WO2009008395A1 - Exhaust purification device for internal combustion engine - Google Patents

Exhaust purification device for internal combustion engine Download PDF

Info

Publication number
WO2009008395A1
WO2009008395A1 PCT/JP2008/062245 JP2008062245W WO2009008395A1 WO 2009008395 A1 WO2009008395 A1 WO 2009008395A1 JP 2008062245 W JP2008062245 W JP 2008062245W WO 2009008395 A1 WO2009008395 A1 WO 2009008395A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel ratio
air
catalyst
exhaust gas
sox
Prior art date
Application number
PCT/JP2008/062245
Other languages
French (fr)
Japanese (ja)
Inventor
Takamitsu Asanuma
Shinya Hirota
Kohei Yoshida
Hiromasa Nishioka
Hiroshi Otsuki
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Publication of WO2009008395A1 publication Critical patent/WO2009008395A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/085Sulfur or sulfur oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an exhaust emission control device for an internal combustion engine.
  • sulfur is contained in the fuel and the lubricating oil, and therefore S O X is contained in the exhaust gas.
  • This S O x is stored in the NO X storage reduction catalyst together with NO x.
  • SOX is not released from the NO x storage reduction catalyst by simply switching the air-fuel ratio of the exhaust gas, and therefore the amount of SO x stored in the NO x storage reduction catalyst gradually increases. (Hereinafter referred to as sulfur poisoning). As a result, the amount of NO x that can be stored in the NO x storage reduction catalyst gradually decreases.
  • a compression ignition type internal combustion engine in which an SO x trap catalyst is arranged in the engine exhaust passage upstream of the NO x storage reduction catalyst in order to prevent SOX from being stored in the NO X storage reduction catalyst is known. Open 2 0 0 5— 1 3 3 6 1 0)).
  • This SO x trap catalyst captures SO x contained in the exhaust gas when the air-fuel ratio of the exhaust gas flowing into the SOX trap catalyst is lean, and when the air-fuel ratio of the exhaust gas is lean, S 0 X When the temperature of the wrap catalyst rises, the trapped SOX gradually diffuses inside the SOX trap catalyst. As a result, the Sx trap rate is recovered.
  • this internal combustion engine is provided with an estimation means for estimating the SO x trap rate by the SOX trap catalyst.
  • the SO x trap rate falls below a predetermined rate, the air-fuel ratio of the exhaust gas is lean. Increase the temperature of the SOX trap catalyst below. As a result, the SO x trap rate is recovered. Disclosure of the invention
  • the above problem is that the air-fuel ratio of the exhaust gas flowing into the SOX trap catalyst is rich due to changes in the operating conditions of the internal combustion engine, and the temperature of the SO x trap catalyst is higher than the temperature at which SOX is released from the SOX trap catalyst.
  • the air-fuel ratio of the exhaust gas flowing into the SOx trap catalyst is lean, the release of SOx trapped in the SOx trap catalyst is suppressed. It seems to be solved.
  • the present invention prevents NO X from being released to the outside air when the air-fuel ratio of the exhaust gas is controlled to be lean in order to suppress the release of SOX trapped by the S0 X trap catalyst.
  • An object of the present invention is to provide an exhaust purification device for an internal combustion engine.
  • a first aspect of the present invention is a SO x trap catalyst that captures SO x contained in exhaust gas when the air-fuel ratio of the exhaust gas flowing into the engine exhaust passage is lean. Therefore, when the air-fuel ratio of the inflowing exhaust gas is lean and the temperature of the SOx trap catalyst rises, the trapped SOx gradually diffuses into the SOx trap catalyst and If the air-fuel ratio of the exhaust gas flowing into the SOX trap catalyst is under the latch and the temperature of the SOX trap catalyst is equal to or higher than the SO x release temperature, an SO x trap catalyst having the property of releasing the captured SO x is placed.
  • the air-fuel ratio of the exhaust gas flowing into the SO x trap catalyst downstream exhaust passage is lean, NOx contained in the exhaust gas is occluded and the air-fuel ratio of the exhaust gas flowing in is the theoretical air-fuel ratio or Rich NO x for reduction purification of occluded NO X and
  • the air-fuel ratio of the exhaust gas flowing into the S0 x trap catalyst is rich and the SO x trap catalyst temperature is the SO x release temperature due to changes in operating conditions.
  • An air-fuel ratio control means for suppressing the release of SOX trapped in the SO x trap catalyst by controlling the air-fuel ratio to be lean when expected to be above, the SOX trap catalyst and the NOX storage reduction catalyst
  • a reducing agent supplying means for injecting the reducing agent so that the air-fuel ratio of the exhaust gas flowing into the NOx storage reduction catalyst becomes a target air-fuel ratio capable of reducing and purifying NOx.
  • An exhaust gas purification apparatus for an internal combustion engine is provided.
  • the air-fuel ratio control means by providing the air-fuel ratio control means, the air-fuel ratio of the exhaust gas flowing into the SOX trap catalyst due to a change in operating conditions such as a driver acceleration request is rich, and the SOX trap catalyst
  • the air-fuel ratio is controlled to be lean, and the release of S 0 X trapped in the S 0 X trap catalyst is suppressed.
  • the NO x storage amount of the NO x storage reduction catalyst increases, so the amount of NO X that can be stored decreases, and there is concern about deterioration of exhaust properties.
  • S0 X release temperature is the temperature at which SO x trapped by S0 X trap catalyst is released when the air-fuel ratio of exhaust gas flowing into S0 x trap catalyst is a latch ( For example, 6 0 0).
  • the air-fuel ratio control means comprises the SO x
  • An exhaust purification device for an internal combustion engine is provided that controls the air-fuel ratio of the exhaust gas flowing into the trap catalyst to a lean air-fuel ratio that is a limit that can ensure the required torque. That is, in this aspect, the air-fuel ratio control means controls the air-fuel ratio of the exhaust gas flowing into the S0 x trap catalyst so that the lean air-fuel ratio of the limit that can satisfy the required torque is obtained. A lean air-fuel ratio is ensured while satisfying the required torque. As a result, the release of SOX trapped in the SOX trap catalyst is suppressed.
  • an exhaust gas purification apparatus for an internal combustion engine, wherein the air-fuel ratio control means controls the air-fuel ratio of the exhaust gas flowing into the S0 trap catalyst to be lean near the stoichiometric air-fuel ratio.
  • the air-fuel ratio control means controls the SOx trap catalyst to capture the SOx trap catalyst by controlling the air-fuel ratio of the exhaust gas flowing into the S0 X trap catalyst so that it becomes lean near the stoichiometric air-fuel ratio. x release is suppressed. Therefore, since it is possible to operate at a leaner position closer to the stoichiometric air-fuel ratio than the invention according to claim 2, it is possible to satisfy a higher torque requirement.
  • an exhaust gas purification apparatus for an internal combustion engine, wherein the air-fuel ratio control means comprises means for supplying oxygen into an exhaust passage upstream of the S O x trap catalyst.
  • the air-fuel ratio control means comprises means for supplying oxygen into an exhaust passage upstream of the S O x trap catalyst.
  • an exhaust gas purification apparatus for an internal combustion engine wherein the N O X storage reduction catalyst has a three-way catalyst function.
  • the target air-fuel ratio is a stoichiometric air-fuel ratio.
  • an exhaust gas purification apparatus for an internal combustion engine in which the Nx storage / reduction catalyst functions as a three-way catalyst. That is, in the fifth and sixth modes, NOx in the exhaust gas is reduced and purified by using the function as a three-way catalyst, regardless of the amount of NO x stored in the NO x storage reduction catalyst. The effect of doing.
  • the target air-fuel ratio is a rich spike that temporarily changes from a lean air-fuel ratio to a rich air-fuel ratio, and NOx stored in the NO x storage-reduction catalyst is reduced and purified.
  • An exhaust purification device for an internal combustion engine is provided.
  • NOX can be stored again by restoring the storage capacity of the NO x storage reduction catalyst by the Rich Spike process, and the storage reduction function of the NOX storage reduction catalyst can be utilized. Is possible.
  • an exhaust gas purification apparatus for an internal combustion engine further comprising a catalyst temperature raising means for setting the catalyst temperature of the NOx storage reduction catalyst to an activation temperature or higher. That is, in this embodiment, by providing the means for raising the temperature of the Nx storage reduction catalyst, it is possible to raise the catalyst temperature quickly when necessary.
  • FIG. 1 is a diagram showing a schematic configuration of an exhaust emission control device for an internal combustion engine.
  • FIG. 2 is a diagram showing a schematic configuration of an exhaust gas purification apparatus for an internal combustion engine according to another embodiment.
  • Figure 3 shows the flow chart of the sulfur poisoning control operation.
  • Figure 4 shows the flow chart of the reducing agent supply operation.
  • FIG. 5 is a flowchart of a reducing agent supply operation according to another embodiment. is there.
  • FIG. 6 is a flow chart of a reducing agent supply operation according to still another embodiment.
  • FIG. 7 is a flowchart of a reducing agent supply operation according to still another embodiment.
  • FIG. 8 is a flowchart of sulfur poisoning suppression operation according to another embodiment.
  • FIG. 9 a and FIG. 9 b are diagrams showing a map of the amount of S O X trapped by the S0 x trap catalyst.
  • FIG. 10 is a diagram showing a map of the amount of NOx stored in the NOx storage reduction catalyst.
  • the present invention is applied to a spark ignition type internal combustion engine, but it may be applied to a compression ignition type internal combustion engine.
  • This spark ignition type internal combustion engine is operated by controlling so that the air-fuel ratio of the air-fuel mixture combusting in the engine combustion chamber is basically lean (for example, air-fuel ratio 30). Depending on the acceleration requirement, the air-fuel ratio of the air-fuel mixture combusted in the engine combustion chamber may fluctuate to the stoichiometric air-fuel ratio or the rich.
  • the S O X trapped by the SOX trap catalyst is released because the air-fuel ratio of the exhaust gas flowing into the S O X trap catalyst is a latch and the temperature of the S O X trap catalyst is S O X This is the case above the discharge temperature. Therefore, in the present invention, when the temperature of the S 0 x trap catalyst is equal to or higher than the SO x release temperature, the control is performed so that the air-fuel ratio of the exhaust gas flowing into the SOX trap catalyst does not become rich. NOx occlusion / reduction that increases as a result of the following: The
  • FIG. 1 shows an overall view of the internal combustion engine.
  • 1 is, for example, an engine body with four cylinders
  • 2 is a cylinder block
  • 3 is a cylinder head
  • 4 is a piston
  • 5 is a combustion chamber
  • 6 is an intake valve
  • 7 is an intake port
  • 8 is an exhaust valve
  • 9 is an exhaust port
  • 10 is a spark plug.
  • the intake port 7 is connected to the surge tank 1 2 through the corresponding intake branch pipe 11, and the surge tank 12 is connected to the air cleaner 14 through the intake duct 1 3.
  • an air flow mechanism 15 for detecting the intake air flow rate and a throttle valve 16 are arranged.
  • an electrically controlled fuel injection valve 17 for injecting fuel into the intake port 7 is disposed in the intake port 7.
  • the exhaust port 9 is connected to the S0x trap catalyst 19 through the exhaust manifold 18, and the SOX trap catalyst 19 is connected to the NOX storage reduction catalyst 21 through the exhaust pipe 20 to store the NOX.
  • the reduction catalyst 2 1 is connected to the exhaust pipe 2 2.
  • An air-fuel ratio sensor 2 3 for detecting the air-fuel ratio AF is attached upstream of the SOX trap catalyst 1 9, and a catalyst temperature sensor 2 4 for detecting the catalyst temperature T s is attached to the S0 X trap catalyst 1 9. .
  • an electrically controlled reducing agent injection valve 25 for supplying, for example, a reducing agent made of hydrocarbons into the exhaust passage is disposed upstream of the NOX storage reduction catalyst 21, and the NOX storage reduction catalyst 21.
  • the preferred electronic control unit (ECU) 30 is a digital computer and can be fed back to each other by means of a bidirectional bus 31. 3), RAM (random access memory) 3 3, CPU (microprocessor) 3 4., input port 3 5,. And output port 3 6.
  • a load sensor 40 for detecting the amount of depression of the accelerator pedal 39 is connected to the accelerator pedal 39. Here, the amount of depression of the accelerator pedal 39 represents the required load.
  • the output signals of the air flow meter 1 5, air-fuel ratio sensor 2 3, catalyst temperature sensor 2 4, 2 6, 2 sensor 2 7, and load sensor 4 0 are input ports via the corresponding AD converter 3 7. 3 Entered in 5. Further, a crank angle sensor 41 that generates an output pulse every time the crankshaft rotates, for example, 30 ° is connected to the input port 35.
  • the CPU 3 4 calculates the engine speed N based on the output pulse of the crank angle sensor 4 1.
  • the output port 3 6 is connected to the spark plug 10, the throttle valve 16, the fuel injection valve 17, and the reducing agent supply valve 25 via the corresponding drive circuit 38, which are electronic Control unit (ECU) 30 Controlled based on output signal from 0.
  • ECU electronic Control unit
  • the NO X storage reduction catalyst 21 also has a function as a three-way catalyst. That is, when the NO x storage reduction catalyst 21 is above a certain temperature and the air-fuel ratio of the inflowing exhaust gas is the stoichiometric air-fuel ratio, hydrocarbons, carbon monoxide, and NO x that are harmful components in the exhaust gas It plays a role in purifying the water with a high purification rate.
  • the temperature at which purification is performed with such a high purification rate is called the activation temperature.
  • the activation temperature is also used as the temperature at which the NOx occlusion reduction catalyst can fully exhibit the occlusion reduction function.
  • the air-fuel ratio of the exhaust gas is defined as the intake port 7, the combustion chamber 5, and the air supplied to the exhaust passage upstream of the Sx trap catalyst 19 and the fuel and the reducing agent (hydrocarbon) described later.
  • the operating state changes from an air-fuel ratio operating state to an operating state in an air-fuel ratio region (region from about 20 to the stoichiometric air-fuel ratio) where the degree of leanness is relatively low due to an acceleration request.
  • the conventional air-fuel ratio control when sudden acceleration is required, the air-fuel ratio region is relatively low after passing through the air-fuel ratio once.
  • the torque required at that time is the maximum required torque assumed at the time of high load or sudden acceleration, the theoretical air-fuel ratio or the rich air-fuel ratio is not reached.
  • the air-fuel ratio is controlled so that the degree of leanness is relatively low. By controlling in this way, it becomes possible to keep the air-fuel ratio of the exhaust gas flowing into the Sx trap catalyst 19 9 lean.
  • the air-fuel ratio of the exhaust gas flowing into the S0 x trap catalyst 19 is fed back using the air-fuel ratio sensor 2 3 to obtain the theoretical air-fuel ratio of the inflowing exhaust gas.
  • the fuel ratio is controlled to be close to the fuel ratio (for example, the air-fuel ratio is 14.8). According to this, it is possible to operate at a leaner value closer to the stoichiometric air-fuel ratio than in the first method, so that higher torque requirements can be satisfied.
  • the air-fuel ratio sensor 2 3 may be replaced with ⁇ 2 sensor.
  • Other methods include, for example, maintaining the stoichiometric air-fuel ratio so that the air-fuel ratio of the exhaust gas flowing into the SOX trap catalyst 19 does not become a latch when there is a request for fuel increase during acceleration operation. It is also conceivable to control the fuel increase ratio so that it does not become a rich air-fuel ratio. In addition, even if there is a request for a spike spike treatment to temporarily switch the air-fuel ratio to reduce and purify the N0 x storage reduction catalyst 21, the temperature of the S0 x trap catalyst will be released from the S0 x If it is above the temperature, it may be prohibited.
  • the first mentioned above, The second and other methods are collectively referred to below as the air-fuel ratio control method.
  • the required torque is satisfied by supercharging with a mechanical supercharger or using an electric motor together. May be.
  • the air-fuel ratio of the exhaust gas flowing into the SO trap catalyst 19 is controlled to be lean by the air-fuel ratio control method as described above, the NO x of the downstream NO X storage reduction catalyst 21 is reduced to NO x.
  • the amount of stored N 0 x gradually increases, and as a result, the amount of NO x that can be stored in the NO x storage reduction catalyst 2 1 gradually decreases.
  • NO x in the inflowing exhaust gas cannot be fully occluded by the NO x storage reduction catalyst 21 and is partially discharged to the outside air, resulting in deterioration of exhaust properties.
  • the reducing agent is supplied into the exhaust passage upstream of the NO x storage reduction catalyst 21 using the reducing agent injection valve 25, and the air-fuel ratio of the exhaust gas flowing into the NO X storage reduction catalyst 21 is theoretically determined. Control to achieve an air-fuel ratio.
  • the function of the NO x storage-reduction catalyst 21 as a three-way catalyst allows simultaneous oxidation of hydrocarbons and carbon monoxide in the exhaust gas and reduction of N0 x. Purify these harmful components into harmless carbon dioxide, water and nitrogen. As a result, it is possible to prevent deterioration of exhaust properties.
  • FIG. 3 shows a flow chart of the sulfur poisoning suppression operation according to this embodiment.
  • the sulfur poisoning suppression operation is an operation for controlling the air-fuel ratio of the exhaust gas flowing into the SOX trap catalyst 19 to be lean so that SO x is not released from the SO x trap catalyst 19. Referring to Fig.
  • the amount of S ⁇ x trapped in S ⁇ X trap catalyst 1 9 is estimated in step 100, and the amount of SO x trapped in S ⁇ trap catalyst 1 9 1 S ⁇ X It is determined whether 1 is greater than a predetermined amount SOX 0. That is, if the trapped SO x amount ⁇ S X 1 is less than the predetermined amount SOX 0, even if SOX is released from the S O trap catalyst 1 9 immediately, the SOX trap catalyst 1 again 9 It is rarely captured by itself and reaches the NO X storage reduction catalyst 2 1 almost. Accordingly, the subsequent operation is not performed, and the routine proceeds to step 104 to set 0 to the flag F used in the reducing agent supply operation described later, and the routine is terminated.
  • the SO x trap SO XA trapped per unit time in the SOx trap catalyst 19 in the form of a map as shown in FIG. 9 a as a function of the required torque TQ and the engine speed N. Stored in ROM 3 2 in advance.
  • the lubricating oil also contains a certain percentage of sulfur, and the amount of lubricating oil combusted in the combustion chamber 5, that is, contained in the exhaust gas, is captured by the S0 x trap catalyst 19. SOX amount is also required torque and engine speed Is a function of In an embodiment according to the present invention,
  • ⁇ X trap catalyst 1 Amount of S x trapped per unit time in 9 SOXB is stored in advance in R OM 3 2 in the form of a map as shown in Fig. 9b as a function of required torque TQ and engine speed N And the sum of the SO x amount SO XA and the SO x amount SOXB is calculated to calculate the SO x amount ⁇ SO X 1 captured by the SOX trap catalyst 19.
  • step 1001 It is determined whether or not the catalyst temperature T s of the X trap catalyst 1 9 is equal to or higher than S0 X release temperature T s 0. That is, when the catalyst temperature T s is lower than the S O x release temperature T s O, the captured S O x is not released regardless of the air-fuel ratio. Therefore, no further operation is performed, and the process proceeds to step 104 to set flag F to 0, and the routine ends. In order to reliably suppress the release of the trapped SOx, it is desirable that the temperature determined in Step 1001 is slightly lower than the SOx release temperature Ts0.
  • step 1 0 2 If the catalyst temperature T s is equal to or higher than S0 x release temperature T s 0 in step 1 0 1, the process proceeds to step 1 0 2 and the air-fuel ratio AF of the exhaust gas flowing into the SOX trap catalyst 1 9 is the theoretical sky. It is determined whether or not the fuel ratio is AF 0 or rich (AF 0).
  • the object of determination is basically that SO x is hardly released when the stoichiometric air-fuel ratio AF 0.
  • G AF 0 since the release starts when the air / fuel ratio becomes even slightly (G AF 0), the decrease in the air / fuel ratio is suppressed immediately before that.
  • the air-fuel ratio AF of the exhaust gas flowing into 9 is If the stoichiometric air-fuel ratio is not AFO or Litch (G AF 0), that is, if the air-fuel ratio (> AF 0), the S0 x trapped by the S0 x trap catalyst 19 is released. None happen. Therefore, no further operation is performed, and the routine proceeds to step 104, where flag F is set to 0 and the routine is terminated.
  • step 100 if the air-fuel ratio AF of the exhaust gas flowing into the SO x trap catalyst 1 9 is the stoichiometric air-fuel ratio AF 0 or the rich (AF 0) in step 100, the SOX ⁇ wrap catalyst 1 9 The trapped SOX will be released (or it may be the case if the stoichiometric air-fuel ratio is used). Accordingly, the process proceeds to step 103, and the air-fuel ratio control is performed by the air-fuel ratio control method as described above so that the air-fuel ratio of the exhaust gas flowing into the SOx trap catalyst 19 becomes lean. Then proceed to step 105, this time set flag F to 1 and end the routine.
  • FIG. 4 shows the flow chart of the reducing agent supply operation.
  • the reducing agent supply operation is an operation for controlling the air-fuel ratio of the exhaust gas flowing into the NO x storage reduction catalyst 21 to reduce and purify the NO X stored in the NO X storage reduction catalyst 21.
  • step 200 it is determined whether or not the flag F set in the above-described sulfur poisoning suppression operation is 1.
  • the flag F is not 1, that is, when the air-fuel ratio of the exhaust gas flowing into the Sx trap catalyst 19 is not leanly controlled by the sulfur poisoning suppression operation shown in FIG. There is no need to supply an additional reducing agent according to the invention. Therefore, the routine is terminated without performing the subsequent operation.
  • step 200 when the flag F is 1 in step 200, that is, the state in which the air-fuel ratio of the exhaust gas flowing into the S0 trap catalyst 19 is leanly controlled by the sulfur poisoning suppression operation described above. If, go to step 2 0 1. Step 2 0 1 It is then determined whether or not the air-fuel ratio AF of the exhaust gas has already become a lean air-fuel ratio (> AF 0). This is a process that takes into account the case of the transition to the lean air-fuel ratio, etc., even though the air-fuel ratio control of the sulfur poisoning suppression operation is being executed. As a result, if it is not yet lean, the routine is terminated without performing further operations. The processing in step 210 may not be performed when the air-fuel ratio of the exhaust gas is reliably made lean by the sulfur poisoning suppression operation.
  • step 2 0 2 the stoichiometric air-fuel ratio process is executed. This process is performed by introducing the reducing agent into the exhaust passage from the reducing agent supply valve 25 before the air-fuel ratio of the exhaust gas that has been made lean by the sulfur poisoning suppression operation flows into the NO X storage reduction catalyst 21. Spray. Accordingly, the control is performed so that the air-fuel ratio of the exhaust gas flowing into the N0 x storage reduction catalyst 2.1 becomes the stoichiometric air-fuel ratio.
  • the air-fuel ratio of the exhaust gas flowing into the SOX trap catalyst 19 is equal to the air-fuel ratio of the exhaust gas flowing out.
  • an electronic control unit (ECU) 30 is used so that the air-fuel ratio of the exhaust gas flowing into the NO x storage reduction catalyst 21 becomes the stoichiometric air-fuel ratio.
  • the amount of reducing agent calculated by the above is injected from the reducing agent supply valve 25. Injection amount of the reducing agent, by ⁇ 2 sensor 2 7 downstream of NOX storage-reduction catalyst 2 1 is feedback so that more accurate stoichiometric air-fuel ratio.
  • the function of the NO x storage reduction catalyst 2 1 as a three-way catalyst is utilized, and the exhaust gas is contained in the exhaust gas. It is possible to reduce the NOx contained and prevent deterioration of exhaust properties.
  • the function as a three-way catalyst of N 0 x storage reduction catalyst 21 Regardless of the amount of occluded NOx, it is possible to prevent deterioration of exhaust properties.
  • the Nx storage reduction catalyst having a function as a three-way catalyst used in this embodiment may be a normal three-way catalyst.
  • a means for quickly raising the temperature of the NO x occlusion reduction catalyst 2 1 to the activation temperature T n O is taken.
  • a heating element such as a heating coil is arranged in the exhaust passage under the floor or upstream of the NO X storage reduction catalyst 21 to heat the exhaust gas flowing into the N0 x storage reduction catalyst 21 or the catalyst itself. To raise the temperature.
  • the reducing agent is added from the reducing agent supply valve 25 in a lean air-fuel ratio with sufficient oxygen in the exhaust gas. By doing so, it is possible to raise the temperature to the activation temperature T n using the heat of oxidation reaction between the reducing agent and oxygen on the ⁇ ⁇ occlusion reduction catalyst 21.
  • FIG. 5 shows a flow chart of the reducing agent supply operation when the above-described catalyst temperature raising means is provided in the reducing agent supply operation shown in FIG.
  • the operations of steps 3 0 0, 3 0 1 and 3 0 4 are the same as the corresponding steps 2 0 0, 2 0 1 and 2 0 2 of the operation shown in FIG. The difference is that step 3 0 2 for determining temperature and step 3 0 3 are added between step 3 0 1 and step 3 0 4. That is, when the air-fuel ratio AF of the exhaust gas is the lean air-fuel ratio (> AF 0) in step 3 0 1, the process proceeds to step 3 0 2.
  • Step 3 0 2 it is determined whether or not the catalyst temperature T n of the NO X storage reduction catalyst 2 1 is equal to or higher than the activation temperature T n 0. If the catalyst temperature T n is lower than the activation temperature T n O, the process proceeds to Step 303, where the NO X storage reduction catalyst 21 is heated by the heating element or added with the reducing agent as described above. The temperature is raised by the heat of oxidation reaction. Then go to step 3 0 2 again to determine the catalyst temperature T n again.
  • step 3 0 4 the process proceeds to step 3 0 4 to execute the stoichiometric air-fuel ratio process, and the routine is terminated.
  • the NO x storage reduction catalyst 2 1 stores and reduces the NO x stored in the NO x storage reduction catalyst 2 1 to restore the storage capacity of the NO x storage reduction catalyst 21 and then stores the inflowing NO x. A form is demonstrated.
  • a rich spike treatment is performed in which the air-fuel ratio of the exhaust gas flowing into the NO x storage reduction catalyst 21 is temporarily latched by injecting the reducing agent from the reducing agent supply valve 25. .
  • the storage capacity By restoring the storage capacity, all NO X contained in the exhaust gas flowing into the NOx storage reduction catalyst 21 is stored, and deterioration of exhaust properties is prevented.
  • Step 4 0 0 and Step 4 0 1 are the same as Step 2 0 0 and Step 2 0 1 corresponding to the sulfur poisoning suppression operation shown in FIG. Accordingly, step 40 2 is executed when the air-fuel ratio AF of the exhaust gas flowing into the SO x trap catalyst 19 in step 4 0 1 is the stoichiometric air-fuel ratio AF 0 or the latch (g AF 0). .
  • the NO x amount ⁇ ⁇ stored in the NO x storage-reduction catalyst 2 1 is greater than or equal to the allowable value NX. It is determined whether or not. If the stored amount of N ⁇ X ⁇ N ⁇ X is less than the permissible value NX, there is sufficient room to store the incoming NOX, so there is no need to restore the storage capacity. Therefore, in that case, the routine is terminated without performing the subsequent operation.
  • the amount of NO x stored in the NO x storage-reduction catalyst 2 1 per unit time N0 XA is stored in advance in the ROM 3 2 as a function of the required torque TQ and the engine speed N in the form of the map shown in Fig. 10.
  • the stored NO x amount NO XA is added to calculate the NO x amount ⁇ ⁇ stored in the NO x storage reduction catalyst 2 1.
  • step 4 0 2 the N 0 x amount If ⁇ ⁇ ⁇ is greater than or equal to the permissible value NX, the process proceeds to step 4 0 3, where the reducing agent is injected from the reducing agent supply valve 25 and the rich spike process is executed. By doing so, the stored NO X is reduced and purified, and the storage capacity of the NO x storage reduction catalyst 21 is restored. Accordingly, even if the exhaust gas flowing into the NO X storage reduction catalyst 21 is lean thereafter, it becomes possible to store N 0 x until the N 0 X amount ⁇ N 0 X reaches the allowable value NX again. Then the routine ends.
  • FIG. 7 shows a flow chart of the reducing agent supply operation when the catalyst temperature raising means is provided in the reducing agent supply operation shown in FIG. 6, similarly to the reducing agent supply operation shown in FIG. Step 4 of reducing agent supply operation in Fig. 6 0
  • FIG. 6 is the same as FIG. 6 except that steps 6 0 2 and 6 0 3 corresponding to steps 3 0 2 and 3 0 3 of the operation shown in FIG. 5 are inserted between 1 and 4 0 2.
  • FIG. 2 shows an embodiment having a configuration different from that of FIG.
  • an electrically controlled air (oxygen) supply valve 28 is further installed upstream of the S0 x trap catalyst 19, and is based on an output signal from the electronic control unit (ECU) 30.
  • the air / fuel ratio of the exhaust gas can be adjusted by supplying air (oxygen) into the exhaust passage.
  • the air (oxygen) supply valve 2 5 upstream of the S0 x trap catalyst 1 9 is supplied with air (oxygen), so that the air-fuel ratio of the exhaust gas flowing into the SO x trap catalyst 1 9 is reduced to lean air.
  • the fuel ratio is adjusted to become the fuel ratio.
  • the advantage of this is that it is possible to adjust the air / fuel ratio of the exhaust gas flowing into the Sx trap catalyst 19 regardless of the air / fuel ratio of the air-fuel mixture combusting in the engine combustion chamber.
  • the NO x occlusion reduction catalyst 21 downstream of the S O x trap catalyst 19 has a fuel (HC) or a reducing agent (HC, CO) and air not yet burned.
  • FIG. 8 shows a flow chart of the sulfur poisoning suppression operation according to this embodiment.
  • step 6 0 3 is executed when the air-fuel ratio AF of the exhaust gas flowing into the S0 trap catalyst 1 9 in step 6 0 2 is the stoichiometric air-fuel ratio AF 0 or the rich ( ⁇ AF 0). Is done.
  • step 60 the air (oxygen) supply valve 2 is adjusted so that the air-fuel ratio of the exhaust gas flowing into the S0 x trap catalyst 19 becomes lean so as to suppress the release of the trapped SOX as described above. Supply air (oxygen) from 5. Then go to step 6 0 5 to set the flag to 1 and end the routine.
  • the sulfur poisoning suppression operation shown in Fig. 8 can be used in combination with the reducing agent supply operation shown in Figs. 4 to 7, just like the sulfur poisoning suppression operation shown in Fig. 3 above.

Abstract

In an exhaust purification device, a SOx trap catalyst (19) capable of capturing SOx contained in exhaust gas is placed at that portion of an engine exhaust path which is located on the upstream of a NOx occluding/reducing catalyst (21). The exhaust purification device has air/fuel ratio control means that, when the air/fuel ratio of exhaust gas flowing into the SOx trap catalyst (19) is rich and when it is predicted that the temperature of the SOx trap catalyst (19) becomes equal to or higher than a SOx release temperature, performs control such that the air/fuel ratio is lean. By doing so, the air/fuel ratio control means suppresses release of SOx captured by the SOx trap catalyst (19). In this process, a reducing agent supply valve (25) placed at that portion of the exhaust path which is located between the SOx trap catalyst (19) and the NOx occluding/reducing catalyst (21) injects a reducing agent so that the air/fuel ratio of the exhaust gas flowing into the NOx occluding/reducing catalyst (21) is a target air/fuel ratio at which NOx can be reduced and purified.

Description

明 細 書 内燃機関の排気浄化装置 技術分野  Description Exhaust gas purification device for internal combustion engine Technical field
本発明は内燃機関の排気浄化装置に関する。 背景技術  The present invention relates to an exhaust emission control device for an internal combustion engine. Background art
流入する排気ガスの空燃比がリーンのときには排気ガス中に含ま れる NO xを吸蔵し流入する排気ガスの空燃比が理論空燃比又はリ ツチになると吸蔵した N〇 xを還元浄化する NO x吸蔵還元触媒を 機関排気通路内に配置した内燃機関が公知である。 この内燃機関で はリーン空燃比の下で燃焼が行われているときに発生する NO が NO X吸蔵還元触媒に吸蔵される。 一方、 NO x吸蔵還元触媒の N 〇 X吸蔵能力が飽和に近づく と排気ガスの空燃比が一時的にリ ッチ にされ、 それによつて NO x吸蔵還元触媒から NO xが還元浄化さ れる。  When the air-fuel ratio of the inflowing exhaust gas is lean, the NOx contained in the exhaust gas is occluded. When the air-fuel ratio of the inflowing exhaust gas becomes the stoichiometric air-fuel ratio or the latch, the stored NOx is reduced and purified. NOx occlusion An internal combustion engine in which a reduction catalyst is arranged in an engine exhaust passage is known. In this internal combustion engine, NO generated when combustion is performed at a lean air-fuel ratio is stored in the NO X storage reduction catalyst. On the other hand, when the NO x storage capacity of the NO x storage reduction catalyst approaches saturation, the air-fuel ratio of the exhaust gas is temporarily turned on, so that NO x is reduced and purified from the NO x storage reduction catalyst.
ところで燃料及び潤滑油内には硫黄が含まれており、 従って排気 ガス中には S O Xが含まれている。 この S O xは NO xと共に NO X吸蔵還元触媒に吸蔵される。 ところがごの S O Xは排気ガスの空 燃比を単にリ ッチにしただけでは N〇 X吸蔵還元触媒から放出され ず、 従って NO x吸蔵還元触媒に吸蔵されている S O xの量が次第 に増大していく (以下、 硫黄被毒という) 。 その結果として N〇 x 吸蔵還元触媒に吸蔵しうる NO X量が次第に減少してしまう。  By the way, sulfur is contained in the fuel and the lubricating oil, and therefore S O X is contained in the exhaust gas. This S O x is stored in the NO X storage reduction catalyst together with NO x. However, SOX is not released from the NO x storage reduction catalyst by simply switching the air-fuel ratio of the exhaust gas, and therefore the amount of SO x stored in the NO x storage reduction catalyst gradually increases. (Hereinafter referred to as sulfur poisoning). As a result, the amount of NO x that can be stored in the NO x storage reduction catalyst gradually decreases.
そこで NO X吸蔵還元触媒に S O Xが吸蔵されるのを阻止するた めに NO x吸蔵還元触媒上流の機関排気通路内に S O x トラップ触 媒を配置した圧縮着火式内燃機関が公知である (特開 2 0 0 5— 1 3 3 6 1 0号公報参照) 。 この S O x トラップ触媒は、 S O X トラ ップ触媒に流入する排気ガスの空燃比がリーンのときには排気ガス 中に含まれる S O xを捕獲し、 排気ガスの空燃比がリーンの下で S 〇 X 卜ラップ触媒の温度が上昇すると捕獲した S O Xが次第に S O X トラップ触媒の内部に拡散する。 その結果として S〇 x トラップ 率が回復されるという性質を有する。 そこでこの内燃機関では S O X トラップ触媒による S O x トラップ率を推定する推定手段を具備 しており、 S O x トラップ率が予め定められた率より も低下したと きには排気ガスの空燃比がリーンの下で S O X トラップ触媒の温度 を上昇させる。 それによつて S O x トラップ率を回復させるように している。 発明の開示 Therefore, a compression ignition type internal combustion engine in which an SO x trap catalyst is arranged in the engine exhaust passage upstream of the NO x storage reduction catalyst in order to prevent SOX from being stored in the NO X storage reduction catalyst is known. Open 2 0 0 5— 1 3 3 6 1 0)). This SO x trap catalyst captures SO x contained in the exhaust gas when the air-fuel ratio of the exhaust gas flowing into the SOX trap catalyst is lean, and when the air-fuel ratio of the exhaust gas is lean, S 0 X When the temperature of the wrap catalyst rises, the trapped SOX gradually diffuses inside the SOX trap catalyst. As a result, the Sx trap rate is recovered. Therefore, this internal combustion engine is provided with an estimation means for estimating the SO x trap rate by the SOX trap catalyst. When the SO x trap rate falls below a predetermined rate, the air-fuel ratio of the exhaust gas is lean. Increase the temperature of the SOX trap catalyst below. As a result, the SO x trap rate is recovered. Disclosure of the invention
上述のような S〇 x トラップ触媒を圧縮着火式内燃機関に用いる 場合には、 S〇 X トラップ触媒が S O Xを放出してしまわないよう に、 S O X トラップ触媒に流入する排気ガスの空燃比をリーンに維 持し続けることは難しいことではない。 しかしながら、 上述の S O X トラップ触媒を火花点火式内燃機関に用いる場合には、 高負荷時 や急加速時などに S O X トラップ触媒に流入する排気ガスの空燃比 がリ ッチになりやすい。 そうすると、 S〇 X トラップ触媒の触媒温 度によっては、 S〇 Xが S O X トラップ触媒から放出されてしまう こととなり、 下流にある NO x吸蔵還元触媒に S O Xが吸蔵される 。 その結果、 N O X吸蔵還元触媒に吸蔵しうる N O X量が次第に減 少してしまう という問題がある。  When using an Sx trap catalyst such as that described above for a compression ignition internal combustion engine, the air-fuel ratio of the exhaust gas flowing into the SOX trap catalyst is made lean so that the Sx trap catalyst does not release SOX. It's not difficult to keep up. However, when the above-mentioned S O X trap catalyst is used in a spark ignition internal combustion engine, the air-fuel ratio of the exhaust gas flowing into the S O X trap catalyst during a high load or sudden acceleration tends to become a latch. Then, depending on the catalyst temperature of the SOx trap catalyst, SOx will be released from the SOx trap catalyst, and SOx will be occluded by the downstream NOx storage reduction catalyst. As a result, there is a problem that the amount of NOx that can be stored in the NOx storage reduction catalyst gradually decreases.
上記問題は、 内燃機関の運転条件の変化によって S O X トラップ 触媒に流入する排気ガスの空燃比がリ ツチで且つ S O x トラップ触 媒の温度が S O X トラップ触媒から S〇 Xが放出される温度以上に なると予想されるときに、 S〇 X トラップ触媒に流入する排気ガス の空燃比をリーンとするように制御することによって、 S O x トラ ップ触媒に捕獲された S O xの放出を抑制することで解決するよう にも思われる。 The above problem is that the air-fuel ratio of the exhaust gas flowing into the SOX trap catalyst is rich due to changes in the operating conditions of the internal combustion engine, and the temperature of the SO x trap catalyst is higher than the temperature at which SOX is released from the SOX trap catalyst. By controlling so that the air-fuel ratio of the exhaust gas flowing into the SOx trap catalyst is lean, the release of SOx trapped in the SOx trap catalyst is suppressed. It seems to be solved.
しかしながら、 このように S O X トラップ触媒に流入する排気ガ スの空燃比をリーンとするように制御すると、 今度は下流の NO x 吸蔵還元触媒に吸蔵されている NO Xの量が次第に増大し、 その結 果として、 NO x吸蔵還元触媒に吸蔵しうる NO x量が次第に減少 してしまう。 そうすると、 N〇 X吸蔵還元触媒が吸蔵できなかった N〇 Xが外気へ排出され、 排気性状が悪化してしまう という問題が 生じる。  However, when the air-fuel ratio of the exhaust gas flowing into the SOX trap catalyst is controlled to be lean in this way, the amount of NO X stored in the downstream NO x storage reduction catalyst gradually increases, As a result, the amount of NO x that can be stored in the NO x storage reduction catalyst gradually decreases. If this happens, there will be a problem that the NOX that the NOX storage / reduction catalyst could not store is discharged to the outside air and the exhaust properties deteriorate.
そこで本発明は上記問題に鑑み、 S〇 X トラップ触媒に捕獲され た S O Xの放出を抑制するため排気ガスの空燃比をリーンに制御し ているときに、 NO Xの外気への放出を防止するようにした内燃機 関の排気浄化装置を提供することを目的とする。  Therefore, in view of the above problems, the present invention prevents NO X from being released to the outside air when the air-fuel ratio of the exhaust gas is controlled to be lean in order to suppress the release of SOX trapped by the S0 X trap catalyst. An object of the present invention is to provide an exhaust purification device for an internal combustion engine.
前記課題を解決するために本発明の 1番目の態様では、 機関排気 通路内に、 流入する排気ガスの空燃比がリーンのときには排気ガス 中に含まれる S O xを捕獲する S O x トラップ触媒であって、 流入 する排気ガスの空燃比がリーンの下で当該 S〇 X トラップ触媒の温 度が上昇すると捕獲した S〇 xが次第に当該 S O x トラップ触媒の 内部に拡散していく性質を有すると共に当該 S O X トラップ触媒に 流入する排気ガスの空燃比がリ ッチの下で当該 S O X トラップ触媒 の温度が S O x放出温度以上であれば捕獲した S O xを放出する性 質を有する S O x トラップ触媒を配置し、 該 S O x トラップ触媒下 流排気通路内に、 流入する排気ガスの空燃比がリーンのときには排 気ガス中に含まれる NO Xを吸蔵し流入する排気ガスの空燃比が理 論空燃比又はリ ッチになると吸蔵した NO Xを還元浄化する NO x 吸蔵還元触媒を配置した内燃機関において、 運転条件の変化によつ て前記 S〇 x トラップ触媒に流入する排気ガスの空燃比がリ ッチで 且つ前記 S O x トラップ触媒の温度が S O x放出温度以上になると 予想されるときに空燃比をリーンとするように制御して前記 S O x トラップ触媒に捕獲された S O Xの放出を抑制する空燃比制御手段 と、 前記 S O X トラップ触媒及び前記 N O X吸蔵還元触媒間の排気 通路内に配置され、 前記 NO x吸蔵還元触媒に流入する排気ガスの 空燃比が NO xを還元浄化しうる目標空燃比になるよう還元剤を噴 射する還元剤供給手段とを具備した内燃機関の排気浄化装置が提供 される。 In order to solve the above-described problems, a first aspect of the present invention is a SO x trap catalyst that captures SO x contained in exhaust gas when the air-fuel ratio of the exhaust gas flowing into the engine exhaust passage is lean. Therefore, when the air-fuel ratio of the inflowing exhaust gas is lean and the temperature of the SOx trap catalyst rises, the trapped SOx gradually diffuses into the SOx trap catalyst and If the air-fuel ratio of the exhaust gas flowing into the SOX trap catalyst is under the latch and the temperature of the SOX trap catalyst is equal to or higher than the SO x release temperature, an SO x trap catalyst having the property of releasing the captured SO x is placed. When the air-fuel ratio of the exhaust gas flowing into the SO x trap catalyst downstream exhaust passage is lean, NOx contained in the exhaust gas is occluded and the air-fuel ratio of the exhaust gas flowing in is the theoretical air-fuel ratio or Rich NO x for reduction purification of occluded NO X and In an internal combustion engine equipped with an occlusion reduction catalyst, the air-fuel ratio of the exhaust gas flowing into the S0 x trap catalyst is rich and the SO x trap catalyst temperature is the SO x release temperature due to changes in operating conditions. An air-fuel ratio control means for suppressing the release of SOX trapped in the SO x trap catalyst by controlling the air-fuel ratio to be lean when expected to be above, the SOX trap catalyst and the NOX storage reduction catalyst A reducing agent supplying means for injecting the reducing agent so that the air-fuel ratio of the exhaust gas flowing into the NOx storage reduction catalyst becomes a target air-fuel ratio capable of reducing and purifying NOx. An exhaust gas purification apparatus for an internal combustion engine is provided.
すなわち、 本態様では、 空燃比制御手段を具備することで、 ドラ ィバーの加速要求など運転条件の変化によって S O X トラップ触媒 に流入する排気ガスの空燃比がリ ッチで且つ前記 S O X トラップ触 媒の温度が S O x放出温度以上になると予想されるときに、 空燃比 がリーンとなるように制御され、 S〇 X トラップ触媒に捕獲された S〇 Xの放出が抑制される。 そして、 空燃比がリーンにされた結果 として、 前述のように NO x吸蔵還元触媒の NO x吸蔵量が増大す ることによって吸蔵しうる NO X量が減少し、 排気性状の悪化が懸 念される。 そのため、 NO X吸蔵還元触媒の上流側から還元剤を噴 射することによって NO x吸蔵還元触媒に流入する排気 スの空燃 比を、 NO Xを還元浄化しうる目標空燃比となるようにする。 その 結果として、 排気性状の悪化を防止することが可能となるという効 果を奏する。 ここで S〇 X放出温度とは、 S〇 x トラップ触媒に流 入する排気ガスの空燃比がリ ッチである場合において S〇 X トラッ プ触媒に捕獲された S O xが放出される温度 (例えば 6 0 0で) を レ う。  That is, in this aspect, by providing the air-fuel ratio control means, the air-fuel ratio of the exhaust gas flowing into the SOX trap catalyst due to a change in operating conditions such as a driver acceleration request is rich, and the SOX trap catalyst When the temperature is expected to be higher than the SO x release temperature, the air-fuel ratio is controlled to be lean, and the release of S 0 X trapped in the S 0 X trap catalyst is suppressed. As a result of making the air-fuel ratio lean, as described above, the NO x storage amount of the NO x storage reduction catalyst increases, so the amount of NO X that can be stored decreases, and there is concern about deterioration of exhaust properties. The Therefore, by injecting the reducing agent from the upstream side of the NO X storage reduction catalyst, the air / fuel ratio of the exhaust gas flowing into the NO X storage reduction catalyst is set to the target air / fuel ratio at which NO X can be reduced and purified. . As a result, there is an effect that it becomes possible to prevent the deterioration of exhaust properties. Here, S0 X release temperature is the temperature at which SO x trapped by S0 X trap catalyst is released when the air-fuel ratio of exhaust gas flowing into S0 x trap catalyst is a latch ( For example, 6 0 0).
本発明の 2番目の態様では、 前記空燃比制御手段が、 前記 S O x トラップ触媒に流入する排気ガスの空燃比を要求された トルクが確 保できる限界のリーン空燃比に制御する内燃機関の排気浄化装置が 提供される。 すなわち、 本態様では、 空燃比制御手段が、 要求トル クを満たすことが可能な限界のリーン空燃比となるように S〇 x ト ラップ触媒に流入する排気ガスの空燃比を制御することによって、 要求トルクを満たしつつ確実にリーン空燃比となるようにしている 。 その結果、 S〇 X トラップ触媒に捕獲された S O Xの放出を抑制 している。 In a second aspect of the present invention, the air-fuel ratio control means comprises the SO x An exhaust purification device for an internal combustion engine is provided that controls the air-fuel ratio of the exhaust gas flowing into the trap catalyst to a lean air-fuel ratio that is a limit that can ensure the required torque. That is, in this aspect, the air-fuel ratio control means controls the air-fuel ratio of the exhaust gas flowing into the S0 x trap catalyst so that the lean air-fuel ratio of the limit that can satisfy the required torque is obtained. A lean air-fuel ratio is ensured while satisfying the required torque. As a result, the release of SOX trapped in the SOX trap catalyst is suppressed.
本発明の 3番目の態様では、 前記空燃比制御手段が、 前記 S〇 x トラップ触媒に流入する排気ガスの空燃比を理論空燃比近傍のリー ンに制御する内燃機関の排気浄化装置が提供される。 すなわち、 本 態様では、 空燃比制御手段が、 S〇 X トラップ触媒に流入する排気 ガスの空燃比を理論空燃比近傍のリーンとなるように制御すること によって、 S O x トラップ触媒に捕獲された S O xの放出を抑制し ている。 従って、 請求項 2 に記載の発明より もさ らに理論空燃比に 近いリーンで運転することが可能となるので、 より高い トルク要求 を満たすことが可能となる。  In a third aspect of the present invention, there is provided an exhaust gas purification apparatus for an internal combustion engine, wherein the air-fuel ratio control means controls the air-fuel ratio of the exhaust gas flowing into the S0 trap catalyst to be lean near the stoichiometric air-fuel ratio. The That is, in this embodiment, the air-fuel ratio control means controls the SOx trap catalyst to capture the SOx trap catalyst by controlling the air-fuel ratio of the exhaust gas flowing into the S0 X trap catalyst so that it becomes lean near the stoichiometric air-fuel ratio. x release is suppressed. Therefore, since it is possible to operate at a leaner position closer to the stoichiometric air-fuel ratio than the invention according to claim 2, it is possible to satisfy a higher torque requirement.
本発明の 4番目の態様では、 前記空燃比制御手段が、 前記 S O x トラップ触媒上流の排気通路内に酸素を供給する手段を具備した内 燃機関の排気浄化装置が提供される。 すなわち、 本態様では、 S O X トラップ触媒上流の排気通路内に酸素を供給することによって、 機関燃焼室内において燃焼する混合気の空燃比に関わらず、 S〇 x トラップ触媒に流入する排気ガスの空燃比を常にリーンにすること が可能となる。  In a fourth aspect of the present invention, there is provided an exhaust gas purification apparatus for an internal combustion engine, wherein the air-fuel ratio control means comprises means for supplying oxygen into an exhaust passage upstream of the S O x trap catalyst. In other words, in this embodiment, by supplying oxygen into the exhaust passage upstream of the SOX trap catalyst, the air-fuel ratio of the exhaust gas flowing into the S0 trap catalyst regardless of the air-fuel ratio of the air-fuel mixture combusted in the engine combustion chamber. Can always be lean.
本発明の 5番目の態様では、 前記 N O X吸蔵還元触媒が三元触媒 の機能を有する内燃機関の排気浄化装置が提供される。  In a fifth aspect of the present invention, there is provided an exhaust gas purification apparatus for an internal combustion engine, wherein the N O X storage reduction catalyst has a three-way catalyst function.
本発明の 6番目の態様では、 前記目標空燃比が理論空燃比であり 、 前記 N〇 x吸蔵還元触媒が三元触媒としての機能を発揮する内燃 機関の排気浄化装置が提供される。 すなわち、 5番目と 6番目の態 様では、 三元触媒としての機能を利用することによって、 N〇 x吸 蔵還元触媒に吸蔵された N O x量に関わらず、 排気ガス中の N O X を還元浄化するという効果を奏する。 In a sixth aspect of the present invention, the target air-fuel ratio is a stoichiometric air-fuel ratio. There is provided an exhaust gas purification apparatus for an internal combustion engine in which the Nx storage / reduction catalyst functions as a three-way catalyst. That is, in the fifth and sixth modes, NOx in the exhaust gas is reduced and purified by using the function as a three-way catalyst, regardless of the amount of NO x stored in the NO x storage reduction catalyst. The effect of doing.
本発明の 7番目の態様では、 前記目標空燃比がリーン空燃比から リ ツチ空燃比に一時的に変化させるリ ツチスパイクであり、 前記 N O x吸蔵還元触媒に吸蔵された N〇 xを還元浄化する内燃機関の排 気浄化装置が提供される。 すなわち、 本態様では、 N〇 x吸蔵還元 触媒の吸蔵能力をリ ッチスパイク処理によって回復させることによ つて、 再び N O Xを吸蔵することが可能となり、 N O X吸蔵還元触 媒の吸蔵還元機能を活用することが可能となる。  In a seventh aspect of the present invention, the target air-fuel ratio is a rich spike that temporarily changes from a lean air-fuel ratio to a rich air-fuel ratio, and NOx stored in the NO x storage-reduction catalyst is reduced and purified. An exhaust purification device for an internal combustion engine is provided. In other words, in this embodiment, NOX can be stored again by restoring the storage capacity of the NO x storage reduction catalyst by the Rich Spike process, and the storage reduction function of the NOX storage reduction catalyst can be utilized. Is possible.
本発明の 8番目の態様では、 前記 N O X吸蔵還元触媒の触媒温度 を活性温度以上にする触媒昇温手段をさ らに具備した内燃機関の排 気浄化装置が提供される。 すなわち、 本態様では、 N〇 x吸蔵還元 触媒を昇温させる手段を具備することによって、 必要なときに早期 に触媒温度を上げることが可能となる。  According to an eighth aspect of the present invention, there is provided an exhaust gas purification apparatus for an internal combustion engine, further comprising a catalyst temperature raising means for setting the catalyst temperature of the NOx storage reduction catalyst to an activation temperature or higher. That is, in this embodiment, by providing the means for raising the temperature of the Nx storage reduction catalyst, it is possible to raise the catalyst temperature quickly when necessary.
以下、 添付図面と本発明の好適な実施形態の記載から、 本発明を 一層十分に理解できるだろう。 図面の簡単な説明  Hereinafter, the present invention will be more fully understood from the accompanying drawings and the description of the preferred embodiments of the present invention. Brief Description of Drawings
図 1 は、 内燃機関の排気浄化装置の概略構成を示す図である。 図 2 は、 別の実施形態による内燃機関の排気浄化装置の概略構成 を示す図である。  FIG. 1 is a diagram showing a schematic configuration of an exhaust emission control device for an internal combustion engine. FIG. 2 is a diagram showing a schematic configuration of an exhaust gas purification apparatus for an internal combustion engine according to another embodiment.
図 3 は、 硫黄被毒抑制操作のフローチャー トである。  Figure 3 shows the flow chart of the sulfur poisoning control operation.
図 4は、 還元剤供給操作のフローチャー トである。  Figure 4 shows the flow chart of the reducing agent supply operation.
図 5は、 別の実施形態による還元剤供給操作のフローチャートで ある。 FIG. 5 is a flowchart of a reducing agent supply operation according to another embodiment. is there.
図 6 は、 さ らに別の実施形態による還元剤供給操作のフローチヤ — 卜である。  FIG. 6 is a flow chart of a reducing agent supply operation according to still another embodiment.
図 7 は、 さ らに別の実施形態による還元剤供給操作のフローチヤ — トである。  FIG. 7 is a flowchart of a reducing agent supply operation according to still another embodiment.
図 8 は、 別の実施形態による硫黄被毒抑制操作のフローチャート である。  FIG. 8 is a flowchart of sulfur poisoning suppression operation according to another embodiment.
図 9 a及び図 9 bは、 S〇 x トラップ触媒に捕獲される S O X量 のマップを示す図である。  FIG. 9 a and FIG. 9 b are diagrams showing a map of the amount of S O X trapped by the S0 x trap catalyst.
図 10は、 N O x吸蔵還元触媒に吸蔵される N O X量のマップを示 す図である。 発明を実施するための最良の形態  FIG. 10 is a diagram showing a map of the amount of NOx stored in the NOx storage reduction catalyst. BEST MODE FOR CARRYING OUT THE INVENTION
以下に示す実施形態では本発明を火花点火式内燃機関に適用した 場合について説明するが、 圧縮着火式内燃機関に適用してもよい。 そして、 この火花点火式内燃機関は、 機関燃焼室内において燃焼す る混合気の空燃比が基本的にリーン (例えば空燃比 3 0 ) となるよ うに制御して運転されるが、 機関状態や ドライバーの加速要求によ つては機関燃焼室内において燃焼する混合気の空燃比が理論空燃比 又はリ ッチに変動することもある。 S O X トラップ触媒に捕獲され た S 〇 Xが放出されてしまうのは、 S 〇 X トラップ触媒に流入する 排気ガスの空燃比がリ ッチであって且つ S 〇 X トラップ触媒の温度 が S 〇 X放出温度以上の場合である。 従って、 本発明においては、 S 〇 x トラップ触媒の温度が S O x放出温度以上の場合において、 いかにして S O X トラップ触媒に流入する排気ガスの空燃比がリ ツ チとならないように制御し、 それによつて増大する N O x吸蔵還元 触媒に吸蔵された N O Xを還元浄化させるかについて、 以下説明す る。 In the embodiment described below, the case where the present invention is applied to a spark ignition type internal combustion engine will be described, but it may be applied to a compression ignition type internal combustion engine. This spark ignition type internal combustion engine is operated by controlling so that the air-fuel ratio of the air-fuel mixture combusting in the engine combustion chamber is basically lean (for example, air-fuel ratio 30). Depending on the acceleration requirement, the air-fuel ratio of the air-fuel mixture combusted in the engine combustion chamber may fluctuate to the stoichiometric air-fuel ratio or the rich. The S O X trapped by the SOX trap catalyst is released because the air-fuel ratio of the exhaust gas flowing into the S O X trap catalyst is a latch and the temperature of the S O X trap catalyst is S O X This is the case above the discharge temperature. Therefore, in the present invention, when the temperature of the S 0 x trap catalyst is equal to or higher than the SO x release temperature, the control is performed so that the air-fuel ratio of the exhaust gas flowing into the SOX trap catalyst does not become rich. NOx occlusion / reduction that increases as a result of the following: The
図 1 に内燃機関の全体図を示す。 図 1 を参照すると、 1 は例えば 四つの気筒を備えた機関本体、 2はシリ ンダブロック、 3 はシリ ン ダヘッ ド、 4はピス トン、 5は燃焼室、 6は吸気弁、 7 は吸気ポー ト、 8 は排気弁、 9 は排気ポー ト、 1 0 は点火栓をそれぞれ示す。 吸気ポー ト 7 は対応する吸気枝管 1 1 を介してサージタンク 1 2 に 連結され、 サージタンク 1 2は吸気ダク ト 1 3 を介してエアク リー ナ 1 4 に連結される。 吸気ダク ト 1 3内には吸入空気流量を検出す るためのエアフローメ一夕 1 5 とスロッ トル弁 1 6 とが配置される 。 また、 吸気ポ一 卜 7内には吸気ポー ト 7 内に燃料を噴射する電気 制御式の燃料噴射弁 1 7が配置される。 一方、 排気ポー ト 9 は排気 マニホルド 1 8 を介して S〇 x トラップ触媒 1 9 に連結され、 S O X トラップ触媒 1 9は排気管 2 0 を介して N O X吸蔵還元触媒 2 1 に連結され、 N O X吸蔵還元触媒 2 1 は排気管 2 2 に連結される。 S O X トラップ触媒 1 9の上流には空燃比 A Fを検出するための空 燃比センサ 2 3が取り付けられ、 S〇 X トラップ触媒 1 9 には触媒 温度 T s を検出する触媒温度センサ 2 4が取り付けられる。 そして さ らに N O X吸蔵還元触媒 2 1 の上流には、 例えば炭化水素からな る還元剤を排気通路内に供給するための電気制御式の還元剤噴射弁 2 5が配置され、 N O X吸蔵還元触媒 2 1 には触媒温度 T nを検出 する触媒温度センサ 2 6が取り付けられる。 なお、 N〇 x吸蔵還元 触媒 2 1 より下流の排気通路内に理論空燃比付近で急激に出力電圧 が変化する〇2センサ 2 7 を配置すると、 後述するような空燃比を 制御する際に下流側の空燃比をフィー ドバックできるので好ましい 電子制御ユニッ ト (E C U ) 3 0 はデジタルコンピュータからな り、 双方向性バス 3 1 によって互いに接続された R〇 M (リー ドォ ンリ メモリ) 3 2、 RAM (ランダムアクセスメモリ) 3 3、 C P U (マイクロプロセッサ) 3 4.、 入力ポー ト 3 5、 .及び出力ポー ト 3 6を具備する。 アクセルペダル 3 9にはアクセルペダル 3 9の踏 み込み量を検出するための負荷センサ 4 0が接続される。 ここで、 アクセルペダル 3 9の踏み込み量は要求負荷を表している。 エアフ ローメータ 1 5、 空燃比センサ 2 3、 触媒温度センサ 2 4、 2 6、 〇2センサ 2 7、 及び負荷センサ 4 0の出力信号はそれぞれ対応す る AD変換器 3 7を介して入力ポー ト 3 5に入力される。 更に入力 ポー ト 3 5にはクランクシャフ トが例えば 3 0 ° 回転する毎に出力 パルスを発生するクランク角センサ 4 1が接続される。 C P U 3 4 ではクランク角センサ 4 1の出力パルスに基づいて機関回転数 Nが 算出される。 一方、 出力ポー ト 3 6は対応する駆動回路 3 8を介し て点火栓 1 0、 スロッ トル弁 1 6、 燃料噴射弁 1 7、 及び還元剤供 給弁 2 5にそれぞれ接続され、 これらは電子制御ユニッ ト (E C U ) 3 0からの出力信号に基づいて制御される。 Figure 1 shows an overall view of the internal combustion engine. Referring to FIG. 1, 1 is, for example, an engine body with four cylinders, 2 is a cylinder block, 3 is a cylinder head, 4 is a piston, 5 is a combustion chamber, 6 is an intake valve, and 7 is an intake port. 8 is an exhaust valve, 9 is an exhaust port, and 10 is a spark plug. The intake port 7 is connected to the surge tank 1 2 through the corresponding intake branch pipe 11, and the surge tank 12 is connected to the air cleaner 14 through the intake duct 1 3. In the intake duct 13, an air flow mechanism 15 for detecting the intake air flow rate and a throttle valve 16 are arranged. In addition, an electrically controlled fuel injection valve 17 for injecting fuel into the intake port 7 is disposed in the intake port 7. On the other hand, the exhaust port 9 is connected to the S0x trap catalyst 19 through the exhaust manifold 18, and the SOX trap catalyst 19 is connected to the NOX storage reduction catalyst 21 through the exhaust pipe 20 to store the NOX. The reduction catalyst 2 1 is connected to the exhaust pipe 2 2. An air-fuel ratio sensor 2 3 for detecting the air-fuel ratio AF is attached upstream of the SOX trap catalyst 1 9, and a catalyst temperature sensor 2 4 for detecting the catalyst temperature T s is attached to the S0 X trap catalyst 1 9. . Further, an electrically controlled reducing agent injection valve 25 for supplying, for example, a reducing agent made of hydrocarbons into the exhaust passage is disposed upstream of the NOX storage reduction catalyst 21, and the NOX storage reduction catalyst 21. 2 1 is provided with a catalyst temperature sensor 26 for detecting the catalyst temperature T n. Incidentally, placing 〇 2 sensor 2 7 abruptly output voltage changes in the vicinity of the stoichiometric air-fuel ratio N_〇 x storage-reduction catalyst 2 1 than the downstream of the exhaust passage, downstream in controlling the air-fuel ratio as described later The preferred electronic control unit (ECU) 30 is a digital computer and can be fed back to each other by means of a bidirectional bus 31. 3), RAM (random access memory) 3 3, CPU (microprocessor) 3 4., input port 3 5,. And output port 3 6. A load sensor 40 for detecting the amount of depression of the accelerator pedal 39 is connected to the accelerator pedal 39. Here, the amount of depression of the accelerator pedal 39 represents the required load. The output signals of the air flow meter 1 5, air-fuel ratio sensor 2 3, catalyst temperature sensor 2 4, 2 6, 2 sensor 2 7, and load sensor 4 0 are input ports via the corresponding AD converter 3 7. 3 Entered in 5. Further, a crank angle sensor 41 that generates an output pulse every time the crankshaft rotates, for example, 30 ° is connected to the input port 35. The CPU 3 4 calculates the engine speed N based on the output pulse of the crank angle sensor 4 1. On the other hand, the output port 3 6 is connected to the spark plug 10, the throttle valve 16, the fuel injection valve 17, and the reducing agent supply valve 25 via the corresponding drive circuit 38, which are electronic Control unit (ECU) 30 Controlled based on output signal from 0.
まず、 図 1 を参照しながら本発明の実施形態について説明する。 本実施形態において NO X吸蔵還元触媒 2 1 は三元触媒としての機 能も有している。 すなわち、 NO x吸蔵還元触媒 2 1が或る温度以 上となり且つ流入する排気ガスの空燃比が理論空燃比のときに、 排 気ガス中の有害成分となる炭化水素、 一酸化炭素及び NO xを高い 浄化率で浄化する役割を果たす。 このような高い浄化率で以て浄化 するようになる温度を活性温度という。 活性温度は、 N〇 x吸蔵還 元触媒の吸蔵還元機能を十分に発揮できる温度としても同様に用い る。 そして排気ガスの空燃比とは、 吸気ポー ト 7、 燃焼室 5、 及び S〇 x トラップ触媒 1 9上流の排気通路内に供給された空気と、 燃 料及び後述す 還元剤 (炭化水素) との比をいう。  First, an embodiment of the present invention will be described with reference to FIG. In this embodiment, the NO X storage reduction catalyst 21 also has a function as a three-way catalyst. That is, when the NO x storage reduction catalyst 21 is above a certain temperature and the air-fuel ratio of the inflowing exhaust gas is the stoichiometric air-fuel ratio, hydrocarbons, carbon monoxide, and NO x that are harmful components in the exhaust gas It plays a role in purifying the water with a high purification rate. The temperature at which purification is performed with such a high purification rate is called the activation temperature. The activation temperature is also used as the temperature at which the NOx occlusion reduction catalyst can fully exhibit the occlusion reduction function. The air-fuel ratio of the exhaust gas is defined as the intake port 7, the combustion chamber 5, and the air supplied to the exhaust passage upstream of the Sx trap catalyst 19 and the fuel and the reducing agent (hydrocarbon) described later. The ratio of
本実施形態における 1番目の方法として、 例えば、 大幅なリーン 空燃比による運転状態から加速要求によって比較的リーンの程度が 低い空燃比領域 (空燃比約 2 0から理論空燃比までの領域) の運転 状態に変化する場合を想定する。 従来の空燃比 御によると、 急加 速要求時などの場合は一旦リ ッチ空燃比を経た後、 比較的リーンの 程度が低い空燃比領域となる。 しかし、 本発明においては、 そのと き要求される トルクが、 高負荷時又は急加速時等に想定される最大 の要求トルクであっても、 理論空燃比又はリ ッチ空燃比となること なく上記比較的リーンの程度が低い空燃比領域内となるように制御 する。 このように制御することによって、 S〇 x トラップ触媒 1 9 に流入する排気ガスの空燃比をリーンに維持し続けることが可能と なる。 As the first method in this embodiment, for example, significant lean Assume that the operating state changes from an air-fuel ratio operating state to an operating state in an air-fuel ratio region (region from about 20 to the stoichiometric air-fuel ratio) where the degree of leanness is relatively low due to an acceleration request. According to the conventional air-fuel ratio control, when sudden acceleration is required, the air-fuel ratio region is relatively low after passing through the air-fuel ratio once. However, in the present invention, even if the torque required at that time is the maximum required torque assumed at the time of high load or sudden acceleration, the theoretical air-fuel ratio or the rich air-fuel ratio is not reached. The air-fuel ratio is controlled so that the degree of leanness is relatively low. By controlling in this way, it becomes possible to keep the air-fuel ratio of the exhaust gas flowing into the Sx trap catalyst 19 9 lean.
本実施形態における 2番目の方法として、 空燃比センサ 2 3 を用 いて S〇 x トラップ触媒 1 9 に流入する排気ガスの空燃比をフィー ドバックすることによって、 流入する排気ガスの空燃比を理論空燃 比近傍のリーン (例えば空燃比 1 4 . 8 ) となるように制御する方 法である。 これによると 1番目の方法より もさ らに理論空燃比に近 いリーンで運転することが可能となるので、 より高い トルク要求を 満たすことが可能となる。 なお、 空燃比センサ 2 3 は、 〇2センサ に置き換えてもよい。 As a second method in the present embodiment, the air-fuel ratio of the exhaust gas flowing into the S0 x trap catalyst 19 is fed back using the air-fuel ratio sensor 2 3 to obtain the theoretical air-fuel ratio of the inflowing exhaust gas. In this method, the fuel ratio is controlled to be close to the fuel ratio (for example, the air-fuel ratio is 14.8). According to this, it is possible to operate at a leaner value closer to the stoichiometric air-fuel ratio than in the first method, so that higher torque requirements can be satisfied. The air-fuel ratio sensor 2 3 may be replaced with ○ 2 sensor.
その他の方法としては、 例えば加速運転時に燃料増量の要求があ つた場合に、 S O X トラップ触媒 1 9 に流入する排気ガスの空燃比 がリ ッチとならないように、 例えば理論空燃比に保持したり、 燃料 増量の割合を縮小してリ ッチ空燃比とならないように制御したりす ることも考えられる。 また、 仮に N〇 x吸蔵還元触媒 2 1 を還元浄 化するため空燃比を一時的にリ ッチにするリ ッチスパイク処理要求 があったとしても、 S〇 x トラップ触媒の温度が S〇 x放出温度以 上の場合には、 それを禁止するようにしてもよい。 前述の 1番目、 2番目、 及びその他の方法を総称して、 以下、 空燃比制御方法と称 す。 Other methods include, for example, maintaining the stoichiometric air-fuel ratio so that the air-fuel ratio of the exhaust gas flowing into the SOX trap catalyst 19 does not become a latch when there is a request for fuel increase during acceleration operation. It is also conceivable to control the fuel increase ratio so that it does not become a rich air-fuel ratio. In addition, even if there is a request for a spike spike treatment to temporarily switch the air-fuel ratio to reduce and purify the N0 x storage reduction catalyst 21, the temperature of the S0 x trap catalyst will be released from the S0 x If it is above the temperature, it may be prohibited. The first mentioned above, The second and other methods are collectively referred to below as the air-fuel ratio control method.
さ らに、 これら空燃比制御方法において、 要求トルクを満たすた めに、 例えば、 機械式過給機によって過給したり、 電動モー夕等を 併せて用いたりすることによって要求トルクを満たすようにしても よい。 このような追加の手段を用いることで、 例えば上記 1番目の 方法においては、 より大きいリーン空燃比を確実に確保することが 可能となる。  Furthermore, in these air-fuel ratio control methods, in order to satisfy the required torque, for example, the required torque is satisfied by supercharging with a mechanical supercharger or using an electric motor together. May be. By using such additional means, for example, in the first method, it is possible to reliably ensure a larger lean air-fuel ratio.
本実施形態において、 上述のような空燃比制御方法によって S〇 X トラップ触媒 1 9に流入する排気ガスの空燃比をリーンに制御す ると、 下流の NO X吸蔵還元触媒 2 1 の NO xに吸蔵されている N 〇 x量が次第に増大し、 その結果として、 NO x吸蔵還元触媒 2 1 に吸蔵しうる NO X量が次第に減少してしまう。 そうすると、 流入 する排気ガス中の NO xを NO x吸蔵還元触媒 2 1が吸蔵しきれず に一部外気へ排出し、 排気性状が悪化してしまう。  In the present embodiment, when the air-fuel ratio of the exhaust gas flowing into the SO trap catalyst 19 is controlled to be lean by the air-fuel ratio control method as described above, the NO x of the downstream NO X storage reduction catalyst 21 is reduced to NO x. The amount of stored N 0 x gradually increases, and as a result, the amount of NO x that can be stored in the NO x storage reduction catalyst 2 1 gradually decreases. As a result, NO x in the inflowing exhaust gas cannot be fully occluded by the NO x storage reduction catalyst 21 and is partially discharged to the outside air, resulting in deterioration of exhaust properties.
そこで、 N〇 x吸蔵還元触媒 2 1の上流の排気通路内に還元剤噴 射弁 2 5を用いて還元剤を供給し、 NO X吸蔵還元触媒 2 1 に流入 する排気ガスの空燃比が理論空燃比となるように制御する。 そうす ることによって NO x吸蔵還元触媒 2 1の三元触媒としての機能に より、 排気ガス中の炭化水素及び一酸化炭素の酸化と、 N〇 xの還 元を同時に行い、 排気ガス中のこれら有害成分を無害な二酸化炭素 と、 水及び窒素に浄化する。 それによつて排気性状の悪化を防止す ることが可能となる。  Therefore, the reducing agent is supplied into the exhaust passage upstream of the NO x storage reduction catalyst 21 using the reducing agent injection valve 25, and the air-fuel ratio of the exhaust gas flowing into the NO X storage reduction catalyst 21 is theoretically determined. Control to achieve an air-fuel ratio. By doing so, the function of the NO x storage-reduction catalyst 21 as a three-way catalyst allows simultaneous oxidation of hydrocarbons and carbon monoxide in the exhaust gas and reduction of N0 x. Purify these harmful components into harmless carbon dioxide, water and nitrogen. As a result, it is possible to prevent deterioration of exhaust properties.
次に硫黄被毒抑制操作と還元剤供給操作のフローチャー トについ て説明する。 以下にいくつかの実施形態を用いて示すこれらの操作 は、 電子制御ユニッ ト (E C U) 3 0により予め定められた設定時 間毎の割り込みによって実行されるルーチンとして行われる。 図 3は、 本実施形態による硫黄被毒抑制操作のフローチャー トを 示している。 硫黄被毒抑制操作は、 S O X トラップ触媒 1 9に流入 する排気ガスの空燃比をリーンに制御し、 S O x トラップ触媒 1 9 から S〇 Xが放出されないようにする操作である。 図 3を参照する と、 まずステップ 1 0 0で S〇 X トラップ触媒 1 9に捕獲された S 〇 x量を推定し、 S〇 x トラップ触媒 1 9に捕獲された S O x量∑ S〇 X 1が予め定められた量 S O X 0以上であるかどうかが判定さ れる。 すなわち、 捕獲された S O x量∑ S〇 X 1が予め定められた 量 S O X 0以下である場合には、 仮に S〇 x トラップ触媒 1 9から S O Xが放出されたとしてもすぐ再び S O X トラップ触媒 1 9 自体 に再び捕獲され、 NO X吸蔵還元触媒 2 1 に到達することがほとん どない。 従ってその後の操作を行わず、 ステップ 1 0 4に進んで後 述の還元剤供給操作時に用いるフラグ Fに 0 をセッ 卜し、 ルーチン を終了する。 Next, the flow chart of the sulfur poisoning suppression operation and the reducing agent supply operation is explained. These operations, which will be described below using some embodiments, are performed as routines that are executed by interruptions at predetermined time intervals set in advance by an electronic control unit (ECU) 30. FIG. 3 shows a flow chart of the sulfur poisoning suppression operation according to this embodiment. The sulfur poisoning suppression operation is an operation for controlling the air-fuel ratio of the exhaust gas flowing into the SOX trap catalyst 19 to be lean so that SO x is not released from the SO x trap catalyst 19. Referring to Fig. 3, first, the amount of S 〇 x trapped in S〇 X trap catalyst 1 9 is estimated in step 100, and the amount of SO x trapped in S 〇 trap catalyst 1 9 1 S 〇 X It is determined whether 1 is greater than a predetermined amount SOX 0. That is, if the trapped SO x amount 〇 S X 1 is less than the predetermined amount SOX 0, even if SOX is released from the S O trap catalyst 1 9 immediately, the SOX trap catalyst 1 again 9 It is rarely captured by itself and reaches the NO X storage reduction catalyst 2 1 almost. Accordingly, the subsequent operation is not performed, and the routine proceeds to step 104 to set 0 to the flag F used in the reducing agent supply operation described later, and the routine is terminated.
ここで S O X トラップ触媒 1 9に捕獲された S〇 x量∑ S O X l を推定する方法について説明する。 燃料中には或る割合で硫黄が含 まれており、 従って排気ガス中に含まれる S〇 x量、 すなわち S O X トラップ触媒 1 9に捕獲される S〇 X量は燃料噴射量に比例する 。 燃料噴射量は要求トルク及び機関回転数の関数であり、 従って S O X トラップ触媒 1 9に捕獲される S O X量も要求トルク及び機関 回転数の関数.となる。 本発明による実施形態では S〇 X トラップ触 媒 1 9に単位時間当り捕獲される S O x量 S O XAが要求トルク T Q及び機関回転数 Nの関数として図 9 aに示されるようなマップの 形で予め R OM 3 2内に記憶されている。  Here, a method for estimating the amount of S0 x trapped by the S O X trap catalyst 19 will be described. The fuel contains a certain amount of sulfur. Therefore, the amount of SOx contained in the exhaust gas, that is, the amount of SOx trapped in the SOx trap catalyst 19 is proportional to the fuel injection amount. The fuel injection amount is a function of the required torque and the engine speed, so the amount of S O X trapped in the S O X trap catalyst 19 is also a function of the required torque and the engine speed. In the embodiment according to the present invention, the SO x trap SO XA trapped per unit time in the SOx trap catalyst 19 in the form of a map as shown in FIG. 9 a as a function of the required torque TQ and the engine speed N. Stored in ROM 3 2 in advance.
また、 潤滑油内にも或る割合で硫黄が含まれており、 燃焼室 5内 で燃焼する潤滑油量、 すなわち排気ガス中に含まれていて S〇 x ト ラップ触媒 1 9に捕獲される S O X量も要求トルク及び機関回転数 の関数となる。 本発明による実施形態では潤滑油に含まれていて sThe lubricating oil also contains a certain percentage of sulfur, and the amount of lubricating oil combusted in the combustion chamber 5, that is, contained in the exhaust gas, is captured by the S0 x trap catalyst 19. SOX amount is also required torque and engine speed Is a function of In an embodiment according to the present invention,
〇 X トラップ触媒 1 9に単位時間当り捕獲される S〇 xの量 S O X Bが要求トルク T Q及び機関回転数 Nの関数として図 9 bに示され るようなマップの形で予め R OM 3 2内に記憶されており、 S O x 量 S O XA及び S〇 x量 S O X Bの和を積算することによって S O X トラップ触媒 1 9に捕獲されている S O x量∑ S〇X 1が算出さ れる。 ○ X trap catalyst 1 Amount of S x trapped per unit time in 9 SOXB is stored in advance in R OM 3 2 in the form of a map as shown in Fig. 9b as a function of required torque TQ and engine speed N And the sum of the SO x amount SO XA and the SO x amount SOXB is calculated to calculate the SO x amount ∑ SO X 1 captured by the SOX trap catalyst 19.
上述のようにして算出された S O X トラップ触媒 1 9 に捕獲され た S〇 x量∑ S〇X 1が予め定められた量 S O X 0以上である場合 には、 ステップ 1 0 1 に進んで S〇 X トラップ触媒 1 9の触媒温度 T sが S〇 X放出温度 T s 0以上であるかどうかが判定される。 す なわち、 触媒温度 T sが S O x放出温度 T s O未満である場合には 、 空燃比によらず捕獲された S O xが放出されることはない。 従つ てその後の操作を行わず、 ステップ 1 0 4に進んでフラグ Fに 0を セッ トし、 ルーチンを終了する。 なお、 捕獲された S〇 xの放出を 確実に抑制するために、 ステップ 1 0 1 において判定される温度を S〇 X放出温度 T s 0よりもわずかばかり低い温度とすることが望 ましい。  If the amount of SOx trapped by the SOX trap catalyst 1 9 calculated as described above is greater than or equal to the predetermined amount SOx0, proceed to step 1001 It is determined whether or not the catalyst temperature T s of the X trap catalyst 1 9 is equal to or higher than S0 X release temperature T s 0. That is, when the catalyst temperature T s is lower than the S O x release temperature T s O, the captured S O x is not released regardless of the air-fuel ratio. Therefore, no further operation is performed, and the process proceeds to step 104 to set flag F to 0, and the routine ends. In order to reliably suppress the release of the trapped SOx, it is desirable that the temperature determined in Step 1001 is slightly lower than the SOx release temperature Ts0.
ステップ 1 0 1 において、 触媒温度 T sが S〇 x放出温度 T s 0 以上である場合には、 ステップ 1 0 2に進んで S O X トラップ触媒 1 9に流入する排気ガスの空燃比 A Fが理論空燃比 A F 0又はリ ツ チ (ぐ A F 0 ) であるかどうかが判定される。 ここで空燃比が理論 空燃比である場合においても判定の対象としているのは、 基本的に 理論空燃比 A F 0である場合には S O xはほとんど放出されない。 しかしながら、 わずかでもリッチ空燃比 (ぐ A F 0 ) となれば放出 が開始されるので、 その直前段階で空燃比の低下を抑止するためで ある。 S〇 X トラップ触媒 1 9に流入する排気ガスの空燃比 A Fが 理論空燃比 A F O又はリ ッチ (ぐ A F 0 ) でない場合、 すなわち リ 一ン空燃比 (>A F 0 ) である場合には、 S〇 x トラップ触媒 1 9 に捕獲された S〇 xが放出されることはない。 従ってその後の操作 を行わず、 ステップ 1 0 4に進んでフラグ Fに 0 をセヅ トし、 ルー チンを終了する。 If the catalyst temperature T s is equal to or higher than S0 x release temperature T s 0 in step 1 0 1, the process proceeds to step 1 0 2 and the air-fuel ratio AF of the exhaust gas flowing into the SOX trap catalyst 1 9 is the theoretical sky. It is determined whether or not the fuel ratio is AF 0 or rich (AF 0). Here, even when the air-fuel ratio is the stoichiometric air-fuel ratio, the object of determination is basically that SO x is hardly released when the stoichiometric air-fuel ratio AF 0. However, since the release starts when the air / fuel ratio becomes even slightly (G AF 0), the decrease in the air / fuel ratio is suppressed immediately before that. S ○ X Trap catalyst 1 The air-fuel ratio AF of the exhaust gas flowing into 9 is If the stoichiometric air-fuel ratio is not AFO or Litch (G AF 0), that is, if the air-fuel ratio (> AF 0), the S0 x trapped by the S0 x trap catalyst 19 is released. Never happen. Therefore, no further operation is performed, and the routine proceeds to step 104, where flag F is set to 0 and the routine is terminated.
一方、 ステップ 1 0 2において、 S O x トラップ触媒 1 9 に流入 する排気ガスの空燃比 A Fが理論空燃比 A F 0又はリ ッチ (ぐ A F 0 ) である場合には、 S O X 卜ラップ触媒 1 9に捕獲された S O X が放出されてしまう (又は理論空燃比の場合はその恐れがある) 。 従って、 ステップ 1 0 3に進んで、 前述したような空燃比制御方法 によって S O X トラップ触媒 1 9に流入する排気ガスの空燃比がリ ーンとなるように空燃比制御を行う。 その後ステップ 1 0 5 に進ん で、 今度はフラグ Fに 1 をセッ ト し、 ルーチンを終了する。  On the other hand, if the air-fuel ratio AF of the exhaust gas flowing into the SO x trap catalyst 1 9 is the stoichiometric air-fuel ratio AF 0 or the rich (AF 0) in step 100, the SOX 卜 wrap catalyst 1 9 The trapped SOX will be released (or it may be the case if the stoichiometric air-fuel ratio is used). Accordingly, the process proceeds to step 103, and the air-fuel ratio control is performed by the air-fuel ratio control method as described above so that the air-fuel ratio of the exhaust gas flowing into the SOx trap catalyst 19 becomes lean. Then proceed to step 105, this time set flag F to 1 and end the routine.
図 4は還元剤供給操作のフローチャー トを示している。 還元剤供 給操作は、 N〇 x吸蔵還元触媒 2 1 に流入する排気ガスの空燃比を 制御し、 NO X吸蔵還元触媒 2 1 に吸蔵された NO Xを還元浄化さ せる操作である。 図 4を参照すると、 まずステップ 2 0 0で前述の 硫黄被毒抑制操作においてセッ 卜 したフラグ Fが 1であるか否かが 判定される。 フラグ Fが 1でない場合、 すなわち、 図 3に示す硫黄 被毒抑制操作によって、 S〇 x トラップ触媒 1 9に流入する排気ガ スの空燃比がリーンに制御されている状態でない場合には、 本発明 による付加的な還元剤の供給を行う必要がない。 従って、 その後の 操作を行わずにルーチンを終了する。  Figure 4 shows the flow chart of the reducing agent supply operation. The reducing agent supply operation is an operation for controlling the air-fuel ratio of the exhaust gas flowing into the NO x storage reduction catalyst 21 to reduce and purify the NO X stored in the NO X storage reduction catalyst 21. Referring to FIG. 4, first, in step 200, it is determined whether or not the flag F set in the above-described sulfur poisoning suppression operation is 1. When the flag F is not 1, that is, when the air-fuel ratio of the exhaust gas flowing into the Sx trap catalyst 19 is not leanly controlled by the sulfur poisoning suppression operation shown in FIG. There is no need to supply an additional reducing agent according to the invention. Therefore, the routine is terminated without performing the subsequent operation.
一方、 ステップ 2 0 0において、 フラグ Fが 1の場合、 すなわち 、 前述の硫黄被毒抑制操作によって、 S〇 X トラップ触媒 1 9に流 入する排気ガスの空燃比がリーンに制御されている状態の場合には ステップ 2 0 1 に進む。 ステップ 2 0 1では、 当該操作の実行時点 で既に排気ガスの空燃比 A Fがリーン空燃比 (>A F 0 ) となって いるか否かが判定される。 これは、 硫黄被毒抑制操作の空燃比制御 が実行されていても、 まだリーン空燃比への過渡期の場合等を考慮 しての処理である。 その結果、 未だにリーンとなっていない場合に は、 その後の操作を行わずにルーチンを終了する。 このステップ 2 0 1の処理は、 硫黄被毒抑制操作で確実に排気ガスの空燃比がリー ンにされる場合にはなくてもよい。 On the other hand, when the flag F is 1 in step 200, that is, the state in which the air-fuel ratio of the exhaust gas flowing into the S0 trap catalyst 19 is leanly controlled by the sulfur poisoning suppression operation described above. If, go to step 2 0 1. Step 2 0 1 It is then determined whether or not the air-fuel ratio AF of the exhaust gas has already become a lean air-fuel ratio (> AF 0). This is a process that takes into account the case of the transition to the lean air-fuel ratio, etc., even though the air-fuel ratio control of the sulfur poisoning suppression operation is being executed. As a result, if it is not yet lean, the routine is terminated without performing further operations. The processing in step 210 may not be performed when the air-fuel ratio of the exhaust gas is reliably made lean by the sulfur poisoning suppression operation.
一方、 ステップ 2 0 1 において、 既に排気ガスの空燃比 A Fがリ 一ン空燃比 (〉A F 0 ) となっている場合にはステップ 2 0 2 に進 む。 ステップ 2 0 2では、 理論空燃比化処理が実行される。 この処 理は、 硫黄被毒抑制操作によってリーン空燃比とされた排気ガスの 空燃比を NO X吸蔵還元触媒 2 1 に流入する前に、 還元剤供給弁 2 5から還元剤を排気通路内に噴射する。 それによつて、 N〇 x吸蔵 還元触媒 2.1 に流入する排気ガスの空燃比が理論空燃比となるよう に制御する処理である。 その際には、 S O X トラップ触媒 1 9に流 入する排気ガスの空燃比と流出する排気ガスの空燃比が等しいと仮 定する。 そして、 空燃比センサ 2 3で測定された空燃比を基に、 N O x吸蔵還元触媒 2 1 に流入する排気ガスの空燃比が理論空燃比と なるように、 電子制御ユニッ ト (E C U) 3 0によって算出された 量の還元剤が還元剤供給弁 2 5から噴射される。 還元剤の噴射量は 、 N O X吸蔵還元触媒 2 1 の下流にある〇2センサ 2 7 によって、 より正確に理論空燃比となるようにフィー ドバックされる。 On the other hand, if the air-fuel ratio AF of the exhaust gas is already the lean air-fuel ratio (> AF 0) in step 2 0 1, the process proceeds to step 2 0 2. In step 2 0 2, the stoichiometric air-fuel ratio process is executed. This process is performed by introducing the reducing agent into the exhaust passage from the reducing agent supply valve 25 before the air-fuel ratio of the exhaust gas that has been made lean by the sulfur poisoning suppression operation flows into the NO X storage reduction catalyst 21. Spray. Accordingly, the control is performed so that the air-fuel ratio of the exhaust gas flowing into the N0 x storage reduction catalyst 2.1 becomes the stoichiometric air-fuel ratio. In that case, it is assumed that the air-fuel ratio of the exhaust gas flowing into the SOX trap catalyst 19 is equal to the air-fuel ratio of the exhaust gas flowing out. Then, based on the air-fuel ratio measured by the air-fuel ratio sensor 23, an electronic control unit (ECU) 30 is used so that the air-fuel ratio of the exhaust gas flowing into the NO x storage reduction catalyst 21 becomes the stoichiometric air-fuel ratio. The amount of reducing agent calculated by the above is injected from the reducing agent supply valve 25. Injection amount of the reducing agent, by 〇 2 sensor 2 7 downstream of NOX storage-reduction catalyst 2 1 is feedback so that more accurate stoichiometric air-fuel ratio.
従って、 NO x吸蔵還元触媒 2 1 に流入する排気ガスの空燃比が 理論空燃比に制御されることによって、 NO x吸蔵還元触媒 2 1の 三元触媒としての機能を利用し、 排気ガス中に含まれる NO xを還 元浄化し、 排気性状の悪化を防止することが可能となる。 また、 N 〇 x吸蔵還元触媒 2 1の三元触媒としての機能を利用することで、 NO xの吸蔵量に関わらず、 排気性状の悪化を防止することが可能 となる。 なお、 本実施形態で用いた三元触媒としての機能を有する N〇 x吸蔵還元触媒は、 通常の三元触媒であってもよい。 Therefore, by controlling the air-fuel ratio of the exhaust gas flowing into the NO x storage reduction catalyst 2 1 to the stoichiometric air fuel ratio, the function of the NO x storage reduction catalyst 2 1 as a three-way catalyst is utilized, and the exhaust gas is contained in the exhaust gas. It is possible to reduce the NOx contained and prevent deterioration of exhaust properties. In addition, by utilizing the function as a three-way catalyst of N 0 x storage reduction catalyst 21, Regardless of the amount of occluded NOx, it is possible to prevent deterioration of exhaust properties. Note that the Nx storage reduction catalyst having a function as a three-way catalyst used in this embodiment may be a normal three-way catalyst.
ところで、 後段の NO X吸蔵還元触媒 2 1 は、 排気通路内で下流 にあるため上流の S〇 X トラップ触媒 1 9より も触媒温度が上がり にくい。 触媒温度が十分に上昇していないと N O X吸蔵還元触媒 2 1 を三元触媒又は NO X吸蔵還元触媒として十分に機能させること ができない。 そこでさらに別の実施形態として、 N〇 x吸蔵還元触 媒 2 1 を活性温度 T n Oまで早期に昇温させる手段を講じる。 具体 的には、 NO X吸蔵還元触媒 2 1の床下又は上流の排気通路に発熱 体例えば発熱コイル等を配置し、 N〇 x吸蔵還元触媒 2 1 に流入す る排気ガス又は触媒自体を熱することによって昇温させる。 或いは 、 活性温度 T nに達していなく とも、 或る程度温度が上昇していれ ば、 排気ガス中の酸素が十分にあるリーン空燃比の状態で還元剤供 給弁 2 5から還元剤を添加することによって、 ΝΟ χ吸蔵還元触媒 2 1上で還元剤と酸素との酸化反応熱を用いて活性温度 T nまで昇 温させたりすることも可能である。  By the way, since the downstream NO X storage reduction catalyst 21 is downstream in the exhaust passage, the catalyst temperature is less likely to rise than the upstream SOX trap catalyst 19. If the catalyst temperature is not sufficiently increased, the N O X storage reduction catalyst 21 cannot function sufficiently as a three-way catalyst or a NO X storage reduction catalyst. Therefore, as yet another embodiment, a means for quickly raising the temperature of the NO x occlusion reduction catalyst 2 1 to the activation temperature T n O is taken. Specifically, a heating element such as a heating coil is arranged in the exhaust passage under the floor or upstream of the NO X storage reduction catalyst 21 to heat the exhaust gas flowing into the N0 x storage reduction catalyst 21 or the catalyst itself. To raise the temperature. Alternatively, even if the activation temperature Tn has not been reached, if the temperature has risen to some extent, the reducing agent is added from the reducing agent supply valve 25 in a lean air-fuel ratio with sufficient oxygen in the exhaust gas. By doing so, it is possible to raise the temperature to the activation temperature T n using the heat of oxidation reaction between the reducing agent and oxygen on the χ χ occlusion reduction catalyst 21.
図 5は、 図 4に示す還元剤供給操作に前述のような触媒昇温手段 を講じた場合の還元剤供給操作のフローチャー トを示している。 図 5を参照すると、 ステップ 3 0 0, 3 0 1、 3 0 4の操作は、 図 4 に示す操作の対応するステップ 2 0 0、 2 0 1、 2 0 2 と同様であ る。 異なるのは、 ステップ 3 0 1 とステップ 3 0 4の間に温度を判 定するステップ 3 0 2 と、 ステップ 3 0 3が加えられている点であ る。 すなわち、 ステップ 3 0 1 において、 排気ガスの空燃比 A Fが リーン空燃比 (〉A F 0 ) となっている場合には、 ステップ 3 0 2 に進む。 そして、 、 ステップ 3 0 2では、 NO X吸蔵還元触媒 2 1 の触媒温度 T nが活性温度 T n 0以上であるか否かが判定される。 触媒温度 T nが活性温度 T n O未満である場合には、 ステップ 3 0 3に進んで、 NO X吸蔵還元触媒 2 1 に対して前述のような発熱体 による昇温や還元剤添加での酸化反応熱による昇温を行う。 その後 ステップ 3 0 2に再び進んで、 再度触媒温度 T nを判定する。 これ らの結果ステップ 3 0 2において、 触媒温度 T nが活性温度 T n O 以上である場合には、 ステップ 3 0 4に進み、 理論空燃比化処理を 実行し、 ルーチンを終了する。 FIG. 5 shows a flow chart of the reducing agent supply operation when the above-described catalyst temperature raising means is provided in the reducing agent supply operation shown in FIG. Referring to FIG. 5, the operations of steps 3 0 0, 3 0 1 and 3 0 4 are the same as the corresponding steps 2 0 0, 2 0 1 and 2 0 2 of the operation shown in FIG. The difference is that step 3 0 2 for determining temperature and step 3 0 3 are added between step 3 0 1 and step 3 0 4. That is, when the air-fuel ratio AF of the exhaust gas is the lean air-fuel ratio (> AF 0) in step 3 0 1, the process proceeds to step 3 0 2. Then, in Step 3 0 2, it is determined whether or not the catalyst temperature T n of the NO X storage reduction catalyst 2 1 is equal to or higher than the activation temperature T n 0. If the catalyst temperature T n is lower than the activation temperature T n O, the process proceeds to Step 303, where the NO X storage reduction catalyst 21 is heated by the heating element or added with the reducing agent as described above. The temperature is raised by the heat of oxidation reaction. Then go to step 3 0 2 again to determine the catalyst temperature T n again. As a result, if the catalyst temperature T n is equal to or higher than the activation temperature T n O in step 3 0 2, the process proceeds to step 3 0 4 to execute the stoichiometric air-fuel ratio process, and the routine is terminated.
さて、 これまでは、 還元剤を添加して N O X吸蔵還元触媒 2 1 に 流入する排気ガスの空燃比を理論空燃比化し、 NO X吸蔵還元触媒 2 1の三元触媒としての機能を利用して流入する排気ガス中の NO Xを還元浄化する実施形態について説明してきた。 次に、 NO x吸 蔵還元触媒 2 1 に吸蔵された NO xを還元浄化することで、 N〇 x 吸蔵還元触媒 2 1 の吸蔵能力を回復させ、 その後流入する NO xを 吸蔵する別の実施形態について説明する。 具体的には、 還元剤供給 弁 2 5から還元剤を噴射することによって、 N〇 x吸蔵還元触媒 2 1 に流入する排気ガスの空燃比を一時的にリ ツチにするリ ツチスパ イク処理を行う。 吸蔵能力を回復させることによって、 N O x吸蔵 還元触媒 2 1 に流入する排気ガス中に含まれる NO Xをすベて吸蔵 し、 排気性状の悪化を防止する。  Until now, a reducing agent has been added to reduce the air-fuel ratio of the exhaust gas flowing into the NOX storage reduction catalyst 21 to a theoretical air-fuel ratio, and the function of the NO X storage reduction catalyst 21 as a three-way catalyst has been utilized. The embodiment for reducing and purifying NO X in the inflowing exhaust gas has been described. Next, the NO x storage reduction catalyst 2 1 stores and reduces the NO x stored in the NO x storage reduction catalyst 2 1 to restore the storage capacity of the NO x storage reduction catalyst 21 and then stores the inflowing NO x. A form is demonstrated. Specifically, a rich spike treatment is performed in which the air-fuel ratio of the exhaust gas flowing into the NO x storage reduction catalyst 21 is temporarily latched by injecting the reducing agent from the reducing agent supply valve 25. . By restoring the storage capacity, all NO X contained in the exhaust gas flowing into the NOx storage reduction catalyst 21 is stored, and deterioration of exhaust properties is prevented.
図 6は前述のようなリ ッチスパイク処理を行う還元剤供給操作の フローチャー トを示している。 図 6を参照すると、 ステップ 4 0 0 及びステップ 4 0 1 は、 図 4に示す硫黄被毒抑制操作の対応するス テツプ 2 0 0及びステップ 2 0 1 と同様である。 従って、 ステップ 4 0 2は、 ステップ 4 0 1 において S O x トラップ触媒 1 9に流入 する排気ガスの空燃比 A Fが理論空燃比 A F 0又はリ ッチ (ぐ A F 0 ) である場合に実行される。 ステップ 4 0 2では、 NO x吸蔵還 元触媒 2 1 に吸蔵された NO x量 Σ ΝΟΧが、 許容値 NX以上であ るかどうかが判定される。 吸蔵された N〇 X量∑ N〇 Xが許容値 N X未満である場合には、 ^入する NO Xを吸蔵する余裕が十分にあ るので、 吸蔵能力を回復させる必要がない。 従って、 その場合には その後の操作を行わずにルーチンを終了する。 Fig. 6 shows the flow chart of the reducing agent supply operation that performs the above-described rich spike processing. Referring to FIG. 6, Step 4 0 0 and Step 4 0 1 are the same as Step 2 0 0 and Step 2 0 1 corresponding to the sulfur poisoning suppression operation shown in FIG. Accordingly, step 40 2 is executed when the air-fuel ratio AF of the exhaust gas flowing into the SO x trap catalyst 19 in step 4 0 1 is the stoichiometric air-fuel ratio AF 0 or the latch (g AF 0). . In Step 4 0 2, the NO x amount Σ 吸 stored in the NO x storage-reduction catalyst 2 1 is greater than or equal to the allowable value NX. It is determined whether or not. If the stored amount of N〇X∑N〇X is less than the permissible value NX, there is sufficient room to store the incoming NOX, so there is no need to restore the storage capacity. Therefore, in that case, the routine is terminated without performing the subsequent operation.
ここで NO x吸蔵還元触媒 2 1 に吸蔵された N〇 x量 Σ Ν Ο Χを 推定する方法について説明する。 NO x吸蔵還元触媒 2 1 に単位時 間当たり吸蔵される NO x量 N〇 XAが要求トルク T Q及び機関回 転数 Nの関数として図 1 0 に示すマップの形で予め R OM 3 2内に 記憶されており、 この N〇 x量 NO XAを積算することによって N 〇 x吸蔵還元触媒 2 1 に吸蔵された NO X量 Σ ΝΟΧが算出される 一方、 ステップ 4 0 2において、 N〇 x量 Σ ΝΟ Χが許容値 N X 以上である場合には、 ステップ 4 0 3に進み、 還元剤供給弁 2 5か ら還元剤を噴射してリ ッチスパイク処理を実行する。 そうすること によって、 吸蔵された NO Xが還元浄化され、 N〇 x吸蔵還元触媒 2 1の吸蔵能力が回復する。 従って、 その後 NO X吸蔵還元触媒 2 1 に流入する排気ガスがリーンであっても再び N〇 X量∑ N〇 Xが 許容値 NXに達するまで N〇 xを吸蔵することが可能となる。 そし てルーチンを終了する。 なお、 高負荷時や急加速時において硫黄被 毒抑制操作で空燃比が制御されている状態は、 NO Xが大量に排気 ガス中に含まれている。 従って、 還元剤供給操作によってリ ッチス パイク処理がなされる前においても、 予めリ ッチスパイク処理を行 つておき、 NO x吸蔵還元触媒 2 1の吸蔵能力を回復させておく と より好ましい。  Here, a method for estimating the amount of N0 x Σ に Χ 吸 stored in the NO x storage reduction catalyst 21 will be described. The amount of NO x stored in the NO x storage-reduction catalyst 2 1 per unit time N0 XA is stored in advance in the ROM 3 2 as a function of the required torque TQ and the engine speed N in the form of the map shown in Fig. 10. The stored NO x amount NO XA is added to calculate the NO x amount Σ 吸 stored in the NO x storage reduction catalyst 2 1. On the other hand, in step 4 0 2, the N 0 x amount If Σ ΝΟ 以上 is greater than or equal to the permissible value NX, the process proceeds to step 4 0 3, where the reducing agent is injected from the reducing agent supply valve 25 and the rich spike process is executed. By doing so, the stored NO X is reduced and purified, and the storage capacity of the NO x storage reduction catalyst 21 is restored. Accordingly, even if the exhaust gas flowing into the NO X storage reduction catalyst 21 is lean thereafter, it becomes possible to store N 0 x until the N 0 X amount ∑ N 0 X reaches the allowable value NX again. Then the routine ends. When the air-fuel ratio is controlled by sulfur poisoning suppression operation at high load or sudden acceleration, a large amount of NO X is contained in the exhaust gas. Therefore, it is more preferable to perform the Rich Spike process in advance before the Rich Spike process is performed by the reducing agent supply operation to restore the NOx storage reduction catalyst 21 storage capacity.
図 7は、 前述の図 5に示す還元剤供給操作と同様に、 図 6に示す 還元剤供給操作に触媒昇温手段を講じた場合の還元剤供給操作のフ ローチャー トを示している。 図 6の還元剤供給操作のステップ 4 0 1 とステップ 4 0 2の間に、 図 5に示す操作のステップ 3 0 2、 3 0 3に対応するステップ 6 0 2、 6 0 3を挿入した以外、 図 6 と同 様である。 FIG. 7 shows a flow chart of the reducing agent supply operation when the catalyst temperature raising means is provided in the reducing agent supply operation shown in FIG. 6, similarly to the reducing agent supply operation shown in FIG. Step 4 of reducing agent supply operation in Fig. 6 0 FIG. 6 is the same as FIG. 6 except that steps 6 0 2 and 6 0 3 corresponding to steps 3 0 2 and 3 0 3 of the operation shown in FIG. 5 are inserted between 1 and 4 0 2.
次に図 2は、 図 1 とは異なる構成の実施形態を示す。 本実施形態 では、 S〇 x トラップ触媒 1 9の上流に、 電気制御式の空気 (酸素 ) 供給弁 2 8がさ らに取り付けられ、 電子制御ユニッ ト (E C U) 3 0からの出力信号に基づいて排気通路内に空気 (酸素) を供給す ることによって、 排気ガスの空燃比を調節可能にしている。 すなわ ち、 S〇 x トラップ触媒 1 9の上流の空気 (酸素) 供給弁 2 5から 空気 (酸素) を供給することによって、 S O x トラップ触媒 1 9に 流入する排気ガスの空燃比をリーン空燃比になるよう調節している 。 これによる利点は、 機関燃焼室内において燃焼する混合気の空燃 比に関わらず、 S〇 X トラップ触媒 1 9に流入する排気ガスの空燃 比を調節することが可能であることである。  Next, FIG. 2 shows an embodiment having a configuration different from that of FIG. In this embodiment, an electrically controlled air (oxygen) supply valve 28 is further installed upstream of the S0 x trap catalyst 19, and is based on an output signal from the electronic control unit (ECU) 30. The air / fuel ratio of the exhaust gas can be adjusted by supplying air (oxygen) into the exhaust passage. In other words, the air (oxygen) supply valve 2 5 upstream of the S0 x trap catalyst 1 9 is supplied with air (oxygen), so that the air-fuel ratio of the exhaust gas flowing into the SO x trap catalyst 1 9 is reduced to lean air. The fuel ratio is adjusted to become the fuel ratio. The advantage of this is that it is possible to adjust the air / fuel ratio of the exhaust gas flowing into the Sx trap catalyst 19 regardless of the air / fuel ratio of the air-fuel mixture combusting in the engine combustion chamber.
さ らなる効果として、 S〇 x トラップ触媒 1 9の触媒温度が過度 に上昇し、 触媒がその熱によって劣化してしまう恐れがある場合で も、 排気ガスより も低温である空気 (酸素) の供給量を増加するこ とによって触媒を冷却することも可能である。 そして、 その結果と して S O x トラップ触媒 1 9の下流の NO x吸蔵還元触媒 2 1 に、 未だ燃焼していない燃料 (H C) 又は還元剤 (H C, C O) と空気 As a further effect, even when the catalyst temperature of the S0 x trap catalyst 19 rises excessively and the catalyst may deteriorate due to its heat, the temperature of the air (oxygen), which is lower than the exhaust gas, It is also possible to cool the catalyst by increasing the feed rate. As a result, the NO x occlusion reduction catalyst 21 downstream of the S O x trap catalyst 19 has a fuel (HC) or a reducing agent (HC, CO) and air not yet burned.
(酸素) が供給されることになる。 そして、 それらが酸化反応し、 発熱することによって NO x吸蔵還元触媒 2 1 も劣化してしまう恐 れがある。 しかしながらそのような場合でも、 供給する空気 (酸素 ) 量をさ らに増加することによって、 N O X吸蔵還元触媒 2 1 を冷 却することが可能である。 (Oxygen) will be supplied. There is a risk that the NO x storage reduction catalyst 2 1 will also deteriorate due to the oxidation reaction and the generation of heat. However, even in such a case, the NOx storage reduction catalyst 21 can be cooled by further increasing the amount of supplied air (oxygen).
図 8は、 本実施形態による硫黄被毒抑制操作のフローチャー トを 示している。 図 8 を参照すると、 ステップ 6 0 0からステップ 6 0 2 までの操作は、 図 3 に示す前述の実施形態による硫黄被毒抑制操 作の対応するステップ 1 0 0からステップ 1 0 2 と同様である。 従 つて、 ステップ 6 0 3は、 ステップ 6 0 2 において S〇 X トラップ 触媒 1 9 に流入する排気ガスの空燃比 A Fが理論空燃比 A F 0又は リ ッチ (< A F 0 ) である場合に実行される。 ステップ 6 0 3では 、 捕獲された S O Xの放出を抑制すべく、 前述したように、 S〇 x トラップ触媒 1 9 に流入する排気ガスの空燃比がリーンになるよう に空気 (酸素) 供給弁 2 5から空気 (酸素) を供給する。 その後ス テツプ 6 0 5 に進んで、 フラグを 1 にセッ ト し、 ルーチンを終了す る。 FIG. 8 shows a flow chart of the sulfur poisoning suppression operation according to this embodiment. Referring to Figure 8, from step 6 0 0 to step 6 0 The operations up to 2 are the same as the corresponding steps 100 to 100 in the sulfur poisoning suppression operation according to the above-described embodiment shown in FIG. Therefore, step 6 0 3 is executed when the air-fuel ratio AF of the exhaust gas flowing into the S0 trap catalyst 1 9 in step 6 0 2 is the stoichiometric air-fuel ratio AF 0 or the rich (<AF 0). Is done. In step 60, the air (oxygen) supply valve 2 is adjusted so that the air-fuel ratio of the exhaust gas flowing into the S0 x trap catalyst 19 becomes lean so as to suppress the release of the trapped SOX as described above. Supply air (oxygen) from 5. Then go to step 6 0 5 to set the flag to 1 and end the routine.
図 8 に示す硫黄被毒抑制操作は、 前述の図 3 に示す硫黄被毒抑制 操作とまったく同様に、 図 4から図 7 に示す還元剤供給操作と組み 合わせて用いることが可能である。  The sulfur poisoning suppression operation shown in Fig. 8 can be used in combination with the reducing agent supply operation shown in Figs. 4 to 7, just like the sulfur poisoning suppression operation shown in Fig. 3 above.
なお、 本発明について特定の実施形態に基づいて記述しているが 、 当業者であれば本発明の請求の範囲及び思想から逸脱することな く、 様々な変更、 修正等が可能である。  Although the present invention has been described based on specific embodiments, those skilled in the art can make various changes and modifications without departing from the scope and spirit of the present invention.

Claims

請 求 の 範 囲 The scope of the claims
1. 機関排気通路内に、 流入する排気ガスの空燃比がリーンのと きには排気ガス中に含まれる S O Xを捕獲する S O X トラップ触媒 であって、 流入する排気ガスの空燃比がリーンの下で当該 S〇 x 卜 ラップ触媒の温度が上昇すると捕獲した S O Xが次第に当該 S O X トラップ触媒の内部に拡散していく性質を有すると共に当該 S O x トラップ触媒に流入する排気ガスの空燃比がリ ッチの下で当該 S〇 X トラップ触媒の温度が S O X放出温度以上であれば捕獲した S O Xを放出する性質を有する S O x トラップ触媒を配置し、 該 S〇 x トラップ触媒下流排気通路内に、 流入する排気ガスの空燃比がリー ンのときには排気ガス中に含まれる NO Xを吸蔵し流入する排気ガ スの空燃比が理論空燃比又はリ ッチになると吸蔵した N〇 Xを還元 浄化する NO X吸蔵還元触媒を配置した内燃機関において、 運転条 件の変化によって前記 S〇 X トラップ触媒に流入する排気ガスの空 燃比がリ ッチで且つ前記 S〇 X トラップ触媒の温度が S〇 X放出温 度以上になると予想されるときに空燃比をリーンとするように制御 して前記 S O x トラップ触媒に捕獲された S O xの放出を抑制する 空燃比制御手段と、 前記 S〇 x トラップ触媒及び前記 NO X吸蔵還 元触媒間の排気通路内に配置され、 前記 NO X吸蔵還元触媒に流入 する排気ガスの空燃比が NO Xを還元浄化しうる目標空燃比になる よう還元剤を噴射する還元剤供給手段とを具備した内燃機関の排気 浄化装置。 1. An SOX trap catalyst that captures SOX contained in exhaust gas when the air-fuel ratio of the exhaust gas flowing into the engine exhaust passage is lean, and the air-fuel ratio of the inflowing exhaust gas is below the lean Therefore, the trapped SOX gradually diffuses into the SOX trap catalyst when the temperature of the S0x 卜 wrap catalyst rises, and the air-fuel ratio of the exhaust gas flowing into the SOx trap catalyst is If the temperature of the SOx trap catalyst is equal to or higher than the SOx release temperature, an SOx trap catalyst that releases the trapped SOx is placed and flows into the SOx trap catalyst downstream exhaust passage. When the air-fuel ratio of the exhaust gas is lean, NO X contained in the exhaust gas is occluded, and when the air-fuel ratio of the inflowing exhaust gas becomes the stoichiometric air-fuel ratio or the latch, the stored NOx is reduced and purified NO X Occlusion reduction In the internal combustion engine, the air-fuel ratio of the exhaust gas flowing into the S.O.X trap catalyst due to changes in operating conditions is rich, and the temperature of the S.O.X trap catalyst is higher than the S.O.X release temperature. An air-fuel ratio control means for controlling the release of SO x trapped in the SO x trap catalyst by controlling the air-fuel ratio to be lean when expected to be, the S0 x trap catalyst and the NO X occlusion Reducing agent supply means for injecting the reducing agent so that the air-fuel ratio of the exhaust gas flowing into the NO X storage reduction catalyst becomes a target air-fuel ratio capable of reducing and purifying NO X, disposed in the exhaust passage between the reduction catalysts; An exhaust purification device for an internal combustion engine comprising:
2. 前記空燃比制御手段が、 前記 S〇 X トラップ触媒に流入する 排気ガスの空燃比を要求された トルクが確保できる限界のリーン空 燃比に制御する請求項 1 に記載の内燃機関の排気浄化装置。  2. The exhaust gas purification of the internal combustion engine according to claim 1, wherein the air-fuel ratio control means controls the air-fuel ratio of the exhaust gas flowing into the SO trap catalyst to a lean air-fuel ratio that is a limit that can ensure the required torque. apparatus.
3. 前記空燃比制御手段が、 前記 S O X トラップ触媒に流入する 排気ガスの空燃比を理論空燃比近傍のリーンに制御する請求項 1 に 記載の内燃機関の排気浄化装置。 3. The air-fuel ratio control means flows into the SOX trap catalyst The exhaust emission control device for an internal combustion engine according to claim 1, wherein the air-fuel ratio of the exhaust gas is controlled to be lean near the stoichiometric air-fuel ratio.
4. 前記空燃比制御手段が、 前記 S O X トラップ触媒上流の排気 通路内に酸素を供給する手段を具備した請求項 1 に記載の内燃機関 の排気浄化装置。  4. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the air-fuel ratio control means includes means for supplying oxygen into an exhaust passage upstream of the S O X trap catalyst.
5. 前記 NO X吸蔵還元触媒が三元触媒の機能を有する請求項 1 から 4のいずれか 1つに記載の内燃機関の排気浄化装置。  5. The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 4, wherein the NO X storage reduction catalyst has a three-way catalyst function.
6. 前記目標空燃比が理論空燃比であり、 前記 NO x吸蔵還元触 媒が三元触媒としての機能を発揮する請求項 5に記載の内燃機関の 排気浄化装置。  6. The exhaust gas purification apparatus for an internal combustion engine according to claim 5, wherein the target air-fuel ratio is a stoichiometric air-fuel ratio, and the NO x storage-reduction catalyst exhibits a function as a three-way catalyst.
7. 前記目標空燃比がリーン空燃比から リ ッチ空燃比に一時的に 変化させるリ ッチスパイクであり、 前記 N O X吸蔵還元触媒に吸蔵 された NO xを還元浄化する請求項 1から 4のいずれか 1つに記載 の内燃機関の排気浄化装置。  7. The target spike according to claim 1, wherein the target air-fuel ratio is a rich spike that temporarily changes from a lean air-fuel ratio to a rich air-fuel ratio, and NOx stored in the NOX storage-reduction catalyst is reduced and purified. The exhaust gas purification apparatus for an internal combustion engine according to one.
8. 前記 NO x吸蔵還元触媒の触媒温度を活性温度以上にする触 媒昇温手段をさ らに具備した請求項 1から 7のいずれか 1つに記載 の内燃機関の排気浄化装置。  8. The exhaust emission control device for an internal combustion engine according to any one of claims 1 to 7, further comprising a catalyst temperature raising means for setting a catalyst temperature of the NO x storage reduction catalyst to an activation temperature or higher.
PCT/JP2008/062245 2007-07-11 2008-06-30 Exhaust purification device for internal combustion engine WO2009008395A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007182331A JP2009019553A (en) 2007-07-11 2007-07-11 Exhaust emission purifier of internal combustion engine
JP2007-182331 2007-07-11

Publications (1)

Publication Number Publication Date
WO2009008395A1 true WO2009008395A1 (en) 2009-01-15

Family

ID=40228566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/062245 WO2009008395A1 (en) 2007-07-11 2008-06-30 Exhaust purification device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP2009019553A (en)
WO (1) WO2009008395A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11047286B2 (en) 2018-08-22 2021-06-29 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus for internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4962348B2 (en) * 2008-02-26 2012-06-27 日産自動車株式会社 Exhaust purification device and purification method for internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005133610A (en) * 2003-10-29 2005-05-26 Toyota Motor Corp Exhaust emission control device of compression ignition type internal combustion engine
JP2006291866A (en) * 2005-04-12 2006-10-26 Toyota Motor Corp Exhaust emission control device of compression ignition type internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005133610A (en) * 2003-10-29 2005-05-26 Toyota Motor Corp Exhaust emission control device of compression ignition type internal combustion engine
JP2006291866A (en) * 2005-04-12 2006-10-26 Toyota Motor Corp Exhaust emission control device of compression ignition type internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11047286B2 (en) 2018-08-22 2021-06-29 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus for internal combustion engine

Also Published As

Publication number Publication date
JP2009019553A (en) 2009-01-29

Similar Documents

Publication Publication Date Title
EP3103993B1 (en) Control device for internal combustion engine
JP3684934B2 (en) Exhaust gas purification device for internal combustion engine
US8079213B2 (en) Exhaust gas purification system for internal combustion engine
US7340884B2 (en) Exhaust purifying apparatus and exhaust purifying method for internal combustion engine
JP2004293339A (en) Exhaust emission control device
JP2005048715A (en) Exhaust emission control device for internal combustion engine
JP5045339B2 (en) Exhaust gas purification system for internal combustion engine
EP1515017A2 (en) Catalyst control apparatus of internal combustion engine
JP5459521B2 (en) Air-fuel ratio control device for internal combustion engine
JP4899890B2 (en) Exhaust gas purification device for internal combustion engine
WO2011048706A1 (en) Air/fuel ratio control device for internal combustion engine
JP3850999B2 (en) Internal combustion engine
EP1515030A2 (en) Method and apparatus for controlling sulfur poisoning recovery of a catalyst
WO2009008395A1 (en) Exhaust purification device for internal combustion engine
JP2001234772A (en) Exhaust emission control device for internal combustion engine
JP2016109026A (en) Exhaust emission control device for internal combustion engine
JP4154596B2 (en) Exhaust gas purification device for internal combustion engine
JP2004346844A (en) Exhaust emission control system
JP4154589B2 (en) Combustion control device for internal combustion engine
EP2690264A1 (en) System for determining deterioration of catalyst
JP4433945B2 (en) Exhaust gas purification system for internal combustion engine
JP7110837B2 (en) Exhaust purification system for internal combustion engine
JP2007255308A (en) Exhaust emission control device of internal combustion engine
JP3661461B2 (en) Exhaust gas purification device for internal combustion engine
GB2380425A (en) A method and system for controlling an internal combustion engine.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08777921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08777921

Country of ref document: EP

Kind code of ref document: A1