneization
EP08771877A EP2162518A1 (en) 2007-07-06 2008-06-25 Lubricant compositions stabilized with styrenated phenolic antioxidant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/825,449 US20090011961A1 (en) 2007-07-06 2007-07-06 Lubricant compositions stabilized with styrenated phenolic antioxidant
US11/825,449 2007-07-06

Publications (1)

Publication Number Publication Date
WO2009009293A1 true WO2009009293A1 (en) 2009-01-15

Family

ID=39739831

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2008/068105 WO2009009293A1 (en) 2007-07-06 2008-06-25 Lubricant compositions stabilized with styrenated phenolic antioxidant
PCT/US2008/069320 WO2009009481A2 (en) 2007-07-06 2008-07-07 Liquid styrenated phenolic compositions and processes for forming same

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2008/069320 WO2009009481A2 (en) 2007-07-06 2008-07-07 Liquid styrenated phenolic compositions and processes for forming same

Country Status (7)

Country Link
US (1) US20090011961A1 (en)
EP (2) EP2162518A1 (en)
JP (2) JP2010532414A (en)
KR (2) KR20100029119A (en)
CN (2) CN101688142A (en)
RU (2) RU2010103963A (en)
WO (2) WO2009009293A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012035954A1 (en) * 2010-09-14 2012-03-22 株式会社Adeka Antioxidant composition, and lubricating oil composition containing same
JP2012062347A (en) * 2010-09-14 2012-03-29 Adeka Corp Antioxidant for lubricant and lubricant composition containing the same

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090227035A1 (en) * 2005-05-24 2009-09-10 Taxaco Development Corporation Method and test kit for the determination of iron content of in-use lubricants
US9315760B2 (en) 2009-02-02 2016-04-19 Vanderbilt Chemicals, Llc Ashless lubricant composition
WO2010088377A1 (en) * 2009-02-02 2010-08-05 R.T. Vanderbilt Company, Inc. Ashless lubricant composition
CN101805657B (en) * 2010-04-23 2012-11-07 路路达润滑油(无锡)有限公司 Motorcycle shock-absorber oil
JP5666222B2 (en) * 2010-09-14 2015-02-12 株式会社Adeka Lubricating oil additive composition and lubricating oil composition containing the same
US20120088704A1 (en) * 2010-10-08 2012-04-12 Material Engineering and Technical Support Services Corp., dba METSS Corporation Lubricant and functional fluid additive package, and lubricants and functional fluids containing same
US20170267942A1 (en) * 2010-10-08 2017-09-21 Materials Engineering And Technical Support Services Corp., Dba Metss Corporation Fluids for Extreme Pressure and Wear Applications
CN102757313A (en) * 2011-04-25 2012-10-31 遵义市倍缘化工有限责任公司 Asymmetric hindered phenol antioxidant and synthesis method thereof
CN102267876B (en) * 2011-06-20 2014-06-18 常州大学 Preparation method of styrenated hindered phenol or styrenated phenol antioxidant product
US9909082B2 (en) * 2012-02-16 2018-03-06 The Lubrizol Corporation Lubricant additive booster system
KR101638871B1 (en) * 2013-09-26 2016-07-12 금호석유화학 주식회사 Styrenated phenol adduct and manufacturing method thereof
KR20170121166A (en) * 2015-01-05 2017-11-01 사우디 아라비안 오일 컴퍼니 Characterization of crude oil and its fractions by thermogravimetric analysis
MY173662A (en) 2015-02-09 2020-02-14 Moresco Corp Lubricant composition, use thereof, and aliphatic ether compound
WO2017105951A1 (en) * 2015-12-17 2017-06-22 The Lubrizol Corporation Protected mercaptophenols for lubricating compositions
CN109370732A (en) * 2018-11-23 2019-02-22 统石油化工有限公司 A kind of high peace and quiet type hydraulic fluid compositions
GB2579405B (en) * 2018-11-30 2022-09-14 Si Group Switzerland Chaa Gmbh Antioxidant compositions
CN109627146A (en) * 2018-12-07 2019-04-16 浙江皇马科技股份有限公司 A kind of preparation method of styrylphenol
EP4179050A4 (en) 2020-07-08 2024-08-21 Mat Engineering And Technical Support Services Corp Lubricating compositions comprising a non-silicone anti-foaming agent
CN112063437B (en) * 2020-08-24 2022-03-29 上海斯瑞文特种油品科技有限公司 Long-acting antirust oil capable of realizing rapid water replacement and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3385790A (en) * 1965-04-27 1968-05-28 Monsanto Co Antioxidant compositions
US3463731A (en) * 1963-11-12 1969-08-26 Ethyl Corp Stabilization with phenolic type antioxidant
US3839210A (en) * 1971-12-01 1974-10-01 Gaf Corp Antioxidant composition comprising a synergistic mixture of a phenol, amine and sulfone
EP1006173A1 (en) * 1998-11-30 2000-06-07 Ethyl Petroleum Additives Limited Lubricant compositions exhibiting extended oxidation stability
US20060128574A1 (en) * 2004-12-10 2006-06-15 Jun Dong Lubricant compositions stabilized with multiple antioxidants

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1265756B (en) * 1963-08-13 1968-04-11 Koppers Co Inc Process for the selective o-alkylation of phenols
US3407147A (en) * 1963-10-14 1968-10-22 American Cyanamid Co Liquid styrenated phenolic antioxidant for rubber
GB1080262A (en) * 1965-01-14 1967-08-23 Monsanto Chemicals Improvements in and relating to lubricating oils
GB1111751A (en) * 1966-01-03 1968-05-01 Dorogomilovsky Khim Zd Im Frun Process for the arylalkylation of phenols
US3558490A (en) * 1968-05-31 1971-01-26 Chevron Res Styryl phosphorodithioate esters to be used as antioxidants in lubricating oil
JPS51142488A (en) * 1975-05-21 1976-12-08 Nippon Zeon Co Ltd Novel photocromic material
CA1093248A (en) * 1976-05-20 1981-01-06 Kenneth E. Russell Phenolic antioxidants with polymer tails
US4153562A (en) * 1977-12-23 1979-05-08 Exxon Research & Engineering Co. Antioxidants for low ash and medium ash lubricating oils
SU1587038A1 (en) * 1987-11-02 1990-08-23 Предприятие П/Я М-5593 Method of producing antioxidant for hydrocarbon oils
US5091099A (en) * 1988-06-09 1992-02-25 Ciba-Geigy Corporation Lubricating oil composition
JPH0211533A (en) * 1988-06-29 1990-01-16 Mitsubishi Petrochem Co Ltd Preparation of styrene-reacted phenol
DE3922518A1 (en) * 1989-07-08 1991-01-17 Bayer Ag METHOD FOR PRODUCING (ALPHA) METHYLBENZYL SUBSTITUTED PHENOLS
US7214648B2 (en) * 1997-08-27 2007-05-08 Ashland Licensing And Intellectual Property, Llc Lubricant and additive formulation
US6242562B1 (en) * 1998-12-28 2001-06-05 Shin-Etsu Chemical Co., Ltd. Process for producing vinyl chloride polymer
US7229951B2 (en) * 2001-07-18 2007-06-12 Crompton Corporation Organo-imido molybdenum complexes as friction modifier additives for lubricant compositions
US6797677B2 (en) * 2002-05-30 2004-09-28 Afton Chemical Corporation Antioxidant combination for oxidation and deposit control in lubricants containing molybdenum and alkylated phenothiazine
US6599865B1 (en) * 2002-07-12 2003-07-29 Ethyl Corporation Effective antioxidant combination for oxidation and deposit control in crankcase lubricants
US7179311B2 (en) * 2003-01-31 2007-02-20 Chevron U.S.A. Inc. Stable olefinic, low sulfur diesel fuels
US7214649B2 (en) * 2003-12-31 2007-05-08 Afton Chemical Corporation Hydrocarbyl dispersants including pendant polar functional groups
US7851421B2 (en) * 2004-06-11 2010-12-14 Infineum International Limited Detergent additives for lubricating oil compositions
US20060046941A1 (en) * 2004-08-26 2006-03-02 Laurent Chambard Lubricating oil compositions
US7799101B2 (en) * 2004-09-29 2010-09-21 Chemtura Corporation Stabilized lubricant compositions
US7732390B2 (en) * 2004-11-24 2010-06-08 Afton Chemical Corporation Phenolic dimers, the process of preparing same and the use thereof
WO2008144086A1 (en) * 2007-05-24 2008-11-27 Chemtura Corporation Stabilization of polymers with styrenated-p-cresols
US7897552B2 (en) * 2007-11-30 2011-03-01 Afton Chemical Corporation Additives and lubricant formulations for improved antioxidant properties

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3463731A (en) * 1963-11-12 1969-08-26 Ethyl Corp Stabilization with phenolic type antioxidant
US3385790A (en) * 1965-04-27 1968-05-28 Monsanto Co Antioxidant compositions
US3839210A (en) * 1971-12-01 1974-10-01 Gaf Corp Antioxidant composition comprising a synergistic mixture of a phenol, amine and sulfone
EP1006173A1 (en) * 1998-11-30 2000-06-07 Ethyl Petroleum Additives Limited Lubricant compositions exhibiting extended oxidation stability
US20060128574A1 (en) * 2004-12-10 2006-06-15 Jun Dong Lubricant compositions stabilized with multiple antioxidants

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012035954A1 (en) * 2010-09-14 2012-03-22 株式会社Adeka Antioxidant composition, and lubricating oil composition containing same
JP2012062348A (en) * 2010-09-14 2012-03-29 Adeka Corp Antioxidant composition, and lubricating oil composition containing the same
JP2012062347A (en) * 2010-09-14 2012-03-29 Adeka Corp Antioxidant for lubricant and lubricant composition containing the same
US9382498B2 (en) 2010-09-14 2016-07-05 Adeka Corporation Antioxidant composition and lubricating oil composition containing same
KR101810276B1 (en) * 2010-09-14 2017-12-19 가부시키가이샤 아데카 Antioxidant composition, and lubricating oil composition containing same

Also Published As

Publication number Publication date
CN101688143A (en) 2010-03-31
EP2164933A2 (en) 2010-03-24
WO2009009481A3 (en) 2009-02-26
EP2162518A1 (en) 2010-03-17
JP2010532414A (en) 2010-10-07
KR20100029120A (en) 2010-03-15
RU2470067C2 (en) 2012-12-20
US20090011961A1 (en) 2009-01-08
RU2010103963A (en) 2011-08-20
JP2010532763A (en) 2010-10-14
KR20100029119A (en) 2010-03-15
RU2010103965A (en) 2011-08-20
WO2009009481A2 (en) 2009-01-15
CN101688142A (en) 2010-03-31

Similar Documents

Publication Publication Date Title
EP2162518A1 (en) Lubricant compositions stabilized with styrenated phenolic antioxidant
US7704931B2 (en) Lubricant compositions stabilized with multiple antioxidants
JP4966196B2 (en) Stabilized lubricating oil composition
US7928045B2 (en) Stabilizing compositions for lubricants
EP1713891B1 (en) Lubricant compositions comprising an antioxidant blend
US6726855B1 (en) Lubricant compositions comprising multiple antioxidants
CN109642178B (en) Lubricant compositions stabilized by a mixture of diarylamine and hydroxydiarylamine antioxidants
EP1613602B1 (en) Alkylated iminodibenzyls as antioxidants
CN109642177B (en) Alkylated 3-hydroxy diphenylamine antioxidants
MXPA01005603A (en) Lubricant compositions comprising multiple antioxidants

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880021556.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08771877

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008771877

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010515051

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107000219

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010103963

Country of ref document: RU