WO2009008092A1 - Process for produciton of synthesis gas in the process of manufacturing kerosene and gas oil from natural gas - Google Patents

Process for produciton of synthesis gas in the process of manufacturing kerosene and gas oil from natural gas Download PDF

Info

Publication number
WO2009008092A1
WO2009008092A1 PCT/JP2007/064043 JP2007064043W WO2009008092A1 WO 2009008092 A1 WO2009008092 A1 WO 2009008092A1 JP 2007064043 W JP2007064043 W JP 2007064043W WO 2009008092 A1 WO2009008092 A1 WO 2009008092A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
synthesis gas
kerosene
producing
natural gas
Prior art date
Application number
PCT/JP2007/064043
Other languages
French (fr)
Japanese (ja)
Inventor
Fuyuki Yagi
Kenichi Kawazuishi
Ryuichiro Kajiyama
Original Assignee
Chiyoda Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corporation filed Critical Chiyoda Corporation
Priority to PCT/JP2007/064043 priority Critical patent/WO2009008092A1/en
Priority to AU2007356234A priority patent/AU2007356234B2/en
Priority to CN2007800527855A priority patent/CN101657523B/en
Publication of WO2009008092A1 publication Critical patent/WO2009008092A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/062Hydrocarbon production, e.g. Fischer-Tropsch process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Definitions

  • the present invention relates to a method for producing synthesis gas in a kerosene production process from natural gas, which has a synthesis gas production process, a Fischer-Tropsch oil production process, and an upgrading process.
  • Syngas production process for producing syngas from natural gas Fischer-Roush process for producing heavy hydrocarbons by synthesizing the syngas into a Fischer-Ros push reaction, and production fuel oil by hydrotreating heavy hydrocarbons
  • the final target product is kerosene, so light carbonization of LPG, naphtha, etc. that is separated and produced as a by-product other than kerosene in the upgrade process
  • Hydrogen has low added value due to its properties.For example, whether to remanufacture it as a light hydrocarbon or to use it as a raw material for an existing process is determined taking into account various factors such as market value and economic efficiency. It can be said that this is the case.
  • the present invention was devised under such circumstances, and its purpose is to concretely reuse light hydrocarbons, which are by-products with low added value, in the process of producing kerosene from natural gas. It is an object of the present invention to provide a new synthetic gas production method that can increase the raw material intensity. Disclosure of the invention In order to solve the above-described problems, a method for producing synthesis gas in a process for producing kerosene from natural gas according to the present invention is a synthesis method for producing synthesis gas by a reforming reaction between natural gas and steam and carbon dioxide.
  • a gas production process a Fischer-Tropsch oil production process for producing a Fischer-Tropsch oil by separating a gaseous product from a Fischer-Tropsch reaction product after the synthesis gas is subjected to a Fischer-Tropsch reaction.
  • the Fischer-Tropsch oil is hydrorefined, and the resulting hydrorefined product is distilled to separate light hydrocarbons and kerosene oil, which is the final product, and an upgrading step, from natural gas having In the kerosene production process, light hydrocarbons separated by distillation in the upgrading process are synthesized.
  • As a raw material for gas production it is configured to be recycled in the synthesis gas production process.
  • the ratio of the number of carbon atoms in the light hydrocarbons used in circulation to the number of carbon atoms in the hydrocarbons of the natural gas raw material supplied is 1 It is set to be 0 to 3 5%.
  • the ratio of the number of carbon atoms in the kerosene oil that is the final product to the number of carbon atoms in the hydrocarbon of the natural gas raw material supplied is 60 It is set to be ⁇ 80%.
  • the catalyst layer outlet temperature is 80 to 95 ° C
  • the catalyst layer outlet pressure is 1.5 to 3.
  • OMP a G, GHSV (gas hourly space velocity) is set to 5 0 0 to 5 0 0 0 hr _1 .
  • the hydrocarbon feed gas supplied as a natural gas feed is a hydrocarbon having 1 to 6 carbon atoms containing at least 60 mol% of methane.
  • the present invention relates to a synthesis gas production process for producing a synthesis gas by a reforming reaction of natural gas and steam or carbon dioxide, and after causing the synthesis gas to undergo a Fischer-Tropsch reaction, a Fischer-Tropsch reaction product
  • the light hydrocarbons separated by distillation in the upgrade process are made from synthesis gas.
  • synthesis gas As a raw material for construction, it is configured to be recycled for use in the synthesis gas production process.
  • the kerosene and gas oil manufacturing process from the gas, achieving a specific reuse light quality hydrocarbon added value is low by-product, it expressed extremely excellent effect that it is possible to increase the raw material unit consumption.
  • FIG. 1 is a scheme showing a method for producing synthesis gas in the process for producing kerosene from natural gas according to the present invention.
  • the present invention relates to a method for producing synthesis gas in a process for producing kerosene oil from natural gas as a target product (product).
  • FIG. 1 is a scheme showing a method for producing synthesis gas in the process for producing kerosene from natural gas according to the present invention.
  • the process for producing kerosene oil from natural gas consists of a synthesis gas production process 10, a Fischer-Tropsch oil production process (FT synthesis process) 20, and an upgrade process 30. It is configured.
  • the main part of the present invention is the production of synthesis gas using light hydrocarbons separated by distillation in the upgrading step 30 as a raw material for producing synthetic gas.
  • Recycled (recycled) in the process It is in the point which is constituted.
  • the state of the light hydrocarbon recycling (recycling) process is indicated by reference numeral 40 in FIG.
  • the synthesis gas production process is a process for producing synthesis gas (CO and H 2 ) by a reforming reaction (reforming reaction) of natural gas supplied as a raw material with steam and / or carbon dioxide. That is, using hydrocarbon raw material gas containing methane as the main component, CO and H 2 by steam (H 2 0) and Z or carbon dioxide (C 0 2 ) reforming in the presence of a catalyst for synthesis gas production Is a process for producing a synthesis gas containing as a main component.
  • the light hydrocarbons separated in the upgrading process 30 as described above are recycled to the synthesis gas manufacturing process to be used for syngas production. It is added as a raw material (see light hydrocarbon recycling (recycling) process 40 in Figure 1). Therefore, further necessary explanation of the synthesis gas production process including the light hydrocarbons to be recycled will be described in detail after the upgrade process 30 described later.
  • the catalyst for syngas production has a carrier (carrier) as a base material and a catalytic metal supported on the carrier.
  • a calcined magnesium oxide molded body is preferably used as the carrier.
  • a molded body is formed by pressure-molding magnesium oxide raw material powder into a predetermined shape using a mold and then firing.
  • industrial catalyst forms such as rings, saddles, multi-holes, and pellets. It may be an irregular shape such as a crushed material.
  • the carrier of the magnesium oxide shaped body has a specific surface area of 0.1 to 1. Om 2 Zg, preferably 0.2 to 0.5 m 2 Zg. When the specific surface area exceeds 1. Om 2 Zg, there is a tendency that the rate of formation of force bonbons increases and the catalyst activity decreases.
  • the activity per unit catalyst tends to be insufficient, and there is a tendency that a large amount of catalyst is required.
  • the specific surface area is measured by the so-called “BET” method. In general, the specific surface area of the obtained catalyst or support can be controlled by the calcination temperature and the calcination time.
  • the carrier magnesium oxide (MgO) can be obtained by firing commercially available magnesium oxide (MgO).
  • the purity of magnesium oxide (MgO) is required to be 98% by weight or more, preferably 99% by weight or more.
  • components that enhance carbon deposition activity, components that decompose under high temperature and reducing gas atmosphere, such as iron, Mixing of metals such as nickel or silicon dioxide (S ⁇ 0 2 ) is not preferable.
  • Such a carrier supports ruthenium (Ru) as a catalyst metal in a metal conversion amount of 10 to 5000 wt-pm, preferably 100 to 2000 wt-ppm. If the supported amount exceeds 500 Ow t-ppm, the catalyst cost increases and the amount of carbon deposition during production tends to increase. On the other hand, when the supported amount is less than 10 w t -ppm, there is a disadvantage that sufficient catalytic activity cannot be obtained.
  • the amount of Ru metal supported is calculated as a weight ratio with respect to the catalyst support.
  • Rhodium may be used instead of ruthenium (Ru).
  • carbon as a lubricant is mixed with magnesium oxide (MgO) powder, and then pressure-molded into a predetermined shape. Thereafter, the molded product is fired at a firing temperature of 1 000 ° C. or higher, preferably 1 000 to 1 300 ° C., more preferably 1 100 to 1 200 ° C. for 1 to 4 hours.
  • the firing atmosphere is usually performed in the air.
  • the activity of a normal reforming catalyst is almost proportional to the outer surface area when the type of catalyst is determined, so the catalyst activity increases as the particle size decreases, but the mass rate of the gas The pressure loss increases due to the large degree. Therefore, a cylindrical shape is often adopted.
  • the carrier formed in this manner is impregnated with an aqueous ruthenium chloride solution, and then dried and calcined so that ruthenium (Ru) is supported on the outer surface of the magnesium oxide molded body.
  • a suitable method for impregnating the ruthenium chloride aqueous solution there are an immersion method and a spray method. Among these, it is particularly preferable to use a spray method in which an aqueous ruthenium chloride solution is sprayed toward a carrier.
  • the carrier on which Ru is adsorbed is dried at a temperature of 50 to 150 ° C. for about 1 to 4 hours and then calcined at a temperature of 300 to 500 ° C., preferably 350 to 450 ° C. for 1 to 4 hours.
  • the atmosphere for drying and firing may be in the air.
  • natural gas containing methane as a main component as described above generally a hydrocarbon having 1 to 6 carbon atoms and containing at least 60 mol% of methane
  • CO and H 2 by H 2 0 and Z or C 0 2 reforming, using as a raw material a gas mixture with light hydrocarbons separated and recycled in the upgrade process 30 and used as raw materials for syngas production.
  • Syngas as a component is produced.
  • the produced gas generally has a composition that causes a bonbon deposition on the catalyst surface, resulting in catalyst degradation due to carbon deposition.
  • the synthesis gas production catalyst described above is used. Furthermore, by using the synthesis gas production catalyst described above, the light hydrocarbons separated by distillation in the upgrading step 30, which is the main part of the present invention, are synthesized as a raw material for synthesis gas production. It becomes feasible to recycle (recycle) the gas production process.
  • This is a process for producing a Fischer-Tropsch oil by causing the Fischer-Tropsch reaction of the synthesis gas described above and then separating the gaseous product from the Fischer-Tropsch reaction product.
  • the FT synthesis reaction is a reaction that gives a hydrocarbon mixture from the synthesis gas CO and H 2 according to the following formula.
  • catalytic metals include iron (F e), cobalt (Co), ruthenium (R U ), nickel (N i) etc. are used.
  • a support such as silica, alumina, silica alumina, and titania can be used.
  • reaction conditions are generally about reaction temperature: 200 to 350 ° C., reaction pressure: normal pressure to about 4.0 MPaG.
  • reaction temperature 250 to 350 ° C
  • reaction pressure 2.0 to 4.
  • OMP a G is preferable
  • reaction temperature 220 to 250 ° C
  • reaction pressure about 0.5 to 4.0 MPaG is preferable.
  • the reaction is a kind of polymerization reaction, and generally it is difficult to keep the degree of polymerization (n number) constant and product. There is a wide range in ⁇ ⁇ .
  • the carbon number distribution of the generated hydrocarbon can be expressed by the chain growth probability in the distribution rule according to the Schulz-Flory distribution rule. For industrial catalysts, the value is about 0.85 to 0.95.
  • the product of the FT reaction is primarily olefin.
  • -Olefin changes by secondary reaction as follows. That is, production of linear paraffin by hydrogenation, production of lower paraffin such as methane by hydrocracking, or production of higher-grade hydrocarbons by secondary chain growth. It also produces alcohols such as ethanol, ketones such as acetone, and carboxylic acids such as acetic acid, although they are in small quantities.
  • reactor for FT synthesis for example, a fixed bed reactor, a fluidized bed reactor, a slurry bed reactor, a supercritical reactor or the like is used.
  • Hydrocarbons from FT synthesis are dedusted at the syngas production stage of the raw material, and further refined, such as desulfurization, to protect the catalyst, so the synthesized hydrocarbons contain sulfur and heavy metals. It will be very clean. Hydrocarbons produced by FT synthesis are mostly composed of linear olefin (1-olefin) and linear paraffin.
  • Separation means for separating the gaseous product from the Fischer-Tropsch reaction product to obtain a Fischer-Tropsch oil is not particularly limited, and various known separation means should be used. Can do. As an example, for example, a flash separator may be used.
  • Hydrotrophic oil obtained from the above Fischer-Tropsch oil production process is hydrorefined, and the resulting hydrorefined product is distilled to produce light hydrocarbons and the final product. Separation into kerosene oil is performed.
  • the hydrorefining treatment can be carried out using any catalyst bed reactor such as a fluidized bed, moving bed, slurry bed, or fixed bed.
  • the hydrotreating conditions are, for example, a reaction temperature of about 175 to 400 ° C and a hydrogen partial pressure of about 1 to 25 MPaG (10 to 250 atm).
  • Hydrorefined hydrocarbon fraction is distilled to light hydrocarbons containing LPG and Naphtha as the main components, and to the final products kerosene (Kerosen and Gas Oil). Separated.
  • LPG and naphtha that are excluded from final products are recycled and used in the synthesis gas production process as raw materials for synthesis gas production.
  • LPG and naphtha light hydrocarbons are recycled and introduced into the synthesis gas production process 10 as raw materials for synthesis gas production as shown in Fig. 1.
  • H 2 OZC per mole of carbon (Molar ratio) is adjusted to be within a range of 0.0 to 3.0 and / or CO 2 / C (molar ratio) force of 0.0 to 1.0.
  • a preferable range of H 2 OZC (molar ratio) is 0.3 to 1.7, and a more preferable range is 0.7 to 1.3.
  • a preferable range of C0 2 ZC (molar ratio) is 0.2 to 0.8, and a more preferable range is 0.4 to 0.6.
  • the ratio of the number of carbon atoms in the light hydrocarbons used for circulation is 1 to the number of carbon atoms in the hydrocarbons of the natural gas feed to be supplied. It is set to be 0 to 35%, more preferably 15 to 35%, and still more preferably 20 to 300/0.
  • this value is less than 10 ⁇ 1 ⁇ 2, the specific purpose of recycling light hydrocarbons will be reduced, and the original purpose of increasing the raw material intensity will not be sufficiently fulfilled.
  • this value exceeds 35%, it is easy for force-bon deposition to occur on the surface of the catalyst for syngas production, and catalyst deterioration due to force-bon deposition occurs. Therefore, a value of 10-35% is an important factor in deciding how much light hydrocarbons to circulate should be recycled. In other words, if it is in the range of 10 to 35%, there is no particular problem even if the total amount of light hydrocarbons separated in the upgrade process 30 is recycled, but if the total amount is recycled, it may exceed 35%. For example, a method may be used in which a part of the product is recycled instead of the total amount.
  • the ratio of the number of carbon atoms in kerosene oil, which is the final product, to the number of carbon atoms in the hydrocarbon of the natural gas raw material supplied is 60 to 80%. More preferably, the light hydrocarbon recycling ratio is set to 65 to 80%.
  • the outlet temperature of the catalyst layer in the synthesis gas production step 10 of the present invention is set to 800 to 950 ° C, preferably 850 to 920 ° C.
  • the catalyst layer outlet pressure is 1.5 to 3.
  • GHSV gas hourly space velocity
  • Synthetic gas production section inlet and outlet shown in Fig. 1 (Material balance of symbols (1), (2), (3), (4), (5), (7)) shown in Fig. 1 Based on this material balance, the synthesis gas production process in the kerosene production process was evaluated.
  • the ratio of the number of carbon atoms in the recycled gas to the number of carbon atoms in the hydrocarbon of the supplied natural gas raw material calculated based on the material balance is 25.8 ⁇ 1 ⁇ 2.
  • the ratio of carbon atoms to products (kerosene, light oil) was 67.4 ⁇ 1 ⁇ 2.
  • the amount of raw material natural gas was reduced by 17.5% compared to the case without recycling.
  • H 2 ZCO 2.0 suitable for FT (Fischer's Tropsch) synthesis by recycling only naphtha by-product in the upgrade process 30 of kerosene production from natural gas Synthesis gas was produced.
  • Synthetic gas production section inlet and outlet shown in Fig. 1 (Material balance of symbols (1), (2), (3), (4), (5), (7)) shown in Fig. 1 Based on this material balance, the synthesis gas production process in the kerosene production process was evaluated.
  • Catalyst layer outlet temperature in synthesis gas production process 10 900 ° C, catalyst layer outlet pressure 2.
  • Synthetic gas production section inlet and outlet shown in Fig. 1 (Material balance of (1), (2), (3), (4), (5), (7)) shown in Fig. 1 Based on this material balance, the synthesis gas production process in the kerosene production process was evaluated.
  • H 2 ZCO suitable for FT (fisher's ⁇ robsch) synthesis without recycling PG as naphtha by-product in the upgrade process 30 of kerosene production from natural gas as shown in Figure 1 2.0 Syngas was produced.
  • Synthetic gas production section inlet and outlet shown in Fig. 1 (reference (1), (2), (3), (4), (5), (7)) shown in Fig. 1 Based on the material balance, the synthesis gas production process in the kerosene production process was evaluated.
  • the ratio of carbon atoms in the raw natural gas calculated based on the material balance to products was 55.6%.
  • the effect of the present invention is clear. That is, in the present invention, light hydrocarbons separated by distillation in the upgrading process are configured to be recycled and used in the synthesis gas production process as a synthesis gas production raw material. In the kerosene oil production process, light hydrocarbons, which are by-products with low added value, can be reused concretely, resulting in an extremely excellent effect that the raw material consumption can be increased.

Abstract

The invention aims at re-utilizing light hydrocarbon generated as a by-product of low added value in the process of manufacturing kerosene and gas oil from natural gas and thereby providing a novel process for the production of synthesis gas which brings about improvement in the consumption unit of raw material. In order to attain the aim, light hydrocarbon separated by distillation in the upgrading step, which is a by-product of low added value in the process of manufacturing kerosene and gas oil from natural gas, is recycled to the step of producing synthetic gas as the raw material for the production of synthesis gas.

Description

明 細 書 天然ガスからの灯軽油製造プロセスにおける合成ガスの製造方法 技術分野  Description Method for producing synthetic gas in the process for producing kerosene from natural gas Technical Field
本発明は、 合成ガス製造工程と、 フィッシャートロプッシュ油製造工程と、 ァ ップグレーデイング工程とを有する天然ガスからの灯軽油製造プロセスにおける 合成ガスの製造方法に関する。  The present invention relates to a method for producing synthesis gas in a kerosene production process from natural gas, which has a synthesis gas production process, a Fischer-Tropsch oil production process, and an upgrading process.
背景技術 Background art
天然ガスから合成ガスを製造する合成ガス製造工程、 合成ガスをフィッシャー 卜ロプッシュ反応させ重質炭化水素を生成するフイツシヤー卜ロプッシュ工程、 重質炭化水素を水素化精製して製品燃料油を製造するアツプグレーディング工程 を有してなる天然ガスからの灯軽油製造プロセスにおいては、 最終目的製品が灯 軽油であるために、 アップグレーディング工程で灯軽油以外の副産物として分離 生成される L P Gやナフサ等の軽質炭化水素はその性状からして付加価値が低く、 例えば、 軽質炭化水素として再製品化を図るのか、 あるいは既存プロセスの原料 として利用するのかは、 市場価値、 経済性など様々な要素を加味して判断されて いるのが実状であると言える。  Syngas production process for producing syngas from natural gas, Fischer-Roush process for producing heavy hydrocarbons by synthesizing the syngas into a Fischer-Ros push reaction, and production fuel oil by hydrotreating heavy hydrocarbons In the kerosene production process from natural gas that has a grading process, the final target product is kerosene, so light carbonization of LPG, naphtha, etc. that is separated and produced as a by-product other than kerosene in the upgrade process Hydrogen has low added value due to its properties.For example, whether to remanufacture it as a light hydrocarbon or to use it as a raw material for an existing process is determined taking into account various factors such as market value and economic efficiency. It can be said that this is the case.
ところで、 天然ガスからの灯軽油製造プロセスでは付加価値が低い副産物であ る軽質炭化水素を、 再度、 プロセス中に取り込んで原料として再利用することが できれば、 原料原単位を上げることが出来、 経済的に有利になると思われる。 し かしながら、 具体的にプロセスとしてどのようにして処理すべきかを提案してい る技術は未だ存在していないのが現状である。  By the way, if light hydrocarbons, which are a by-product with low added value in the process of producing kerosene from natural gas, can be taken back into the process and reused as raw materials, the basic unit of raw materials can be increased. Seems to be advantageous. However, there is currently no technology that proposes how to handle it as a specific process.
このような実状のもとに本発明は創案されたものであって、 その目的は、 天然 ガスからの灯軽油製造プロセスにおいて、 付加価値が低い副産物である軽質炭化 水素の具体的な再利用化を図リ、 原料原単位を上げることのできる新規な合成ガ スの製造方法を提供することにある。 発明の開示 上記課題を解決するために、 本発明の天然ガスからの灯軽油製造プロセスにお ける合成ガスの製造方法は、 天然ガスとスチーム及びノ又は二酸化炭素との改質 反応により合成ガスを製造する合成ガス製造工程と、 前記合成ガスをフィッシャ 一トロプッシュ反応させた後、 フィッシャートロプッシュ反応生成物からガス状 生成物を分離してフィッシャートロプッシュ油を製造するフイツシヤートロプッ シュ油製造工程と、 前記フィッシャートロプッシュ油を水素化精製し、 得られた 水素化精製物を蒸留して軽質炭化水素と、 最終製品である灯軽油とに分離するァ ップグレーディング工程と、 を有する天然ガスからの灯軽油製造プロセスにおい て、 前記アップグレーデイング工程において蒸留により分離された軽質炭化水素 を、 合成ガス製造用原料として、 前記合成ガス製造工程に循環使用してなるよう に構成される。 The present invention was devised under such circumstances, and its purpose is to concretely reuse light hydrocarbons, which are by-products with low added value, in the process of producing kerosene from natural gas. It is an object of the present invention to provide a new synthetic gas production method that can increase the raw material intensity. Disclosure of the invention In order to solve the above-described problems, a method for producing synthesis gas in a process for producing kerosene from natural gas according to the present invention is a synthesis method for producing synthesis gas by a reforming reaction between natural gas and steam and carbon dioxide. A gas production process, a Fischer-Tropsch oil production process for producing a Fischer-Tropsch oil by separating a gaseous product from a Fischer-Tropsch reaction product after the synthesis gas is subjected to a Fischer-Tropsch reaction. The Fischer-Tropsch oil is hydrorefined, and the resulting hydrorefined product is distilled to separate light hydrocarbons and kerosene oil, which is the final product, and an upgrading step, from natural gas having In the kerosene production process, light hydrocarbons separated by distillation in the upgrading process are synthesized. As a raw material for gas production, it is configured to be recycled in the synthesis gas production process.
また、 本発明の好ましい態様として、 前記合成ガス製造工程において、 天然ガ スと循環使用される軽質炭化水素との混合原料における炭化水素由来の炭素モル 数を Cで表わしたとき、 炭素 1モル当たりの H 2OZ C (モル比) 力 0 · 0〜3 · 0及びノ又は C 02Z C (モル比) が 0. 0〜1 . 0の範囲内にあるように構成さ れる。 Further, as a preferred embodiment of the present invention, in the synthesis gas production process, when the number of moles of hydrocarbon-derived carbon in the mixed raw material of natural gas and light hydrocarbons used in circulation is represented by C, per mole of carbon H 2 OZ C (molar ratio) force 0 · 0 to 3 · 0 and C 0 2 ZC (molar ratio) is in the range of 0.0 to 1.0.
また、 本発明の好ましい態様として、 前記合成ガス製造工程において、 供給さ れる天然ガス原料の炭化水素中の炭素原子数に対して、 循環使用される軽質炭化 水素中の炭素原子数の割合が 1 0〜 3 5 %となるように設定される。  Further, as a preferred embodiment of the present invention, in the synthesis gas production process, the ratio of the number of carbon atoms in the light hydrocarbons used in circulation to the number of carbon atoms in the hydrocarbons of the natural gas raw material supplied is 1 It is set to be 0 to 3 5%.
また、 本発明の好ましい態様として、 前記合成ガス製造工程において、 供給さ れる天然ガス原料の炭化水素中の炭素原子数に対して、 最終製品である灯軽油中 の炭素原子数の割合が 6 0〜 8 0 %となるように設定される。  Further, as a preferred embodiment of the present invention, in the synthesis gas production step, the ratio of the number of carbon atoms in the kerosene oil that is the final product to the number of carbon atoms in the hydrocarbon of the natural gas raw material supplied is 60 It is set to be ~ 80%.
また、 本発明の好ましい態様として、 前記合成ガス製造工程において、 触媒層 の出口温度が 8 0 0〜9 5 0 °C、 触媒層出口圧力が 1 . 5〜3 . O M P a G、 G H S V (gas hour ly space ve loc ity) が 5 0 0〜5 0 0 0 h r _1となるように設 定される。 Further, as a preferred embodiment of the present invention, in the synthesis gas production step, the catalyst layer outlet temperature is 80 to 95 ° C, the catalyst layer outlet pressure is 1.5 to 3. OMP a G, GHSV (gas hourly space velocity) is set to 5 0 0 to 5 0 0 0 hr _1 .
また、 本発明の好ましい態様として、 前記合成ガス製造工程において、 天然ガ ス原料として供給される炭化水素原料ガスが、 メタンを少なくとも 6 0モル%含 有する炭素数 1〜 6の炭化水素であるように構成される。 本発明は、 天然ガスとスチーム及ぴ 又は二酸化炭素との改質反応によリ合成 ガスを製造する合成ガス製造工程と、 前記合成ガスをフィッシャートロプッシュ 反応させた後、 フィッシャートロプッシュ反応生成物からガス状生成物を分離し てフィッシャートロプッシュ油を製造するフィッシャートロプッシュ油製造工程 と、 前記フィッシャートロプッシュ油を水素化精製し、 得られた水素化精製物を 蒸留して軽質炭化水素と、 最終製品である灯軽油とに分離するアップグレーディ ング工程と、 を有する天然ガスからの灯軽油製造プロセスにおいて、 前記アップ グレーディング工程において蒸留によリ分離された軽質炭化水素を、 合成ガス製 造用原料として、 前記合成ガス製造工程に循環使用してなるように構成している ので、 天然ガスからの灯軽油製造プロセスでは、 付加価値が低い副産物である軽 質炭化水素の具体的な再利用化を図り、 原料原単位を上げることができるという 極めて優れた効果が発現する。 図面の簡単な説明 As a preferred embodiment of the present invention, in the synthesis gas production step, the hydrocarbon feed gas supplied as a natural gas feed is a hydrocarbon having 1 to 6 carbon atoms containing at least 60 mol% of methane. Configured. The present invention relates to a synthesis gas production process for producing a synthesis gas by a reforming reaction of natural gas and steam or carbon dioxide, and after causing the synthesis gas to undergo a Fischer-Tropsch reaction, a Fischer-Tropsch reaction product A Fischer-Tropsch oil production process for producing a Fischer-Tropsch oil by separating a gaseous product from the product, hydrorefining the Fischer-Tropsch oil, and distilling the resulting hydrofinished product to produce light hydrocarbons. In the process for producing kerosene oil from natural gas, which is separated into kerosene oil, which is the final product, the light hydrocarbons separated by distillation in the upgrade process are made from synthesis gas. As a raw material for construction, it is configured to be recycled for use in the synthesis gas production process. The kerosene and gas oil manufacturing process from the gas, achieving a specific reuse light quality hydrocarbon added value is low by-product, it expressed extremely excellent effect that it is possible to increase the raw material unit consumption. Brief Description of Drawings
図 1は、 本発明の天然ガスからの灯軽油製造プロセスにおける合成ガスの製造 方法を示すスキームである。 発明を実施するための最良の形態  FIG. 1 is a scheme showing a method for producing synthesis gas in the process for producing kerosene from natural gas according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を実施するための最良の形態について説明する。  Hereinafter, the best mode for carrying out the present invention will be described.
本発明は、 天然ガスから灯軽油を目的生成物 (製品) として製造するプロセス における合成ガスの製造方法に関するものである。  The present invention relates to a method for producing synthesis gas in a process for producing kerosene oil from natural gas as a target product (product).
図 1は、 本発明の天然ガスからの灯軽油製造プロセスにおける合成ガスの製造 方法を示すスキームである。  FIG. 1 is a scheme showing a method for producing synthesis gas in the process for producing kerosene from natural gas according to the present invention.
天然ガスからの灯軽油製造プロセスは、 図 1に示されるように合成ガス製造ェ 程 1 0と、 フィッシャートロプッシュ油製造工程 (F T合成工程) 2 0と、 アツ プグレーディング工程 3 0と、 を有して構成されている。  As shown in Fig. 1, the process for producing kerosene oil from natural gas consists of a synthesis gas production process 10, a Fischer-Tropsch oil production process (FT synthesis process) 20, and an upgrade process 30. It is configured.
このような天然ガスからの灯軽油製造プロセスにおいて、 本発明の要部は、 ァ ップグレーディング工程 3 0において蒸留により分離された軽質炭化水素を、 合 成ガス製造用廪料として、 合成ガス製造工程に循環使用 (リサイクル) するよう に構成している点にある。 軽質炭化水素の循環 (リサイクル) 工程の状態が図 1 における符号 4 0で示されている。 In such a process for producing kerosene from natural gas, the main part of the present invention is the production of synthesis gas using light hydrocarbons separated by distillation in the upgrading step 30 as a raw material for producing synthetic gas. Recycled (recycled) in the process It is in the point which is constituted. The state of the light hydrocarbon recycling (recycling) process is indicated by reference numeral 40 in FIG.
なお、 軽質炭化水素の循環 (リサイクル) 先をフィッシャートロプッシュ油製 造工程 (F T合成工程) 2 0とした場合には、 循環炭化水素は原料となり得ず、 また、 合成ガス分圧が低下し、 結果としてフィッシャートロプッシュ合成の反応 率が低下してしまうという不都合が生じてしまい、 好ましくない。  If light hydrocarbons are recycled (recycled) to the Fischer-Tropsch oil production process (FT synthesis process), the circulation hydrocarbons cannot be used as raw materials, and the synthesis gas partial pressure decreases. As a result, there is a disadvantage that the reaction rate of Fischer-Tropsch synthesis decreases, which is not preferable.
まず、 最初に、 本発明における天然ガスからの灯軽油製造プロセスを構成して いる各工程について詳細に説明する。  First, each step constituting the process for producing kerosene from natural gas in the present invention will be described in detail.
〔合成ガス製造工程〕  [Syngas production process]
合成ガス製造工程は、 原料として供給される天然ガスとスチーム及び 又は二 酸化炭素との改質反応 (リフォーミング反応) により合成ガス (C Oおよび H2) を製造するための工程である。 すなわち、 メタンを主成分として含む炭化水素原 料ガスを原料として、 合成ガス製造用触媒の存在下にスチーム (H 20) および Z または二酸化炭素 (C 02) リフォ一ミングによって C Oと H 2とを主成分とする 合成ガスを製造する工程である。 The synthesis gas production process is a process for producing synthesis gas (CO and H 2 ) by a reforming reaction (reforming reaction) of natural gas supplied as a raw material with steam and / or carbon dioxide. That is, using hydrocarbon raw material gas containing methane as the main component, CO and H 2 by steam (H 2 0) and Z or carbon dioxide (C 0 2 ) reforming in the presence of a catalyst for synthesis gas production Is a process for producing a synthesis gas containing as a main component.
ただし、 本発明においては、 原料として供給される天然ガスに加えて、 上述の ごとくアップグレーディング工程 3 0によリ分離された軽質炭化水素が、 合成ガ ス製造工程にリサイクルされて合成ガス製造用原料として加わっている (図 1に おける軽質炭化水素の循環 (リサイクル) 工程 4 0を参照)。 そのため、 リサイク ルされる軽質炭化水素をも含めた合成ガス製造工程のさらに必要な追加説明は、 後述するアツプグレーディング工程 3 0の後に、 詳述することとする。  However, in the present invention, in addition to the natural gas supplied as a raw material, the light hydrocarbons separated in the upgrading process 30 as described above are recycled to the synthesis gas manufacturing process to be used for syngas production. It is added as a raw material (see light hydrocarbon recycling (recycling) process 40 in Figure 1). Therefore, further necessary explanation of the synthesis gas production process including the light hydrocarbons to be recycled will be described in detail after the upgrade process 30 described later.
改質反応に用いられる合成ガス製造用触媒についての説明  Explanation of synthesis gas production catalyst used for reforming reaction
合成ガス製造用触媒は、 基材となる担体 (キャリアー) と、 この担体に担持さ れた触媒金属を有している。  The catalyst for syngas production has a carrier (carrier) as a base material and a catalytic metal supported on the carrier.
担体としては、 焼成された酸化マグネシウム成形体を用いることが好ましい。 このような成形体は、 酸化マグネシウム原料粉末をモールドにより所定の形状に 圧力成形した後に焼成することにより形成される。 成形体の具体的形状に特に制 限はないが、 一般には、 リング、 サドル、 マルチホール、 ペレツ卜等の工業触媒 形態とすることが望ましい。 なお、 破砕物のような不定形形状であってもよい。 前記酸化マグネシウム成形体の担体は、その比表面積が 0. 1〜 1. Om2Zg、 好ましくは 0. 2〜0. 5m2Zgである。比表面積が 1. Om2Zgを超えると、 力一ボンの生成速度が大きくなり触媒の活性が低下するという不都合が生じる傾 向がある。 また、 この値が 0. 1 m2Zg未満となると、 単位触媒当たりの活性が 不足してしまい、 多量の触媒が必要となるという不都合が生じる傾向がある。 比 表面積は、 いわゆる 「BET」 法により測定されたものである。 一般には、 焼成 温度と焼成時間によって、 得られる触媒または担体の比表面積をコントロールす ることができる。 As the carrier, a calcined magnesium oxide molded body is preferably used. Such a molded body is formed by pressure-molding magnesium oxide raw material powder into a predetermined shape using a mold and then firing. Although there are no particular restrictions on the specific shape of the molded body, it is generally desirable to use industrial catalyst forms such as rings, saddles, multi-holes, and pellets. It may be an irregular shape such as a crushed material. The carrier of the magnesium oxide shaped body has a specific surface area of 0.1 to 1. Om 2 Zg, preferably 0.2 to 0.5 m 2 Zg. When the specific surface area exceeds 1. Om 2 Zg, there is a tendency that the rate of formation of force bonbons increases and the catalyst activity decreases. On the other hand, if this value is less than 0.1 m 2 Zg, the activity per unit catalyst tends to be insufficient, and there is a tendency that a large amount of catalyst is required. The specific surface area is measured by the so-called “BET” method. In general, the specific surface area of the obtained catalyst or support can be controlled by the calcination temperature and the calcination time.
担体である酸化マグネシウム (MgO) は、市販の酸化マグネシウム (MgO) を焼成して得ることができる。 酸化マグネシゥム (MgO) の純度は 98重量% 以上、 好ましくは 99重量%以上であることが要求され、 特に、 炭素析出活性を 高める成分や、 高温、 還元ガス雰囲気下で分解する成分、 例えば鉄、 ニッケル等 の金属や二酸化ケイ素 (S ί 02) 等の混入は好ましくない。 The carrier magnesium oxide (MgO) can be obtained by firing commercially available magnesium oxide (MgO). The purity of magnesium oxide (MgO) is required to be 98% by weight or more, preferably 99% by weight or more. In particular, components that enhance carbon deposition activity, components that decompose under high temperature and reducing gas atmosphere, such as iron, Mixing of metals such as nickel or silicon dioxide (S ί 0 2 ) is not preferable.
このような担体には、 触媒金属としてのルテニウム (Ru) が金属換算量で 1 0〜5000w t-p pm、 好ましくは 1 00〜2000w t— p p mの範囲で担 持される。担持量が 500 Ow t- p pmを超えると触媒コス卜が高くなるととも に、 製造中における炭素析出量が多くなる傾向が生じてしまう。 この一方で、 担 持量が 1 0 w t - p p m未満となると、十分な触媒活性が得られなくなってしまう という不都合が生じる。 Ru金属の担持量は、 触媒担体に対する重量割合として 算出される。  Such a carrier supports ruthenium (Ru) as a catalyst metal in a metal conversion amount of 10 to 5000 wt-pm, preferably 100 to 2000 wt-ppm. If the supported amount exceeds 500 Ow t-ppm, the catalyst cost increases and the amount of carbon deposition during production tends to increase. On the other hand, when the supported amount is less than 10 w t -ppm, there is a disadvantage that sufficient catalytic activity cannot be obtained. The amount of Ru metal supported is calculated as a weight ratio with respect to the catalyst support.
ルテニウム (Ru) に代えてロジウム (Rh) も使用されうる。  Rhodium (Rh) may be used instead of ruthenium (Ru).
合成ガス製造用触媒の調製方法の好適な一例を以下に説明する。  A preferred example of a method for preparing a catalyst for syngas production will be described below.
触媒担体の形成  Formation of catalyst support
酸化マグネシウム (MgO) の粉末に、 例えば滑択剤としてのカーボンを混合 した後に、 所定の形状に圧力成形する。 その後、 その成形物を 1 000°C以上、 好ましくは、 1 000〜1 300°C、 さらに好ましくは、 1 1 00〜1 200°C の焼成温度で、 1 ~4時間焼成する。 焼成雰囲気は通常大気中で行われる。  For example, carbon as a lubricant is mixed with magnesium oxide (MgO) powder, and then pressure-molded into a predetermined shape. Thereafter, the molded product is fired at a firing temperature of 1 000 ° C. or higher, preferably 1 000 to 1 300 ° C., more preferably 1 100 to 1 200 ° C. for 1 to 4 hours. The firing atmosphere is usually performed in the air.
通常のリフォ一ミング触媒の活性は、 触媒のタィプが決まれば外表面積にほぼ 比例するため、 粒子サイズを小さくすると触媒活性は高くなるが、 ガスの質量速 度が大きいため、 圧力損失が大きくなつてしまう。 そのため、 円筒状の形状が採 用されることが多い。 The activity of a normal reforming catalyst is almost proportional to the outer surface area when the type of catalyst is determined, so the catalyst activity increases as the particle size decreases, but the mass rate of the gas The pressure loss increases due to the large degree. Therefore, a cylindrical shape is often adopted.
触媒金属 (Ru) の担持  Catalytic metal (Ru) loading
このように形成された担体に塩化ルテニウム水溶液を含浸させた後、 乾燥、 焼 成させることにより、 酸化マグネシウム成形体の外表面にルテニウム (Ru) を 担持させるようにする。  The carrier formed in this manner is impregnated with an aqueous ruthenium chloride solution, and then dried and calcined so that ruthenium (Ru) is supported on the outer surface of the magnesium oxide molded body.
塩化ルテニウム水溶液を含浸させる好適な方法としては、 浸漬法ゃスプレー法 等が有る。 これらの中でも、 特に、 塩化ルテニウム水溶液を担体に向けて噴霧す るスプレー法を用いることが好ましい。  As a suitable method for impregnating the ruthenium chloride aqueous solution, there are an immersion method and a spray method. Among these, it is particularly preferable to use a spray method in which an aqueous ruthenium chloride solution is sprayed toward a carrier.
R uを吸着した担体は、 50〜 1 50 °Cの温度で 1〜 4時間程度乾燥させた後、 300〜 500 °C、好ましくは 350〜 450°Cの温度で 1〜 4時間焼成させる。 乾燥および焼成の雰囲気は空気中とすればよい。 焼成を行うことにより触媒金属 の反応活性がさらに高まる。  The carrier on which Ru is adsorbed is dried at a temperature of 50 to 150 ° C. for about 1 to 4 hours and then calcined at a temperature of 300 to 500 ° C., preferably 350 to 450 ° C. for 1 to 4 hours. The atmosphere for drying and firing may be in the air. By carrying out the calcination, the catalytic metal reaction activity is further increased.
合成ガスの製造方法  Syngas production method
上記のように調製された合成ガス製造用触媒の存在の基に、 上述したようにメ タンを主成分として含む天然ガス (一般にはメタンを少なくとも 60モル%含有 する炭素数 1〜 6の炭化水素) と、 アップグレーディング工程 30により分離さ れリサイクルされて合成ガス製造用原料となる軽質炭化水素との混合ガスを原料 として、 H20および Zまたは C02リフォーミングによって COと H2とを主成分 とする合成ガスが製造される。 Based on the presence of the catalyst for producing synthesis gas prepared as described above, natural gas containing methane as a main component as described above (generally a hydrocarbon having 1 to 6 carbon atoms and containing at least 60 mol% of methane) ) And CO and H 2 by H 2 0 and Z or C 0 2 reforming, using as a raw material a gas mixture with light hydrocarbons separated and recycled in the upgrade process 30 and used as raw materials for syngas production. Syngas as a component is produced.
この場合、 主成分であるメタンを中心に考えると、  In this case, focusing on methane, which is the main component,
( ί ) メタン (CH4) と二酸化炭素 (C02) を反応させる方法 (C02リフォー ミング) の場合、 その反応は下記式 (1 ) で示されるように進行する。 CH4 + C02 2 CO +2 H2 …式 ( 1 ) (I) if of methane (CH 4) and a method of reacting carbon dioxide (C0 2) (C0 2 reformate timing), the reaction proceeds as represented by the following formula (1). CH 4 + C0 2 2 CO +2 H 2 … Formula (1)
( i i ) また、 メタン (CH4) とスチーム (H20) を反応させる方法 (スチ一 ムリフォーミング)の場合、その反応は下記式(2)で示されるように進行する。 CH4 + H20 CO +3 H2 …式 (2) この改質反応条件下では、 触媒がシフト能を有するために上記 2つの式と同時 に下記式 (3) の水性ガスシフト反応が進行する。 (ii) Further, in the case of a method of reacting methane (CH 4 ) and steam (H 2 0) (steam reforming), the reaction proceeds as shown by the following formula (2). CH 4 + H 2 0 CO +3 H 2 ... Formula (2) Under these reforming reaction conditions, the water gas shift reaction of Formula (3) below proceeds simultaneously with the above two formulas because the catalyst has shift ability. To do.
CO + H20 <=> C02 +H2 …式 (3) 上記 (1)、 (2) の化学量論式より、 メタンの C〇2リフォーミングでは H2 COモル比 = 1の合成ガスが、メタンのスチームリフォーミングでは H2ZCOモ ル比 =3の合成ガスが生成する。 従って、 これらの反応を組み合わせることによ リ 1~12 〇0モル比= 1〜 3の合成ガスが生成ガスからの水素などガス分離を行 うことなく直接合成することが可能となる。 CO + H 2 0 <=> C0 2 + H 2 ... Equation (3) above (1), (2) from the stoichiometry, synthesis of H 2 CO molar ratio = 1 in C_〇 2 reforming of methane In the case of steam reforming of methane, synthesis gas with H 2 ZCO mole ratio = 3 is generated. Therefore, it is possible to directly synthesize without line Ukoto gas separation such as hydrogen from these syngas product gas of the reaction Li 1-1 2 Rei_0 mole ratio = 1-3 by the combining.
すなわち、 メタノール、 FT合成、 DME原料となる H2ZCOモル比 = 1〜2 付近の合成ガスを直接合成することが可能となる。 That is, it becomes possible to directly synthesize methanol, FT synthesis, and synthesis gas with a H 2 ZCO molar ratio of 1 to 2 as a DME raw material.
しかしながら、 このようなモル比を直接合成する反応条件下では、 一般に、 生 成ガスが触媒表面上への力一ボン析出を起こしゃすい組成となり、 カーボン析出 による触媒劣化が生じる。 このような問題を解決することができる所定の触媒と して、 上記説明の合成ガス製造用触媒が用いられる。 さらに、 上記説明の合成ガ ス製造用触媒を用いることによって、 本願発明の要部である、 アップグレーディ ング工程 30において蒸留により分離された軽質炭化水素を、 合成ガス製造用原 料として、 合成ガス製造工程に循環使用 (リサイクル) することが実現可能とな る。 すなわち、 上記以外の合成ガス製造用触媒を用いた場合において、 軽質炭化 水素を、 合成ガス製造用原料として、 合成ガス製造工程に循環使用させると、 軽 質炭化水素からの炭素析出が顕著になってしまい触媒の失活が起こってしまうの である。  However, under the reaction conditions for directly synthesizing such a molar ratio, the produced gas generally has a composition that causes a bonbon deposition on the catalyst surface, resulting in catalyst degradation due to carbon deposition. As the predetermined catalyst capable of solving such problems, the synthesis gas production catalyst described above is used. Furthermore, by using the synthesis gas production catalyst described above, the light hydrocarbons separated by distillation in the upgrading step 30, which is the main part of the present invention, are synthesized as a raw material for synthesis gas production. It becomes feasible to recycle (recycle) the gas production process. In other words, when a synthesis gas production catalyst other than the above is used, if light hydrocarbons are recycled and used in the synthesis gas production process as a synthesis gas production raw material, carbon deposition from the light hydrocarbons becomes significant. As a result, deactivation of the catalyst occurs.
〔フィッシャートロプッシュ油製造工程 ( F T合成工程)〕  [Fischer Tropus oil production process (FT synthesis process)]
上述してきた合成ガスをフィッシャートロプッシュ反応させた後、 フイツシャ 一トロプッシュ反応生成物からガス状生成物を分離してフィッシャートロプッシ ュ油を製造する工程である。 F T合成反応は、合成ガスである C Oと H 2から下記式によつて炭化水素混合物 を与える反応である。 This is a process for producing a Fischer-Tropsch oil by causing the Fischer-Tropsch reaction of the synthesis gas described above and then separating the gaseous product from the Fischer-Tropsch reaction product. The FT synthesis reaction is a reaction that gives a hydrocarbon mixture from the synthesis gas CO and H 2 according to the following formula.
CO+2 H2 → iZn - (CH2) n— +H20 触媒金属としては、 例えば、 金属状態の鉄 (F e)、 コバルト (Co)、 ルテニ ゥム (RU)、 ニッケル (N i ) 等が用いられる。 このような触媒金属を担体表面 に担持して用いる場合には、 例えば、 シリカ、 アルミナ、 シリカアルミナ、 チタ ニァ等の担体を使用することができる。 CO + 2 H 2 → iZn-(CH 2 ) n — + H 2 0 Examples of catalytic metals include iron (F e), cobalt (Co), ruthenium (R U ), nickel (N i) etc. are used. When such a catalyst metal is supported on the surface of the support, for example, a support such as silica, alumina, silica alumina, and titania can be used.
反応条件は、 一般に、 反応温度: 200〜350°C、 反応圧力:常圧〜 4. 0 MP a G程度である。 鉄触媒を用いた場合には、 反応温度: 250〜350°C、 反応圧力: 2. 0〜4. OMP a G程度が好ましく、 コバルト触媒を用いた場合 には、 反応温度: 220〜250°C、 反応圧力: 0. 5〜4. 0 MP a G程度が 好ましい。  The reaction conditions are generally about reaction temperature: 200 to 350 ° C., reaction pressure: normal pressure to about 4.0 MPaG. When an iron catalyst is used, reaction temperature: 250 to 350 ° C, reaction pressure: 2.0 to 4. OMP a G is preferable, and when a cobalt catalyst is used, reaction temperature: 220 to 250 ° C, reaction pressure: about 0.5 to 4.0 MPaG is preferable.
反応は一種の重合反応であり、 一般に重合度 (n数) を一定に保つことは困難 であり、 生成物。 〜じ^^で幅広く存在する。 生成炭化水素の炭素数分布は、 Schulz- Flory分布則に従い、 その分布則における連鎖成長確率 によって表現 することができる。 工業触媒では の値は 0. 85〜0. 95程度である。  The reaction is a kind of polymerization reaction, and generally it is difficult to keep the degree of polymerization (n number) constant and product. There is a wide range in ~ ^^^. The carbon number distribution of the generated hydrocarbon can be expressed by the chain growth probability in the distribution rule according to the Schulz-Flory distribution rule. For industrial catalysts, the value is about 0.85 to 0.95.
F T反応の生成物は一次的には ーォレフィンである。 ーォレフィンは次の ように二次反応により変化する。すなわち、水素化による直鎖パラフィンの生成、 水素化分解によるメタンなどの低級パラフィンの生成、 あるいは二次的連鎖成長 による、 より高級な炭化水素の生成等である。 また、 少量ではあるが、 ェタノ一 ルなどのアルコール、 アセトンなどのケトン、 酢酸などのカルボン酸なども生成 する。  The product of the FT reaction is primarily olefin. -Olefin changes by secondary reaction as follows. That is, production of linear paraffin by hydrogenation, production of lower paraffin such as methane by hydrocracking, or production of higher-grade hydrocarbons by secondary chain growth. It also produces alcohols such as ethanol, ketones such as acetone, and carboxylic acids such as acetic acid, although they are in small quantities.
FT合成の反応器としては、 例えば、 固定床反応器、 流動床反応器、 スラリー 床反応器、 超臨界反応器等が用いられる。  As the reactor for FT synthesis, for example, a fixed bed reactor, a fluidized bed reactor, a slurry bed reactor, a supercritical reactor or the like is used.
F T合成による炭化水素は原料の合成ガス製造段階で脱じん、 さらに触媒の保 護のために脱硫等の精製が行なわれているために、 合成される炭化水素は硫黄分 や重金属類等を含んでおらず、 極めてクリーンなものとなる。 FT合成で製造された炭化水素は、 ほとんど直鎖のォレフィン (1—ォレフィ ン) および直鎖のパラフィンから構成されている。 Hydrocarbons from FT synthesis are dedusted at the syngas production stage of the raw material, and further refined, such as desulfurization, to protect the catalyst, so the synthesized hydrocarbons contain sulfur and heavy metals. It will be very clean. Hydrocarbons produced by FT synthesis are mostly composed of linear olefin (1-olefin) and linear paraffin.
フィッシャートロプッシュ反応生成物からガス状生成物を分離してフイツシャ 一トロプッシュ油 (炭化水素油) とするための分離手段は、 特に限定されるもの でなく、 公知の種々の分離手段を用いることができる。 一例として、 例えば、 フ ラッシュ分離器を用いればよい。  Separation means for separating the gaseous product from the Fischer-Tropsch reaction product to obtain a Fischer-Tropsch oil (hydrocarbon oil) is not particularly limited, and various known separation means should be used. Can do. As an example, for example, a flash separator may be used.
〔アップグレーデイング工程〕  [Upgrading process]
上記のフィッシャートロプッシュ油製造工程から得られたフィッシヤートロプ ッシュ油を水素化精製(接触水素化処理) し、得られた水素化精製物を蒸留して、 軽質炭化水素と、 最終製品である灯軽油とに分離する処理が行なわれる。  Hydrotrophic oil (catalytic hydrotreating) obtained from the above Fischer-Tropsch oil production process is hydrorefined, and the resulting hydrorefined product is distilled to produce light hydrocarbons and the final product. Separation into kerosene oil is performed.
水素化精製の処理としては、 例えば、 流動床、 移動床、 スラリー床、 または固 定床のような任意の触媒床反応装置を用いて行なうことができる。 水素化処理条 件としては、 例えば、 反応温度 175〜 400°C程度、 水素分圧 1〜 25 M P a G (10〜250気圧) 程度とされる。  The hydrorefining treatment can be carried out using any catalyst bed reactor such as a fluidized bed, moving bed, slurry bed, or fixed bed. The hydrotreating conditions are, for example, a reaction temperature of about 175 to 400 ° C and a hydrogen partial pressure of about 1 to 25 MPaG (10 to 250 atm).
水素化精製された炭化水素留分は蒸留によって、 LPGとナフサ(Naphtha) を 主成分として含む軽質炭化水素と、最終製品である灯軽油 (灯油 (Kerosen) およ び軽油 (Gas Oil)) とに分離される。  Hydrorefined hydrocarbon fraction is distilled to light hydrocarbons containing LPG and Naphtha as the main components, and to the final products kerosene (Kerosen and Gas Oil). Separated.
本発明において、最終製品の対象から外れる LP Gやナフサ(Naphtha)などの 軽質炭化水素は、 合成ガス製造用原料として、 前記合成ガス製造工程に循環使用 される。 つまり、 LPG、 ナフサの軽質炭化水素は、 図 1に示されるように合成 ガス製造用原料として合成ガス製造工程 10にリサイクルされ導入される。 説明を再度、 合成ガス製造工程 10に戻して以下説明する。  In the present invention, light hydrocarbons such as LPG and naphtha that are excluded from final products are recycled and used in the synthesis gas production process as raw materials for synthesis gas production. In other words, LPG and naphtha light hydrocarbons are recycled and introduced into the synthesis gas production process 10 as raw materials for synthesis gas production as shown in Fig. 1. Returning to the synthesis gas production process 10 again, the explanation is as follows.
合成ガス製造工程 10においては、 本来の原料である天然ガスと循環使用され る軽質炭化水素との混合原料における炭化水素由来の炭素モル数を Cで表わした とき、 炭素 1モル当たりの H2OZC (モル比) が 0. 0〜3. 0及び 又は CO 2/C (モル比) 力 0. 0〜1. 0の範囲内となるように調整操作される。 In the synthesis gas production process 10, when C represents the number of moles of hydrocarbon-derived carbon in the mixed raw material of natural gas, which is the original raw material, and light hydrocarbons that are recycled, H 2 OZC per mole of carbon (Molar ratio) is adjusted to be within a range of 0.0 to 3.0 and / or CO 2 / C (molar ratio) force of 0.0 to 1.0.
特に、 H2OZC (モル比) の好ましい範囲は、 0. 3〜1. 7であり、 さらに 好ましい範囲は 0. 7~1. 3である。 また、 C02ZC (モル比) の好ましい範 囲は、 0. 2〜0. 8であり、 さらに好ましい範囲は 0. 4〜0. 6である。 さらに、 本発明における合成ガス製造工程 1 0においては、 供給される天然ガ ス原料の炭化水素中の炭素原子数に対して、 循環使用される軽質炭化水素中の炭 素原子数の割合が 1 0〜 35 %、 より好ましくは 1 5〜 35 %、 さらに好ましく は 20〜300/0となるように設定される。 この値が 1 0<½未満となると軽質炭化 水素の具体的な再利用化を図リ、 原料原単位を上げるという本来の目的が十分に 果たせなくなってしまう。 この一方で、 この値が 35%を超えると、 合成ガス製 造用触媒表面上への力一ボン析出が起こりやすくなリ、 力ーボン析出による触媒 の劣化が生じてしまう。 従って、 1 0〜35%という数値は、 循環使用する軽質 炭化水素をどの程度の割合でリサイクルとすべきかを決定する上での重要なファ クタ一となる。 すなわち、 1 0〜 35%の範囲であればアップグレーディングェ 程 30で分離された軽質炭化水素の全量をリサイクルしても特に問題はないが、 全量をリサイクルした場合に 35 %を超えるようであれば、 全量ではなくその一 部をリサイクルするような手法がとられる。 In particular, a preferable range of H 2 OZC (molar ratio) is 0.3 to 1.7, and a more preferable range is 0.7 to 1.3. In addition, a preferable range of C0 2 ZC (molar ratio) is 0.2 to 0.8, and a more preferable range is 0.4 to 0.6. Furthermore, in the synthesis gas production process 10 of the present invention, the ratio of the number of carbon atoms in the light hydrocarbons used for circulation is 1 to the number of carbon atoms in the hydrocarbons of the natural gas feed to be supplied. It is set to be 0 to 35%, more preferably 15 to 35%, and still more preferably 20 to 300/0. If this value is less than 10 <½, the specific purpose of recycling light hydrocarbons will be reduced, and the original purpose of increasing the raw material intensity will not be sufficiently fulfilled. On the other hand, if this value exceeds 35%, it is easy for force-bon deposition to occur on the surface of the catalyst for syngas production, and catalyst deterioration due to force-bon deposition occurs. Therefore, a value of 10-35% is an important factor in deciding how much light hydrocarbons to circulate should be recycled. In other words, if it is in the range of 10 to 35%, there is no particular problem even if the total amount of light hydrocarbons separated in the upgrade process 30 is recycled, but if the total amount is recycled, it may exceed 35%. For example, a method may be used in which a part of the product is recycled instead of the total amount.
また、 本発明の合成ガス製造工程 1 0において、 供給される天然ガス原料の炭 化水素中の炭素原子数に対して、 最終製品である灯軽油中の炭素原子数の割合が 60〜80%、 より好ましくは 65〜80%となるように、 軽質炭化水素のリサ ィクル割合が設定される。  In addition, in the synthesis gas production process 10 of the present invention, the ratio of the number of carbon atoms in kerosene oil, which is the final product, to the number of carbon atoms in the hydrocarbon of the natural gas raw material supplied is 60 to 80%. More preferably, the light hydrocarbon recycling ratio is set to 65 to 80%.
また、 本発明の合成ガス製造工程 1 0における触媒層の出口温度は 800〜9 50°C、 好ましくは 850〜 920°Cとされる。 触媒層出口圧力は 1. 5〜3. OMPa Gとされる。 GHSV (gas hourly space velocity) は 500〜 500 0 h 1とされる。 Further, the outlet temperature of the catalyst layer in the synthesis gas production step 10 of the present invention is set to 800 to 950 ° C, preferably 850 to 920 ° C. The catalyst layer outlet pressure is 1.5 to 3. OMPa G. GHSV (gas hourly space velocity) is set to 500 to 500 0 h 1 .
[実施例] [Example]
以下、 具体的実施例を挙げて本発明をさらに詳細に説明する。  Hereinafter, the present invention will be described in more detail with reference to specific examples.
〔実施例 1〕  Example 1
図 1に示されるような天然ガスからの灯軽油製造プロセスのアップグレーディ ング工程 30で副生するナフサと LPGを全量リサイクルして FT (フイツシャ 一■ 卜ロブシュ) 合成に適した H2ZCO=2. 0の合成ガスの製造を行なった。 合成ガス製造用触媒としては、 M g O触媒担体に R uを担持した触媒を用いた。 合成ガス製造工程 10における触媒層の出口温度 900°C、触媒層出口圧力 2. OMPaG、 G H S V (gas hourly space velocity) 2000 h r ~ H2OZC (モル比) =1. 27、 C02ZC (モル比) =0. 41であり、 原料天然ガスの 組成は、 (C 1 ZC2ZC3ZC4 C5+ZN2=90. 0/5. 5 2. 5 0. 5/1. 0/0. 5 (モルノモル)) であった。 Upgrade process of kerosene production process from natural gas as shown in Fig. 1 Recycle all naphtha and LPG by-produced in the process 30 H 2 ZCO = suitable for FT synthesis 2. 0 synthesis gas was produced. As the synthesis gas production catalyst, a catalyst in which Ru was supported on an MgO catalyst carrier was used. Catalyst layer outlet temperature in synthesis gas production process 10 900 ° C, catalyst layer outlet pressure 2. OMPaG, GHSV (gas hourly space velocity) 2000 hr ~ H 2 OZC (molar ratio) = 1.27, C0 2 ZC (mole Ratio) = 0.41, and the composition of the raw natural gas is (C 1 ZC2ZC3ZC4 C5 + ZN 2 = 90. 0/5. 5 2. 5 0. 5/1. 0 / 0.5 (Mornomol)) Met.
図 1に示される合成ガス製造セクション入口および出口 (図 1に示される符号 (1 )、 (2)、 (3)、 (4)、 (5)、 (7))のマテリアルバランスをとリ、そのマテ リアルバランスに基づき、 灯軽油製造プロセスにおける合成ガスの製造工程の評 価を行なった。  Synthetic gas production section inlet and outlet shown in Fig. 1 (Material balance of symbols (1), (2), (3), (4), (5), (7)) shown in Fig. 1 Based on this material balance, the synthesis gas production process in the kerosene production process was evaluated.
その結果、 マテリアルバランスに基づいて算出した供給される天然ガス原料の 炭化水素中の炭素原子数に対する、 リサイクルガス中の炭素原子数の割合は、 2 5. 8<½であり、 原料天然ガス中の炭素原子が製品 (灯油、 軽油) となる割合は 67. 4<½であった。 原料天然ガス量は、 リサイクルを行なわない場合と比べて 17. 5%減じることができた。  As a result, the ratio of the number of carbon atoms in the recycled gas to the number of carbon atoms in the hydrocarbon of the supplied natural gas raw material calculated based on the material balance is 25.8 <½. The ratio of carbon atoms to products (kerosene, light oil) was 67.4 <½. The amount of raw material natural gas was reduced by 17.5% compared to the case without recycling.
〔実施例 2〕 Example 2
図 1に示されるような天然ガスからの灯軽油製造プロセスのアップグレーディ ング工程 30で副生するナフサのみリサイクルして FT (フィッシャー ' トロプ シュ) 合成に適した H2ZCO=2. 0の合成ガスの製造を行なった。合成ガス製 造工程 10における触媒層の出口温度 900°C、触媒層出口圧力 2. OMP a G、 GHS V (gas hourly space velocity) 2000 h r"\ H2OZC (モル比) = 1. 27、 C02ZC (モル比) =0. 41であり、 原料天然ガスの組成は、 (C 1ZC2ZC3ZC4 C5+ZN2=90. 0/5. 5/2. 5/0. 5/1. 0/0. 5 (モル Zモル)) であった。 As shown in Fig. 1, H 2 ZCO = 2.0 suitable for FT (Fischer's Tropsch) synthesis by recycling only naphtha by-product in the upgrade process 30 of kerosene production from natural gas Synthesis gas was produced. Catalyst gas outlet temperature 900 ° C, catalyst bed outlet pressure in synthesis gas production process 2. OMP a G, GHS V (gas hourly space velocity) 2000 hr "\ H 2 OZC (molar ratio) = 1.27, C0 2 ZC (molar ratio) = 0.41, and the composition of the raw natural gas is (C 1ZC2ZC3ZC4 C5 + ZN 2 = 90. 0/5. 5/2. 5/0. 5/1. 0/0 5 (mol Z mol)).
図 1に示される合成ガス製造セクション入口および出口 (図 1に示される符号 (1 )、 (2)、 (3)、 (4)、 (5)、 (7))のマテリアルバランスをとリ、そのマテ リアルバランスに基づき灯軽油製造プロセスにおける合成ガスの製造工程の評価 を行なった。  Synthetic gas production section inlet and outlet shown in Fig. 1 (Material balance of symbols (1), (2), (3), (4), (5), (7)) shown in Fig. 1 Based on this material balance, the synthesis gas production process in the kerosene production process was evaluated.
その結果、 マテリアルバランスに基づいて算出した供給される天然ガス原料の 炭化水素中の炭素原子数に対する、 リサイクルガス中の炭素原子数の割合は、 2 4. 1%であり、 原料天然ガス中の炭素原子が製品 (灯油、 軽油) となる割合は 66. 6 <½であった。 原料天然ガス量は、 リサイクルを行なわない場合と比べて 1 6. 40/0減じることができた。 As a result, the supply of natural gas raw material supplied based on the material balance The ratio of the number of carbon atoms in the recycled gas to the number of carbon atoms in the hydrocarbon is 24.1%, and the ratio of carbon atoms in the raw natural gas to products (kerosene, light oil) is 66.6 < ½. Feed natural gas amount could be reduced 1 6.40 / 0 as compared with the case of not performing recycling.
〔実施例 3〕 Example 3
図 1に示されるような天然ガスからの灯軽油製造プロセスのアップグレーディ ング工程 30で副生するナフサの半分の量のみをリサイクルして FT (フイツシ ャ一■トロプシュ)合成に適した H2ZCO=2.0の合成ガスの製造を行なった。 合成ガス製造工程 10における触媒層の出口温度 900°C、 触媒層出口圧力 2. OMPaG、 GHSV (gas hourly space velocity) 2000 h r~ H2OZC (モル比) =1. 25、 C02ZC (モル比) =0. 44であり、 原料天然ガスの 組成は、 (C 1 ZC 2ZC 3/C 4 C 5+ZN2=90. 0/5. 5/2. 5Z 0. 5/1 - 0/0. 5 (モル モル)) であった。 H 2 suitable for FT synthesis by recycling only half of the naphtha produced as a by-product in the upgrade process 30 of kerosene production from natural gas as shown in Figure 1 A synthesis gas with ZCO = 2.0 was produced. Catalyst layer outlet temperature in synthesis gas production process 10 900 ° C, catalyst layer outlet pressure 2. OMPaG, GHSV (gas hourly space velocity) 2000 hr ~ H 2 OZC (molar ratio) = 1.25, C0 2 ZC (mole) Ratio) = 0.44, and the composition of raw natural gas is (C 1 ZC 2ZC 3 / C 4 C 5 + ZN 2 = 90. 0/5. 5/2. 5Z 0. 5/1-0 / 0.5 (mol mol)).
図 1に示される合成ガス製造セクション入口および出口 (図 1に示される符号 (1)、 (2)、 (3)、 (4)、 (5)、 (7))のマテリアルバランスをとリ、そのマテ リアルバランスに基づき灯軽油製造プロセスにおける合成ガスの製造工程の評価 を行なった。  Synthetic gas production section inlet and outlet shown in Fig. 1 (Material balance of (1), (2), (3), (4), (5), (7)) shown in Fig. 1 Based on this material balance, the synthesis gas production process in the kerosene production process was evaluated.
その結果、 マテリアルバランスに基づいて算出した供給される天然ガス原料の 炭化水素中の炭素原子数に対する、 リサイクルガス中の炭素原子数の割合は、 1 1. 0%であり、 原料天然ガス中の炭素原子が製品 (灯油、 軽油) となる割合は 60. 6 <½であった。 原料天然ガス量は、 リサイクルを行なわない場合と比べて 8. 2%減じることができた。 〔比較例 1〕  As a result, the ratio of the number of carbon atoms in the recycled gas to the number of carbon atoms in the hydrocarbons of the natural gas raw material supplied calculated based on the material balance is 11.0%. The ratio of carbon atoms to products (kerosene, light oil) was 60.6 <½. The amount of raw material natural gas was reduced by 8.2% compared to the case without recycling. (Comparative Example 1)
図 1に示されるような天然ガスからの灯軽油製造プロセスのアップグレーディ ング工程 30で副生するナフサとし PGをリサイクルさせることなく、 FT (フ イツシヤー' 卜ロブシュ) 合成に適した H2ZCO=2. 0の合成ガスの製造を行 なった。 合成ガス製造工程 10における触媒層の出口温度 900°C、 触媒層出口 圧力?. OMP aG、 G H S V (gas hourly space velocity) 2000 h r一1、 H2OZC (モル比) =1. 24、 C02ZC (モル比) =0. 46であり、 原料 天然ガスの組成は、 (C 1ZC2ZC3ZC4ZC5+ N2=90. 0/5. 5 2. 5/0. 5/1. 0/0. 5 (モル モル)) であった。 H 2 ZCO suitable for FT (fisher's 卜 robsch) synthesis without recycling PG as naphtha by-product in the upgrade process 30 of kerosene production from natural gas as shown in Figure 1 = 2.0 Syngas was produced. Catalyst layer outlet temperature in synthesis gas production process 10 900 ° C, catalyst layer outlet pressure? OMP aG, GHSV (gas hourly space velocity) 2000 hr 1 , H 2 OZC (molar ratio) = 1.24, C0 2 ZC (molar ratio) = 0.46, and the composition of raw material natural gas is ( C 1ZC2ZC3ZC4ZC5 + N 2 = 90. 0/5. 5 2. 5/0. 5/1. 0 / 0.5 (mol mol)).
図 1に示される合成ガス製造セクション入口および出口 (図 1に示される符号 (1)、 (2)、 (3)、 (4)、 (5)、 (7))のマテリアルバランスをとり、そのマテ リアルバランスに基づき灯軽油製造プロセスにおける合成ガスの製造工程の評価 を行なった。  Synthetic gas production section inlet and outlet shown in Fig. 1 (reference (1), (2), (3), (4), (5), (7)) shown in Fig. 1 Based on the material balance, the synthesis gas production process in the kerosene production process was evaluated.
その結果、 マテリアルバランスに基づいて算出した原料天然ガス中の炭素原子 が製品 (灯油、 軽油) となる割合は 55. 6%であった。 以上の結果より、 本発明の効果は明らかである。 すなわち、 本発明ではアップ グレーディング工程において蒸留によリ分離された軽質炭化水素を、 合成ガス製 造用原料として、合成ガス製造工程に循環使用してなるように構成しているので、 天然ガスからの灯軽油製造プロセスでは、 付加価値が低い副産物である軽質炭化 水素の具体的な再利用化を図リ、 原料原単位を上げることができるという極めて 優れた効果が発現する。 産業上の利用可能性  As a result, the ratio of carbon atoms in the raw natural gas calculated based on the material balance to products (kerosene, light oil) was 55.6%. From the above results, the effect of the present invention is clear. That is, in the present invention, light hydrocarbons separated by distillation in the upgrading process are configured to be recycled and used in the synthesis gas production process as a synthesis gas production raw material. In the kerosene oil production process, light hydrocarbons, which are by-products with low added value, can be reused concretely, resulting in an extremely excellent effect that the raw material consumption can be increased. Industrial applicability
天然ガスを化学的に転換し、 メタノール、 DME、 合成石油などを製造するた めの合成ガスを製造する産業に利用される。  It is used in industries that produce synthetic gas for the chemical conversion of natural gas to produce methanol, DME, and synthetic petroleum.

Claims

請 求 の 範 囲 The scope of the claims
1 . 天然ガスとスチーム及び Z又は二酸化炭素との改質反応により合成ガ スを製造する合成ガス製造工程と、 1. a synthetic gas production process for producing synthetic gas by a reforming reaction of natural gas with steam and Z or carbon dioxide;
前記合成ガスをフィッシャー卜口プッシュ反応させた後、 フィッシャー卜ロブ ッシュ反応生成物からガス状生成物を分離してフィッシャートロプッシュ油を製 造するフィッシャートロプッシュ油製造工程と、  A Fischer-Tropsch oil production process for producing a Fischer-Tropsch oil by separating the gaseous product from the Fischer-Robsch reaction product after the synthesis gas is subjected to a Fischer-Mouth push reaction;
前記フィッシャートロプッシュ油を水素化精製し、 得られた水素化精製物を蒸 留して軽質炭化水素と、 最終製品である灯軽油とに分離するアップグレーディン グ工程と、 を有する天然ガスからの灯軽油製造プロセスにおいて、  An upgrade process for hydrorefining the Fischer-Tropsch oil and distilling the resulting hydrorefined product into light hydrocarbons and kerosene oil, which is the final product. In the kerosene production process of
前記アップグレーディング工程において蒸留によリ分離された軽質炭化水素を、 合成ガス製造用原料として、 前記合成ガス製造工程に循環使用してなることを特 徴とする天然ガスからの灯軽油製造プロセスにおける合成ガスの製造方法。  In a process for producing kerosene oil from natural gas, characterized in that light hydrocarbons separated by distillation in the upgrade process are recycled to the synthesis gas production process as a raw material for the production of synthesis gas. A method for producing synthesis gas.
2 . 前記合成ガス製造工程において、 天然ガスと循環使用される軽質炭化 水素との混合原料における炭化水素由来の炭素モル数を Cで表わしたとき、 炭素 1モル当たりの H 2OZ C (モル比) が 0 . 0〜3 . 0及び Z又は C 02/ C (モ ル比) 力 0 . 0〜 1 . 0の範囲内にある請求項 1に記載の天然ガスからの灯軽油 製造プロセスにおける合成ガスの製造方法。 2. In the synthesis gas production process, when the number of moles of carbon derived from hydrocarbons in the mixed raw material of natural gas and light hydrocarbons used in circulation is represented by C, H 2 OZ C (molar ratio) per mole of carbon In the process for producing kerosene oil from natural gas according to claim 1, in the range of 0.0 to 3.0 and Z or C 0 2 / C (molar ratio) force 0.0 to 1.0. A method for producing synthesis gas.
3 . 前記合成ガス製造工程において、 供給される天然ガス原料の炭化水素 中の炭素原子数に対して、 循環使用される軽質炭化水素中の炭素原子数の割合が 1 0〜 3 5 <½となるように設定されてなる請求項 1に記載の天然ガスからの灯軽 油製造プロセスにおける合成ガスの製造方法。 3. In the synthesis gas production process, the ratio of the number of carbon atoms in the light hydrocarbons used in circulation to the number of carbon atoms in the hydrocarbons of the natural gas feed supplied is 10 to 35 <½. The method for producing synthesis gas in a process for producing kerosene from natural gas according to claim 1, which is set to be as follows.
4 . 前記合成ガス製造工程において、 供給される天然ガス原料の炭化水素 中の炭素原子数に対して、 最終製品である灯軽油中の炭素原子数の割合が 6 0〜 8 0 %となるように設定されてなる請求項 1に記載の天然ガスからの灯軽油製造 プロセスにおける合成ガスの製造方法。 4. In the synthesis gas production process, the ratio of the number of carbon atoms in kerosene oil, which is the final product, to 60 to 80% of the number of carbon atoms in the hydrocarbon of the natural gas feed to be supplied. The method for producing synthesis gas in a process for producing kerosene from natural gas according to claim 1, wherein
5. 前記合成ガス製造工程において、触媒層の出口温度が 800〜950°C、 触媒層出口圧力が 1. 5〜3. OMPaG. GHSV (gas hour I y space ve loci ty) が 500〜5000 h r— 1である請求項 1に記載の天然ガスからの灯軽油製造プ ロセスにおける合成ガスの製造方法。 5. In the synthesis gas production process, the catalyst layer outlet temperature is 800 ~ 950 ° C, the catalyst bed outlet pressure is 1.5 ~ 3. OMPaG.GHSV (gas hour I y space velocity) is 500 ~ 5000 hr. The method for producing synthesis gas in the process for producing kerosene from natural gas according to claim 1, which is 1.
6. 前記合成ガス製造工程において、 天然ガス原料として供給される炭化 水素原料ガスが、 メタンを少なくとも 60モル%含有する炭素数 1〜 6の炭化水 素である請求項 1に記載の天然ガスからの灯軽油製造プロセスにおける合成ガス の製造方法。 6. From the natural gas according to claim 1, wherein the hydrocarbon raw material gas supplied as the natural gas raw material in the synthesis gas production process is a hydrocarbon having 1 to 6 carbon atoms and containing at least 60 mol% of methane. Of syngas in the kerosene oil production process.
PCT/JP2007/064043 2007-07-10 2007-07-10 Process for produciton of synthesis gas in the process of manufacturing kerosene and gas oil from natural gas WO2009008092A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2007/064043 WO2009008092A1 (en) 2007-07-10 2007-07-10 Process for produciton of synthesis gas in the process of manufacturing kerosene and gas oil from natural gas
AU2007356234A AU2007356234B2 (en) 2007-07-10 2007-07-10 Synthesis Gas Production Method in a Process for Producing Kerosene and Gas Oil from Natural Gas
CN2007800527855A CN101657523B (en) 2007-07-10 2007-07-10 Process for production of synthesis gas in the process of manufacturing kerosene and gas oil from natural gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/064043 WO2009008092A1 (en) 2007-07-10 2007-07-10 Process for produciton of synthesis gas in the process of manufacturing kerosene and gas oil from natural gas

Publications (1)

Publication Number Publication Date
WO2009008092A1 true WO2009008092A1 (en) 2009-01-15

Family

ID=40228289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064043 WO2009008092A1 (en) 2007-07-10 2007-07-10 Process for produciton of synthesis gas in the process of manufacturing kerosene and gas oil from natural gas

Country Status (3)

Country Link
CN (1) CN101657523B (en)
AU (1) AU2007356234B2 (en)
WO (1) WO2009008092A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013019312A1 (en) 2011-07-29 2013-02-07 Oxea Corporation Improved oxo process and method for producing synthesis gas from waste oil
US9752080B2 (en) 2013-03-27 2017-09-05 Haldor Topsoe A/S Process for producing hydrocarbons
JP7392228B2 (en) 2021-01-29 2023-12-06 エルジー・ケム・リミテッド Synthesis gas production method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9169443B2 (en) * 2011-04-20 2015-10-27 Expander Energy Inc. Process for heavy oil and bitumen upgrading

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000104078A (en) * 1998-09-30 2000-04-11 Chiyoda Corp Method for producing liquid hydrocarbon oil from lower hydrocarbon gas containing carbon dioxide
US20050250862A1 (en) * 2003-10-24 2005-11-10 Jerome Bayle Production of liquid fuels by a concatenation of processes for treatment of a hydrocarbon feedstock
JP2006143752A (en) * 2003-10-16 2006-06-08 Nippon Gas Gosei Kk Manufacturing method of liquefied petroleum gas mainly composed of propane or butane

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4833170A (en) * 1988-02-05 1989-05-23 Gtg, Inc. Process and apparatus for the production of heavier hydrocarbons from gaseous light hydrocarbons

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000104078A (en) * 1998-09-30 2000-04-11 Chiyoda Corp Method for producing liquid hydrocarbon oil from lower hydrocarbon gas containing carbon dioxide
JP2006143752A (en) * 2003-10-16 2006-06-08 Nippon Gas Gosei Kk Manufacturing method of liquefied petroleum gas mainly composed of propane or butane
US20050250862A1 (en) * 2003-10-24 2005-11-10 Jerome Bayle Production of liquid fuels by a concatenation of processes for treatment of a hydrocarbon feedstock

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013019312A1 (en) 2011-07-29 2013-02-07 Oxea Corporation Improved oxo process and method for producing synthesis gas from waste oil
US9752080B2 (en) 2013-03-27 2017-09-05 Haldor Topsoe A/S Process for producing hydrocarbons
JP7392228B2 (en) 2021-01-29 2023-12-06 エルジー・ケム・リミテッド Synthesis gas production method

Also Published As

Publication number Publication date
AU2007356234B2 (en) 2011-06-16
AU2007356234A1 (en) 2009-01-15
CN101657523A (en) 2010-02-24
CN101657523B (en) 2013-07-17

Similar Documents

Publication Publication Date Title
JP5424566B2 (en) Method for producing synthesis gas in liquid hydrocarbon production process from natural gas
JP5424569B2 (en) Method for producing synthesis gas in liquid hydrocarbon production process from natural gas
US7067562B2 (en) Iron-based Fischer-Tropsch catalysts and methods of making and using
JP4866139B2 (en) Syngas production method in kerosene production process from natural gas
AU2008206983A1 (en) Catalyst, catalyst precursor, catalyst carrier, preparation and use of thereof in fischer-tropsch synthesis
KR20090011457A (en) Catalysts for fischer-tropsch synthesis on cobalt/phosphorus-aluminum oxide and preparation methods thereof
GB2475492A (en) Fischer-Tropsch catalyst with an alkaline earth metal content of less than 2000 ppm
WO2008071640A2 (en) Process for preparing a catalyst
WO2009008092A1 (en) Process for produciton of synthesis gas in the process of manufacturing kerosene and gas oil from natural gas
US20090143491A1 (en) Process for stabilising a catalyst
AU2009331536B2 (en) Integrated process and parallel reactor arrangement for hydrocarbon synthesis
KR100830719B1 (en) Synthetic methods for liquid hydrocarbons from syngas over alumina-silica based catalysts and preparation methods thereof
AU2004224536B2 (en) Catalyst for Fischer-Tropsch synthesis and process for producing hydrocarbon
RU2440401C2 (en) Method for obtaining synthesis gas in method for obtaining kerosine and gas oil from natural gas
JPS59105083A (en) Selective hydrogenation for diene in pyrolized gasoline
KR101386629B1 (en) Granule-Type Catalyst Composition, Preparation Method Thereof and Preparation Method of Liquid Hydrocarbon using the same
WO2010071989A1 (en) Low-pressure fischer-tropsch process

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780052785.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790816

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: PI20093918

Country of ref document: MY

WWE Wipo information: entry into national phase

Ref document number: 2007356234

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2007356234

Country of ref document: AU

Date of ref document: 20070710

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010104467

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 07790816

Country of ref document: EP

Kind code of ref document: A1