WO2009007517A2 - Matériau composite bois/polymère - Google Patents

Matériau composite bois/polymère Download PDF

Info

Publication number
WO2009007517A2
WO2009007517A2 PCT/FR2008/000659 FR2008000659W WO2009007517A2 WO 2009007517 A2 WO2009007517 A2 WO 2009007517A2 FR 2008000659 W FR2008000659 W FR 2008000659W WO 2009007517 A2 WO2009007517 A2 WO 2009007517A2
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
fibers
wood
material according
matrix
Prior art date
Application number
PCT/FR2008/000659
Other languages
English (en)
Other versions
WO2009007517A3 (fr
Inventor
Alain Villafines
Original Assignee
Alain Villafines
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alain Villafines filed Critical Alain Villafines
Publication of WO2009007517A2 publication Critical patent/WO2009007517A2/fr
Publication of WO2009007517A3 publication Critical patent/WO2009007517A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/08Moulding or pressing
    • B27N3/28Moulding or pressing characterised by using extrusion presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/04Manufacture of substantially flat articles, e.g. boards, from particles or fibres from fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2311/00Use of natural products or their composites, not provided for in groups B29K2201/00 - B29K2309/00, as reinforcement
    • B29K2311/10Natural fibres, e.g. wool or cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2711/00Use of natural products or their composites, not provided for in groups B29K2601/00 - B29K2709/00, for preformed parts, e.g. for inserts
    • B29K2711/14Wood, e.g. woodboard or fibreboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/001Profiled members, e.g. beams, sections
    • B29L2031/003Profiled members, e.g. beams, sections having a profiled transverse cross-section
    • B29L2031/005Profiled members, e.g. beams, sections having a profiled transverse cross-section for making window frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/724Doors

Definitions

  • the invention relates to a composite material having a wood appearance and having good resistance to moisture.
  • the invention also relates to an easy method of producing this material.
  • Composite materials with a final visual appearance similar to that of solid wood are widely used in the manufacture of doors and windows as well as in interior and exterior furniture, or for the production of terrace coverings.
  • Such composite materials consist of a matrix of thermoplastic material and a load of wood fibers.
  • the proportion of wood fiber load relative to the thermoplastic matrix is high, generally at least 50%.
  • the wood fibers used for the load are derived from the sawdust of tree species growing in a temperate environment, mainly light (or soft) woods such as pine or fir. Indeed, these sawdust are widely available and have a reduced cost.
  • this type of material is relatively permeable to water which makes it unsuitable for use in a humid atmosphere (outside, water room, sauna, etc.). It is of course possible to use a material consisting solely of thermoplastics which offers very good resistance to water. However, this material does not have the desired visual appearance of "wood" type.
  • the subject of the invention is a composite material comprising a matrix of thermoplastic material and a load of wood fibers having improved moisture resistance while maintaining a visual appearance. of wood and good mechanical strength characteristics.
  • the present invention relates to a composite material comprising a matrix of thermoplastic material and a load of wood fibers from tropical wood species whose density is greater than 640 kg / m 3 and for which, according to In the invention, the mass proportion of filler is chosen to be less than a critical proportion for which a contact percolation path between the fibers of the filler is established in the composite material.
  • the tropical dense wood fibers used according to the invention have surface energy characteristics which make them particularly compatible with the matrix. They are therefore very easily coated by the matrix. By choosing a mass proportion of fibers that is small enough to remain below the percolation threshold, the fibers are thus very largely covered by the matrix so that they are isolated from each other, thus preventing the propagation of water. one fiber to another in the material.
  • the composite material of the invention retains good mechanical strength characteristics and a "wood" visual appearance, while exhibiting resistance to improved humidity.
  • the wood fibers constituting the filler are mixed without prior treatment to the thermoplastic material constituting the matrix.
  • Another aspect of the invention is to add talc to the thermoplastic material matrix, in addition to the wood fiber filler.
  • FIG. 1 is a schematic view of an extruder during production of a batten made of a composite material according to a particular embodiment of the invention
  • FIG. 2 is a graph showing curves binding the bending stress to the deformation resulting from bending tests on two composite materials made according to the invention and a composite material according to the prior art.
  • the matrix is chosen from polyolefins, in particular high density polyethylene (HDPE).
  • HDPE high density polyethylene
  • the wood fiber load is made of dense tropical wood fibers.
  • the fibers are made of Ipe wood, although this choice is in no way limiting. This type of fiber has several advantages:
  • the fibers are obtained from particularly abundant cutting waste and therefore inexpensive.
  • Tropical dense woods such as Ipe are typically machined or cut using knife-cutting tools at a low torque angle (typically 15 degrees) in contrast to temperate wood species such as pine. or the fir machined with saws.
  • the cutting technique with knives under a low cutting angle favors the production of long fiber chips with a high aspect ratio (here the aspect ratio of a fiber is defined as the ratio between the length of this fiber and its diameter).
  • the aspect ratio of a fiber is defined as the ratio between the length of this fiber and its diameter).
  • tropical dense wood chips are sheared and reduced to high aspect ratio fibers.
  • Ipe is a dense wood (1080 kg / m 3 , according to standard NF EN338) whose fibers have high mechanical properties: the elastic modulus in the axis of the fiber measured with a mass proportion of water of 10% is 18 GPa;
  • Ipe wood fibers have a high surface energy which facilitates their wetting by the matrix and their coating by it, without the need to use wetting agents or any other additive intended to facilitate the adhesion of the matrix to the fibers.
  • Ipe wood is used in the context of the invention to produce a composite material of "wood" appearance with good mechanical strength and having improved moisture resistance.
  • a composite material whose mass proportion of fiber load is reduced compared with the mass proportions usually encountered (of the order of 50% or more) in known composite materials using, as filler, fibers light wood.
  • the mass proportion of wood fibers is limited so that there is no appearance of percolation phenomenon by contact between the fibers through the material.
  • the majority of the fibers are insulated from each other and coated by the matrix, so that there is no formation of percolation paths and the material is thus impermeable to water.
  • Ipe fibers are very easily wetted and coated with the matrix makes it possible to use significant proportions of fibers, up to 35%, without however reaching the percolation threshold.
  • the moisture resistance of the composite material according to the invention is excellent, and is less than 0.5% of volume variation, even after 200 hours of immersion.
  • Example 1 A mixture of 65% by weight of HDPE and 35% by weight of Ipe fibers is extruded. As illustrated in FIG. 1, the HDPE granules 3 and the Ipe 4 cutting waste are directly mixed in the hopper 1 of an extruder 2 in the proportions indicated. The extrusion is carried out at a temperature of 18O 0 C, at a temperature of linear extrusion speed of 0.57 m / min without prior curing of Ipe cutting waste or addition of additives to facilitate the wetting of fibers by the matrix. During extrusion, the cutting waste is naturally reduced to fibers, without any mechanical action other than stirring by the mother screw of the extruder. A die 5 at the outlet of one extruder 2 provides an extrudate 6, here in the form of lath.
  • EXAMPLE 2 The procedure is the same as for Example 1 with the exception of the mass proportions of HDPE and Ipe fibers which are respectively 80% HDPE and 20% Ipe fibers.
  • Example 3 A mixture of 80% by weight of HDPE and 20% by weight of fir fibers is extruded. The extrusion is preceded by a step of baking the fir fibers for 12 hours at 80 0 C in order to reduce the moisture content of the fir fibers. Once baked, the fir fibers and the HDPE are mixed in the hopper and extruded (at a temperature of 150 ° C. and at a linear extrusion speed of 0.19 m / min). This material is of course not a material according to the invention.
  • Ipe fibers are naturally low humidity which allows them to mix directly with HDPE, without prior stoving, and thus saves time and considerable energy;
  • the surface energy of the Ipe fibers is greater than that of the fir fibers, which improves the adhesion of the matrix to Ipe fibers.
  • the good compatibility between Ipe fibers and HDPE renders the use of adjuvants promoting the wettability of Ipe fibers by HDPE useless.
  • These two characteristics have a beneficial influence on the extrusion speed.
  • the extrusion rate of the material of Example 3 had to be roughly divided by 3 to obtain an acceptable cohesion between the matrix and the fir fibers.
  • the increased extrusion time leads to a considerable heating of the fir fibers, which are thus likely to reach their pyrolysis temperature, further decreasing their wetting by the matrix and altering the "wood" appearance of the composite material, which is not the case for Ipe fibers. It is therefore important to take the precaution of lowering the extrusion temperature (150 ° C. for 180 ° C.).
  • specimens of rectangular section of width b and height h are produced.
  • Each test piece is subjected to a bending test by applying a force F to the end of a cantilever portion of the test piece.
  • the arrow Y reached by the end thus subjected to bending is measured.
  • the changes in the bending stress are plotted as a function of the bending deformation of the specimen subjected to loading and unloading.
  • An elastic modulus of the material is deduced by measuring the slope at the origin of the bending / deformation curve.
  • Figure 2 illustrates, for the three materials, the changes in the bending stress, as a function of the bending deformation.
  • Curve 1 represents the behavior of the material of Example No. 1
  • curve 2 represents the behavior of the material of Example No. 2
  • curve 3 represents the behavior of the material of Example No. 3.
  • the reinforcing effect of Ipe wood fiber loads is very noticeable even when the fiber content is only 20%.
  • Such a material is particularly suitable for making blades for the deck covering.
  • polypropylene whose melting temperature is less than or equal to 165 ° C. is used as matrix.
  • the polypropylene marketed under the name “ Metocenium HM1905” having a melting point of 145 ° C. (measured according to ISO3146). This temperature The relatively low melting point is particularly advantageous because it avoids the burning of wood when the wood fibers are mixed with the matrix and during the extrusion of the mixture.
  • talc is added to the mixture.
  • Talc is a hydrous magnesium silicate having a hydrophobic crystalline sheet structure.
  • the proportion of talc is between 0 and 20% by weight.
  • the composite material of the invention is composed of 50% by weight of matrix of thermoplastic material, advantageously the above-mentioned polypropylene, of 30% by mass of tropical dense wood fibers and 20% by mass of talc.
  • the matrix described here is HDPE or polypropylene
  • a material from the group of polyolefins which have the characteristic of possessing a surface energy that is particularly compatible with that of the dense wood fibers used.
  • the invention covers the use of thermoplastic matrix, not limited to polyolefins, such as for example polyvinyl chloride.
  • fibers made from Ipe wood fibers made from dense tropical wood species, that is to say with a density greater than 640 kg / m 3 , will be used more generally.
  • These are, for example, woods belonging to the mechanical classes D40, D50, D60 or D70 defined by the NF EN 338 standard.
  • the density of these woods gives the fibers characteristics of imputrescibility (resistance to water and resistance to pathogens), mechanical strength, geometric shape, and surface energy particularly interesting for the application envisaged here. .
  • the invention covers the use of dense, tropical wood fibers having a density of at least 640 kg m 3.
  • the elastic modulus in the fiber axis measured at water content of 10% is at least equal to 10 Gpa, and preferably at least 12 Gpa.
  • the invention is not limited to this method of production.
  • the wood chips are thus introduced at the last moment into the extruder, without being previously mixed with the matrix, which decreases the time during which they are heated.
  • the elements made in the material of the invention can also be recycled by grinding them for introduce in the grinding residues in the hopper of an extruder.
  • Slats or other objects may still be produced by coextrusion of a core of plastic material and an outer layer of composite material according to the invention.
  • Objects may also be made in the composite of the invention by molding, rotomolding, injection, or any other method.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Mechanical Engineering (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

L'invention concerne un matériau composite constitué d'une matrice en matériau thermoplastique et d'une charge de fibres de bois dense d'essence tropicale. Conformément à l'invention le bois constituant les fibres a une densité au moins égale à 640 kg/m3 et la charge de fibres de bois a une proportion massique qui est inférieure à une proportion critique pour laquelle s ' établit dans le matériau composite un chemin de percolation par contact entre les fibres de la charge.

Description

Matériau composite bois/polymère
L'invention a trait à un matériau composite revêtant un aspect bois et présentant une bonne résistance à l'humidité. L'invention concerne également un procédé facilité de réalisation de ce matériau.
ARRIERE-PLAN DE L'INVENTION
Les matériaux composites avec un aspect visuel final proche de celui du bois massif sont largement utilisés dans la fabrication de portes et fenêtres ainsi que dans l'ameublement intérieur et extérieur, ou encore pour la réalisation de revêtements de terrasse. De tels matériaux composites sont constitués d'une matrice en matériau thermoplastique et d'une charge de fibres de bois. Afin de conserver un aspect « bois », la proportion de charge de fibres de bois par rapport à la matrice thermoplastique est forte, en général au moins 50%. Les fibres de bois utilisées pour la charge sont issues des sciures de bois d'essences d'arbres poussant en milieu tempéré, principalement des bois légers (ou tendres) tels que le pin ou le sapin. En effet, ces sciures sont largement disponibles et ont un coût réduit.
Cependant, ce type de matériau est relativement perméable à l'eau ce qui le rend peu adapté à l'utilisation en atmosphère humide (extérieur, pièce d'eau, sauna, etc..) . Il est bien entendu possible d'utiliser un matériau uniquement composé de thermoplas- tique qui offre une très bonne résistance à l'eau. Toutefois, ce matériau ne revêt pas l'aspect visuel recherché de type « bois ».
OBJET DE L'INVENTION
L'invention a pour objet un matériau composite comprenant une matrice en matériau thermoplastique et une charge de fibres de bois présentant une résistance à l'humidité améliorée tout en conservant un aspect visuel de bois et de bonnes caractéristiques de résistance mécanique.
BREVE DESCRIPTION DE L'INVENTION
Ainsi, la présente invention a pour objet un matériau composite comprenant une matrice en matériau thermoplastique et d'une charge de fibres de bois issues d'essences de bois tropicaux dont la densité est supérieure à 640 kg/m3 et pour laquelle, selon l'invention, la proportion massique de charge est choisie pour être inférieure à une proportion critique pour laquelle s'établit dans le matériau composite un chemin de percolation par contact entre les fibres de la charge.
Les fibres de bois dense tropical utilisées selon l'invention ont des caractéristiques d'énergie de surface qui les rendent particulièrement compatibles avec la matrice. Elles sont donc très facilement enrobées par la matrice. En choisissant une proportion massique de fibres suffisamment petite pour rester sous le seuil de percolation, les fibres sont ainsi très majoritairement enrobées par la matrice de telle sorte qu'elles sont isolées les unes des autres, empêchant ainsi la propagation de l'eau d'une fibre à l'autre dans le matériau.
La diminution de la quantité de fibres nécessaires à l'obtention de ce résultat est compensée par l'utilisation d'essences de bois denses (ou durs) d'origine tropicale avec une densité élevée (supérieure à 640 kg/m3) dont les caractéristiques de résistance mécanique sont meilleures que celles des essences de bois tempérées (bois légers ou tendres) classiquement utilisées. Ceci permet de conserver au matériau de l'invention des caractéristiques mécaniques satisfaisantes à proportion massique de charge moindre par rapport au matériau de l'art antérieur constitué d'une charge de fibres de bois légers.
En outre, l'énergie de surface plus importante de ce type de fibres tend à faciliter le mouillage des fi- bres par la matrice, ce qui tend à renforcer la résistance mécanique du matériau composite.
Ainsi, bien qu'utilisant une proportion massique de charge de fibres de bois inférieure aux proportions classiques, le matériau composite de l'invention conserve de bonnes caractéristiques de résistance mécanique et un aspect visuel « bois », tout en présentant une résistance à l'humidité améliorée.
Dans ce texte, on définit des essences de bois avec une densité supérieure à 640 kg/m3 comme des bois « denses » par opposition aux bois « légers ». De plus, on définit comme étant des essences de bois tropicaux les essences d'arbres poussant naturellement dans la zone géographique comprise entre les deux tropiques .
De préférence, les fibres de bois constituant la charge sont mélangées sans traitement préalable au matériau thermoplastique constituant la matrice.
Un autre aspect de l'invention consiste à ajouter à la matrice de matériau thermoplastique du talc, en plus de la charge en fibres de bois.
BREVE DESCRIPTION DES DESSINS
L'invention sera mieux comprise à la lumière des figures annexées :
- la figure 1 est une vue schématique d'une extrudeuse en cours de production d'une latte constituée d'un matériau composite selon un mode particulier de mise en œuvre de l ' invention ;
- la figure 2 est un graphe montrant des courbes liant la contrainte de flexion à la déformation issues d'essais de flexion sur deux matériaux composites réalisés selon l'invention et un matériau composite selon l'art antérieur.
DESCRIPTION DETAILLEE DE L'INVENTION L'invention est relative à un matériau composite comprenant :
- une charge de fibres de bois ;
- une matrice de matériau thermoplastique. Selon un mode particulier de réalisation du matériau composite de l'invention, la matrice est choisie parmi les polyoléfines , en particulier ici le polyéthylène haute densité (PEHD) .
La charge de fibres de bois est quant à elle, constituée de fibres de bois denses tropicaux. Ici, dans les exemples décrits, les fibres sont en bois d'Ipé, bien que ce choix ne soit aucunement limitatif. Ce type de fibres présente plusieurs avantages :
- les fibres sont obtenues à partir de déchets de coupe particulièrement abondants et donc peu onéreux. Les bois denses tropicaux tels que l ' Ipé font classiquement l'objet d'usinage ou de coupe au moyen d'outils de coupe à couteaux sous un angle de couple faible (typiquement 15 degrés) contrairement aux essences de bois tempérés tels que le pin ou le sapin usinées avec des scies. La technique de coupe aux couteaux sous un angle de coupe faible favorise l'obtention de copeaux à fibres longues avec un rapport d'aspect élevé (on définit ici le rapport d'aspect d'une fibre comme le ratio entre la longueur de cette fibre et son diamètre) . Lors de la mise en œuvre des matériaux composites, les copeaux de bois denses tropicaux sont cisaillés et réduits en fibres ayant un rapport d'aspect élevé. Ainsi, il est facile d'obtenir une charge dont une proportion importante de fibres (de préférence au moins 15% des fibres) a un rapport d'aspect supérieur à 10 ;
L' Ipé est un bois dense (1080 kg/m3, selon la norme NF EN338) dont les fibres ont des propriétés mécaniques élevées : le module élastique dans l'axe de la fibre mesurée avec une proportion massique d'eau de 10%, est de 18 GPa ;
- le bois d'Ipé, très dense, présente une faible teneur naturelle en eau (typiquement 16 à 20 % après séchage à l'air ambiant) par rapport à des bois légers comme par exemple le sapin et offre une meilleure résistance aux champignons et autres agents pathogènes ;
- les fibres de bois d'Ipé possèdent une énergie de surface élevée ce qui facilite leur mouillage par la matrice et leur enrobage par celle-ci, sans qu'il soit besoin d'utiliser des agents mouillants ou tout autre additif destiné à faciliter l'adhérence de la matrice sur les fibres .
Les propriétés particulièrement favorables du bois d'Ipé sont exploitées dans le cadre de l'invention pour réaliser un matériau composite d'aspect « bois » avec une bonne résistance mécanique et présentant une résistance à l'humidité améliorée.
Selon l'invention, on propose un matériau composite dont la proportion massique de charge de fibres est réduite par rapport aux proportions massiques habituellement rencontrées (de l'ordre de 50% ou plus) dans les matériaux composites connus utilisant, comme charge, des fibres de bois légers. Ici, on limite la proportion massique de fibres de bois de telle sorte qu'il n'y ait pas apparition de phénomène de percolation par contact entre les fibres à travers le matériau. A cette proportion, les fibres sont en majorité isolées les unes par rapport aux autres et enrobées par la matrice, de sorte qu'il n'y a pas formation de chemins de percolation et le matériau est ainsi imperméable à l'eau.
Le fait que les fibres d'Ipé sont très facilement mouillées et enrobées par la matrice permet d'utiliser des proportions massiques de fibres non négligeables, pouvant aller jusqu'à 35%, sans toutefois atteindre le seuil de percolation.
On donne ci-dessous des résultats d'essais de résistance à l'humidité sur trois éprouvettes, constituées respectivement de matériaux selon l'invention comportant 10%, 20% et 30% de proportion massique de fibres d'Ipé. Cette résistance est caractérisée par la mesure de la va- riation de volume due à une absorption d'eau des éprou- vettes immergées dans de l'eau à température ambiante 50 heures, 100 heures et 200 heures. On donne en même temps le résultat pour des éprouvettes en bois de teck ou d'Ipé :
Figure imgf000008_0001
On constate immédiatement que la résistance à l'humidité du matériau composite selon l'invention est excellente, et se situe à moins de 0,5% de variation vo- lumique, même après 200 heures d'immersion.
Afin maintenant de vérifier les performances mécaniques des matériaux de l'invention, trois exemples de réalisation de matériau composite sont détaillés ci- dessous. Les deux premiers sont conformes à l'invention. Aux fins de comparaison, un troisième matériau est réalisé avec des fibres de bois léger habituellement utilisées dans les matériaux de l'art antérieur, en respectant cependant des proportions plus conformes à celles de 1 ' invention.
Exemple 1 : Un mélange de 65% en masse de PEHD et de 35% en masse de fibres d'Ipé est extrudé. Comme illustré à la figure 1, les granulés de PEHD 3 et les déchets de coupe d'Ipé 4 sont directement mélangés dans la trémie 1 d'une extrudeuse 2 dans les proportions indiquées. L'extrusion est menée à une température de 18O0C, à une vitesse d'extrusion linéaire de 0,57 m/min sans étuvage préalable des déchets de coupe d'Ipé ni ajout d'additifs destinés à faciliter le mouillage des fibres par la matrice. Lors de l'extrusion, les déchets de coupe sont naturellement réduits en fibres, sans action mécanique autre que le brassage par la vis mère de l ' extrudeuse. Une filière 5 en sortie d1 extrudeuse 2 permet d'obtenir un extrudat 6, ici en forme de latte.
Exemple 2 : On procède de la même façon que pour l'exemple 1 à l'exception des proportions massiques de PEHD et de fibres d'Ipé qui sont respectivement de 80% PEHD et 20% fibres d'Ipé.
Exemple 3 : Un mélange de 80% en masse de PEHD et de 20% en masse de fibres de sapin est extrudé. L'extrusion est précédée d'une étape d' étuvage des fibres de sapin pendant 12 heures à 800C afin de diminuer la teneur en humidité des fibres de sapin. Une fois étuvées, les fibres de sapin et le PEHD sont mélangées dans la trémie et subissent une extrusion (à une température de 15O0C et à la vitesse d'extrusion linéaire de 0,19 m/min). Ce matériau n'est bien entendu pas un matériau selon 1 ' invention.
La comparaison des procédés d'extrusion permet de mettre en évidence un certain nombre d'avantages du matériau composite de l'invention par rapport à un matériau de l'art antérieur :
- les fibres d'Ipé sont naturellement peu humides ce qui permet de les mélanger directement au PEHD, sans étuvage préalable, et constitue ainsi un gain de temps et d'énergie considérable ;
- l'énergie de surface des fibres d'Ipé est supérieure à celle des fibres de sapin ce qui améliore l'adhésion de la matrice aux fibres d'Ipé. La bonne compatibilité entre les fibres d'Ipé et le PEHD rend inutile l'utilisation d'adjuvants favorisant la mouillabilité des fibres d'Ipé par le PEHD. - Ces deux caractéristiques ont une influence bénéfique sur la vitesse d'extrusion. Par comparaison, la vitesse d'extrusion du matériau de l'exemple κr°3 a dû être divisée sensiblement par trois pour obtenir une cohésion acceptable entre la matrice et les fibres de sapin. Par ailleurs, le temps d'extrusion augmenté conduit à un échauffement considérable des fibres de sapin, qui sont ainsi susceptibles d'atteindre leur température de pyrolyse, diminuant encore leur mouillage par la matrice et altérant l'aspect "bois" du matériau composite, ce qui n'est pas le cas pour les fibres d'Ipé. Il importe donc de prendre la précaution de baisser la température d'extrusion (1500C pour 1800C) .
Afin de comparer les caractéristiques des matériaux composites obtenus dans les exemples 1 à 3, des éprouvettes de section rectangulaire de largeur b et de hauteur h sont réalisées. Chaque éprouvette est soumise à un essai de flexion en appliquant un effort F à l'extrémité d'une portion en porte-à-faux de 1' éprouvette. Pour chaque éprouvette, on mesure la flèche Y atteinte par l'extrémité ainsi soumise à la flexion. Pour chaque éprouvette, on calcule une contrainte de flexion σ = 3/2 (FD/bhz), où D est la longueur en porte- à-faux de l 'éprouvette, et une déformation de flexion ε = 6h.Y/D2. On trace les évolutions de la contrainte de flexion en fonction de la déformation en flexion de 1 ' éprouvette soumise à un chargement puis à un déchargement. On en déduit un module élastique du matériau par la mesure de la pente à l'origine de la courbe flexion/déformation.
La figure 2 illustre, pour les trois matériaux, les évolutions de la contrainte de flexion, en fonction de la déformation de flexion. La courbe 1 représente le comportement du matériau de l'exemple N°l, la courbe 2 représente le comportement du matériau de l'exemple N°2 et la courbe 3 représente le comportement du matériau de 1 'exemple N°3.
Les valeurs des modules à élastique et des contraintes de flexion au seuil tirées de ces courbes sont reportées dans le tableau suivant :
Figure imgf000011_0001
L'effet renforçant des charges de fibres de bois d'Ipé est très sensible même lorsque la teneur en fibre n'est que de 20%.
La comparaison de la charge de fibres de sapin et de la charge de fibres d'Ipé montre que le module élastique du matériau de l'exemple N°2 est 50% plus élevé que le .module élastique du matériau de l'exemple N°3, dans des conditions de mise en œuvre comparable. Ainsi, même en utilisant une charge de proportion massique réduite en vue d'obtenir une résistance à l'humidité intéressante, l'utilisation de fibres d'Ipé permet d'obtenir un matériau dont les caractéristiques mécaniques sont particulièrement intéressantes.
Un tel matériau est particulièrement indiqué pour la réalisation de lames pour le revêtement de terrasse.
Selon un mode particulièrement intéressant de mise en œuvre de l'invention, on utilise comme matrice un polypropylène dont la température de fusion est inférieure ou égale à 1650C. A titre d'exemple, on peut utiliser le polypropylène commercialisé sous le nom « Meto- cene HM1905 » dont la température de fusion est de 145°C (mesure faite selon la norme ISO3146) . Cette température de fusion relativement basse est particulièrement intéressante, car elle évite le brûlage du bois lors du mélange des fibres de bois avec la matrice et lors de l ' extrusion du mélange .
De préférence, on ajoute au mélange du talc. Le talc est un silicate de magnésium hydraté possédant une structure cristalline en feuillet hydrophobe. Ainsi, ajouté à la matrice de matériau thermoplastique et à la charge de fibres de bois, il renforce l'imperméabilité et la rigidité du matériau composite ainsi obtenu. De préférence, la proportion de talc est comprise entre 0 et 20% en masse.
Selon une composition préférée, le matériau composite de l'invention se compose de 50% en masse de matrice de matériau thermoplastique, avantageusement le polypropylène précité, de 30% en masse de fibres de bois denses tropicaux et de 20% en masse de talc.
L'invention n'est pas limitée à ce qui vient d'être décrit mais, bien au contraire, englobe toute variante de réalisation entrant dans le cadre défini par les revendications.
En particulier, bien que la matrice décrite ici soit du PEHD ou du polypropylène, on pourra plus généralement utiliser un matériau du groupe des polyoléfines, qui présentent la caractéristique de posséder une énergie de surface particulièrement compatible avec celle des fibres de bois denses utilisées. Plus généralement encore, l'invention couvre l'utilisation de matrice en thermoplastique, non limitée aux polyoléfines, telle par exemple que du polychlorure de vinyle.
Bien que les fibres décrites soient issues du bois d'ipé, on utilisera plus généralement des fibres tirées d'essences de bois tropicaux denses c'est-à-dire dont la densité est supérieure à 640 kg/m3. Ce sont par exemple des bois appartenant aux classes mécaniques D40, D50, D60 ou D70 définies par la norme NF EN 338. En particulier, on pourra notamment utiliser les essences εui- vantes, seules ou en mélange : amourette, azobé, balau red, bangkiraα, basralocus, congotali, copaïba, coubaril, doussié, green heart, itauba, jatoba, kapour, maçarandu- ba, mahogani, merbau, moabi, nαoutonchi, moutouchi , niové, padouk, patawa, tali, tatajuba, tchitol, wacapou, walla- ba, teck, wengé. Ces essences de bois denses sont riches en fibres serrées et font classiquement l'objet de découpe aux couteaux à faible angle de coupe. Cette technique favorise l'obtention de copeaux à fibres longues avec un rapport d'aspect élevé. De surcroît, la densité de ces bois confère aux fibres des caractéristiques d' imputrescibilité (résistance à l'eau et résistance aux pathogènes) , de résistance mécanique, de forme géométrique, et d'énergie de surface particulièrement intéressantes pour l'application envisagée ici. De façon encore plus générale, l'invention couvre l'utilisation de fibres de bois denses, tropicaux, dont la densité est au moins égale à 640 kg m"3' De préférence, le module élastique dans l'axe des fibres mesuré à une teneur massique en eau de 10% est au moins égal à 10 Gpa, et de préférence au moins égal à 12 Gpa.
Enfin, bien que l'on ait particulièrement décrit l'obtention du composite selon l'invention par extrusion de la charge avec la matrice, l'invention n'est pas limitée à ce mode d'obtention. En particulier, on pourra introduire la charge de bois non pas dans la trémie de l'extrudeuse avec la matrice, mais en extrémité aval de la vis d' extrusion. Ceci permet d'augmenter la température de chauffage de la matrice, sans pour autant risquer de brûler la charge de bois. En effet, les copeaux de bois sont ainsi introduits au dernier moment dans l'extrudeuse, sans avoir été mélangés auparavant à la matrice, ce qui diminue le temps pendant lequel ils sont chauffés .
On pourra également recycler les éléments réalisés dans le matériau de 1 ' invention en les broyant pour introduire dans les résidus de broyage dans la trémie d'une extrudeuse.
On pourra encore réaliser des granulés de mélange composite/fibres pour l'injection, l'extrusion, le moulage...
On pourra encore produire des lattes ou autres objets par coextrusion d'un cœur en matériau plastique et d'une couche externe en matériau composite selon l'invention. On pourra également réaliser des objets dans le composite de l'invention par moulage, rotomoulage, injection, ou tout autre procédé.

Claims

REVENDICATIONS
1. Matériau composite comprenant une matrice en matériau thermoplastique et une charge de fibres de bois dense d'essence tropicale, caractérisé en ce que le bois constituant les fibres a une densité au moins égale à 640 kg/m3 et en ce que la charge de fibres de bois a une proportion massique qui est inférieure à une proportion critique pour laquelle s'établit dans le matériau composite un chemin de percolation par contact entre les fibres de la charge .
2. Matériau composite selon la revendication 1 dans lequel la proportion massique de charge de fibres de bois est au plus égale à 35%.
3. Matériau composite selon la revendication 2 dans lequel le bois constituant les fibres a un module élastique au moins égal à 10 GPa pour une fraction massique de 10% d'eau
4. Matériau composite selon la revendication 2 dans lequel le bois constituant les fibres a un module élastique au moins égal à 12 GPa pour une fraction massique de 10% d'eau.
5. Matériau composite selon l'une des revendications précédentes dans lequel au moins 15% des fibres présentent un rapport longueur sur diamètre au moins égal à 10.
6. Matériau composite selon l'une des revendications précédentes dans lequel le bois constituant les fibres est choisi parmi les essences tropicales suivantes : amourette, azobé, balau red, bangkiraï, basralocus, congotali, copaïba, coubaril, doussié, green heart, ipé, itauba, jatoba, kapour, maçaranduba, mahogani, merbau, moabi, moutonchi, moutouchi , niové, padouk, patawa, tali, tatajuba, tchitol, wacapou, wallaba, teck, wengé .
7. Matériau composite selon l'une des revendications précédentes dans lequel le matériau thermoplastique de la matrice est choisi parmi les polyoléfines'
8. Matériau composite selon l'une des revendications précédentes dans lequel le matériau thermoplastique de la matrice est du polychlorure de vinyle.
9. Matériau composite selon l'une des revendications 1 à 6, dans lequel le matériau thermoplastique de la matrice est du polyéthylène haute densité.
10. Matériau composite selon l'une des revendications précédentes dans lequel le matériau thermoplastique de la matrice est du polypropylène.
11. Matériau composite selon la revendication 10, dans lequel le polypropylène a une température de fusion inférieure à 160 degrés Celsius.
12. Matériau composite selon la revendication 10 caractérisé en ce qu'il comprend du talc.
13. Matériau composite selon la revendication 12, dans lequel le talc a une proportion massique au plus égale à 20%.
14. Matériau composite selon la revendication 13 caractérisé en ce qu'il comprend 50% en masse de matériau thermoplastique, 30% en masse de fibres de bois et 20% de talc.
15. Matériau composite selon la revendication 14 dans lequel le proplypopylène utilisé est un polypromy- lène connu sous le nom « Métocène HM 1905 ».
16. Procédé d'extrusion d'un matériau composite selon l'une des revendications précédentes, caractérisé en ce que les fibres de bois constituant la charge sont mélangées sans traitement préalable au matériau thermoplastique constituant la matrice.
17. Procédé d'extrusion d'un matériau composite selon l'une des revendications précédentes, caractérisé en ce que les fibres de bois constituant la charge sont mélangées au matériau thermoplastique constituant la ma- trice sans ajout d'additifs destinés à rendre la charge plus mouillable par la matrice.
PCT/FR2008/000659 2007-05-09 2008-05-13 Matériau composite bois/polymère WO2009007517A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0703303A FR2915919A1 (fr) 2007-05-09 2007-05-09 Materiau composite bois/polymere
FR0703303 2007-05-09

Publications (2)

Publication Number Publication Date
WO2009007517A2 true WO2009007517A2 (fr) 2009-01-15
WO2009007517A3 WO2009007517A3 (fr) 2009-03-05

Family

ID=38566816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/000659 WO2009007517A2 (fr) 2007-05-09 2008-05-13 Matériau composite bois/polymère

Country Status (2)

Country Link
FR (1) FR2915919A1 (fr)
WO (1) WO2009007517A2 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0518018A1 (fr) * 1991-06-13 1992-12-16 Lydall, Inc. Panneau de fibres rigide
US6004668A (en) * 1992-08-31 1999-12-21 Andersen Corporation Advanced polymer wood composite
EP0988947A1 (fr) * 1998-09-24 2000-03-29 Mayer, Gert Elément de construction en matière plastique réalisé par extrusion
US20020063358A1 (en) * 2000-10-18 2002-05-30 Martin Grohman Composite products comprising cellulosic materials and synthetic resins and methods of making the same
WO2003047825A1 (fr) * 2001-12-03 2003-06-12 Dynea Chemicals Oy Panneaux de fibres et procedes de preparation de ces panneaux
US20050087904A1 (en) * 2003-10-24 2005-04-28 Bryan Robert J. Manufacture of extruded synthetic wood structural materials

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0518018A1 (fr) * 1991-06-13 1992-12-16 Lydall, Inc. Panneau de fibres rigide
US6004668A (en) * 1992-08-31 1999-12-21 Andersen Corporation Advanced polymer wood composite
EP0988947A1 (fr) * 1998-09-24 2000-03-29 Mayer, Gert Elément de construction en matière plastique réalisé par extrusion
US20020063358A1 (en) * 2000-10-18 2002-05-30 Martin Grohman Composite products comprising cellulosic materials and synthetic resins and methods of making the same
WO2003047825A1 (fr) * 2001-12-03 2003-06-12 Dynea Chemicals Oy Panneaux de fibres et procedes de preparation de ces panneaux
US20050087904A1 (en) * 2003-10-24 2005-04-28 Bryan Robert J. Manufacture of extruded synthetic wood structural materials

Also Published As

Publication number Publication date
WO2009007517A3 (fr) 2009-03-05
FR2915919A1 (fr) 2008-11-14

Similar Documents

Publication Publication Date Title
FR2882298A1 (fr) Film multicouche protecteur a base de pvdf et de pmma
CN103642122B (zh) 一种玄武岩纤维增强的木塑复合材料
EP2964452B1 (fr) Procédé de fabrication d'un matériau composite multicouche, matériau composite multicouche obtenu par le procédé et pièces ou structures mécaniques réalisées avec ledit matériau
WO2010000983A1 (fr) Nouveau matériau à base végétale
WO2008065061A1 (fr) Procédé de fabrication d'une plaque composite à base de pvc et structure incluant une telle plaque
FR2894178A1 (fr) Film multicouche protecteur
WO2017017388A1 (fr) Procédé pour matériau fibreux pre-impregne par un polymère thermoplastique a l'aide d'un polymère a cristaux liquides
WO2009007517A2 (fr) Matériau composite bois/polymère
KR101938673B1 (ko) 경량화된 복합수지의 펠릿 제조방법 및 그 펠릿으로 제작되는 차량용 범퍼
EP0769518B1 (fr) Composition réticulable de polymère du fluorure de vinylidène, procédé pour réticuler la composition et articles façonnés
WO2011121228A1 (fr) Films fluores multicouche
EP1884268B1 (fr) Procédé de fabrication d'une planche de glisse
CA2864211C (fr) Traitement anti-adherent de moules composites
EP3582939A1 (fr) Procédé de fabrication d'un élément hydrophobe et son utilisation
Srinivasababu Mechanical Behavior of Arbitrarily Reinforced Cocos Nucifera Leaf Sheath Fibre Reinforced Polyester Composites–Comparison with other Coconut FRP Composites
FR2831481A1 (fr) Procede de fabrication de profiles composites extrudes, profiles composites ainsi obtenus et utilisations de ces derniers
FR2813082A1 (fr) Piece en matiere thermoplastique chargee de farine de noyaux de fruits et procede d'obtention d'une telle piece
EP3332950B1 (fr) Bâche à vide pour un procédé d'infusion de matériaux composite comprenant un fluoroélastomère, utilisation et procede de fabrication
WO2016135415A1 (fr) Procédé de fabrication d'un matériau de type bois reconstitué
FR2913913A1 (fr) Structure multicouche petg/pmma
FR3091292A1 (fr) Produit solide a base de resine vegetale, procede de fabrication et utilisations
FR2648466A1 (fr) Produit composite a base de fibres minerales, utile pour la fabrication de pieces moulees
FR3100156A1 (fr) Matériau multicouche présentant une résilience améliorée
FR2529509A1 (fr) Nouveau materiau agglomere a base d'ecorce d'arbre forestier tel que pin et sapin et procede de fabrication de ce materiau agglomere
FR3138137A1 (fr) Matériau isolant thermique et/ou acoustique à base de bagasse de canne à sucre, panneau isolant thermique et/ou acoustique, et élément de structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08805563

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008805563

Country of ref document: EP

122 Ep: pct application non-entry in european phase

Ref document number: 08805563

Country of ref document: EP

Kind code of ref document: A2