WO2009007233A2 - Mélanges pesticides comprenant des sulfonamides ii - Google Patents

Mélanges pesticides comprenant des sulfonamides ii Download PDF

Info

Publication number
WO2009007233A2
WO2009007233A2 PCT/EP2008/058019 EP2008058019W WO2009007233A2 WO 2009007233 A2 WO2009007233 A2 WO 2009007233A2 EP 2008058019 W EP2008058019 W EP 2008058019W WO 2009007233 A2 WO2009007233 A2 WO 2009007233A2
Authority
WO
WIPO (PCT)
Prior art keywords
methyl
carboxamide
pyrazole
difluoromethyl
active compound
Prior art date
Application number
PCT/EP2008/058019
Other languages
English (en)
Other versions
WO2009007233A3 (fr
Inventor
Wolfgang Von Deyn
Jürgen LANGEWALD
Egon Haden
Dirk Voeste
Robert A. Farlow
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Publication of WO2009007233A2 publication Critical patent/WO2009007233A2/fr
Publication of WO2009007233A3 publication Critical patent/WO2009007233A3/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N41/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a sulfur atom bound to a hetero atom
    • A01N41/02Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a sulfur atom bound to a hetero atom containing a sulfur-to-oxygen double bond
    • A01N41/04Sulfonic acids; Derivatives thereof
    • A01N41/06Sulfonic acid amides

Definitions

  • Pesticidal mixtures comprising sulfonamides Il
  • a pesticidal mixture comprising at least two active compounds, wherein
  • At least one active compound I is a sulfonamide compound of the formula
  • R 1 is hydrogen or methyl
  • R 2 is hydrogen, methyl, ethyl or propargyl
  • R 3 is chloride, methoxy or difluoromethoxy
  • R 4 is hydrogen or fluoro
  • At least one active compound Il is a fungicidal compound selected from the groups 11. A to 11.
  • a azoles such as triazoles, imidazoles, pyrazoles, thiazoles and oxazoles selected from the group consisting of azaconazole, benomyl, bitertanol, bromuconazole, carbendazim, cyproconazole, cyazofamid, difenoconazole, diniconazole, diniconazole-M, enilconazole, epoxiconazole, ethaboxam, etridiazole, fluquinconazole, fenbuconazole, flusilazole, flutriafol, fuberidazole, hexaconazole, hymexazole, imazalil, imazalil-sulfphate, imibenconazole, ipconazole, metconazole, myclobutanil, oxpoconazol, paclobutrazol, pefurazoate, penconazole, pro
  • B strobilurins selected from the group consisting of azoxystrobin, dimoxystrobin, enestroburin, fluoxastrobin, kresoxim-methyl, methominostrobin, orysastrobin, picoxystrobin, pyraclostrobin, pyribencarb, trifloxystrobin, methyl 2-(ortho-(2,5-dimethylphenyloxymethylene)phenyl)-3- methoxy-acrylate, 2-(2-(6-(3-chloro-2-methyl-phenoxy)-5-fluoro-pyrimidin-4- yloxy)-phenyl)-2-methoxyimino-N-methyl-acetamide and 3-methoxy-2-(2- (N-(4-methoxy-phenyl)-cyclo-propanecarboximidoylsulfanylmethyl)-phenyl)- acrylic acid methyl ester;
  • carboxamides selected from the group consisting of benalaxyl, benalaxyl-M, benodanil, bixafen, boscalid, carboxin, carpropamid, dimethomorph, diclocymet, fenhexamid, fluopyram, flutolanil, furametpyr, flumorph, flumetover, fluopicolide (picobenzamid), mandipropamid, mepronil, metalaxyl, mefenoxam, ofurace, oxadixyl, oxycarboxin, oxytetracyclin, penthiopyrad, silthiofam,thifluzamide, tiadinil, zoxamide, compounds of the formula ll c 1
  • carbamates selected from the group consisting of diethofencarb, ferbam, flubenthiavalicarb, iprovalicarb, mancozeb, maneb, metam, methasulphocarb, metiram, propamocarb, propamocarb hydrochlorid,propineb, thiram, zineb, ziram, 4-fluorophenyl N-(1-(1-(4- cyanophenyl)ethanesulfonyl)but-2-yl)carbamate, methyl 3-(4-chlorophenyl)-
  • fungicides selected from the group of antibiotics comprising kasugamycin, kasugamycin- hydrochlorid-hydrat , mildiomycin, streptomycin, polyoxin and validamycin
  • A the group of nitrophenyl derivatives comprising binapacryl, dinocap, dinobuton, dicloran, nitrothal-isopropyl and tecnazen; the group of sulfur-containing heterocyclyl compounds comprising dithianon and isoprothiolane; the group of organometallic compounds comprising fentin salts; the group of organophosphorus compounds comprising edifenphos, iprobenfos, fosetyl, fosetyl-aluminum, phosphorous acid and its salts, pyrazophos and tolclofos-methyl; the group of organochlorine compounds comprising chlorothalonil, dichlofluanid, dichlorophen, pentachlorophenol and its salts, flusulfamide, hexachlorobenzene, phthalide, pencycuron, quintozene, thiophanate-methyl and tolylfluanid; the group of inorganic active compounds comprising Bordeaux mixture,
  • the invention relates to a method for controlling pests, this includes animal pests and harmful fungi, using mixtures of at least one compound I with at least one active compounds Il and to the use of the compounds I with the active compounds Il for preparing such mixtures, and also to compositions comprising such mixtures.
  • the present invention provides methods for the control of insects, acarids or nematodes comprising contacting the insect, acarid or nematode or their food supply, habitat, breeding grounds or their locus with a pesticidally effective amount of mixtures of at least one compound I with at least one or more compounds II.
  • the present invention also relates to a method of protecting plants from attack or infestation by insects, acarids or nematodes comprising contacting the plant, or the soil or water in which the plant is growing, with a pesticidally effective amount of a mixture of at least one compound I with at least one or more compounds II.
  • the invention relates to a method for controlling harmful fungi using mixtures of at least one compound I with at least active compounds Il and to the use of a compound I with active compounds Il for preparing such mixtures, and also to compositions comprising these mixtures.
  • Sulfonamide compounds of the formula I, their preparation and their action against insect and acarid pests have been described generically in WO2005/035486 and in WO 2006/056433.
  • the active compounds Il mentioned above, their preparation and their action against harmful fungi are generally known (cf.: htlp://www.hclrss.demon.co.uk/index.hlml); they are commercially available. Paticularly, they are known from: bitertanol, ⁇ -([1 ,V- biphenyl]-4-yloxy)- ⁇ -(1 ,1-dimethylethyl)-1 H-1 ,2,4-triazole-1-ethanol (DE 23 24 020), bromuconazole, 1 -[[4-bromo-2-(2,4-dichlorophenyl)tetrahydro-2-furanyl]methyl]-1 H- 1 ,2,4-triazole (Proc.
  • aldimorph 4-alkyl-2,5(or 2,6)-dimethylmorpholine, comprising 65-75% of 2,6-dimethylmorpholine and 25-35% of 2,5-dimethylmorpholine, comprising more than 85% of 4-dodecyl-2,5(or 2,6)-dimethylmorpholine, where "alkyl” may also include octyl, decyl, tetradecyl or hexadecyl and where the cis/trans ratio is 1 :1 ; dodemorph, 4- cyclododecyl-2,6-dimethylmorpholine (DE 1 198125); fenpropimorph, (RS)-cis-4-[3-(4- tert-butylphenyl)-2-methylpropyl]-2,6-dimethylmorpholine (DE 27 52 096); tridemorph, 2,6-dimethyl-4-tridecylmorpholine (DE 11 64 152); fen
  • One typical problem arising in the field of pest control lies in the need to reduce the dosage rates of the active ingredient in order to reduce or avoid unfavorable environmental or toxicological effects whilst still allowing effective pest control.
  • pests embrace animal pests, and harmful fungi.
  • Another problem encountered concerns the need to have available pest control agents which are effective against a broad spectrum of pests.
  • this object is in part or in whole achieved by the combination of active compounds defined at the outset. Moreover, we have found that simultaneous, that is joint or separate, application of a compound I and one or more compounds Il or successive application of a compound I and one or more compounds Il allows enhanced control of pests, that means animal pests, and harmful fungi, compared to the control rates that are possible with the individual compounds (synergistic mixtures).
  • compounds I of formula I are preferred wherein R 1 is hydrogen or methyl; R 2 is hydrogen, methyl or ethyl;
  • R 3 is methoxy or difluoromethoxy; and R 4 is hydrogen or fluoro; or the salts thereof.
  • R 1 is hydrogen or methyl
  • R 2 is hydrogen, methyl, ethyl
  • R 3 is methoxy; and R 4 is hydrogen or fluoro; or the salts thereof.
  • R 1 is hydrogen or methyl
  • R 2 is hydrogen, methyl, ethyl
  • R 3 is difluoromethoxy
  • R 4 is hydrogen; or the salts thereof.
  • R 1 is hydrogen or methyl
  • R 2 is hydrogen, methyl, ethyl
  • R 3 is difluoromethoxy
  • R 4 is fluoro; or the salts thereof.
  • a of azoles consisting of cyproconazole, difenoconazole, epoxiconazole, fluquinconazole, flusilazole, flutriafol, metconazole, myclobutanil, penconazole, propiconazole, prothioconazole, triadimefon, triadimenol, tebuconazole, tetraconazole, triticonazole, prochloraz, cyazofamid, benomyl, carbendazim and ethaboxam.
  • a of azoles consisting of cyproconazole, difenoconazole, epoxiconazole, fluquinconazole, flusilazole, flutriafol, metconazole, myclobutanil, propiconazole, prothioconazole, triadimefon, triadimenol, tebuconazole, tetraconazole, triticonazole, prochloraz, cyazofamid, benomyl and carbendazim.
  • a of azoles consisting of benomyl, carbendazim, , epoxiconazole, fluquinconazole, flutriafol, flusilazole, metconazole, prochloraz, prothioconazole, tebuconazole and triticonazole.
  • B of strobilurins consisting of azoxystrobin, dimoxystrobin, fluoxastrobin, kresoxim-methyl, orysastrobin, picoxystrobin, pyraclostrobin and trifloxystrobin.
  • B of strobilurins consisting of azoxystrobin, kresoxim-methyl, orysastrobin and pyraclostrobin.
  • C of carboxamides consisting of bixafen, boscalid, carpropamid, dimethomorph, fenhexamid, flumorph, fluopicolide (picobenzamid), fluopyram, isothianil, mandipropamid, metalaxyl, mefenoxam, ofurace, penthiopyrad and zoxamide.
  • C of carboxamides consisting of boscalid, carpropamid, dimethomorph, fenhexamid, fluopicolide, fluopyram, mandipropamid, metalaxyl, mefenoxam, ofurace, penthiopyrad and zoxamide.
  • C of carboxamides consisting of boscalid, dimethomorph and penthiopyrad.
  • D of heterocyclic compounds consisting of acibenzolar-S-methyl, captafol, cyprodinil, dodemorph, famoxadone fenamidone, fenarimol, fenpropimorph, fenpropidin, fenoxanil, fludioxonil, fluazinam, folpet, iprodione, mepanipyrim, probenazole, proquinazid, pyrimethanil, quinoxyfen triforine, tridemorph, vinclozolin and 5-chloro-7-(4-methylpiperidin-1-yl)-6-(2,4,6-trifluorophenyl)- [1 ,2,4]triazolo[1 ,5-a]pyrimidine.
  • D of heterocyclic compounds consisting of dodemorph, famoxadone, fenpropimorph, iprodione, proquinazid , pyrimethanil, quinoxyfen, tridemorph, vinclozolin and 5-chloro-7-(4-methylpiperidin-1- yl)-6-(2,4,6-trifluorophenyl)-[1 ,2,4]triazolo[1 ,5-a]pyrimidine.
  • D of heterocyclic compounds consisting of dodemorph, famoxadone, fenpropimorph, proquinazid pyrimethanil, tridemorph and 5-chloro-7-(4-methylpiperidin-1-yl)-6-(2,4,6- trifluorophenyl)-[1 ,2,4]triazolo[1 ,5-a]pyrimidine.
  • E of carbamates consisting of iprovalicarb, flubenthiavalicarb, maneb, mancozeb, metiram, propineb, propamocarb and thiram.
  • E of carbamates consisting of iprovalicarb, flubenthiavalicarb, maneb, mancozeb, metiram and thiram.
  • F of other fungicides consisting of chlorothalonil, copper acetate, copper hydroxide, copper oxychloride, basic copper sulfate, cymoxanil, dichlofluanid, dithianon, fentin salts, such as fentin acetate, fosetyl, fosetyl-aluminum, flusulfamide, metrafenone, phosphorous acid and its salts, thiophanate-methyl, sulfur and spiroxamine.
  • mixtures of a compound of the formula I with at least one active compound Il selected from the group II F of other fungicides consisting of chlorothalonil, dithianon, flusulfamide, fosetyl-aluminium, metrafenone, phosphorous acid and its salts and thiophanate-methyl.
  • F of other fungicides consisting of chlorothalonil, dithianon, flusulfamide, metrafenone and phosphorous acid and its salts.
  • the mixtures of the present invention may optionally also include one or more further insecticidal active compounds CIII.
  • the following list M of pesticides is intended to illustrate the possible further insecticidal compounds III, but does not to impose any limitation:
  • Organo(thio)phosphates acephate, azamethiphos, azinphos-ethyl, azinphos- methyl, chlorethoxyfos, chlorfenvinphos, chlormephos, chlorpyrifos, chlorpyrifos- methyl, coumaphos, cyanophos, demeton-S-methyl, diazinon, dichlorvos/ DDVP, dicrotophos, dimethoate, dimethylvinphos, disulfoton, EPN, ethion, ethoprophos, famphur, fenamiphos, fenitrothion, fenthion, flupyrazophos, fosthiazate, heptenophos, isoxathion, malathion, mecarbam, methamidophos, methidathion, mevinphos, monocrotophos, naled, omethoate, oxydemeton-methyl
  • Juvenile hormone mimics hydroprene, kinoprene, methoprene, fenoxycarb, pyriproxyfen;
  • Nicotinic receptor agonists/antagonists compounds acetamiprid, bensultap, cartap hydrochloride, clothianidin, dinotefuran, imidacloprid, thiamethoxam, nitenpyram, nicotine, spinosad (allosteric agonist), thiacloprid, thiocyclam, thiosultap- sodium and AKD1022.
  • GABA gated chloride channel antagonist compounds chlordane, endosulfan, gamma-HCH (lindane); acetoprole, ethiprole, fipronil, pyrafluprole, pyriprole, vaniliprole, the phenylpyrazole compound of formula M 6 1
  • Chloride channel activators abamectin, emamectin benzoate, milbemectin, lepimectin;
  • METI I compounds fenazaquin, fenpyroximate, pyrimidifen, pyridaben, tebufenpyrad, tolfenpyrad, flufenerim, rotenone;
  • METI Il and III compounds acequinocyl, fluacyprim, hydramethylnon;
  • M.1 Inhibitors of oxidative phosphorylation: azocyclotin, cyhexatin, diafenthiuron, fenbutatin oxide, propargite, tetradifon;
  • Moulting disruptors cyromazine, chromafenozide, halofenozide, methoxyfenozide, tebufenozide;
  • Mite growth inhibitors clofentezine, hexythiazox, etoxazole;
  • Lipid biosynthesis inhibitors spirodiclofen, spiromesifen, spirotetramat; M.20. octapaminergic agonsits: amitraz;
  • ryanodine receptor modulators flubendiamide
  • R M - 22 is methyl or ethyl and Het * is 3,3-dimethylpyrrolidin-1-yl, 3- methylpiperidin-1 -yl, 3,5-dimethylpiperidin-1 -yl, 3-trifluormethylpiperidin-1 -yl, hexahydroazepin-1 -yl, 2,6-dimethylhexahydroazepin-1 -yl or 2,6-dimethylmorpholin-4-yl.
  • Microbial disruptors Bacillus thuringiensis subsp. Israelensi, Bacillus sphaericus, Bacillus thuringiensis subsp. Aizawai, Bacillus thuringiensis subsp. Kurstaki, Bacillus thuringiensis subsp. Tenebrionis;
  • Anthranilamide derivatives of formula M 24 1 have been described in WO 01/70671 , WO 04/067528 and WO 05/1 18552. Cyflumetofen and its preparation have been described in WO 04/080180. The aminoquinazolinone compound pyrifluquinazon has been described in EP A 109 7932. The alkynylether compounds M 22 1 and M 222 are described e.g. in JP 2006131529.
  • the malononitrile compounds CF3(CH2)2C(CN)2CH2(CF2)3CF2H, CF3(CH2)2C(CN)2CH2(CF2) 5 CF 2 H, CF 3 (CH2)2C(CN)2(CH2)2C(CF 3 )2F, CF 3 (CH2)2C(CN)2(CH2)2(CF2)3CF 3 , CF2H(CF2) 3 CH2C(CN)2CH2(CF2) 3 CF 2 H, CF 3 (CH2)2C(CN)2CH2(CF2) 3 CF 3 , CF 3 (CF 2 )2CH2C(CN)2CH2(CF2) 3 CF 2 H, CF 3 CF2CH2C(CN)2CH2(CF2) 3 CF 2 H, CF 3 CF2CH2C(CN)2CH2(CF2) 3 CF2H, 2-
  • One embodiment of the present invention comprises mixtures of one sulfonamide compound I with one or more fungicidal compound Il and with one or more insecticidal compound III.
  • the further insecticidal compound III is preferably chosen from a group consisting of neonicotinoids as acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid, thiamethoxam and AKD-1022, of phenylpyrazoles as fipronil or acteoprole, of anthranilamides as chlorantraniliprole and the anthranilamid M 24 1 and of alpha- cypermethrin and metaflumizone.
  • Preferred combinations of the preferred insecticidal active compounds I with the preferred fungicidal active compound Il of group II. B with one of the preferred further insecticidal compounds are shown in table B2 at the end of the description.
  • arthropodal pests such as arachnids, myriapedes and insects as well as nematodes.
  • insects are suitable for controlling insect pests, such as insects from the order of
  • Insects from the order of the lepidopterans for example Agrotis ypsilon, Agrotis segetum, Alabama argillacea, Anticarsia gemmatalis, Argyresthia conjugella, Autographa gamma, Bupalus piniarius, Cacoecia murinana, Capua reticulana, Cheimatobia brumata, Choristoneura fumiferana, Choristoneura occidentalis, Cirphis unipuncta, Cydia pomonella, Dendrolimus pini, Diaphania nitidalis, Diatraea grandiosella, Earias insulana, Elasmopalpus lignosellus, Eupoecilia ambiguella, Evetria bouliana, Feltia subterranea, Galleria mellonella, Grapholitha funebrana, Grapholitha molesta, Heliothis arm
  • beetles Coldoptera
  • Agrilus sinuatus for example Agrilus sinuatus, Agriotes lineatus, Agriotes obscurus, Amphimallus solstitialis, Anisandrus dispar, Anthonomus grandis, Anthonomus pomorum, Aphthona euphoridae, Athous haemorrhoidalis, Atomaria linearis, Blastophagus piniperda, Blitophaga undata, Bruchus rufimanus, Bruchus pisorum, Bruchus lentis, Byctiscus betulae, Cassida nebulosa, Cerotoma trifurcata, Cetonia aurata, Ceuthorrhynchus assimilis, Ceuthorrhynchus napi, Chaetocnema tibialis, Conoderus vespertinus, Crioceris asparagi, Ctenicera ssp., Diabrotica Iongi
  • mosquitoes e.g. Aedes aegypti, Aedes albopictus, Aedes vexans, Anastrepha ludens, Anopheles maculipennis, Anopheles crucians, Anopheles albimanus, Anopheles gambiae, Anopheles freeborni, Anopheles leucosphyrus, Anopheles minimus, Anopheles quadrimaculatus, Calliphora vicina, Ceratitis capitata, Chrysomya bezziana, Chrysomya hominivorax, Chrysomya macellaria, Chrysops discalis, Chrysops silacea, Chrysops atlanticus, Cochliomyia hominivorax, Contarinia sorghicola Cordylobia anthropophaga, Culicoides furens, Culex pipiens, Culex nigripalpus
  • thrips (Thysanoptera), e.g. Dichromothrips corbetti, Dichromothrips ssp., Frankliniella fusca, Frankliniella occidentalis, Frankliniella tritici, Scirtothrips citri, Thrips oryzae, Thrips palmi and Thrips tabaci,
  • Isoptera e.g. Calotermes flavicollis, Leucotermes flavipes, Heterotermes aureus, Reticulitermes flavipes, Reticulitermes virginicus, Reticulitermes lucifugus, Reticulitermes santonensis, Reticulitermes grassei, Termes natalensis, and Coptotermes formosanus;
  • cockroaches e.g. Blattella germanica, Blattella asahinae, Periplaneta americana, Periplaneta japonica, Periplaneta brunnea, Periplaneta fuligginosa, Periplaneta australasiae, and Blatta orientalis;
  • ants e.g. Athalia rosae, Atta cephalotes, Atta capiguara, Atta cephalotes, Atta laevigata, Atta robusta, Atta sexdens, Atta texana,
  • Crematogaster spp. Hoplocampa minuta, Hoplocampa testudinea, Lasius niger, Monomorium pharaonis, Solenopsis geminata, Solenopsis invicta, Solenopsis richteri, Solenopsis xyloni, Pogonomyrmex barbatus, Pogonomyrmex californicus, Pheidole megacephala, Dasymutilla occidentalis, Bombus spp., Vespula squamosa, Paravespula vulgaris, Paravespula pennsylvanica, Paravespula germanica, Dolichovespula maculata, Vespa crabro, Polistes rubiginosa, Camponotus floridanus, and Linepithema humile;
  • crickets grasshoppers, locusts (Orthoptera), e.g. Acheta domestica, Gryllotalpa gryllotalpa, Locusta migratoria, Melanoplus bivittatus, Melanoplus femurrubrum, Melanoplus mexicanus, Melanoplus sanguinipes, Melanoplus spretus, Nomadacris septemfasciata, Schistocerca americana, Schistocerca gregaria, Dociostaurus maroccanus, Tachycines asynamorus, Oedaleus senegalensis, Zonozerus variegatus, Hieroglyphus daganensis, Kraussaria angulifera, Calliptamus italicus, Chortoicetes terminifera, and Locustana pardalina;
  • Orthoptera e.g. Acheta domestica, Gryllotalpa gryllotalpa, Locusta migratoria
  • arachnoidea such as arachnids (Acarina), e.g. of the families Argasidae, Ixodidae and Sarcoptidae, such as Amblyomma americanum, Amblyomma variegatum, Ambryomma maculatum, Argas persicus, Boophilus annulatus, Boophilus decoloratus, Boophilus microplus, Dermacentor silvarum, Dermacentor andersoni, Dermacentor variabilis, Hyalomma truncatum, Ixodes ricinus, Ixodes rubicundus, Ixodes scapularis, Ixodes holocyclus, Ixodes pacificus, Ornithodorus moubata, Ornithodorus hermsi, Ornithodorus turicata, Ornithonyssus bacoti, Otobius megnini, Dermanyssus gallina
  • Tetranychidae spp. such as Tetranychus cinnabarinus, Tetranychus kanzawai, Tetranychus pacificus, Tetranychus telarius and Tetranychus urticae, Panonychus ulmi, Panonychus citri, and Oligonychus pratensis; Araneida, e.g. Latrodectus mactans, and Loxosceles reclusa;
  • fleas e.g. Ctenocephalides felis, Ctenocephalides canis, Xenopsylla cheopis, Pulex irritans, Tunga penetrans, and Nosopsyllus fasciatus,
  • silverfish, firebrat e.g. Lepisma saccharina and Thermobia domestica
  • centipedes Chilopoda
  • Scutigera coleoptrata centipedes
  • Earwigs e.g. forficula auricularia, lice (Phthiraptera), e.g. Pediculus humanus capitis, Pediculus humanus corporis, Pthirus pubis, Haematopinus eurysternus, Haematopinus suis, Linognathus vituli, Bovicola bovis, Menopon gallinae, Menacanthus stramineus and Solenopotes capillatus.
  • Collembola (springtails), e.g. Onychiurus ssp..
  • Nematodes plant parasitic nematodes such as root knot nematodes, Meloidogyne hapla, Meloidogyne incognita, Meloidogyne javanica, and other Meloidogyne species; cyst-forming nematodes, Globodera rostochiensis and other Globodera species; Heterodera avenae, Heterodera glycines, Heterodera schachtii, Heterodera trifolii, and other Heterodera species; Seed gall nematodes, Anguina species; Stem and foliar nematodes, Aphelenchoides species; Sting nematodes, Belonolaimus longicaudatus and other Belonolaimus species; Pine nematodes, Bursaphelenchus xylophilus and other Bursaphelenchus species; Ring nematodes, Criconema
  • the mixtures of the present invention are also useful for controlling arachnids (Arachnoidea), such as acarians (Acarina), e.g. of the families Argasidae, Ixodidae and Sarcoptidae, such as Amblyomma americanum, Amblyomma variegatum, Argas persicus, Boophilus annulatus, Boophilus decoloratus, Boophilus microplus, Dermacentor silvarum, Hyalomma truncatum, Ixodes ricinus, Ixodes rubicundus, Ornithodorus moubata, Otobius megnini, Dermanyssus gallinae, Psoroptes ovis, Rhipicephalus appendiculatus, Rhipicephalus evertsi, Sarcoptes scabiei, and
  • Eriophyidae spp. such as Aculus Westendali, Phyllocoptrata oleivora and Eriophyes sheldoni; Tarsonemidae spp. such as Phytonemus pallidus and Polyphagotarsonemus latus; Tenuipalpidae spp. such as Brevipalpus phoenicis; Tetranychidae spp. such as Tetranychus cinnabarinus, Tetranychus kanzawai, Tetranychus pacificus, Tetranychus telarius and Tetranychus urticae, Panonychus ulmi, Panonychus citri, and oligonychus pratensis.
  • insects preferably sucking or piercing insects such as insects from the genera Thysanoptera, Diptera and Hemiptera, in particular the following species:
  • Thysanoptera Frankliniella fusca, Frankliniella occidentalis, Frankliniella tritici, Scirtothrips citri, Thrips oryzae, Thrips palmi and Thrips tabaci,
  • Diptera e.g. Aedes aegypti, Aedes albopictus, Aedes vexans, Anastrepha ludens, Anopheles maculipennis, Anopheles crucians, Anopheles albimanus, Anopheles gambiae, Anopheles freeborni, Anopheles leucosphyrus, Anopheles minimus, Anopheles quadrimaculatus, Calliphora vicina, Ceratitis capitata, Chrysomya bezziana, Chrysomya hominivorax, Chrysomya macellaria, Chrysops discalis, Chrysops silacea, Chrysops atlanticus, Cochliomyia hominivorax, Contarinia sorghicola Cordylobia anthropophaga, Culicoides furens, Culex pipiens, Culex nigripalpus, Culex quinquefas
  • Hemiptera in particular aphids: Acyrthosiphon onobrychis, Adelges laricis, Aphidula nasturtii, Aphis fabae, Aphis forbesi, Aphis pomi, Aphis gossypii, Aphis grossulariae, Aphis schneideri, Aphis spiraecola, Aphis sambuci, Acyrthosiphon pisum, Aulacorthum solani, Brachycaudus cardui, Brachycaudus helichrysi, Brachycaudus persicae, Brachycaudus prunicola, Brevicoryne brassicae, Capitophorus horni, Cerosipha gossypii, Chaetosiphon fragaefolii, Cryptomyzus ribis, Dreyfusia nordmannianae, Dreyfusia piceae, Dys
  • inventive mixtures are especially useful for the control of Lepidoptera, Diptera, Thysanoptera and Hemiptera.
  • inventive mixtures are useful for the control of Thysanoptera and Hemiptera, especially Hemiptera
  • Botrytis cinerea (gray mold) on strawberries, vegetables, flowers and grapevines; Bremia lactucae on lettuce;
  • Cochliobolus species on corn, cereals, rice for example Cochliobolus sativus on cereals, Cochliobolus miyabeanus on rice; - Colletotricum species on soybeans and cotton;
  • Drechslera species Pyrenophora species on corn, cereals, rice and lawns, for example, D. teres on barley or D. tritici-repentis on wheat;
  • Ph. Aleophilum and Formitipora punctata (syn. Phellinus punctatus); - Exserohilum species on corn;
  • Fusarium and Verticillium species on various plants for example, F graminearum or F. culmorum on cereals or F. oxysporum on a multitude of plants, such as, for example, tomatoes; - Gaeumanomyces graminis on cereals;
  • Gibberella species on cereals and rice for example Gibberella fujikuroi on rice
  • Michrodochium nivale on cereals - Mycosphaerella species on cereals, bananas and peanuts, for example, M. graminicola on wheat or M.fijiensis on bananas;
  • Peronospora species on cabbage and bulbous plants for example, P. brassicae on cabbage or P. destructor on onions;
  • Phakopsara pachyrhizi and Phakopsara meibomiae on soybeans - Phomopsis species on soybeans and sunflowers;
  • Phytophthora species on various plants for example, P. capsici on bell pepper;
  • Pseudoperonospora on various plants for example, P. cubensis on cucumber or
  • Puccinia species on various plants for example, P. triticina, P. striformins, P. hordei or P. graminis on cereals or P. asparagi on asparagus; - Pyricularia oryzae, Corticium sasakii, Sarocladium oryzae, S.attenuatum,
  • Rhynchosporium secalis on barley, rye and triticale Sclerotinia species on oilseed rape and sunflowers; - Septoria tritici and Stagonospora nodorum on wheat; Erysiphe (syn. Uncinula) necator on grapevines; Setospaeria species on corn and lawns; Sphacelotheca reilinia on corn; Thievaliopsis species on soybeans and cotton; - Tilletia species on cereals;
  • Ustilago species on cereals, corn and sugar cane for example, U. maydis on corn; Venturia species (scab) on apples and pears, for example, V. inaequalis on apples.
  • the mixtures according to the invention are also suitable for controlling harmful fungi in the protection of materials (for example wood, paper, paint dispersions, fibers or fabrics) and in the protection of stored products.
  • harmful fungi Ascomycetes, such as Ophiostoma spp., Ceratocystis spp., Aureobasidium pullulans, Sclerophoma spp., Chaetomium spp., Humicola spp., Petriella spp., Trichurus spp.; Basidiomycetes, such as Coniophora spp., Coriolus spp., Gloeophyllum spp., Lentinus spp., Pleurotus spp., Poria spp., Serpula spp.
  • Tyromyces spp. Deuteromycetes, such as Aspergillus spp., Cladosporium spp., Penicillium spp., Trichoderma spp., Alternaria spp., Paecilomyces spp. and Zygomycetes, such as Mucor spp., additionally in the protection of materials the following yeasts: Candida spp. and Saccharomyces cerevisae.
  • the pesticidal mixtures according to the present invention can be converted into the customary formulations, for example solutions, emulsions, suspensions, dusts, powders, pastes and granules.
  • the use form depends on the particular intended purpose; in each case, it should ensure a fine and even distribution of the compounds according to the invention.
  • auxiliaries suitable for the formulation of agrochemicals such as solvents and/or carriers, if desired emulsifiers, surfactants and dispersants, preservatives, antifoaming agents, anti-freezing agents, for seed treatment formulation also optionally gelling agents.
  • solvents examples include water, aromatic solvents (for example SolvessoTM products, xylene), paraffins (for example mineral oil fractions), alcohols (for example methanol, butanol, pentanol, benzyl alcohol), ketones (for example cyclohexanone, gamma-butyrolactone), pyrrolidones (NMP(N-methyl-pyrrolidone), NOP (N-octyl- pyrrolidone)), acetates (glycol diacetate), glycols, fatty acid dimethylamides, fatty acids and fatty acid esters. In principle, solvent mixtures may also be used.
  • aromatic solvents for example SolvessoTM products, xylene
  • paraffins for example mineral oil fractions
  • alcohols for example methanol, butanol, pentanol, benzyl alcohol
  • ketones for example cyclohexanone, gamma-butyrolactone
  • Suitable emulsifiers are nonionic and anionic emulsifiers (for example polyoxyethylene fatty alcohol ethers, alkylsulfonates and arylsulfonates).
  • dispersants examples include lignin-sulfite waste liquors and methylcellulose.
  • Suitable surfactants used are alkali metal, alkaline earth metal and ammonium salts of lignosulfonic acid, naphthalenesulfonic acid, phenolsulfonic acid, dibutylnaphthalene- sulfonic acid, alkylarylsulfonates, alkyl sulfates, alkylsulfonates, fatty alcohol sulfates, fatty acids and sulfated fatty alcohol glycol ethers, furthermore condensates of sulfonated naphthalene and naphthalene derivatives with formaldehyde, condensates of naphthalene or of naphthalenesulfonic acid with phenol and formaldehyde, polyoxyethylene octylphenol ether, ethoxylated isooctylphenol, octylphenol, nonylphenol, alkylphenol polyglycol ethers, tributylphenyl
  • Substances which are suitable for the preparation of directly sprayable solutions, emulsions, pastes or oil dispersions are mineral oil fractions of medium to high boiling point, such as kerosene or diesel oil, furthermore coal tar oils and oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, for example toluene, xylene, paraffin, tetrahydronaphthalene, alkylated naphthalenes or their derivatives, methanol, ethanol, propanol, butanol, cyclohexanol, cyclohexanone, isophorone, highly polar solvents, for example dimethyl sulfoxide, N-methylpyrrolidone or water.
  • anti-freezing agents such as glycerin, ethylene glycol, propylene glycol and bactericides such as can be added to the formulation.
  • Suitable antifoaming agents are for example antifoaming agents based on silicon or magnesium stearate.
  • a suitable preservative is e.g. dichlorophen.
  • gelling agent is carrageen (Satiagel®)
  • Powders, materials for spreading and dustable products can be prepared by mixing or concomitantly grinding the active substances with a solid carrier.
  • Granules for example coated granules, impregnated granules and homogeneous granules, can be prepared by binding the active compounds to solid carriers.
  • solid carriers examples include mineral earths such as silica gels, silicates, talc, kaolin, attaclay, limestone, lime, chalk, bole, loess, clay, dolomite, diatomaceous earth, cal- cium sulfate, magnesium sulfate, magnesium oxide, ground synthetic materials, fertilizers, such as, for example, ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas, and products of vegetable origin, such as cereal meal, tree bark meal, wood meal and nutshell meal, cellulose powders and other solid carriers.
  • mineral earths such as silica gels, silicates, talc, kaolin, attaclay, limestone, lime, chalk, bole, loess, clay, dolomite, diatomaceous earth, cal- cium sulfate, magnesium sulfate, magnesium oxide, ground synthetic materials, fertilizers, such as, for example, ammonium s
  • the formulations comprise from 0.01 to 95% by weight, preferably from 0.1 to 90% by weight, of the active compounds.
  • the active compounds are employed in a purity of from 90% to 100% by weight, preferably 95% to 100% by weight (according to NMR spectrum or HLPC spectrum).
  • respective formulations can be diluted 2-10 fold leading to concentrations in the ready to use preparations of 0,01 to 60% by weight active compounds by weight, preferably 0,1 to 40% by weight.
  • the mixtures of the present invention can be used as such, in the form of their formulations or the use forms prepared therefrom, for example in the form of directly sprayable solutions, powders, suspensions or dispersions, emulsions, oil dispersions, pastes, dustable products, materials for spreading, or granules, by means of spraying, atomizing, dusting, spreading or pouring.
  • the use forms depend entirely on the intended purposes; they are intended to ensure in each case the finest possible distribution of the active compounds according to the invention.
  • Aqueous use forms can be prepared from emulsion concentrates, pastes or wettable powders (sprayable powders, oil dispersions) by adding water.
  • the substances as such or dissolved in an oil or solvent, can be homogenized in water by means of a wetter, tackifier, dispersant or emulsifier.
  • a wetter, tackifier, dispersant or emulsifier it is also possible to prepare concentrates composed of active substance, wetter, tackifier, dispersant or emulsifier and, if appropriate, solvent or oil, and such concentrates are suitable for dilution with water.
  • the active compound concentrations in the ready-to-use preparations can be varied within relatively wide ranges. In general, they are from 0.0001 to 10%, preferably from 0.01 to 1 % per weight.
  • the active compound(s) may also be used successfully in the ultra-low-volume process (ULV), it being possible to apply formulations comprising over 95% by weight of active compound, or even to apply the active compound without additives.
  • UUV ultra-low-volume process
  • Products for dilution with water for foliar applications may be applied to the seed diluted or undiluted.
  • the active compound(s) 10 parts by weight of the active compound(s) are dissolved in 90 parts by weight of water or a water-soluble solvent. As an alternative, wetters or other auxiliaries are added. The active compound(s) dissolve(s) upon dilution with water, whereby a formulation with 10 % (w/w) of active compound(s) is obtained.
  • Emulsions EW, EO, ES
  • 25 parts by weight of the active compound(s) are dissolved in 35 parts by weight of xylene with addition of calcium dodecylbenzenesulfonate and castor oil ethoxylate (in each case 5 parts by weight).
  • This mixture is introduced into 30 parts by weight of water by means of an emulsifier machine (e.g. Ultraturrax) and made into a homogeneous emulsion. Dilution with water gives an emulsion, whereby a formulation with 25% (w/w) of active compound(s) is obtained.
  • an emulsifier machine e.g. Ultraturrax
  • 50 parts by weight of the active compound(s) are ground finely with addition of 50 parts by weight of dispersants and wetters and made as water-dispersible or water-soluble granules by means of technical appliances (for example extrusion, spray tower, fluid- ized bed). Dilution with water gives a stable dispersion or solution of the active compound ⁇ ), whereby a formulation with 50% (w/w) of active compound(s) is obtained.
  • 75 parts by weight of the active compound(s) are ground in a rotor-stator mill with addition of 25 parts by weight of dispersants, wetters and silica gel. Dilution with water gives a stable dispersion or solution of the active compound(s), whereby a formulation with 75% (w/w) of active compound(s) is obtained.
  • 0.5 part by weight of the active compound(s) is ground finely and associated with 95.5 parts by weight of carriers, whereby a formulation with 0.5% (w/w) of active compound ⁇ ) is obtained.
  • Current methods are extrusion, spray-drying or the fluidized bed. This gives granules to be applied undiluted for foliar use.
  • oils, wetters, adjuvants or bactericides may be added to the active ingredients.
  • Suitable adjuvants in this context are, in particular: organically modified polysiloxanes, e.g. Break Thru S 240TM; alcohol alkoxylates, e.g. Atplus 245TM, Atplus MBA 1303TM, Plurafac LF 300TM and Lutensol ON 30TM; EO/PO block polymers, e.g. Pluronic RPE 2035TM and Genapol BTM; alcohol ethoxylates, e.g. Lutensol XP 80TM; and sodium dioctylsulfosuccinate, e.g. Leophen RATM.
  • Compositions of this invention may further contain other active ingredients than those listed above.
  • active ingredients for example further insecticides or fungicides, herbicides, fertilizers such as ammonium nitrate, urea, potash, and superphosphate, phytotoxicants and plant growth regulators and safeners.
  • These agents usually are admixed with the agents according to the invention in a weight ratio of 1 :10 to 10:1.
  • compositions of this invention may be used sequentially or in combination with the above-described compositions, if appropriate also added only immediately prior to use (tank mix).
  • plant(s) may be sprayed with a composition of this invention either before or after being treated with other active ingredients.
  • the active compound(s) I and the active compound(s) Il can be applied simultaneously, that is jointly or separately, or in succession, the sequence, in the case of separate application, generally not having any effect on the result of the control measures.
  • the method for controlling harmful fungi and animal pests is carried out by the separate or joint application of active compound(s) I and active compound(s) II, or a mixture of active compound(s) I and active compound(s) II, by spraying or dusting the seeds, the plants or the soils before or after sowing of the plants or before or after emergence of the plants.
  • inventive mixtures or compositions of these mixtures can also be employed for protecting plants from attack or infestation by insects, acarids or nematodes comprising contacting a plant, or soil or water in which the plant is growing.
  • the term plant refers to an entire plant, a part of the plant or the propagation material of the plant, that is, the seed or the seedling.
  • Plants which can be treated with the inventive mixtures include all genetically modified plants or transgenic plants, e.g. crops which tolerate the action of herbicides or fungicides or insecticides owing to breeding, including genetic engineering methods, or plants which have modified characteristics in comparison with existing plants, which can be generated for example by traditional breeding methods and/or the generation of mutants, or by recombinant procedures.
  • Some of the inventive mixtures have systemic action and can therefore be used for the protection of the plant shoot against foliar pests as well as for the treatment of the seed and roots against soil pests.
  • the mixtures of active compounds I and Il or their corresponding formulations are applied by treating the harmful fungi and the animal pests, their habitat or the plants, seeds, soils, areas, materials or spaces to be kept free from them with a pesticidally effective amount of the mixture or, in the case of separate application, of the compounds I and II.
  • Application can be before or after the infection by harmful fungi and/or animal pests.
  • pesticidally effective amount means the amount of the inventive mixtures or of compositions comprising the mixtures needed to achieve an observable effect on growth, including the effects of necrosis, death, retardation, prevention, and removal, destruction, or otherwise diminishing the occurrence and activity of the target organism.
  • the pesticidally effective amount can vary for the various mixtures / compositions used in the invention.
  • a pesticidally effective amount of the mixtures / compositions will also vary according to the prevailing conditions such as desired pesticidal effect and duration, weather, target species, locus, mode of application, and the like.
  • Preferred application methods are into water bodies, via soil, cracks and crevices, pastures, manure piles, sewers, into water, on floor, wall, or by perimeter spray application and bait.
  • mixtures of at least one active compound I and at least one active compound Il are employed.
  • mixtures of at least one compound I with two or, if desired, more active components may also offer particular advantages.
  • Suitable further active components in the above sense are particularly the active compounds Il mentioned at the outset and in particular the preferred active compounds Il mentioned above.
  • inventive mixtures and the compositions comprising them can be used for protecting wooden materials such as trees, board fences, sleepers, etc. and buildings such as houses, outhouses, factories, but also construction materials, furniture, leathers, fibers, vinyl articles, electric wires and cables etc. from ants and/or termites, and for controlling ants and termites from doing harm to crops or human being (e.g. when the pests invade into houses and public facilities).
  • the quantity of active ingredient(s) ranges from 0.0001 to 500 g per 100 m 2 , preferably from 0.001 to 2O g per 100 m 2 .
  • Customary application rates in the protection of materials are, for example, from 0.01 g to 1000 g of active compound(s) per m 2 treated material, desirably from 0.1 g to 50 g per m 2 .
  • Pesticidal compositions for use in the impregnation of materials typically contain from 0.001 to 95 weight %, preferably from 0.1 to 45 weight %, and more preferably from 1 to 25 weight % of at least one repellent and / or insecticide.
  • the content of the mixture of the active ingredients is from 0.001 to 80 weights %, preferably from 0.01 to 50 weight % and most preferably from 0.01 to 15 weight %.
  • the active compound(s) I and the active compound(s) Il are usually applied in a weight ratio of from 500:1 to 1 :100, preferably from 20:1 to 1 :50, in particular from 5:1 to 1 :20.
  • the employed weight ratio of compound(s) I and compound(s) ranges can start from 100:1 to 1 :100, preferably from 20:1 to 1 :20, in particular from 10:1 to 1 :10.
  • the application rates of the mixtures according to the invention are from 5 g/ha to 2000 g/ha, preferably from 20 to 1500 g/ha, more preferably from 50 to 1000 g/ha and in particular from 50 to 750 g/ha.
  • the rate of application of the mixture of the active ingredients of this invention may be in the range of 0.1 g to 4000 g per hectare, desirably from 25 g to 600 g per hectare, more desirably from 50 g to 500 g per hectare.
  • the application rates for the compound(s) I are generally from 1 to 1000 g/ha, preferably from 10 to 900 g/ha, in particular from 20 to 750 g/ha.
  • the application rates for the active compound Il are generally from 1 to 2000 g/ha, preferably from 10 to 1500 g/ha, in particular from 40 to 1000 g/ha.
  • Methods to control infectious diseases transmitted by insects with the inventive mixtures and their respective compositions also comprise treating surfaces of huts and houses, air spraying and impregnation of curtains, tents, clothing items, bed nets, tsetse-fly trap or the like, lnsecticidal compositions for application to fibers, fabric, knitgoods, non- wovens, netting material or foils and tarpaulins preferably comprise a composition including the inventive mixtures, optionally a repellent and at least one binder.
  • the mixtures according to the invention can be applied to any and all developmental stages, such as egg, larva, pupa, and adult.
  • the pests may be controlled by contacting the target pest, its food supply, habitat, breeding ground or its locus with a pesticidally effective amount of the inventive mixtures or of compositions comprising the mixtures.
  • "Locus” means a plant, seed, soil, area, material or environment in which a pest is growing or may grow.
  • the mixtures according to the invention are effective through both contact and ingestion.
  • the inventive mixtures are effective through both contact (via soil, glass, wall, bed net, carpet, plant parts or animal parts), and ingestion (bait, or plant part) and through trophallaxis and transfer.
  • the mixtures of the present invention can be used against non crop pests such as ants, termites, wasps, flies, mosquitoes, crickets, locusts, or cockroaches the inventive mixtures are prepared into a bait preparation.
  • non crop pests such as ants, termites, wasps, flies, mosquitoes, crickets, locusts, or cockroaches the inventive mixtures are prepared into a bait preparation.
  • the bait can be a liquid, a solid or a semisolid preparation (e.g. a gel).
  • the bait employed in the composition is a product which is sufficiently attractive to incite insects such as ants, termites, wasps, flies, mosquitoes, crickets etc. or cockroaches to eat it.
  • This attractant may be chosen from feeding stimulants or para and / or sex pheromones readily known in the art.
  • the typical content of active ingredient(s) is from 0.0001 weight % to 15 weight %, desirably from 0.001 weight % to 5% weight % of active compound.
  • the composition used may also comprise other additives such as a solvent of the active material, a flavoring agent, a preserving agent, a dye or a bitter agent. Its attractiveness may also be enhanced by a special color, shape or texture.
  • the mixtures according to the present invention are employed via soil application.
  • Soil application is especially favorable for targeting ants, termites, crickets, or cockroaches.
  • the mixtures according to the present invention are also suitable for the treatment of seeds in order to protect the seed from harmful fungi and animal pests, in particular from soil-living fungi and insect pests and the resulting plant's roots and shoots against soil pests and foliar insects.
  • the protection of the resulting plant's roots and shoots is preferred.
  • the present invention therefore comprises therefore a method for the protection of seeds from insects, in particular from soil pests and of the seedlings' roots and shoots from harmfulo fungi and insects, in particular from soil and foliar insects, said method comprising contacting the seeds before sowing and/or after pregermination with mixtures according to the present invention.
  • Particularly preferred is a method, wherein the plant's roots and shoots are protected.
  • seed embraces seeds and plant propagules of all kinds including but not limited to true seeds, seed pieces, suckers, corms, bulbs, fruit, tubers, grains, cuttings, cut shoots and the like and means in a preferred embodiment true seeds.
  • seed treatment comprises all suitable seed treatment techniques known in the art, such as seed dressing, seed coating, seed dusting, seed soaking and seed pelleting.
  • the present invention also comprises seeds coated with or containing the active compounds.
  • coated with and/or containing generally signifies that the active ingredients are for the most part on the surface of the propagation product at the time of application, although a greater or lesser part of the ingredient may penetrate into the propagation product, depending on the method of application. When the said propagation product are (re)planted, it may absorb the active ingredient.
  • Suitable seeds are seeds of cereals, root crops, oil crops, vegetables, spices, ornamentals, for example seed of durum and other wheat, barley, oats, rye, maize (fodder maize and sugar maize / sweet and field corn), soybeans, oil crops, crucifers, cotton, sunflowers, bananas, rice, oilseed rape, turnip rape, sugarbeet, fodder beet, eggplants, potatoes, grass, lawn, turf, fodder grass, tomatoes, leeks, pumpkin/squash, cabbage, iceberg lettuce, pepper, cucumbers, melons, Brassica species, melons, beans, peas, garlic, onions, carrots, tuberous plants such as potatoes, sugar cane, tobacco, grapes, petunias, geranium/pelargoniums, pansies and impatiens.
  • mixtures according to the invention may also be used for the treatment seeds from plants, which tolerate the action of herbicides or fungicides or insecticides owing to breeding, including genetic engineering methods.
  • the active mixtures can be employed in treatment of seeds from plants, which are resistant to herbicides from the group consisting of the sulfonylureas, imidazolinones, glufosinate-ammonium or glyphosate-isopropylammonium and analogous active substances (see for example, EP-A-0242236, EP-A-242246) (WO 92/00377) (EP-A-0257993, U.S. Pat. No.
  • the mixtures according to the present invention can be used also for the treatment of seeds from plants, which have modified characteristics in comparison with existing plants consist, which can be generated for example by traditional breeding methods and/or the generation of mutants, or by recombinant procedures). For example, a number of cases have been described of recombinant modifications of crop plants for the purpose of modifying the starch synthesized in the plants (e.g. WO 92/11376, WO 92/14827, WO 91/19806) or of transgenic crop plants having a modified fatty acid composition (WO 91/13972).
  • the seed treatment application of the mixtures is carried out by spraying or by dusting the seeds before sowing of the plants and before emergence of the plants.
  • the corresponding formulations are applied by treating the seeds with an effective amount of the mixture according to the present invention.
  • the application rates of the active compound(s) are generally from 0,1 g to 10 kg per 100 kg of seed, preferably from 1 g to 5 kg per 100 kg of seed, in particular from 1 g to 2,5 kg per 100 kg of seed. For specific crops such as lettuce the rate can be higher.
  • compositions which are especially useful for seed treatment are e.g.:
  • a Soluble concentrates (SL, LS)
  • Conventional seed treatment formulations include for example flowable concentrates FS, solutions LS, powders for dry treatment DS, water dispersible powders for slurry treatment WS, water-soluble powders SS and emulsion ES and EC and gel formulation GF. These formulations can be applied to the seed diluted or undiluted. Application to the seeds is carried out before sowing, either directly on the seeds or after having pregerminated the latter
  • a FS formulation is used for seed treatment.
  • a FS formulation may comprise 1-800 g/l of active ingredient(s), 1-200 g/l Surfactant, 0 to 200 g/l antifreezing agent, 0 to 400 g/l of binder, 0 to 200 g/l of a pigment and up to 1 liter of a solvent, preferably water.
  • Preferred FS formulations of the active compounds for seed treatment usually comprise from 0.1 to 80% by weight (1 to 800 g/l) of the active ingredient(s), from 0.1 to 20 % by weight (1 to 200 g/l) of at least one surfactant, e.g.
  • a thickener from 0.1 to 5 % by weight of a thickener, optionally from 0.1 to 2 % of an anti-foam agent, and optionally a preservative such as a biocide, antioxidant or the like, e.g. in an amount from 0.01 to 1 % by weight and a filler/vehicle up to 100 % by weight.
  • Seed Treatment formulations may additionally also comprise binders and optionally colorants.
  • Binders can be added to improve the adhesion of the active materials on the seeds after treatment.
  • Suitable binders are block copolymers EO/PO surfactants but also polyvinylalcoholsl, polyvinylpyrrolidones, polyacrylates, polymethacrylates, polybutenes, polyisobutylenes, polystyrene, polyethyleneamines, polyethyleneamides, polyethyleneimines (Lupasol®, Polymin®), polyethers, polyurethans, polyvinylacetate, tylose and copolymers derived from these polymers.
  • colorants can be included in the formulation. Suitable colorants or dyes for seed treatment formulations are Rhodamin B, C.I. Pigment Red 112, C.I. Solvent Red 1 , pigment blue 15:4, pigment blue 15:3, pigment blue 15:2, pigment blue 15:1 , pigment blue 80, pigment yellow 1 , pigment yellow 13, pigment red 112, pigment red 48:2, pigment red 48:1 , pigment red 57:1 , pigment red 53:1 , pigment orange 43, pigment orange 34, pigment orange 5, pigment green 36, pigment green 7, pigment white 6, pigment brown 25, basic violet 10, basic violet 49, acid red 51 , acid red 52, acid red 14, acid blue 9, acid yellow 23, basic red 10, basic red 108.
  • the invention also relates to seed comprising mixtures according to the present invention.
  • the amount of the compound I of the mixture or the agriculturally useful salt thereof will in general vary from 0.1 g to 10 kg per 100 kg of seed, preferably from 1 g to 5 kg per 100 kg of seed, more preferably from 1 g to 1000 g per 100 kg of seeds, most preferably from 1 g to 750 g per 100 kg of seeds, and in particular from 5 g to 500 g per 100 kg of seed.
  • the active compounds are prepared as a stock solution comprising 0.25% by weight of active compounds in acetone or DMSO. 1 % by weight of the emulsifier Uniperol® EL (wetting agent having emulsifying and dispersant action based on ethoxylated alkylphenols) is added to this solution, and the mixture is diluted with water to the desired concentration.
  • the visually determined percentages of infected leaf areas are converted into efficacies in % of the untreated control:
  • the efficacy (E) is calculated as follows using Abbot's formula:
  • corresponds to the fungicidal infection of the treated plants in % and ⁇ corresponds to the fungicidal infection of the untreated (control) plants in %
  • An efficacy of 0 means that the infection level of the treated plants corresponds to that of the untreated control plants; an efficacy of 100 means that the treated plants are not infected.
  • Example B.1a Fungicidal control of brown spot caused by Cochliobolus miyabeanus
  • test unit For evaluating control of vetch aphid (Megoura viciae) through contact or systemic means the test unit consists of 24-well-microtiter plates containing broad bean leaf disks.
  • the mixtures are formulated using a solution containing 75 wt% water and 25 wt% DMSO. Different concentrations of formulated mixtures are sprayed onto the leaf disks at 2.5 ⁇ l, using a custom built micro atomizer at two replications.
  • the leaf disks are air-dried and 5 - 8 adult aphids placed on the leaf disks inside the microtiter plate wells.
  • the aphids are then allowed to suck on the treated leaf disks and are incubated at 23 + 1 0 C, 50 + 5 % room humidity for 5 days. Aphid mortality and fecundity is then visually assessed.
  • the test unit For evaluating control of boll weevil (Anthonomus grandis) the test unit consists of 24- well-microtiter plates containing an insect diet and 20-30 A. grandis eggs. The mixtures are formulated using a solution containing 75 wt% water and 25 wt% DMSO. Different concentrations of formulated mixtures are sprayed onto the insect diet at 20 ⁇ l, using a custom built micro atomizer at two replications. For experimental mixtures in these tests identical volumes of both mixing partners at the desired concentrations respectively are mixed together.
  • microtiter plates After application the microtiter plates are incubated at 23 + 1 0 C, 50 + 5 % room humidity for 5 days. Egg and larval mortality is then visually assessed.
  • test unit For evaluating control of Mediterranean fruitfly (Ceratitis capitata) the test unit consists of 96-well-microtiter plates containing an insect diet and 50-80 C. capitata eggs.
  • the mixtures are formulated using a solution containing 75 wt% water and 25 wt%
  • DMSO DMSO
  • Different concentrations of formulated mixtures are sprayed onto the insect diet at 5 ⁇ l, using a custom built micro atomizer at two replications.
  • microtiter plates are incubated at 28 + 1 0 C, 80 + 5 % room humidity for 5 days. Egg and larval mortality is then visually assessed.
  • test unit For evaluating control of tobacco budworm (Heliothis virescens) the test unit consists of
  • DMSO DMSO
  • Different concentrations of formulated mixtures are sprayed onto the insect diet at 10 ⁇ l, using a custom built micro atomizer at two replications.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

La présente invention porte sur des mélanges pesticides dont les composants actifs comprennent: 1) un composé sulfonamide représenté par la formule (I) dans laquelle R1, R2, R3 et R4 sont tels que définis dans la description; et 2) un ou plusieurs composés fongicides II choisis parmi les azoles, les strobilurines, les carboxamides, les carbamates, les composés hétérocycliques et divers autres composés tels que définis dans la description, en quantités efficaces synergiquement. L'invention porte également sur des procédés et sur l'utilisation de ces mélanges pour 1) combattre les insectes, les arachnides ou les nématodes ainsi que les champignons nuisibles dans et sur les plantes; 2) protéger de telles plantes de l'infestation par de parasites, en particulier les semences.
PCT/EP2008/058019 2007-07-11 2008-06-24 Mélanges pesticides comprenant des sulfonamides ii WO2009007233A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US94908407P 2007-07-11 2007-07-11
US60/949,084 2007-07-11

Publications (2)

Publication Number Publication Date
WO2009007233A2 true WO2009007233A2 (fr) 2009-01-15
WO2009007233A3 WO2009007233A3 (fr) 2009-07-09

Family

ID=40089908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/058019 WO2009007233A2 (fr) 2007-07-11 2008-06-24 Mélanges pesticides comprenant des sulfonamides ii

Country Status (1)

Country Link
WO (1) WO2009007233A2 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2272346A1 (fr) 2009-07-08 2011-01-12 LANXESS Deutschland GmbH Penthiopyrade pour la protection du bois
US20120027741A1 (en) * 2009-02-19 2012-02-02 Pierre-Yves Coqueron Pesticide composition comprising a tetrazolyloxime derivative and a fungicide or an insecticide active substance
EP2481284A3 (fr) * 2011-01-27 2012-10-17 Basf Se Mélanges de pesticides
WO2014078849A1 (fr) * 2012-11-19 2014-05-22 Lonza, Inc. Compositions contenant un inhibiteur de succinate déshydrogénase
CN105766954A (zh) * 2016-03-31 2016-07-20 广东中迅农科股份有限公司 一种含有萎锈灵和螺虫乙酯的种子处理组合物
CN105961400A (zh) * 2016-04-26 2016-09-28 南京华洲药业有限公司 一种含氟唑菌酰胺和烯唑醇的杀菌组合物及其应用
CN107690878A (zh) * 2017-09-15 2018-02-16 桂林市农业科学院 一种应用药剂浸种消除淮山线虫病原的方法
US10631540B2 (en) 2015-12-01 2020-04-28 Sumitomo Chemical Company, Limited Plant disease control composition, and plant disease control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4379157A (en) * 1980-01-23 1983-04-05 Duphar International Research B.V. Sulphonyl compounds, method of preparing the new compounds, as well as aphicidal compositions on the basis of the new compounds
WO2006056433A2 (fr) * 2004-11-26 2006-06-01 Basf Aktiengesellschaft Composes de 2-cyano-3-(halo)alcoxy-benzenesulfonamide destines au combat des parasites des animaux
US20070071782A1 (en) * 2003-10-02 2007-03-29 Deyn Wolfgang V 2-Cyanobenzenesulfonamides for combating animal pests

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4379157A (en) * 1980-01-23 1983-04-05 Duphar International Research B.V. Sulphonyl compounds, method of preparing the new compounds, as well as aphicidal compositions on the basis of the new compounds
US20070071782A1 (en) * 2003-10-02 2007-03-29 Deyn Wolfgang V 2-Cyanobenzenesulfonamides for combating animal pests
WO2006056433A2 (fr) * 2004-11-26 2006-06-01 Basf Aktiengesellschaft Composes de 2-cyano-3-(halo)alcoxy-benzenesulfonamide destines au combat des parasites des animaux

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120027741A1 (en) * 2009-02-19 2012-02-02 Pierre-Yves Coqueron Pesticide composition comprising a tetrazolyloxime derivative and a fungicide or an insecticide active substance
EP2272346A1 (fr) 2009-07-08 2011-01-12 LANXESS Deutschland GmbH Penthiopyrade pour la protection du bois
EP2481284A3 (fr) * 2011-01-27 2012-10-17 Basf Se Mélanges de pesticides
EP3042562A1 (fr) * 2012-11-19 2016-07-13 Arch Wood Protection, Inc. Compositions contenant un inhibiteur de succinate déshydrogénase
CN104981161A (zh) * 2012-11-19 2015-10-14 拱门木材保护有限公司 含有琥珀酸脱氢酶抑制剂的组合物
JP2016505532A (ja) * 2012-11-19 2016-02-25 アーチ ウッド プロテクション,インコーポレーテッド コハク酸デヒドロゲナーゼ阻害剤含有組成物
CN106577678B (zh) * 2012-11-19 2020-02-07 拱门木材保护有限公司 含有琥珀酸脱氢酶抑制剂的组合物
WO2014078849A1 (fr) * 2012-11-19 2014-05-22 Lonza, Inc. Compositions contenant un inhibiteur de succinate déshydrogénase
CN106577678A (zh) * 2012-11-19 2017-04-26 拱门木材保护有限公司 含有琥珀酸脱氢酶抑制剂的组合物
EA028042B1 (ru) * 2012-11-19 2017-09-29 Арч Вуд Протекшн, Инк. Композиции, содержащие ингибитор сукцинатдегидрогеназы
US10829648B2 (en) 2012-11-19 2020-11-10 Arch Wood Protection, Inc. Succinate dehydrogenase inhibitor containing compositions
AU2017225057B2 (en) * 2012-11-19 2018-12-13 Arch Wood Protection, Inc. Succinate dehydrogenase inhibitor containing compositions
US10631540B2 (en) 2015-12-01 2020-04-28 Sumitomo Chemical Company, Limited Plant disease control composition, and plant disease control method
CN105766954A (zh) * 2016-03-31 2016-07-20 广东中迅农科股份有限公司 一种含有萎锈灵和螺虫乙酯的种子处理组合物
CN105961400A (zh) * 2016-04-26 2016-09-28 南京华洲药业有限公司 一种含氟唑菌酰胺和烯唑醇的杀菌组合物及其应用
CN105961400B (zh) * 2016-04-26 2018-08-03 南京华洲药业有限公司 一种含氟唑菌酰胺和烯唑醇的杀菌组合物及其应用
CN107690878A (zh) * 2017-09-15 2018-02-16 桂林市农业科学院 一种应用药剂浸种消除淮山线虫病原的方法

Also Published As

Publication number Publication date
WO2009007233A3 (fr) 2009-07-09

Similar Documents

Publication Publication Date Title
JP5670328B2 (ja) イソオキサゾリン化合物iiを含む殺有害生物剤混合物
KR101605569B1 (ko) 시아노술폭시민 화합물을 포함하는 살충 혼합물
EP3300602B1 (fr) Mélanges pesticides comprenant des composés de cyanosulfoximine
US20180007908A1 (en) Pesticidal Mixtures
KR20130132942A (ko) 피라졸 화합물을 포함하는 살충 활성 혼합물
JP2010503642A (ja) 三成分殺有害生物混合物
EP2320741A2 (fr) Mélanges de pesticides comprenant des composés cyano sulfoximine et spinetoram
WO2009007233A2 (fr) Mélanges pesticides comprenant des sulfonamides ii
AU2014202401A1 (en) Pesticidal mixtures
CA2857075A1 (fr) Melanges pesticides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08774255

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08774255

Country of ref document: EP

Kind code of ref document: A2