WO2009008668A2 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2009008668A2
WO2009008668A2 PCT/KR2008/004044 KR2008004044W WO2009008668A2 WO 2009008668 A2 WO2009008668 A2 WO 2009008668A2 KR 2008004044 W KR2008004044 W KR 2008004044W WO 2009008668 A2 WO2009008668 A2 WO 2009008668A2
Authority
WO
WIPO (PCT)
Prior art keywords
air
condenser
machine room
refrigerator according
flow passage
Prior art date
Application number
PCT/KR2008/004044
Other languages
French (fr)
Other versions
WO2009008668A3 (en
Inventor
Nam Soo Cho
Youn Seok Lee
Kyeong Yun Kim
Su Nam Chae
Jang Seok Lee
Original Assignee
Lg Electronics Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lg Electronics Inc. filed Critical Lg Electronics Inc.
Priority to EP08778704.0A priority Critical patent/EP2174083B1/en
Priority to CN2008801022937A priority patent/CN101779091B/en
Publication of WO2009008668A2 publication Critical patent/WO2009008668A2/en
Publication of WO2009008668A3 publication Critical patent/WO2009008668A3/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/003General constructional features for cooling refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2321/00Details or arrangements for defrosting; Preventing frosting; Removing condensed or defrost water, not provided for in other groups of this subclass
    • F25D2321/14Collecting condense or defrost water; Removing condense or defrost water
    • F25D2321/144Collecting condense or defrost water; Removing condense or defrost water characterised by the construction of drip water collection pans
    • F25D2321/1442Collecting condense or defrost water; Removing condense or defrost water characterised by the construction of drip water collection pans outside a refrigerator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0022Details for cooling refrigerating machinery using multiple air flows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0026Details for cooling refrigerating machinery characterised by the incoming air flow
    • F25D2323/00264Details for cooling refrigerating machinery characterised by the incoming air flow through the front bottom part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0027Details for cooling refrigerating machinery characterised by the out-flowing air
    • F25D2323/00271Details for cooling refrigerating machinery characterised by the out-flowing air from the back bottom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0028Details for cooling refrigerating machinery characterised by the fans
    • F25D2323/00282Details for cooling refrigerating machinery characterised by the fans the fans not of the axial type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/005Mounting of control devices

Definitions

  • the present invention relates to a refrigerator, and more particularly to a refrigerator, in which the size of a machine room is reduced without a degradation in the efficiency of a refrigeration cycle, resulting in an enlarged volume of a cooling compartment.
  • a refrigerator includes cooling compartments, such as a refrigerating compartment and a freezing compartment, and maintains food, etc. stored in the cooling compartments at a low temperature for a long time by supplying cold air into the cooling compartments. Further, the cold air is generated by a refrigeration cycle apparatus including a compressor, a heat exchanger, etc.
  • the refrigeration cycle apparatus includes a compressor to compress a refrigerant, a condenser and a heat-radiation fan to condense the refrigerant compressed in the compressor, an expander to expand the condensed refrigerant, and an evaporator to absorb heat from the surrounding air in the process of evaporating the expanded refrigerant so as to create a low-temperature atmosphere.
  • the refrigerator generally further includes a space referred to as a machine room.
  • the above mentioned compressor, condenser, and heat-radiation fan, etc. are mounted in the machine room.
  • FIGs. 1 and 2 illustrate a configuration of a machine room defined in a related art refrigerator.
  • the related art refrigerator includes a machine room 1 provided in a lower end region of a refrigerator body 10 to extend lengthwise in a horizontal direction.
  • the interior of the body 10 is divided into left and right spaces, namely, a freezing compartment and a refrigerating compartment having predetermined volumes, respectively. Further, the machine room 1 shown in FIG. 1 is located below both the freezing compartment and the refrigerating compartment.
  • the machine room 1 includes a compressor 2, a condenser 3, and a heat-radiation fan 4.
  • the machine room 1 is covered with a cover 5.
  • the cover 5 has a suction hole 6 and a discharge hole 7, which are spaced apart from each other by a predetermined distance for the circulation of air into the machine room 1.
  • the volume of the space A is further limited by a heat-insulating material 13 filled in an outer shell 11 and an inner shell 12 of the body 10.
  • the cooling compartment 14 includes a rear panel 15 to partition a space for receiving an evaporator (not shown) and a blowing fan (not shown).
  • the panel 15 includes a cold air suction hole 16 and a cold air discharge hole (not shown), such that cold air blown by the blowing fan is supplied into the cooling compartment 14 through the cold air discharge hole , and be again suctioned to the evaporator through the cold air suction hole 16. Disclosure of Invention
  • one object of the present invention is directed to a refrigerator that substantially obviates one or more problems due to limitations and disadvantages of the related art.
  • Another object of the present invention is to provide a refrigerator in which the size of a machine room is reduced without a degradation in the efficiency of a refrigeration cycle, which results in an enlarged inner volume of a cooling compartment.
  • the present invention provides in one aspect a refrigerator including a body having a plurality of cooling compartments separated from each other by a partition, and a machine room defined by the partition in a lower region of one of the plurality of cooling compartments. Further, the machine room receives predetermined elements required to operate the cooling compartments.
  • a machine room can be provided in a lower region of any one of a plurality of cooling compartments, and the height of the machine room can be reduced greatly. This has the effect of not only enlarging the volume of the remaining cooling compartment to the maximum extent, but also minimizing the loss of the volume of the cooling compartment having the machine room.
  • the present invention achieves a reduced size of the machine room and enlarges the inner volume of the cooling compartment
  • FIG. 1 is a view illustrating the configuration of a machine room provided in a related art refrigerator
  • FIG. 2 is a side sectional view of the related art refrigerator
  • FIG. 3 is a rear perspective view of a refrigerator according to an embodiment of the present invention.
  • FIG. 4 is a side sectional view illustrating the configuration of a machine room provided in the refrigerator according to an embodiment of the present invention
  • FIG. 5 is a top sectional view illustrating the configuration of the machine room provided in the refrigerator as shown in Figure 4;
  • FIG. 6 is a top sectional view illustrating a modified configuration of the machine room provided in the refrigerator as shown in Figure 4;
  • FIG. 7 is a side sectional view illustrating the machine room of a refrigerator according to another embodiment of the present invention.
  • FIG. 8 is a top sectional view illustrating the machine room of the refrigerator shown in FIG. 7;
  • FIG. 9 is a view illustrating a modified configuration of the machine room provided in the refrigerator according to Figure 7. Mode for the Invention
  • FIG. 3 illustrates a refrigerator according to an embodiment of the present invention.
  • the refrigerator includes a body 100 serving as the overall shell of the refrigerator, and a machine room 200 including a compressor 210.
  • Figs. 5, 6, 8 and 9 illustrate a first cooling compartment 110
  • Figs. 4 and 7 illustrate a second cooling compartment 120 defined in the body 100.
  • the machine room 200 is provided only in a lower region of the second cooling compartment 120.
  • the first cooling compartment 110 has no machine room, and can achieve an increment in inner volume of up to the volume of the machine room 200. Also, according to embodiments of the present invention, the inner volume of the machine room 200 can be reduced greatly. This has the effect of minimizing the loss of the inner volume of the second cooling compartment 120. The configuration of the machine room having such a greatly reduced inner volume will be described later with reference to FIGs. 4 to 9.
  • the refrigerator in one example only includes the two cooling compartments, it is also appreciated that the present invention is applicable equally to a refrigerator having three or more cooling compartments.
  • the cooling compartments as shown in Figs. 5, 6, 8 and 9, are separated from each other by a partition 130. Consequently, the machine room 200 is defined by the partition 130.
  • another member instead of defining the machine room 200 by the partition 130 another member may be employed as a partitioning member.
  • the refrigerator includes the first cooling compartment 110 and the second cooling compartment 120 defined in the body 100, and the machine room 200 is provided in a lower region of the second cooling compartment 120.
  • the machine room 200 includes a flow passage 270to allow air to move from the front side to the rear side of the refrigerator.
  • the machine room 200 further includes a fan device 230, a condenser 220, and the compressor 210, which are successively arranged on the flow passage 270.
  • the fan device 230, the condenser 220, and the compressor 210 are successively arranged in a movement direction of the air along the flow passage 270.
  • the flow passage 270 is provided at the entrance and the exit thereof with an air suction portion 201 and an air discharge portion 202.
  • the air is suctioned through the air suction portion 201 by operation of the fan device 230 and moves along the flow passage 270 to cause the condensation of a refrigerant in the condenser 220. Then, after being used to cool the compressor 210 while passing through the compressor 210, the resulting air is discharged to the outside through the air discharge portion 202.
  • the air suction portion 201 is provided in at least one of a front surface of the body and a front position of a lower surface of the body, and the air discharge portion 202 is provided in at least one of a rear surface of the body and a rear position of the lower surface of the body.
  • the position of the air suction portion 201 can be changed according to the type of the fan device 230.
  • the fan device 230 when the fan device 230 is a cross-flow fan that suctions air axially and blows the air radially, it is preferable that the air suction portion be provided in the front position of the lower surface of the body and the cross-flow fan be located above the air suction portion 201.
  • the fan device 230 when the fan device 230 is an axial- flow fan in which an air suction direction and an air blowing direction are approximately in a straight line, it is preferable that the air suction portion be formed in the front surface of the body.
  • the air suction portion can be provided in any one of the front surface of the body and the front position of the lower surface of the body, and moreover, two air suction portions can be provided in both the front surface of the body and the front position of the lower surface of the body, respectively.
  • the fan device 230 includes a cross-flow fan 231.
  • the body 100 defines the overall shell of the refrigerator including an outer shell 101 and an inner shell 102, and a heat- insulating material 103 is foamed and filled in a gap between the outer shell 101 and the inner shell 102.
  • the cross-flow fan 231, the condenser 220, and the compressor 210 are successively arranged on the flow passage 270 of the machine room 200.
  • the cross-flow fan 231 is installed such that an axial direction of the fan 231 coincides with a height direction of the body 100. Also, the condenser 220 is installed such that a relatively wider plane face of the condenser 220 is laid on the bottom of the flow passage 270.
  • the condenser 220 has a predetermined length and a predetermined width, and a thickness smaller than the length and the width.
  • the flow passage 270 preferably has a height larger than the thickness of the condenser 220, and smaller than the length and the width of the condenser 220.
  • the cross-flow fan 231 is surrounded by a guide member 233.
  • the guide member 233 serves to guide the air, blown radially from the cross-flow fan 231, to the condenser 220.
  • the air suction portion 201 is located below the cross-flow fan 231, such that the air moving below the refrigerator is suctioned to the cross-flow fan 231 through the air suction portion 201, to thereby be blown in a radial direction of the cross-flow fan 231.
  • the air discharge portion 202 is located behind the compressor 210, and is formed in a rear plate defining a rear lower wall of the refrigerator.
  • a rear region of the flow passage 270, in which the compressor 210 is located, has a height larger than a height of the remaining region of the flow passage 270, in which the cross-flow fan 231 and the condenser 220 are located, in due consideration of the size of the compressor 210.
  • a water sump 260 is provided in the machine room 200 below the installation region of the compressor 210 to collect and store condensate water generated from the condenser 220.
  • the water sump 260 may be connected to the outside by use of a hose.
  • the water sump 260 may be rearwardly separable from the refrigerator, to allow the user to manually throw away the water collected in the water sump 260.
  • the condensate water generated from the condenser 220 is guided into the water sump 260 through a drain member 221.
  • the compressor 210 can be placed on the water sump 260, it may be also considered that a certain supporting plate 211 is provided above the water sump 260 such that the compressor 210 can be placed on the supporting plate 211.
  • the machine room 200 includes an electric element chamber 250 in which certain electric elements are mounted.
  • the electric element chamber 250 is separated from the flow passage 270 by a partition 251.
  • the partition 251 serves not only to define the flow passage 270, but also to separate the electric element chamber 250 and the flow passage 270 from each other.
  • FIG. 6 illustrates the machine room 200 of the refrigerator according to another embodiment of the present invention.
  • the machine room 200 is configured such that a part of the air blown by the cross-flow fan 231 through the partition 251 is bypassed into the electric element chamber 250 through the partition 251, to allow the electric element chamber 250 and the machine room 200 to be cooled simultaneously.
  • the partition 251 includes an inlet hole 243, and the guide member 233 includes a bypass hole 242.
  • the machine room 200 of the present embodiment further includes a bypass guide 241 provided to connect the inlet hole 243 and the bypass hole 242 with each other, thereby communicating the electric element chamber 250 and the interior of the guide member 233 with each other.
  • FIGs. 7 and 8 illustrate the machine room of the refrigerator according to a further embodiment of the present invention, in which a cross-flow fan 232 is used as the fan device 230. As shown in FIGs. 7 and 8, the cross-flow fan 232, the condenser 220, and the compressor 210 are successively arranged on the flow passage 270 of the machine room 200.
  • the air suction portion may be provided in any one of the front surface and the lower surface of the refrigerator, or two air suction portions may be provided in both the front and rear surfaces of the refrigerator, respectively.
  • the condenser 220 has a predetermined length and a predetermined width, and a thickness smaller than the length and the width.
  • the flow passage 270 preferably has a height larger than the thickness of the condenser 220, and smaller than the length and the width of the condenser 220.
  • the cross-flow fan 232 is installed such that an axial direction of the fan 232 coincides with a width direction of the body 100 and the condenser 220 is laid on the bottom of the flow passage 270.
  • the height of the flow passage 270 can be reduced significantly, and this consequently makes it possible to reduce the volume of the machine room 200.
  • the guide member 233 is provided between the cross-flow fan 232 and the condenser 220.
  • the guide member 233 serves to guide the air, blown from the cross-flow fan 232, to the condenser 220.
  • the present embodiment illustrates that the air suction portion 201 is formed in the front surface of the refrigerator
  • the position of the air suction portion 201 is not limited thereto.
  • the air suction portion 201 may be formed in the lower surface of the refrigerator, and two air suction portions may be formed in the front and lower surfaces of the refrigerator, respectively.
  • the air discharge portion 202 is located behind the compressor 210, and is formed in the rear plate defining the rear lower wall of the refrigerator. Accordingly, if the cross- flow fan 232 is rotated, the air is suctioned into the machine room 200 through the air suction portion 201. Then, after passing through the condenser 220 and being used to cool the compressor 210, the resulting air is discharged from the machine room 200 through the air discharge portion 202.
  • a rear region of the flow passage 270, in which the compressor 210 is located, has a height larger than a height of the remaining region of the flow passage 270, in which the cross-flow fan 232 and the condenser 220 are located, in due consideration of the size of the compressor 210.
  • the water sump 260 is provided in the machine room 200 below the installation region of the compressor 210 to collect and store condensate water generated from the condenser 220.
  • the water sump 260 may be connected to the outside by use of a hose.
  • the water sump 260 may be rearwardly separable from the refrigerator, to allow the user to manually throw the water collected in the water sump 260.
  • the condensate water generated from the condenser 220 is guided into the water sump 260 through the drain member 221.
  • the compressor 210 can be placed on the water sump 260, it may be also considered that the supporting plate 211 is provided above the water sump 260 such that the compressor 210 can be placed on the supporting plate 211.
  • the machine room 200 includes the electric element chamber 250 in which certain electric elements are mounted.
  • the electric element chamber 250 is separated from the flow passage 270 by the partition 251.
  • the partition 251 serves not only to define the flow passage 270, but also to separate the electric element chamber 250 and the flow passage 270 from each other.
  • FIG. 9 illustrates the machine room 200 of the refrigerator according to yet another embodiment of the present invention.
  • the machine room 200 is configured such that a part of the air blown by the cross-flow fan through the partition 251 is bypassed into the electric element chamber 250 through the partition 251, to allow the electric element chamber 250 and the machine room 200 to be cooled simultaneously.
  • the partition 251 includes the inlet hole 243, and the guide member 233 includes the bypass hole 242.
  • the machine room 200 further includes the bypass guide 241 provided to connect the inlet hole 243 and the bypass hole with each other, thereby communicating the electric element chamber 250 and the interior of the guide member 233 with each other.
  • a machine room can be provided in a lower region of any one of a plurality of cooling compartments, and the height of the machine room can be reduced greatly. This has the effect of not only enlarging the volume of the remaining cooling compartment to the maximum extent, but also minimizing the loss of the volume of the cooling compartment having the machine room.
  • the present invention achieves a reduced size of the machine room and enlarges the inner volume of the cooling compartment

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

A refrigerator including a body (100) having a plurality of cooling compartments separated from each other by a partition (130), and a machine room (200) defined by the partition in a lower region of one of the plurality of cooling compartments. The machine room (200) receives predetermined elements required to operate the cooling compartments.

Description

Description
A REFRIGERATOR
Technical Field
[1] The present invention relates to a refrigerator, and more particularly to a refrigerator, in which the size of a machine room is reduced without a degradation in the efficiency of a refrigeration cycle, resulting in an enlarged volume of a cooling compartment. Background Art
[2] Generally, a refrigerator includes cooling compartments, such as a refrigerating compartment and a freezing compartment, and maintains food, etc. stored in the cooling compartments at a low temperature for a long time by supplying cold air into the cooling compartments. Further, the cold air is generated by a refrigeration cycle apparatus including a compressor, a heat exchanger, etc.
[3] The refrigeration cycle apparatus includes a compressor to compress a refrigerant, a condenser and a heat-radiation fan to condense the refrigerant compressed in the compressor, an expander to expand the condensed refrigerant, and an evaporator to absorb heat from the surrounding air in the process of evaporating the expanded refrigerant so as to create a low-temperature atmosphere.
[4] The refrigerator generally further includes a space referred to as a machine room.
The above mentioned compressor, condenser, and heat-radiation fan, etc. are mounted in the machine room.
[5] In more detail, FIGs. 1 and 2 illustrate a configuration of a machine room defined in a related art refrigerator. As shown in FIG. 1, the related art refrigerator includes a machine room 1 provided in a lower end region of a refrigerator body 10 to extend lengthwise in a horizontal direction.
[6] Assuming the related art refrigerator is a double-door refrigerator, the interior of the body 10 is divided into left and right spaces, namely, a freezing compartment and a refrigerating compartment having predetermined volumes, respectively. Further, the machine room 1 shown in FIG. 1 is located below both the freezing compartment and the refrigerating compartment.
[7] Specifically, as shown in FIG. 1, the machine room 1 includes a compressor 2, a condenser 3, and a heat-radiation fan 4. The machine room 1 is covered with a cover 5. In addition the cover 5 has a suction hole 6 and a discharge hole 7, which are spaced apart from each other by a predetermined distance for the circulation of air into the machine room 1.
[8] The related art machine room having the above described configuration, however, has a problem of occupying a significantly large area in the refrigerator, and thus reducing the volume of the cooling compartments. Moreover, the above mentioned double-door refrigerator inevitably undergoes a reduction in volume in both the freezing compartment and the refrigerating compartment.
[9] Further, with the configuration that the air moves through the suction hole 6 and the discharge hole 7 formed in the cover 5, as shown in FIG. 1, the movement direction of air blown by the heat-radiation fan 4, the movement direction of air suctioned through the suction hole 6, and the movement direction of air discharged through the discharge hole 7 are perpendicular to one another. Therefore, it is difficult to assure the smooth circulation of air within the machine room 1.
[10] Meanwhile, as shown in FIG. 2, a lower end region of a cooling compartment 14, i.e. the space A designated by a dashed line, has a limited volume due to the presence of the machine room 1. The volume of the space A is further limited by a heat-insulating material 13 filled in an outer shell 11 and an inner shell 12 of the body 10.
[11] The cooling compartment 14 includes a rear panel 15 to partition a space for receiving an evaporator (not shown) and a blowing fan (not shown). As shown, the panel 15 includes a cold air suction hole 16 and a cold air discharge hole (not shown), such that cold air blown by the blowing fan is supplied into the cooling compartment 14 through the cold air discharge hole , and be again suctioned to the evaporator through the cold air suction hole 16. Disclosure of Invention
Technical Problem
[12] However, because the volume of the space A is limited due to the volume of the machine room 1, and in particular, the lower end of the space A is located at a long distance from the cold air suction hole 16, the related art refrigerator has a problem in that the cold air within the cooling compartment 14 stagnates in the space A, and thus fails to circulate smoothly in the cooling compartment 14.
[13] To solve the above described problems, the space A may be reduced or eliminated, but this method excessively increases the volume of the machine room 1, and on the other hand, excessively decreases the inner volume of the cooling compartment. Technical Solution
[14] Accordingly, one object of the present invention is directed to a refrigerator that substantially obviates one or more problems due to limitations and disadvantages of the related art.
[15] Another object of the present invention is to provide a refrigerator in which the size of a machine room is reduced without a degradation in the efficiency of a refrigeration cycle, which results in an enlarged inner volume of a cooling compartment.
[16] To achieve these objects and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, the present invention provides in one aspect a refrigerator including a body having a plurality of cooling compartments separated from each other by a partition, and a machine room defined by the partition in a lower region of one of the plurality of cooling compartments. Further, the machine room receives predetermined elements required to operate the cooling compartments.
[17] Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
[18]
Advantageous Effects
[19] As apparent from the above description, in the refrigerator according to the present invention, a machine room can be provided in a lower region of any one of a plurality of cooling compartments, and the height of the machine room can be reduced greatly. This has the effect of not only enlarging the volume of the remaining cooling compartment to the maximum extent, but also minimizing the loss of the volume of the cooling compartment having the machine room. In conclusion, the present invention achieves a reduced size of the machine room and enlarges the inner volume of the cooling compartment Brief Description of the Drawings
[20] The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiment(s) of the invention and together with the description serve to explain the principle of the invention. In the drawings:
[21] FIG. 1 is a view illustrating the configuration of a machine room provided in a related art refrigerator;
[22] FIG. 2 is a side sectional view of the related art refrigerator;
[23] FIG. 3 is a rear perspective view of a refrigerator according to an embodiment of the present invention;
[24] FIG. 4 is a side sectional view illustrating the configuration of a machine room provided in the refrigerator according to an embodiment of the present invention;
[25] FIG. 5 is a top sectional view illustrating the configuration of the machine room provided in the refrigerator as shown in Figure 4;
[26] FIG. 6 is a top sectional view illustrating a modified configuration of the machine room provided in the refrigerator as shown in Figure 4;
[27] FIG. 7 is a side sectional view illustrating the machine room of a refrigerator according to another embodiment of the present invention;
[28] FIG. 8 is a top sectional view illustrating the machine room of the refrigerator shown in FIG. 7; and
[29] FIG. 9 is a view illustrating a modified configuration of the machine room provided in the refrigerator according to Figure 7. Mode for the Invention
[30] Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
[31] FIG. 3 illustrates a refrigerator according to an embodiment of the present invention.
As shown in FIG. 3, the refrigerator includes a body 100 serving as the overall shell of the refrigerator, and a machine room 200 including a compressor 210. Figs. 5, 6, 8 and 9 illustrate a first cooling compartment 110, and Figs. 4 and 7 illustrate a second cooling compartment 120 defined in the body 100. The machine room 200 is provided only in a lower region of the second cooling compartment 120.
[32] That is, as shown in Figs. 5, 6, 8 and 9 the first cooling compartment 110 has no machine room, and can achieve an increment in inner volume of up to the volume of the machine room 200. Also, according to embodiments of the present invention, the inner volume of the machine room 200 can be reduced greatly. This has the effect of minimizing the loss of the inner volume of the second cooling compartment 120. The configuration of the machine room having such a greatly reduced inner volume will be described later with reference to FIGs. 4 to 9.
[33] Meanwhile, although the refrigerator in one example only includes the two cooling compartments, it is also appreciated that the present invention is applicable equally to a refrigerator having three or more cooling compartments.
[34] In the refrigerator according to embodiments of the present invention, the cooling compartments, as shown in Figs. 5, 6, 8 and 9, are separated from each other by a partition 130. Consequently, the machine room 200 is defined by the partition 130. Alternatively, instead of defining the machine room 200 by the partition 130 another member may be employed as a partitioning member.
[35] As shown in FIGs. 4 and 5, according to an embodiment of the present invention, the refrigerator includes the first cooling compartment 110 and the second cooling compartment 120 defined in the body 100, and the machine room 200 is provided in a lower region of the second cooling compartment 120. [36] The machine room 200 includes a flow passage 270to allow air to move from the front side to the rear side of the refrigerator. The machine room 200 further includes a fan device 230, a condenser 220, and the compressor 210, which are successively arranged on the flow passage 270. Specifically, the fan device 230, the condenser 220, and the compressor 210 are successively arranged in a movement direction of the air along the flow passage 270.
[37] Further, the flow passage 270 is provided at the entrance and the exit thereof with an air suction portion 201 and an air discharge portion 202. In operation, the air is suctioned through the air suction portion 201 by operation of the fan device 230 and moves along the flow passage 270 to cause the condensation of a refrigerant in the condenser 220. Then, after being used to cool the compressor 210 while passing through the compressor 210, the resulting air is discharged to the outside through the air discharge portion 202.
[38] In addition, the air suction portion 201 is provided in at least one of a front surface of the body and a front position of a lower surface of the body, and the air discharge portion 202 is provided in at least one of a rear surface of the body and a rear position of the lower surface of the body. Here, the position of the air suction portion 201 can be changed according to the type of the fan device 230.
[39] In an example, when the fan device 230 is a cross-flow fan that suctions air axially and blows the air radially, it is preferable that the air suction portion be provided in the front position of the lower surface of the body and the cross-flow fan be located above the air suction portion 201. In another example, when the fan device 230 is an axial- flow fan in which an air suction direction and an air blowing direction are approximately in a straight line, it is preferable that the air suction portion be formed in the front surface of the body.
[40] In addition, when using the cross-flow fan, the air suction portion can be provided in any one of the front surface of the body and the front position of the lower surface of the body, and moreover, two air suction portions can be provided in both the front surface of the body and the front position of the lower surface of the body, respectively.
[41] In the refrigerator according to the embodiment of the present invention as shown in
FIGs. 4 and 5, the fan device 230 includes a cross-flow fan 231.
[42] The body 100 defines the overall shell of the refrigerator including an outer shell 101 and an inner shell 102, and a heat- insulating material 103 is foamed and filled in a gap between the outer shell 101 and the inner shell 102. As shown in FIGs. 4 and 5, the cross-flow fan 231, the condenser 220, and the compressor 210 are successively arranged on the flow passage 270 of the machine room 200.
[43] The cross-flow fan 231 is installed such that an axial direction of the fan 231 coincides with a height direction of the body 100. Also, the condenser 220 is installed such that a relatively wider plane face of the condenser 220 is laid on the bottom of the flow passage 270.
[44] Specifically, the condenser 220 has a predetermined length and a predetermined width, and a thickness smaller than the length and the width. The flow passage 270 preferably has a height larger than the thickness of the condenser 220, and smaller than the length and the width of the condenser 220.
[45] With this configuration, as a result that the cross-flow fan 231 is installed such that the axial direction thereof coincides with the height direction of the body 100 and the condenser 220 is laid on the bottom of the flow passage 270, the height of the flow passage 270 can be reduced significantly. This consequently makes it possible to reduce the volume of the machine room 200.
[46] Meanwhile, as shown in FIGs. 4 and 5, the cross-flow fan 231 is surrounded by a guide member 233. The guide member 233 serves to guide the air, blown radially from the cross-flow fan 231, to the condenser 220. In the present embodiment, the air suction portion 201 is located below the cross-flow fan 231, such that the air moving below the refrigerator is suctioned to the cross-flow fan 231 through the air suction portion 201, to thereby be blown in a radial direction of the cross-flow fan 231.
[47] Further, the air discharge portion 202 is located behind the compressor 210, and is formed in a rear plate defining a rear lower wall of the refrigerator.
[48] Accordingly, if the cross-flow fan 231 is rotated, the air is suctioned into the machine room 200 through the air suction portion 201. Then, after passing through the condenser 220 and being used to cool the compressor 210, the resulting air is discharged from the machine room 200 through the air discharge portion 202.
[49] A rear region of the flow passage 270, in which the compressor 210 is located, has a height larger than a height of the remaining region of the flow passage 270, in which the cross-flow fan 231 and the condenser 220 are located, in due consideration of the size of the compressor 210.
[50] In addition, a water sump 260 is provided in the machine room 200 below the installation region of the compressor 210 to collect and store condensate water generated from the condenser 220. To drain the collected water, the water sump 260 may be connected to the outside by use of a hose. Alternatively, the water sump 260 may be rearwardly separable from the refrigerator, to allow the user to manually throw away the water collected in the water sump 260.
[51] Further, the condensate water generated from the condenser 220 is guided into the water sump 260 through a drain member 221. Although the compressor 210 can be placed on the water sump 260, it may be also considered that a certain supporting plate 211 is provided above the water sump 260 such that the compressor 210 can be placed on the supporting plate 211.
[52] Meanwhile, as shown in Fig. 5, the machine room 200 includes an electric element chamber 250 in which certain electric elements are mounted. The electric element chamber 250 is separated from the flow passage 270 by a partition 251. Specifically, the partition 251 serves not only to define the flow passage 270, but also to separate the electric element chamber 250 and the flow passage 270 from each other.
[53] Next, FIG. 6 illustrates the machine room 200 of the refrigerator according to another embodiment of the present invention. As shown in FIG. 6, the machine room 200 is configured such that a part of the air blown by the cross-flow fan 231 through the partition 251 is bypassed into the electric element chamber 250 through the partition 251, to allow the electric element chamber 250 and the machine room 200 to be cooled simultaneously.
[54] As shown in FIG. 6, the partition 251 includes an inlet hole 243, and the guide member 233 includes a bypass hole 242. The machine room 200 of the present embodiment further includes a bypass guide 241 provided to connect the inlet hole 243 and the bypass hole 242 with each other, thereby communicating the electric element chamber 250 and the interior of the guide member 233 with each other.
[55] Under operation of the fan 231 , a part of the blown air moves to the condenser 220 along the flow passage 270, and the remaining air passes through the bypass hole 242 and is guided by the bypass guide 241 to thereby be introduced into the electric element chamber 250 through the inlet hole 243. In this way, the part of the air can be used to cool the electric element chamber 250.
[56] Other configurations of the present embodiment, for example, related to the flow passage 270, air suction and discharge portions, cross-flow fan 231, guide member 233, condenser 220, compressor 210, and the drainage of condensate water, etc. are substantially identical to those of the previously described embodiment with relation to FIGs. 4 and 5, and thus, a detailed description thereof will be omitted.
[57] FIGs. 7 and 8 illustrate the machine room of the refrigerator according to a further embodiment of the present invention, in which a cross-flow fan 232 is used as the fan device 230. As shown in FIGs. 7 and 8, the cross-flow fan 232, the condenser 220, and the compressor 210 are successively arranged on the flow passage 270 of the machine room 200.
[58] With the use of the cross-flow fan 232, similarly, the air suction portion may be provided in any one of the front surface and the lower surface of the refrigerator, or two air suction portions may be provided in both the front and rear surfaces of the refrigerator, respectively.
[59] Further, the condenser 220 has a predetermined length and a predetermined width, and a thickness smaller than the length and the width. The flow passage 270 preferably has a height larger than the thickness of the condenser 220, and smaller than the length and the width of the condenser 220.
[60] In the present embodiment, the cross-flow fan 232 is installed such that an axial direction of the fan 232 coincides with a width direction of the body 100 and the condenser 220 is laid on the bottom of the flow passage 270. With this configuration, the height of the flow passage 270 can be reduced significantly, and this consequently makes it possible to reduce the volume of the machine room 200.
[61] Meanwhile, as shown in FIGs. 7 and 8, the guide member 233 is provided between the cross-flow fan 232 and the condenser 220. The guide member 233 serves to guide the air, blown from the cross-flow fan 232, to the condenser 220.
[62] Although the present embodiment illustrates that the air suction portion 201 is formed in the front surface of the refrigerator, the position of the air suction portion 201 is not limited thereto. For example, the air suction portion 201 may be formed in the lower surface of the refrigerator, and two air suction portions may be formed in the front and lower surfaces of the refrigerator, respectively.
[63] The air discharge portion 202 is located behind the compressor 210, and is formed in the rear plate defining the rear lower wall of the refrigerator. Accordingly, if the cross- flow fan 232 is rotated, the air is suctioned into the machine room 200 through the air suction portion 201. Then, after passing through the condenser 220 and being used to cool the compressor 210, the resulting air is discharged from the machine room 200 through the air discharge portion 202.
[64] A rear region of the flow passage 270, in which the compressor 210 is located, has a height larger than a height of the remaining region of the flow passage 270, in which the cross-flow fan 232 and the condenser 220 are located, in due consideration of the size of the compressor 210.
[65] The water sump 260 is provided in the machine room 200 below the installation region of the compressor 210 to collect and store condensate water generated from the condenser 220. To drain the collected water, the water sump 260 may be connected to the outside by use of a hose. Alternatively, the water sump 260 may be rearwardly separable from the refrigerator, to allow the user to manually throw the water collected in the water sump 260. The condensate water generated from the condenser 220 is guided into the water sump 260 through the drain member 221.
[66] Although the compressor 210 can be placed on the water sump 260, it may be also considered that the supporting plate 211 is provided above the water sump 260 such that the compressor 210 can be placed on the supporting plate 211.
[67] Meanwhile, the machine room 200 includes the electric element chamber 250 in which certain electric elements are mounted. The electric element chamber 250 is separated from the flow passage 270 by the partition 251. Specifically, the partition 251 serves not only to define the flow passage 270, but also to separate the electric element chamber 250 and the flow passage 270 from each other.
[68] Next, FIG. 9 illustrates the machine room 200 of the refrigerator according to yet another embodiment of the present invention. As shown in FIG. 9, the machine room 200 is configured such that a part of the air blown by the cross-flow fan through the partition 251 is bypassed into the electric element chamber 250 through the partition 251, to allow the electric element chamber 250 and the machine room 200 to be cooled simultaneously.
[69] As shown in FIG. 9, the partition 251 includes the inlet hole 243, and the guide member 233 includes the bypass hole 242. The machine room 200 further includes the bypass guide 241 provided to connect the inlet hole 243 and the bypass hole with each other, thereby communicating the electric element chamber 250 and the interior of the guide member 233 with each other.
[70] Under operation of the cross-flown fan, a part of the blown air moves to the condenser 220 along the flow passage 270, and the remaining air passes through the bypass hole 242 and is guided by the bypass guide 241 to thereby be introduced into the electric element chamber 250 through the inlet hole 243. In this way, the part of the air can be used to cool the electric element chamber 250.
[71] Other configurations of the present embodiment, for example, related to the flow passage 270, air suction and discharge portions 201/202, cross-flow fan 232, guide member 233, condenser 220, compressor 210, and the drainage of condensate water, etc. are substantially identical to those of the previously described embodiment with relation to FIGs. 7 and 8, and thus, a detailed description thereof will be omitted.
[72] As apparent from the above description, in the refrigerator according to the present invention, a machine room can be provided in a lower region of any one of a plurality of cooling compartments, and the height of the machine room can be reduced greatly. This has the effect of not only enlarging the volume of the remaining cooling compartment to the maximum extent, but also minimizing the loss of the volume of the cooling compartment having the machine room. In conclusion, the present invention achieves a reduced size of the machine room and enlarges the inner volume of the cooling compartment
[73] It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the inventions. Thus, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
[74]
[75]

Claims

Claims
[ 1 ] A refrigerator, comprising : a body having a plurality of cooling compartments separated from each other by a partition; and a machine room defined by the partition and located in a lower region of only one of the plurality of cooling compartments, the machine room receiving predetermined elements required to operate the cooling compartments.
[2] The refrigerator according to claim 1, wherein the machine room comprises a flow passage extending from a front side to a rear side of the body, to allow the movement of air.
[3] The refrigerator according to claim 2, wherein the flow passage comprises: an air suction portion provided in at least one of a front surface of the body and a front position of a lower surface of the body; and an air discharge portion provided in at least one of a rear surface of the body and a rear position of the lower surface of the body.
[4] The refrigerator according to claim 3, wherein the flow passage is provided therein with a compressor, a condenser, and a fan device.
[5] The refrigerator according to claim 4, wherein the fan device, the condenser, and the compressor are successively arranged starting from the air suction portion toward the air discharge portion.
[6] The refrigerator according to claim 5, wherein the condenser has a predetermined length, a predetermined width, and a thickness smaller than the length and the width, and wherein a partial region of the flow passage is arranged to receive the fan device and the condenser and has a height larger than the thickness of the condenser and smaller than the length and the width of the condenser.
[7] The refrigerator according to claim 5, further comprising: a guide member to guide the air, blown from the fan device, to the condenser.
[8] The refrigerator according to claim 5, wherein the air suction portion is provided in the front surface of the body, and wherein the fan device includes a cross-flow fan to suction air through the air suction portion and blow the air to the condenser.
[9] The refrigerator according to claim 5, wherein the air suction portion is provided in the front position of the lower surface of the body, and wherein the fan device includes a cross-flow fan to suction air through the air suction portion and blow the air to the condenser.
[10] The refrigerator according to claim 2, wherein the machine room comprises: an electric element chamber to receive predetermined electric elements; and a bypass structure to communicate the flow passage with the electric element chamber, so as to allow a part of the air moving in the flow passage to be bypassed into the electric element chamber.
[11] The refrigerator according to claim 7, wherein the machine room comprises: an electric element chamber to receive predetermined electric elements; a partition to separate the electric element chamber from the flow passage; and a bypass guide to communicate a bypass hole formed in the guide member and an inlet hole formed in the partition with each other.
PCT/KR2008/004044 2007-07-11 2008-07-09 Refrigerator WO2009008668A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP08778704.0A EP2174083B1 (en) 2007-07-11 2008-07-09 Refrigerator
CN2008801022937A CN101779091B (en) 2007-07-11 2008-07-09 A refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020070069743A KR101387489B1 (en) 2007-07-11 2007-07-11 Refrigerator
KR10-2007-0069743 2007-07-11

Publications (2)

Publication Number Publication Date
WO2009008668A2 true WO2009008668A2 (en) 2009-01-15
WO2009008668A3 WO2009008668A3 (en) 2009-09-24

Family

ID=40229276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2008/004044 WO2009008668A2 (en) 2007-07-11 2008-07-09 Refrigerator

Country Status (5)

Country Link
US (1) US8069686B2 (en)
EP (1) EP2174083B1 (en)
KR (1) KR101387489B1 (en)
CN (1) CN101779091B (en)
WO (1) WO2009008668A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014035141A (en) * 2012-08-09 2014-02-24 Mitsubishi Electric Corp Refrigerator-freezer

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010062735A1 (en) * 2010-12-09 2012-06-14 BSH Bosch und Siemens Hausgeräte GmbH Refrigeration unit with forced-cooled heat exchanger
JP2013019623A (en) * 2011-07-13 2013-01-31 Panasonic Corp Refrigerator
US20130255305A1 (en) * 2012-03-28 2013-10-03 Brian S. Kim Air duct device for refrigerator
US20140041407A1 (en) * 2012-08-08 2014-02-13 Jeffrey L. Bush Ice shelf product display unit
JP5922541B2 (en) * 2012-09-18 2016-05-24 シャープ株式会社 Refrigerator
KR102168586B1 (en) * 2013-11-29 2020-10-22 삼성전자주식회사 Refrigerator
WO2016174149A1 (en) 2015-04-29 2016-11-03 BSH Hausgeräte GmbH Home appliance device
ITUB20152929A1 (en) * 2015-08-06 2017-02-06 Imat Spa TEMPERATURE BLAST CHILLER SPECIFICALLY FOR HOUSEHOLD USE
KR102658454B1 (en) 2017-02-17 2024-04-17 엘지전자 주식회사 Refrigerating or warming apparatus, and vehicle
JP7441639B2 (en) * 2019-12-16 2024-03-01 シャープ株式会社 refrigerator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0190794A2 (en) 1985-02-02 1986-08-13 Bauknecht Hausgeräte GmbH Built-in refrigerator
JPH064574U (en) 1992-06-25 1994-01-21 サンデン株式会社 Showcase
JPH08247645A (en) 1995-03-14 1996-09-27 Matsushita Refrig Co Ltd Refrigerator
JP3273538B2 (en) 1996-01-17 2002-04-08 シャープ株式会社 Heat exchange unit and refrigeration equipment
JP2002364970A (en) 2001-06-08 2002-12-18 Toshiba Corp Refrigerator
US20040000162A1 (en) 2002-06-28 2004-01-01 Samsung Electronics Co., Ltd. Kimchi refrigerator

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0868587A (en) 1994-08-30 1996-03-12 Hitachi Ltd Machine room structure for refrigerator
KR980003404A (en) * 1996-06-29 1998-03-30 구자홍 Machine room of refrigerator
KR200156903Y1 (en) * 1997-02-20 1999-09-01 전주범 Compressor fixing structure in ref.
KR200226089Y1 (en) * 1998-08-13 2001-06-01 구자홍 Condenser chiller of refrigerator
TW479122B (en) 2000-03-15 2002-03-11 Hitachi Ltd Refrigerator
JP2005233434A (en) * 2000-05-30 2005-09-02 Matsushita Refrig Co Ltd Refrigerator
KR100398631B1 (en) * 2000-09-21 2003-09-19 위니아만도 주식회사 Solenoid valve structure of Kim-Chi storage
CN100416104C (en) * 2001-01-11 2008-09-03 Lg电子株式会社 Fan of refrigerator condenser
KR20030004899A (en) * 2001-07-07 2003-01-15 엘지전자 주식회사 Refrigerator with condenser and backcover in one
JP2003287341A (en) * 2002-03-29 2003-10-10 Fujitsu General Ltd Refrigerator
KR100481078B1 (en) * 2002-06-28 2005-04-07 삼성전자주식회사 Kimchi refrigerator
US6735976B2 (en) * 2002-08-31 2004-05-18 Samsung Electronics Co., Ltd Refrigerator
US7188490B2 (en) * 2003-01-17 2007-03-13 Samsung Electronics Co., Ltd. Refrigerator
KR100493706B1 (en) * 2003-01-21 2005-06-02 엘지전자 주식회사 Path structure for compressor base of Refrigerator
KR100512677B1 (en) * 2003-02-21 2005-09-07 삼성전자주식회사 Refrigerator
KR100569935B1 (en) * 2003-12-01 2006-04-10 엘지전자 주식회사 Radiating apparatus of built-in refrigerator
KR100557099B1 (en) * 2003-12-09 2006-03-03 엘지전자 주식회사 Radiating apparatus of built-in refrigerator
CN100498153C (en) 2004-05-27 2009-06-10 乐金电子(天津)电器有限公司 Cooling structure of refrigerator mechanical chamber
KR100490722B1 (en) * 2004-07-23 2005-05-19 엘지전자 주식회사 A condenser of refrigerator
KR20060075027A (en) * 2004-12-28 2006-07-04 엘지전자 주식회사 Lamp apparatus and its controlling method for refrigerator
KR20070009349A (en) * 2005-07-15 2007-01-18 위니아만도 주식회사 Efficiency improvement structure of a refrigeration system at kim-chi storage

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0190794A2 (en) 1985-02-02 1986-08-13 Bauknecht Hausgeräte GmbH Built-in refrigerator
JPH064574U (en) 1992-06-25 1994-01-21 サンデン株式会社 Showcase
JPH08247645A (en) 1995-03-14 1996-09-27 Matsushita Refrig Co Ltd Refrigerator
JP3273538B2 (en) 1996-01-17 2002-04-08 シャープ株式会社 Heat exchange unit and refrigeration equipment
JP2002364970A (en) 2001-06-08 2002-12-18 Toshiba Corp Refrigerator
US20040000162A1 (en) 2002-06-28 2004-01-01 Samsung Electronics Co., Ltd. Kimchi refrigerator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2174083A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014035141A (en) * 2012-08-09 2014-02-24 Mitsubishi Electric Corp Refrigerator-freezer

Also Published As

Publication number Publication date
EP2174083A2 (en) 2010-04-14
KR20090006418A (en) 2009-01-15
EP2174083B1 (en) 2017-03-01
KR101387489B1 (en) 2014-04-21
CN101779091A (en) 2010-07-14
US8069686B2 (en) 2011-12-06
US20090013713A1 (en) 2009-01-15
WO2009008668A3 (en) 2009-09-24
CN101779091B (en) 2012-10-31
EP2174083A4 (en) 2015-01-21

Similar Documents

Publication Publication Date Title
US8069686B2 (en) Refrigerator
US11940162B2 (en) Integrated air conditioner
KR101176459B1 (en) Refrigerator
KR101578002B1 (en) A refrigerator
US7950245B2 (en) Refrigerator related technology
KR101565387B1 (en) A refrigerator
KR20090006419A (en) Refrigerator
KR20140133722A (en) Air Conditioner
EP1384963B1 (en) Built-in refrigerator
KR20040097582A (en) Aaccumulate cold type air Refrigerating machines
US20080245093A1 (en) Apparatus for refrigeration
KR102295156B1 (en) A refrigerator
KR100544716B1 (en) Water cooling type air conditioner
WO2006041246A1 (en) Refrigerator
KR100229188B1 (en) Refrigerator
KR100556792B1 (en) Refrigeration device
KR20050077605A (en) Multi type refrigerator
CN213630704U (en) Mobile air conditioner
RU2773123C2 (en) Refrigerator
KR101573535B1 (en) A refrigerator
US9360245B2 (en) Refrigerator
KR0117028Y1 (en) Separate type refrigerator
KR20000014017U (en) Refrigerator machine room of cooling fan air volume increase structure
JP2003207252A (en) Refrigerator
JPH07270034A (en) Refrigerating cycle

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880102293.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08778704

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2008778704

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008778704

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE